page-writeback.c 57.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * mm/page-writeback.c
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2002, Linus Torvalds.
P
Peter Zijlstra 已提交
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
L
Linus Torvalds 已提交
6 7 8 9
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
10
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *		Initial version
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
26 27
#include <linux/blkdev.h>
#include <linux/mpage.h>
28
#include <linux/rmap.h>
L
Linus Torvalds 已提交
29 30 31 32 33 34
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
35
#include <linux/buffer_head.h>
36
#include <linux/pagevec.h>
37
#include <trace/events/writeback.h>
L
Linus Torvalds 已提交
38

39 40 41 42 43
/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

44 45 46 47 48
/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

W
Wu Fengguang 已提交
49 50
#define RATELIMIT_CALC_SHIFT	10

L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58 59
/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/*
 * When balance_dirty_pages decides that the caller needs to perform some
 * non-background writeback, this is how many pages it will attempt to write.
60
 * It should be somewhat larger than dirtied pages to ensure that reasonably
L
Linus Torvalds 已提交
61 62
 * large amounts of I/O are submitted.
 */
63
static inline long sync_writeback_pages(unsigned long dirtied)
L
Linus Torvalds 已提交
64
{
65 66 67 68
	if (dirtied < ratelimit_pages)
		dirtied = ratelimit_pages;

	return dirtied + dirtied / 2;
L
Linus Torvalds 已提交
69 70 71 72 73
}

/* The following parameters are exported via /proc/sys/vm */

/*
74
 * Start background writeback (via writeback threads) at this percentage
L
Linus Torvalds 已提交
75
 */
76
int dirty_background_ratio = 10;
L
Linus Torvalds 已提交
77

78 79 80 81 82 83
/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

84 85 86 87 88 89
/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

L
Linus Torvalds 已提交
90 91 92
/*
 * The generator of dirty data starts writeback at this percentage
 */
93
int vm_dirty_ratio = 20;
L
Linus Torvalds 已提交
94

95 96 97 98 99 100
/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

L
Linus Torvalds 已提交
101
/*
102
 * The interval between `kupdate'-style writebacks
L
Linus Torvalds 已提交
103
 */
104
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
L
Linus Torvalds 已提交
105 106

/*
107
 * The longest time for which data is allowed to remain dirty
L
Linus Torvalds 已提交
108
 */
109
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
L
Linus Torvalds 已提交
110 111 112 113 114 115 116

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
117 118
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
L
Linus Torvalds 已提交
119 120 121 122 123 124 125
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

126
unsigned long global_dirty_limit;
L
Linus Torvalds 已提交
127

P
Peter Zijlstra 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
/*
 * Scale the writeback cache size proportional to the relative writeout speeds.
 *
 * We do this by keeping a floating proportion between BDIs, based on page
 * writeback completions [end_page_writeback()]. Those devices that write out
 * pages fastest will get the larger share, while the slower will get a smaller
 * share.
 *
 * We use page writeout completions because we are interested in getting rid of
 * dirty pages. Having them written out is the primary goal.
 *
 * We introduce a concept of time, a period over which we measure these events,
 * because demand can/will vary over time. The length of this period itself is
 * measured in page writeback completions.
 *
 */
static struct prop_descriptor vm_completions;
P
Peter Zijlstra 已提交
145
static struct prop_descriptor vm_dirties;
P
Peter Zijlstra 已提交
146 147 148 149 150 151 152 153 154 155

/*
 * couple the period to the dirty_ratio:
 *
 *   period/2 ~ roundup_pow_of_two(dirty limit)
 */
static int calc_period_shift(void)
{
	unsigned long dirty_total;

156 157 158 159 160
	if (vm_dirty_bytes)
		dirty_total = vm_dirty_bytes / PAGE_SIZE;
	else
		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
				100;
P
Peter Zijlstra 已提交
161 162 163 164
	return 2 + ilog2(dirty_total - 1);
}

/*
165
 * update the period when the dirty threshold changes.
P
Peter Zijlstra 已提交
166
 */
167 168 169 170 171 172 173 174
static void update_completion_period(void)
{
	int shift = calc_period_shift();
	prop_change_shift(&vm_completions, shift);
	prop_change_shift(&vm_dirties, shift);
}

int dirty_background_ratio_handler(struct ctl_table *table, int write,
175
		void __user *buffer, size_t *lenp,
176 177 178 179
		loff_t *ppos)
{
	int ret;

180
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
181 182 183 184 185 186
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
187
		void __user *buffer, size_t *lenp,
188 189 190 191
		loff_t *ppos)
{
	int ret;

192
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
193 194 195 196 197
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

P
Peter Zijlstra 已提交
198
int dirty_ratio_handler(struct ctl_table *table, int write,
199
		void __user *buffer, size_t *lenp,
P
Peter Zijlstra 已提交
200 201 202
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
203 204
	int ret;

205
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
206
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
207 208 209 210 211 212 213 214
		update_completion_period();
		vm_dirty_bytes = 0;
	}
	return ret;
}


int dirty_bytes_handler(struct ctl_table *table, int write,
215
		void __user *buffer, size_t *lenp,
216 217
		loff_t *ppos)
{
218
	unsigned long old_bytes = vm_dirty_bytes;
219 220
	int ret;

221
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
222 223 224
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
		update_completion_period();
		vm_dirty_ratio = 0;
P
Peter Zijlstra 已提交
225 226 227 228 229 230 231 232 233 234
	}
	return ret;
}

/*
 * Increment the BDI's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
{
235
	__inc_bdi_stat(bdi, BDI_WRITTEN);
236 237
	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
			      bdi->max_prop_frac);
P
Peter Zijlstra 已提交
238 239
}

240 241 242 243 244 245 246 247 248 249
void bdi_writeout_inc(struct backing_dev_info *bdi)
{
	unsigned long flags;

	local_irq_save(flags);
	__bdi_writeout_inc(bdi);
	local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(bdi_writeout_inc);

N
Nick Piggin 已提交
250
void task_dirty_inc(struct task_struct *tsk)
P
Peter Zijlstra 已提交
251 252 253 254
{
	prop_inc_single(&vm_dirties, &tsk->dirties);
}

P
Peter Zijlstra 已提交
255 256 257 258 259 260
/*
 * Obtain an accurate fraction of the BDI's portion.
 */
static void bdi_writeout_fraction(struct backing_dev_info *bdi,
		long *numerator, long *denominator)
{
261
	prop_fraction_percpu(&vm_completions, &bdi->completions,
P
Peter Zijlstra 已提交
262 263 264
				numerator, denominator);
}

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272
static inline void task_dirties_fraction(struct task_struct *tsk,
		long *numerator, long *denominator)
{
	prop_fraction_single(&vm_dirties, &tsk->dirties,
				numerator, denominator);
}

/*
273
 * task_dirty_limit - scale down dirty throttling threshold for one task
P
Peter Zijlstra 已提交
274 275 276 277
 *
 * task specific dirty limit:
 *
 *   dirty -= (dirty/8) * p_{t}
278 279 280 281 282 283 284
 *
 * To protect light/slow dirtying tasks from heavier/fast ones, we start
 * throttling individual tasks before reaching the bdi dirty limit.
 * Relatively low thresholds will be allocated to heavy dirtiers. So when
 * dirty pages grow large, heavy dirtiers will be throttled first, which will
 * effectively curb the growth of dirty pages. Light dirtiers with high enough
 * dirty threshold may never get throttled.
P
Peter Zijlstra 已提交
285
 */
286
#define TASK_LIMIT_FRACTION 8
287 288
static unsigned long task_dirty_limit(struct task_struct *tsk,
				       unsigned long bdi_dirty)
P
Peter Zijlstra 已提交
289 290
{
	long numerator, denominator;
291
	unsigned long dirty = bdi_dirty;
292
	u64 inv = dirty / TASK_LIMIT_FRACTION;
P
Peter Zijlstra 已提交
293 294 295 296 297 298 299

	task_dirties_fraction(tsk, &numerator, &denominator);
	inv *= numerator;
	do_div(inv, denominator);

	dirty -= inv;

300
	return max(dirty, bdi_dirty/2);
P
Peter Zijlstra 已提交
301 302
}

303 304 305 306 307 308
/* Minimum limit for any task */
static unsigned long task_min_dirty_limit(unsigned long bdi_dirty)
{
	return bdi_dirty - bdi_dirty / TASK_LIMIT_FRACTION;
}

309 310 311 312 313 314 315 316 317
/*
 *
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

318
	spin_lock_bh(&bdi_lock);
319
	if (min_ratio > bdi->max_ratio) {
320
		ret = -EINVAL;
321 322 323 324 325 326 327 328 329
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
330
	spin_unlock_bh(&bdi_lock);
331 332 333 334 335 336 337 338 339 340 341

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

342
	spin_lock_bh(&bdi_lock);
343 344 345 346 347 348
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
	}
349
	spin_unlock_bh(&bdi_lock);
350 351 352

	return ret;
}
353
EXPORT_SYMBOL(bdi_set_max_ratio);
354

L
Linus Torvalds 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
/*
 * Work out the current dirty-memory clamping and background writeout
 * thresholds.
 *
 * The main aim here is to lower them aggressively if there is a lot of mapped
 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
 * pages.  It is better to clamp down on writers than to start swapping, and
 * performing lots of scanning.
 *
 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
 *
 * We don't permit the clamping level to fall below 5% - that is getting rather
 * excessive.
 *
 * We make sure that the background writeout level is below the adjusted
 * clamping level.
 */
372 373 374 375 376 377 378

static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
	unsigned long x = 0;

379
	for_each_node_state(node, N_HIGH_MEMORY) {
380 381 382
		struct zone *z =
			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];

383 384
		x += zone_page_state(z, NR_FREE_PAGES) +
		     zone_reclaimable_pages(z);
385 386 387 388 389 390 391 392 393 394 395 396 397
	}
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

S
Steven Rostedt 已提交
398 399 400 401 402 403 404
/**
 * determine_dirtyable_memory - amount of memory that may be used
 *
 * Returns the numebr of pages that can currently be freed and used
 * by the kernel for direct mappings.
 */
unsigned long determine_dirtyable_memory(void)
405 406 407
{
	unsigned long x;

408
	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
409 410 411 412

	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

413 414 415
	return x + 1;	/* Ensure that we never return 0 */
}

W
Wu Fengguang 已提交
416 417 418 419 420 421
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
					   unsigned long bg_thresh)
{
	return (thresh + bg_thresh) / 2;
}

422 423 424 425 426
static unsigned long hard_dirty_limit(unsigned long thresh)
{
	return max(thresh, global_dirty_limit);
}

427
/*
428 429 430 431 432 433
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 *
 * Calculate the dirty thresholds based on sysctl parameters
 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
 * - vm.dirty_ratio             or  vm.dirty_bytes
 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
434
 * real-time tasks.
435
 */
436
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
L
Linus Torvalds 已提交
437
{
438 439
	unsigned long background;
	unsigned long dirty;
440
	unsigned long uninitialized_var(available_memory);
L
Linus Torvalds 已提交
441 442
	struct task_struct *tsk;

443 444 445
	if (!vm_dirty_bytes || !dirty_background_bytes)
		available_memory = determine_dirtyable_memory();

446 447
	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
448 449
	else
		dirty = (vm_dirty_ratio * available_memory) / 100;
L
Linus Torvalds 已提交
450

451 452 453 454
	if (dirty_background_bytes)
		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
	else
		background = (dirty_background_ratio * available_memory) / 100;
L
Linus Torvalds 已提交
455

456 457
	if (background >= dirty)
		background = dirty / 2;
L
Linus Torvalds 已提交
458 459 460 461 462 463 464
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
		background += background / 4;
		dirty += dirty / 4;
	}
	*pbackground = background;
	*pdirty = dirty;
465
	trace_global_dirty_state(background, dirty);
466
}
P
Peter Zijlstra 已提交
467

468
/**
469
 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
470 471
 * @bdi: the backing_dev_info to query
 * @dirty: global dirty limit in pages
472
 *
473 474 475 476
 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 * And the "limit" in the name is not seriously taken as hard limit in
 * balance_dirty_pages().
477
 *
478
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
479 480 481 482 483 484 485
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
 * The bdi's share of dirty limit will be adapting to its throughput and
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
486 487 488
{
	u64 bdi_dirty;
	long numerator, denominator;
P
Peter Zijlstra 已提交
489

490 491 492 493
	/*
	 * Calculate this BDI's share of the dirty ratio.
	 */
	bdi_writeout_fraction(bdi, &numerator, &denominator);
P
Peter Zijlstra 已提交
494

495 496 497
	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
	bdi_dirty *= numerator;
	do_div(bdi_dirty, denominator);
P
Peter Zijlstra 已提交
498

499 500 501 502 503
	bdi_dirty += (dirty * bdi->min_ratio) / 100;
	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
		bdi_dirty = dirty * bdi->max_ratio / 100;

	return bdi_dirty;
L
Linus Torvalds 已提交
504 505
}

W
Wu Fengguang 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
/*
 * Dirty position control.
 *
 * (o) global/bdi setpoints
 *
 * We want the dirty pages be balanced around the global/bdi setpoints.
 * When the number of dirty pages is higher/lower than the setpoint, the
 * dirty position control ratio (and hence task dirty ratelimit) will be
 * decreased/increased to bring the dirty pages back to the setpoint.
 *
 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 *
 *     if (dirty < setpoint) scale up   pos_ratio
 *     if (dirty > setpoint) scale down pos_ratio
 *
 *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
 *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
 *
 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 *
 * (o) global control line
 *
 *     ^ pos_ratio
 *     |
 *     |            |<===== global dirty control scope ======>|
 * 2.0 .............*
 *     |            .*
 *     |            . *
 *     |            .   *
 *     |            .     *
 *     |            .        *
 *     |            .            *
 * 1.0 ................................*
 *     |            .                  .     *
 *     |            .                  .          *
 *     |            .                  .              *
 *     |            .                  .                 *
 *     |            .                  .                    *
 *   0 +------------.------------------.----------------------*------------->
 *           freerun^          setpoint^                 limit^   dirty pages
 *
 * (o) bdi control line
 *
 *     ^ pos_ratio
 *     |
 *     |            *
 *     |              *
 *     |                *
 *     |                  *
 *     |                    * |<=========== span ============>|
 * 1.0 .......................*
 *     |                      . *
 *     |                      .   *
 *     |                      .     *
 *     |                      .       *
 *     |                      .         *
 *     |                      .           *
 *     |                      .             *
 *     |                      .               *
 *     |                      .                 *
 *     |                      .                   *
 *     |                      .                     *
 * 1/4 ...............................................* * * * * * * * * * * *
 *     |                      .                         .
 *     |                      .                           .
 *     |                      .                             .
 *   0 +----------------------.-------------------------------.------------->
 *                bdi_setpoint^                    x_intercept^
 *
 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
 * be smoothly throttled down to normal if it starts high in situations like
 * - start writing to a slow SD card and a fast disk at the same time. The SD
 *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
 * - the bdi dirty thresh drops quickly due to change of JBOD workload
 */
static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
					unsigned long thresh,
					unsigned long bg_thresh,
					unsigned long dirty,
					unsigned long bdi_thresh,
					unsigned long bdi_dirty)
{
	unsigned long write_bw = bdi->avg_write_bandwidth;
	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
	unsigned long limit = hard_dirty_limit(thresh);
	unsigned long x_intercept;
	unsigned long setpoint;		/* dirty pages' target balance point */
	unsigned long bdi_setpoint;
	unsigned long span;
	long long pos_ratio;		/* for scaling up/down the rate limit */
	long x;

	if (unlikely(dirty >= limit))
		return 0;

	/*
	 * global setpoint
	 *
	 *                           setpoint - dirty 3
	 *        f(dirty) := 1.0 + (----------------)
	 *                           limit - setpoint
	 *
	 * it's a 3rd order polynomial that subjects to
	 *
	 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
	 * (2) f(setpoint) = 1.0 => the balance point
	 * (3) f(limit)    = 0   => the hard limit
	 * (4) df/dx      <= 0	 => negative feedback control
	 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
	 *     => fast response on large errors; small oscillation near setpoint
	 */
	setpoint = (freerun + limit) / 2;
	x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
		    limit - setpoint + 1);
	pos_ratio = x;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;

	/*
	 * We have computed basic pos_ratio above based on global situation. If
	 * the bdi is over/under its share of dirty pages, we want to scale
	 * pos_ratio further down/up. That is done by the following mechanism.
	 */

	/*
	 * bdi setpoint
	 *
	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
	 *
	 *                        x_intercept - bdi_dirty
	 *                     := --------------------------
	 *                        x_intercept - bdi_setpoint
	 *
	 * The main bdi control line is a linear function that subjects to
	 *
	 * (1) f(bdi_setpoint) = 1.0
	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
	 *
	 * For single bdi case, the dirty pages are observed to fluctuate
	 * regularly within range
	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
	 * for various filesystems, where (2) can yield in a reasonable 12.5%
	 * fluctuation range for pos_ratio.
	 *
	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
	 * own size, so move the slope over accordingly and choose a slope that
	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
	 */
	if (unlikely(bdi_thresh > thresh))
		bdi_thresh = thresh;
	/*
	 * scale global setpoint to bdi's:
	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
	 */
	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
	bdi_setpoint = setpoint * (u64)x >> 16;
	/*
	 * Use span=(8*write_bw) in single bdi case as indicated by
	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
	 *
	 *        bdi_thresh                    thresh - bdi_thresh
	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
	 *          thresh                            thresh
	 */
	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
	x_intercept = bdi_setpoint + span;

	if (bdi_dirty < x_intercept - span / 4) {
		pos_ratio *= x_intercept - bdi_dirty;
		do_div(pos_ratio, x_intercept - bdi_setpoint + 1);
	} else
		pos_ratio /= 4;

	return pos_ratio;
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
				       unsigned long elapsed,
				       unsigned long written)
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
	unsigned long avg = bdi->avg_write_bandwidth;
	unsigned long old = bdi->write_bandwidth;
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
	 */
	bw = written - bdi->written_stamp;
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
	bw += (u64)bdi->write_bandwidth * (period - elapsed);
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
	bdi->write_bandwidth = bw;
	bdi->avg_write_bandwidth = avg;
}

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
/*
 * The global dirtyable memory and dirty threshold could be suddenly knocked
 * down by a large amount (eg. on the startup of KVM in a swapless system).
 * This may throw the system into deep dirty exceeded state and throttle
 * heavy/light dirtiers alike. To retain good responsiveness, maintain
 * global_dirty_limit for tracking slowly down to the knocked down dirty
 * threshold.
 */
static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
{
	unsigned long limit = global_dirty_limit;

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
	 */
	thresh = max(thresh, dirty);
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
	global_dirty_limit = limit;
}

static void global_update_bandwidth(unsigned long thresh,
				    unsigned long dirty,
				    unsigned long now)
{
	static DEFINE_SPINLOCK(dirty_lock);
	static unsigned long update_time;

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
		return;

	spin_lock(&dirty_lock);
	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
		update_dirty_limit(thresh, dirty);
		update_time = now;
	}
	spin_unlock(&dirty_lock);
}

W
Wu Fengguang 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
/*
 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
 *
 * Normal bdi tasks will be curbed at or below it in long term.
 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 */
static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
				       unsigned long thresh,
				       unsigned long bg_thresh,
				       unsigned long dirty,
				       unsigned long bdi_thresh,
				       unsigned long bdi_dirty,
				       unsigned long dirtied,
				       unsigned long elapsed)
{
795 796 797
	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
	unsigned long limit = hard_dirty_limit(thresh);
	unsigned long setpoint = (freerun + limit) / 2;
W
Wu Fengguang 已提交
798 799 800 801 802 803
	unsigned long write_bw = bdi->avg_write_bandwidth;
	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
	unsigned long dirty_rate;
	unsigned long task_ratelimit;
	unsigned long balanced_dirty_ratelimit;
	unsigned long pos_ratio;
804 805
	unsigned long step;
	unsigned long x;
W
Wu Fengguang 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854

	/*
	 * The dirty rate will match the writeout rate in long term, except
	 * when dirty pages are truncated by userspace or re-dirtied by FS.
	 */
	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;

	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
				       bdi_thresh, bdi_dirty);
	/*
	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
	 */
	task_ratelimit = (u64)dirty_ratelimit *
					pos_ratio >> RATELIMIT_CALC_SHIFT;
	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */

	/*
	 * A linear estimation of the "balanced" throttle rate. The theory is,
	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
	 * formula will yield the balanced rate limit (write_bw / N).
	 *
	 * Note that the expanded form is not a pure rate feedback:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
	 * but also takes pos_ratio into account:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
	 *
	 * (1) is not realistic because pos_ratio also takes part in balancing
	 * the dirty rate.  Consider the state
	 *	pos_ratio = 0.5						     (3)
	 *	rate = 2 * (write_bw / N)				     (4)
	 * If (1) is used, it will stuck in that state! Because each dd will
	 * be throttled at
	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
	 * yielding
	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
	 * put (6) into (1) we get
	 *	rate_(i+1) = rate_(i)					     (7)
	 *
	 * So we end up using (2) to always keep
	 *	rate_(i+1) ~= (write_bw / N)				     (8)
	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
	 * pos_ratio is able to drive itself to 1.0, which is not only where
	 * the dirty count meet the setpoint, but also where the slope of
	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
	 */
	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
					   dirty_rate | 1);

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
	/*
	 * We could safely do this and return immediately:
	 *
	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
	 *
	 * However to get a more stable dirty_ratelimit, the below elaborated
	 * code makes use of task_ratelimit to filter out sigular points and
	 * limit the step size.
	 *
	 * The below code essentially only uses the relative value of
	 *
	 *	task_ratelimit - dirty_ratelimit
	 *	= (pos_ratio - 1) * dirty_ratelimit
	 *
	 * which reflects the direction and size of dirty position error.
	 */

	/*
	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
	 * task_ratelimit is on the same side of dirty_ratelimit, too.
	 * For example, when
	 * - dirty_ratelimit > balanced_dirty_ratelimit
	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
	 * lowering dirty_ratelimit will help meet both the position and rate
	 * control targets. Otherwise, don't update dirty_ratelimit if it will
	 * only help meet the rate target. After all, what the users ultimately
	 * feel and care are stable dirty rate and small position error.
	 *
	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
	 * and filter out the sigular points of balanced_dirty_ratelimit. Which
	 * keeps jumping around randomly and can even leap far away at times
	 * due to the small 200ms estimation period of dirty_rate (we want to
	 * keep that period small to reduce time lags).
	 */
	step = 0;
	if (dirty < setpoint) {
		x = min(bdi->balanced_dirty_ratelimit,
			 min(balanced_dirty_ratelimit, task_ratelimit));
		if (dirty_ratelimit < x)
			step = x - dirty_ratelimit;
	} else {
		x = max(bdi->balanced_dirty_ratelimit,
			 max(balanced_dirty_ratelimit, task_ratelimit));
		if (dirty_ratelimit > x)
			step = dirty_ratelimit - x;
	}

	/*
	 * Don't pursue 100% rate matching. It's impossible since the balanced
	 * rate itself is constantly fluctuating. So decrease the track speed
	 * when it gets close to the target. Helps eliminate pointless tremors.
	 */
	step >>= dirty_ratelimit / (2 * step + 1);
	/*
	 * Limit the tracking speed to avoid overshooting.
	 */
	step = (step + 7) / 8;

	if (dirty_ratelimit < balanced_dirty_ratelimit)
		dirty_ratelimit += step;
	else
		dirty_ratelimit -= step;

	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
W
Wu Fengguang 已提交
920 921
}

922
void __bdi_update_bandwidth(struct backing_dev_info *bdi,
923
			    unsigned long thresh,
924
			    unsigned long bg_thresh,
925 926 927
			    unsigned long dirty,
			    unsigned long bdi_thresh,
			    unsigned long bdi_dirty,
928 929 930 931
			    unsigned long start_time)
{
	unsigned long now = jiffies;
	unsigned long elapsed = now - bdi->bw_time_stamp;
W
Wu Fengguang 已提交
932
	unsigned long dirtied;
933 934 935 936 937 938 939 940
	unsigned long written;

	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

W
Wu Fengguang 已提交
941
	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
942 943 944 945 946 947 948 949 950
	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
		goto snapshot;

W
Wu Fengguang 已提交
951
	if (thresh) {
952
		global_update_bandwidth(thresh, dirty, now);
W
Wu Fengguang 已提交
953 954 955 956
		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
					   bdi_thresh, bdi_dirty,
					   dirtied, elapsed);
	}
957 958 959
	bdi_update_write_bandwidth(bdi, elapsed, written);

snapshot:
W
Wu Fengguang 已提交
960
	bdi->dirtied_stamp = dirtied;
961 962 963 964 965
	bdi->written_stamp = written;
	bdi->bw_time_stamp = now;
}

static void bdi_update_bandwidth(struct backing_dev_info *bdi,
966
				 unsigned long thresh,
967
				 unsigned long bg_thresh,
968 969 970
				 unsigned long dirty,
				 unsigned long bdi_thresh,
				 unsigned long bdi_dirty,
971 972 973 974 975
				 unsigned long start_time)
{
	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
		return;
	spin_lock(&bdi->wb.list_lock);
976 977
	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
			       bdi_thresh, bdi_dirty, start_time);
978 979 980
	spin_unlock(&bdi->wb.list_lock);
}

L
Linus Torvalds 已提交
981 982 983 984
/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
985 986
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
L
Linus Torvalds 已提交
987
 */
988 989
static void balance_dirty_pages(struct address_space *mapping,
				unsigned long write_chunk)
L
Linus Torvalds 已提交
990
{
991 992 993
	unsigned long nr_reclaimable, bdi_nr_reclaimable;
	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
	unsigned long bdi_dirty;
W
Wu Fengguang 已提交
994
	unsigned long freerun;
995 996 997
	unsigned long background_thresh;
	unsigned long dirty_thresh;
	unsigned long bdi_thresh;
998 999
	unsigned long task_bdi_thresh;
	unsigned long min_task_bdi_thresh;
L
Linus Torvalds 已提交
1000
	unsigned long pages_written = 0;
1001
	unsigned long pause = 1;
1002
	bool dirty_exceeded = false;
1003
	bool clear_dirty_exceeded = true;
L
Linus Torvalds 已提交
1004
	struct backing_dev_info *bdi = mapping->backing_dev_info;
1005
	unsigned long start_time = jiffies;
L
Linus Torvalds 已提交
1006 1007

	for (;;) {
1008 1009
		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
					global_page_state(NR_UNSTABLE_NFS);
1010
		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1011

1012 1013 1014 1015 1016 1017 1018
		global_dirty_limits(&background_thresh, &dirty_thresh);

		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
		 * when the bdi limits are ramping up.
		 */
W
Wu Fengguang 已提交
1019 1020 1021
		freerun = dirty_freerun_ceiling(dirty_thresh,
						background_thresh);
		if (nr_dirty <= freerun)
1022 1023 1024
			break;

		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1025 1026
		min_task_bdi_thresh = task_min_dirty_limit(bdi_thresh);
		task_bdi_thresh = task_dirty_limit(current, bdi_thresh);
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		/*
		 * In order to avoid the stacked BDI deadlock we need
		 * to ensure we accurately count the 'dirty' pages when
		 * the threshold is low.
		 *
		 * Otherwise it would be possible to get thresh+n pages
		 * reported dirty, even though there are thresh-m pages
		 * actually dirty; with m+n sitting in the percpu
		 * deltas.
		 */
1038
		if (task_bdi_thresh < 2 * bdi_stat_error(bdi)) {
1039
			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1040 1041
			bdi_dirty = bdi_nr_reclaimable +
				    bdi_stat_sum(bdi, BDI_WRITEBACK);
1042 1043
		} else {
			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1044 1045
			bdi_dirty = bdi_nr_reclaimable +
				    bdi_stat(bdi, BDI_WRITEBACK);
1046
		}
1047

1048 1049 1050 1051 1052 1053
		/*
		 * The bdi thresh is somehow "soft" limit derived from the
		 * global "hard" limit. The former helps to prevent heavy IO
		 * bdi or process from holding back light ones; The latter is
		 * the last resort safeguard.
		 */
1054
		dirty_exceeded = (bdi_dirty > task_bdi_thresh) ||
1055
				  (nr_dirty > dirty_thresh);
1056 1057
		clear_dirty_exceeded = (bdi_dirty <= min_task_bdi_thresh) &&
					(nr_dirty <= dirty_thresh);
1058 1059

		if (!dirty_exceeded)
P
Peter Zijlstra 已提交
1060
			break;
L
Linus Torvalds 已提交
1061

P
Peter Zijlstra 已提交
1062 1063
		if (!bdi->dirty_exceeded)
			bdi->dirty_exceeded = 1;
L
Linus Torvalds 已提交
1064

1065 1066 1067
		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
				     nr_dirty, bdi_thresh, bdi_dirty,
				     start_time);
1068

L
Linus Torvalds 已提交
1069 1070 1071 1072 1073
		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
1074 1075 1076
		 * Only move pages to writeback if this bdi is over its
		 * threshold otherwise wait until the disk writes catch
		 * up.
L
Linus Torvalds 已提交
1077
		 */
1078
		trace_balance_dirty_start(bdi);
1079
		if (bdi_nr_reclaimable > task_bdi_thresh) {
1080 1081 1082
			pages_written += writeback_inodes_wb(&bdi->wb,
							     write_chunk);
			trace_balance_dirty_written(bdi, pages_written);
1083 1084
			if (pages_written >= write_chunk)
				break;		/* We've done our duty */
P
Peter Zijlstra 已提交
1085
		}
1086
		__set_current_state(TASK_UNINTERRUPTIBLE);
1087
		io_schedule_timeout(pause);
1088
		trace_balance_dirty_wait(bdi);
1089

1090 1091 1092 1093 1094 1095 1096
		dirty_thresh = hard_dirty_limit(dirty_thresh);
		/*
		 * max-pause area. If dirty exceeded but still within this
		 * area, no need to sleep for more than 200ms: (a) 8 pages per
		 * 200ms is typically more than enough to curb heavy dirtiers;
		 * (b) the pause time limit makes the dirtiers more responsive.
		 */
1097 1098
		if (nr_dirty < dirty_thresh &&
		    bdi_dirty < (task_bdi_thresh + bdi_thresh) / 2 &&
1099 1100
		    time_after(jiffies, start_time + MAX_PAUSE))
			break;
1101 1102 1103 1104 1105 1106 1107 1108

		/*
		 * Increase the delay for each loop, up to our previous
		 * default of taking a 100ms nap.
		 */
		pause <<= 1;
		if (pause > HZ / 10)
			pause = HZ / 10;
L
Linus Torvalds 已提交
1109 1110
	}

1111 1112
	/* Clear dirty_exceeded flag only when no task can exceed the limit */
	if (clear_dirty_exceeded && bdi->dirty_exceeded)
P
Peter Zijlstra 已提交
1113
		bdi->dirty_exceeded = 0;
L
Linus Torvalds 已提交
1114 1115

	if (writeback_in_progress(bdi))
1116
		return;
L
Linus Torvalds 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
	if ((laptop_mode && pages_written) ||
1127
	    (!laptop_mode && (nr_reclaimable > background_thresh)))
1128
		bdi_start_background_writeback(bdi);
L
Linus Torvalds 已提交
1129 1130
}

1131
void set_page_dirty_balance(struct page *page, int page_mkwrite)
P
Peter Zijlstra 已提交
1132
{
1133
	if (set_page_dirty(page) || page_mkwrite) {
P
Peter Zijlstra 已提交
1134 1135 1136 1137 1138 1139 1140
		struct address_space *mapping = page_mapping(page);

		if (mapping)
			balance_dirty_pages_ratelimited(mapping);
	}
}

1141 1142
static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;

L
Linus Torvalds 已提交
1143
/**
1144
 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1145
 * @mapping: address_space which was dirtied
1146
 * @nr_pages_dirtied: number of pages which the caller has just dirtied
L
Linus Torvalds 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
1157 1158
void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
					unsigned long nr_pages_dirtied)
L
Linus Torvalds 已提交
1159
{
1160
	struct backing_dev_info *bdi = mapping->backing_dev_info;
1161 1162
	unsigned long ratelimit;
	unsigned long *p;
L
Linus Torvalds 已提交
1163

1164 1165 1166
	if (!bdi_cap_account_dirty(bdi))
		return;

L
Linus Torvalds 已提交
1167
	ratelimit = ratelimit_pages;
P
Peter Zijlstra 已提交
1168
	if (mapping->backing_dev_info->dirty_exceeded)
L
Linus Torvalds 已提交
1169 1170 1171 1172 1173 1174
		ratelimit = 8;

	/*
	 * Check the rate limiting. Also, we do not want to throttle real-time
	 * tasks in balance_dirty_pages(). Period.
	 */
1175
	preempt_disable();
1176
	p =  &__get_cpu_var(bdp_ratelimits);
1177 1178
	*p += nr_pages_dirtied;
	if (unlikely(*p >= ratelimit)) {
1179
		ratelimit = sync_writeback_pages(*p);
1180 1181
		*p = 0;
		preempt_enable();
1182
		balance_dirty_pages(mapping, ratelimit);
L
Linus Torvalds 已提交
1183 1184
		return;
	}
1185
	preempt_enable();
L
Linus Torvalds 已提交
1186
}
1187
EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
L
Linus Torvalds 已提交
1188

1189
void throttle_vm_writeout(gfp_t gfp_mask)
L
Linus Torvalds 已提交
1190
{
1191 1192
	unsigned long background_thresh;
	unsigned long dirty_thresh;
L
Linus Torvalds 已提交
1193 1194

        for ( ; ; ) {
1195
		global_dirty_limits(&background_thresh, &dirty_thresh);
L
Linus Torvalds 已提交
1196 1197 1198 1199 1200 1201 1202

                /*
                 * Boost the allowable dirty threshold a bit for page
                 * allocators so they don't get DoS'ed by heavy writers
                 */
                dirty_thresh += dirty_thresh / 10;      /* wheeee... */

1203 1204 1205
                if (global_page_state(NR_UNSTABLE_NFS) +
			global_page_state(NR_WRITEBACK) <= dirty_thresh)
                        	break;
1206
                congestion_wait(BLK_RW_ASYNC, HZ/10);
1207 1208 1209 1210 1211 1212 1213 1214

		/*
		 * The caller might hold locks which can prevent IO completion
		 * or progress in the filesystem.  So we cannot just sit here
		 * waiting for IO to complete.
		 */
		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
			break;
L
Linus Torvalds 已提交
1215 1216 1217 1218 1219 1220 1221
        }
}

/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1222
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1223
{
1224
	proc_dointvec(table, write, buffer, length, ppos);
1225
	bdi_arm_supers_timer();
L
Linus Torvalds 已提交
1226 1227 1228
	return 0;
}

1229
#ifdef CONFIG_BLOCK
1230
void laptop_mode_timer_fn(unsigned long data)
L
Linus Torvalds 已提交
1231
{
1232 1233 1234
	struct request_queue *q = (struct request_queue *)data;
	int nr_pages = global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS);
L
Linus Torvalds 已提交
1235

1236 1237 1238 1239 1240
	/*
	 * We want to write everything out, not just down to the dirty
	 * threshold
	 */
	if (bdi_has_dirty_io(&q->backing_dev_info))
1241
		bdi_start_writeback(&q->backing_dev_info, nr_pages);
L
Linus Torvalds 已提交
1242 1243 1244 1245 1246 1247 1248
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
1249
void laptop_io_completion(struct backing_dev_info *info)
L
Linus Torvalds 已提交
1250
{
1251
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
L
Linus Torvalds 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
1261 1262 1263 1264 1265 1266 1267 1268
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
L
Linus Torvalds 已提交
1269
}
1270
#endif
L
Linus Torvalds 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
 * thresholds before writeback cuts in.
 *
 * But the limit should not be set too high.  Because it also controls the
 * amount of memory which the balance_dirty_pages() caller has to write back.
 * If this is too large then the caller will block on the IO queue all the
 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
 * will write six megabyte chunks, max.
 */

1289
void writeback_set_ratelimit(void)
L
Linus Torvalds 已提交
1290
{
1291
	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
L
Linus Torvalds 已提交
1292 1293 1294 1295 1296 1297
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
}

1298
static int __cpuinit
L
Linus Torvalds 已提交
1299 1300
ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
{
1301
	writeback_set_ratelimit();
1302
	return NOTIFY_DONE;
L
Linus Torvalds 已提交
1303 1304
}

1305
static struct notifier_block __cpuinitdata ratelimit_nb = {
L
Linus Torvalds 已提交
1306 1307 1308 1309 1310
	.notifier_call	= ratelimit_handler,
	.next		= NULL,
};

/*
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
L
Linus Torvalds 已提交
1327 1328 1329
 */
void __init page_writeback_init(void)
{
P
Peter Zijlstra 已提交
1330 1331
	int shift;

1332
	writeback_set_ratelimit();
L
Linus Torvalds 已提交
1333
	register_cpu_notifier(&ratelimit_nb);
P
Peter Zijlstra 已提交
1334 1335 1336

	shift = calc_period_shift();
	prop_descriptor_init(&vm_completions, shift);
P
Peter Zijlstra 已提交
1337
	prop_descriptor_init(&vm_dirties, shift);
L
Linus Torvalds 已提交
1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
R
Randy Dunlap 已提交
1360
#define WRITEBACK_TAG_BATCH 4096
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	unsigned long tagged;

	do {
		spin_lock_irq(&mapping->tree_lock);
		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
				&start, end, WRITEBACK_TAG_BATCH,
				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
		spin_unlock_irq(&mapping->tree_lock);
		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
		cond_resched();
1371 1372
		/* We check 'start' to handle wrapping when end == ~0UL */
	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1373 1374 1375
}
EXPORT_SYMBOL(tag_pages_for_writeback);

1376
/**
1377
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1378 1379
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1380 1381
 * @writepage: function called for each page
 * @data: data passed to writepage function
1382
 *
1383
 * If a page is already under I/O, write_cache_pages() skips it, even
1384 1385 1386 1387 1388 1389
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
1390 1391 1392 1393 1394 1395 1396
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
1397
 */
1398 1399 1400
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
1401 1402 1403 1404 1405
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
N
Nick Piggin 已提交
1406
	pgoff_t uninitialized_var(writeback_index);
1407 1408
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
1409
	pgoff_t done_index;
N
Nick Piggin 已提交
1410
	int cycled;
1411
	int range_whole = 0;
1412
	int tag;
1413 1414 1415

	pagevec_init(&pvec, 0);
	if (wbc->range_cyclic) {
N
Nick Piggin 已提交
1416 1417 1418 1419 1420 1421
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
		if (index == 0)
			cycled = 1;
		else
			cycled = 0;
1422 1423 1424 1425 1426 1427
		end = -1;
	} else {
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
N
Nick Piggin 已提交
1428
		cycled = 1; /* ignore range_cyclic tests */
1429
	}
1430
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1431 1432 1433
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
1434
retry:
1435
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1436
		tag_pages_for_writeback(mapping, index, end);
1437
	done_index = index;
N
Nick Piggin 已提交
1438 1439 1440
	while (!done && (index <= end)) {
		int i;

1441
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
N
Nick Piggin 已提交
1442 1443 1444
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;
1445 1446 1447 1448 1449

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
1450 1451 1452 1453 1454
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
1455
			 */
1456 1457 1458 1459 1460 1461 1462 1463 1464
			if (page->index > end) {
				/*
				 * can't be range_cyclic (1st pass) because
				 * end == -1 in that case.
				 */
				done = 1;
				break;
			}

1465
			done_index = page->index;
1466

1467 1468
			lock_page(page);

N
Nick Piggin 已提交
1469 1470 1471 1472 1473 1474 1475 1476
			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
1477
			if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
1478
continue_unlock:
1479 1480 1481 1482
				unlock_page(page);
				continue;
			}

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}
1494

1495 1496
			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
N
Nick Piggin 已提交
1497
				goto continue_unlock;
1498

1499
			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1500
			ret = (*writepage)(page, wbc, data);
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					/*
					 * done_index is set past this page,
					 * so media errors will not choke
					 * background writeout for the entire
					 * file. This has consequences for
					 * range_cyclic semantics (ie. it may
					 * not be suitable for data integrity
					 * writeout).
					 */
1515
					done_index = page->index + 1;
1516 1517 1518
					done = 1;
					break;
				}
1519
			}
1520

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
1531
			}
1532 1533 1534 1535
		}
		pagevec_release(&pvec);
		cond_resched();
	}
1536
	if (!cycled && !done) {
1537
		/*
N
Nick Piggin 已提交
1538
		 * range_cyclic:
1539 1540 1541
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
N
Nick Piggin 已提交
1542
		cycled = 1;
1543
		index = 0;
N
Nick Piggin 已提交
1544
		end = writeback_index - 1;
1545 1546
		goto retry;
	}
1547 1548
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;
1549

1550 1551
	return ret;
}
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
1578 1579 1580
	struct blk_plug plug;
	int ret;

1581 1582 1583 1584
	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

1585 1586 1587 1588
	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
1589
}
1590 1591 1592

EXPORT_SYMBOL(generic_writepages);

L
Linus Torvalds 已提交
1593 1594
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
1595 1596
	int ret;

L
Linus Torvalds 已提交
1597 1598 1599
	if (wbc->nr_to_write <= 0)
		return 0;
	if (mapping->a_ops->writepages)
1600
		ret = mapping->a_ops->writepages(mapping, wbc);
1601 1602 1603
	else
		ret = generic_writepages(mapping, wbc);
	return ret;
L
Linus Torvalds 已提交
1604 1605 1606 1607
}

/**
 * write_one_page - write out a single page and optionally wait on I/O
1608 1609
 * @page: the page to write
 * @wait: if true, wait on writeout
L
Linus Torvalds 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
 * write_one_page() returns a negative error code if I/O failed.
 */
int write_one_page(struct page *page, int wait)
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

	if (wait)
		wait_on_page_writeback(page);

	if (clear_page_dirty_for_io(page)) {
		page_cache_get(page);
		ret = mapping->a_ops->writepage(page, &wbc);
		if (ret == 0 && wait) {
			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
		page_cache_release(page);
	} else {
		unlock_page(page);
	}
	return ret;
}
EXPORT_SYMBOL(write_one_page);

1645 1646 1647 1648 1649 1650
/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
1651
		return !TestSetPageDirty(page);
1652 1653 1654
	return 0;
}

1655 1656 1657 1658 1659 1660 1661 1662
/*
 * Helper function for set_page_dirty family.
 * NOTE: This relies on being atomic wrt interrupts.
 */
void account_page_dirtied(struct page *page, struct address_space *mapping)
{
	if (mapping_cap_account_dirty(mapping)) {
		__inc_zone_page_state(page, NR_FILE_DIRTY);
1663
		__inc_zone_page_state(page, NR_DIRTIED);
1664
		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1665
		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1666 1667 1668 1669
		task_dirty_inc(current);
		task_io_account_write(PAGE_CACHE_SIZE);
	}
}
M
Michael Rubin 已提交
1670
EXPORT_SYMBOL(account_page_dirtied);
1671

M
Michael Rubin 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
/*
 * Helper function for set_page_writeback family.
 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
 * wrt interrupts.
 */
void account_page_writeback(struct page *page)
{
	inc_zone_page_state(page, NR_WRITEBACK);
}
EXPORT_SYMBOL(account_page_writeback);

L
Linus Torvalds 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
 * Most callers have locked the page, which pins the address_space in memory.
 * But zap_pte_range() does not lock the page, however in that case the
 * mapping is pinned by the vma's ->vm_file reference.
 *
 * We take care to handle the case where the page was truncated from the
S
Simon Arlott 已提交
1696
 * mapping by re-checking page_mapping() inside tree_lock.
L
Linus Torvalds 已提交
1697 1698 1699 1700 1701 1702 1703
 */
int __set_page_dirty_nobuffers(struct page *page)
{
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
		struct address_space *mapping2;

1704 1705 1706
		if (!mapping)
			return 1;

N
Nick Piggin 已提交
1707
		spin_lock_irq(&mapping->tree_lock);
1708 1709 1710
		mapping2 = page_mapping(page);
		if (mapping2) { /* Race with truncate? */
			BUG_ON(mapping2 != mapping);
1711
			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1712
			account_page_dirtied(page, mapping);
1713 1714 1715
			radix_tree_tag_set(&mapping->page_tree,
				page_index(page), PAGECACHE_TAG_DIRTY);
		}
N
Nick Piggin 已提交
1716
		spin_unlock_irq(&mapping->tree_lock);
1717 1718 1719
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
L
Linus Torvalds 已提交
1720
		}
1721
		return 1;
L
Linus Torvalds 已提交
1722
	}
1723
	return 0;
L
Linus Torvalds 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
	wbc->pages_skipped++;
	return __set_page_dirty_nobuffers(page);
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
1740 1741 1742 1743 1744 1745 1746
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
L
Linus Torvalds 已提交
1747 1748 1749
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
N
Nick Piggin 已提交
1750
int set_page_dirty(struct page *page)
L
Linus Torvalds 已提交
1751 1752 1753 1754 1755
{
	struct address_space *mapping = page_mapping(page);

	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
M
Minchan Kim 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
		ClearPageReclaim(page);
1767 1768 1769 1770 1771
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
L
Linus Torvalds 已提交
1772
	}
1773 1774 1775 1776
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
L
Linus Torvalds 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

J
Jens Axboe 已提交
1795
	lock_page(page);
L
Linus Torvalds 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);

1820 1821
	BUG_ON(!PageLocked(page));

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	if (mapping && mapping_cap_account_dirty(mapping)) {
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
		 * at this point. We do this by having them hold the
		 * page lock at some point after installing their
		 * pte, but before marking the page dirty.
		 * Pages are always locked coming in here, so we get
		 * the desired exclusion. See mm/memory.c:do_wp_page()
		 * for more comments.
		 */
1860
		if (TestClearPageDirty(page)) {
1861
			dec_zone_page_state(page, NR_FILE_DIRTY);
1862 1863
			dec_bdi_stat(mapping->backing_dev_info,
					BDI_RECLAIMABLE);
1864
			return 1;
L
Linus Torvalds 已提交
1865
		}
1866
		return 0;
L
Linus Torvalds 已提交
1867
	}
1868
	return TestClearPageDirty(page);
L
Linus Torvalds 已提交
1869
}
1870
EXPORT_SYMBOL(clear_page_dirty_for_io);
L
Linus Torvalds 已提交
1871 1872 1873 1874 1875 1876 1877

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
	int ret;

	if (mapping) {
P
Peter Zijlstra 已提交
1878
		struct backing_dev_info *bdi = mapping->backing_dev_info;
L
Linus Torvalds 已提交
1879 1880
		unsigned long flags;

N
Nick Piggin 已提交
1881
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
1882
		ret = TestClearPageWriteback(page);
P
Peter Zijlstra 已提交
1883
		if (ret) {
L
Linus Torvalds 已提交
1884 1885 1886
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
1887
			if (bdi_cap_account_writeback(bdi)) {
P
Peter Zijlstra 已提交
1888
				__dec_bdi_stat(bdi, BDI_WRITEBACK);
P
Peter Zijlstra 已提交
1889 1890
				__bdi_writeout_inc(bdi);
			}
P
Peter Zijlstra 已提交
1891
		}
N
Nick Piggin 已提交
1892
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
1893 1894 1895
	} else {
		ret = TestClearPageWriteback(page);
	}
1896
	if (ret) {
1897
		dec_zone_page_state(page, NR_WRITEBACK);
1898 1899
		inc_zone_page_state(page, NR_WRITTEN);
	}
L
Linus Torvalds 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908
	return ret;
}

int test_set_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
	int ret;

	if (mapping) {
P
Peter Zijlstra 已提交
1909
		struct backing_dev_info *bdi = mapping->backing_dev_info;
L
Linus Torvalds 已提交
1910 1911
		unsigned long flags;

N
Nick Piggin 已提交
1912
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
1913
		ret = TestSetPageWriteback(page);
P
Peter Zijlstra 已提交
1914
		if (!ret) {
L
Linus Torvalds 已提交
1915 1916 1917
			radix_tree_tag_set(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
1918
			if (bdi_cap_account_writeback(bdi))
P
Peter Zijlstra 已提交
1919 1920
				__inc_bdi_stat(bdi, BDI_WRITEBACK);
		}
L
Linus Torvalds 已提交
1921 1922 1923 1924
		if (!PageDirty(page))
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_DIRTY);
1925 1926 1927
		radix_tree_tag_clear(&mapping->page_tree,
				     page_index(page),
				     PAGECACHE_TAG_TOWRITE);
N
Nick Piggin 已提交
1928
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
1929 1930 1931
	} else {
		ret = TestSetPageWriteback(page);
	}
1932
	if (!ret)
M
Michael Rubin 已提交
1933
		account_page_writeback(page);
L
Linus Torvalds 已提交
1934 1935 1936 1937 1938 1939
	return ret;

}
EXPORT_SYMBOL(test_set_page_writeback);

/*
N
Nick Piggin 已提交
1940
 * Return true if any of the pages in the mapping are marked with the
L
Linus Torvalds 已提交
1941 1942 1943 1944
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
1945
	return radix_tree_tagged(&mapping->page_tree, tag);
L
Linus Torvalds 已提交
1946 1947
}
EXPORT_SYMBOL(mapping_tagged);