page-writeback.c 75.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * mm/page-writeback.c
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2002, Linus Torvalds.
P
Peter Zijlstra 已提交
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
L
Linus Torvalds 已提交
6 7 8 9
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
10
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
11 12 13 14
 *		Initial version
 */

#include <linux/kernel.h>
15
#include <linux/export.h>
L
Linus Torvalds 已提交
16 17 18 19 20 21 22 23 24
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
26 27
#include <linux/blkdev.h>
#include <linux/mpage.h>
28
#include <linux/rmap.h>
L
Linus Torvalds 已提交
29 30 31 32 33 34
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Al Viro 已提交
35
#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36
#include <linux/pagevec.h>
37
#include <linux/timer.h>
38
#include <linux/sched/rt.h>
39
#include <linux/mm_inline.h>
40
#include <trace/events/writeback.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48
/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

49 50 51 52 53 54
/*
 * Try to keep balance_dirty_pages() call intervals higher than this many pages
 * by raising pause time to max_pause when falls below it.
 */
#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))

55 56 57 58 59
/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

W
Wu Fengguang 已提交
60 61
#define RATELIMIT_CALC_SHIFT	10

L
Linus Torvalds 已提交
62 63 64 65 66 67 68 69 70
/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/* The following parameters are exported via /proc/sys/vm */

/*
71
 * Start background writeback (via writeback threads) at this percentage
L
Linus Torvalds 已提交
72
 */
73
int dirty_background_ratio = 10;
L
Linus Torvalds 已提交
74

75 76 77 78 79 80
/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

81 82 83 84 85 86
/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

L
Linus Torvalds 已提交
87 88 89
/*
 * The generator of dirty data starts writeback at this percentage
 */
90
int vm_dirty_ratio = 20;
L
Linus Torvalds 已提交
91

92 93 94 95 96 97
/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

L
Linus Torvalds 已提交
98
/*
99
 * The interval between `kupdate'-style writebacks
L
Linus Torvalds 已提交
100
 */
101
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
L
Linus Torvalds 已提交
102

103 104
EXPORT_SYMBOL_GPL(dirty_writeback_interval);

L
Linus Torvalds 已提交
105
/*
106
 * The longest time for which data is allowed to remain dirty
L
Linus Torvalds 已提交
107
 */
108
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
L
Linus Torvalds 已提交
109 110 111 112 113 114 115

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
116 117
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
L
Linus Torvalds 已提交
118 119 120 121 122 123 124
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

125
unsigned long global_dirty_limit;
L
Linus Torvalds 已提交
126

P
Peter Zijlstra 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
/*
 * Scale the writeback cache size proportional to the relative writeout speeds.
 *
 * We do this by keeping a floating proportion between BDIs, based on page
 * writeback completions [end_page_writeback()]. Those devices that write out
 * pages fastest will get the larger share, while the slower will get a smaller
 * share.
 *
 * We use page writeout completions because we are interested in getting rid of
 * dirty pages. Having them written out is the primary goal.
 *
 * We introduce a concept of time, a period over which we measure these events,
 * because demand can/will vary over time. The length of this period itself is
 * measured in page writeback completions.
 *
 */
143 144 145 146 147 148 149 150 151 152 153 154 155 156
static struct fprop_global writeout_completions;

static void writeout_period(unsigned long t);
/* Timer for aging of writeout_completions */
static struct timer_list writeout_period_timer =
		TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
static unsigned long writeout_period_time = 0;

/*
 * Length of period for aging writeout fractions of bdis. This is an
 * arbitrarily chosen number. The longer the period, the slower fractions will
 * reflect changes in current writeout rate.
 */
#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
P
Peter Zijlstra 已提交
157

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/*
 * In a memory zone, there is a certain amount of pages we consider
 * available for the page cache, which is essentially the number of
 * free and reclaimable pages, minus some zone reserves to protect
 * lowmem and the ability to uphold the zone's watermarks without
 * requiring writeback.
 *
 * This number of dirtyable pages is the base value of which the
 * user-configurable dirty ratio is the effictive number of pages that
 * are allowed to be actually dirtied.  Per individual zone, or
 * globally by using the sum of dirtyable pages over all zones.
 *
 * Because the user is allowed to specify the dirty limit globally as
 * absolute number of bytes, calculating the per-zone dirty limit can
 * require translating the configured limit into a percentage of
 * global dirtyable memory first.
 */

176 177 178 179 180 181 182 183 184 185 186 187 188 189
/**
 * zone_dirtyable_memory - number of dirtyable pages in a zone
 * @zone: the zone
 *
 * Returns the zone's number of pages potentially available for dirty
 * page cache.  This is the base value for the per-zone dirty limits.
 */
static unsigned long zone_dirtyable_memory(struct zone *zone)
{
	unsigned long nr_pages;

	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);

190 191
	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
192 193 194 195

	return nr_pages;
}

196 197 198 199 200 201 202
static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
	unsigned long x = 0;

	for_each_node_state(node, N_HIGH_MEMORY) {
203
		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
204

205
		x += zone_dirtyable_memory(z);
206
	}
207 208 209 210 211 212 213 214 215 216 217 218
	/*
	 * Unreclaimable memory (kernel memory or anonymous memory
	 * without swap) can bring down the dirtyable pages below
	 * the zone's dirty balance reserve and the above calculation
	 * will underflow.  However we still want to add in nodes
	 * which are below threshold (negative values) to get a more
	 * accurate calculation but make sure that the total never
	 * underflows.
	 */
	if ((long)x < 0)
		x = 0;

219 220 221 222 223 224 225 226 227 228 229 230 231
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

/**
232
 * global_dirtyable_memory - number of globally dirtyable pages
233
 *
234 235
 * Returns the global number of pages potentially available for dirty
 * page cache.  This is the base value for the global dirty limits.
236
 */
237
static unsigned long global_dirtyable_memory(void)
238 239 240
{
	unsigned long x;

241
	x = global_page_state(NR_FREE_PAGES);
242
	x -= min(x, dirty_balance_reserve);
243

244 245
	x += global_page_state(NR_INACTIVE_FILE);
	x += global_page_state(NR_ACTIVE_FILE);
246

247 248 249 250 251 252
	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

	return x + 1;	/* Ensure that we never return 0 */
}

253 254 255 256 257 258 259 260 261 262 263
/*
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 *
 * Calculate the dirty thresholds based on sysctl parameters
 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
 * - vm.dirty_ratio             or  vm.dirty_bytes
 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 * real-time tasks.
 */
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
264
	const unsigned long available_memory = global_dirtyable_memory();
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	unsigned long background;
	unsigned long dirty;
	struct task_struct *tsk;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
	else
		dirty = (vm_dirty_ratio * available_memory) / 100;

	if (dirty_background_bytes)
		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
	else
		background = (dirty_background_ratio * available_memory) / 100;

	if (background >= dirty)
		background = dirty / 2;
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
		background += background / 4;
		dirty += dirty / 4;
	}
	*pbackground = background;
	*pdirty = dirty;
	trace_global_dirty_state(background, dirty);
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
/**
 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 * @zone: the zone
 *
 * Returns the maximum number of dirty pages allowed in a zone, based
 * on the zone's dirtyable memory.
 */
static unsigned long zone_dirty_limit(struct zone *zone)
{
	unsigned long zone_memory = zone_dirtyable_memory(zone);
	struct task_struct *tsk = current;
	unsigned long dirty;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
			zone_memory / global_dirtyable_memory();
	else
		dirty = vm_dirty_ratio * zone_memory / 100;

	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
		dirty += dirty / 4;

	return dirty;
}

/**
 * zone_dirty_ok - tells whether a zone is within its dirty limits
 * @zone: the zone to check
 *
 * Returns %true when the dirty pages in @zone are within the zone's
 * dirty limit, %false if the limit is exceeded.
 */
bool zone_dirty_ok(struct zone *zone)
{
	unsigned long limit = zone_dirty_limit(zone);

	return zone_page_state(zone, NR_FILE_DIRTY) +
	       zone_page_state(zone, NR_UNSTABLE_NFS) +
	       zone_page_state(zone, NR_WRITEBACK) <= limit;
}

332
int dirty_background_ratio_handler(struct ctl_table *table, int write,
333
		void __user *buffer, size_t *lenp,
334 335 336 337
		loff_t *ppos)
{
	int ret;

338
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
339 340 341 342 343 344
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
345
		void __user *buffer, size_t *lenp,
346 347 348 349
		loff_t *ppos)
{
	int ret;

350
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
351 352 353 354 355
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

P
Peter Zijlstra 已提交
356
int dirty_ratio_handler(struct ctl_table *table, int write,
357
		void __user *buffer, size_t *lenp,
P
Peter Zijlstra 已提交
358 359 360
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
361 362
	int ret;

363
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
364
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
365
		writeback_set_ratelimit();
366 367 368 369 370 371
		vm_dirty_bytes = 0;
	}
	return ret;
}

int dirty_bytes_handler(struct ctl_table *table, int write,
372
		void __user *buffer, size_t *lenp,
373 374
		loff_t *ppos)
{
375
	unsigned long old_bytes = vm_dirty_bytes;
376 377
	int ret;

378
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
379
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
380
		writeback_set_ratelimit();
381
		vm_dirty_ratio = 0;
P
Peter Zijlstra 已提交
382 383 384 385
	}
	return ret;
}

386 387 388 389 390 391 392 393 394
static unsigned long wp_next_time(unsigned long cur_time)
{
	cur_time += VM_COMPLETIONS_PERIOD_LEN;
	/* 0 has a special meaning... */
	if (!cur_time)
		return 1;
	return cur_time;
}

P
Peter Zijlstra 已提交
395 396 397 398
/*
 * Increment the BDI's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
399
static inline void __wb_writeout_inc(struct bdi_writeback *wb)
P
Peter Zijlstra 已提交
400
{
401
	__inc_wb_stat(wb, WB_WRITTEN);
402
	__fprop_inc_percpu_max(&writeout_completions, &wb->completions,
403
			       wb->bdi->max_prop_frac);
404 405 406 407 408 409 410 411 412 413 414
	/* First event after period switching was turned off? */
	if (!unlikely(writeout_period_time)) {
		/*
		 * We can race with other __bdi_writeout_inc calls here but
		 * it does not cause any harm since the resulting time when
		 * timer will fire and what is in writeout_period_time will be
		 * roughly the same.
		 */
		writeout_period_time = wp_next_time(jiffies);
		mod_timer(&writeout_period_timer, writeout_period_time);
	}
P
Peter Zijlstra 已提交
415 416
}

417
void wb_writeout_inc(struct bdi_writeback *wb)
418 419 420 421
{
	unsigned long flags;

	local_irq_save(flags);
422
	__wb_writeout_inc(wb);
423 424
	local_irq_restore(flags);
}
425
EXPORT_SYMBOL_GPL(wb_writeout_inc);
426

P
Peter Zijlstra 已提交
427 428 429
/*
 * Obtain an accurate fraction of the BDI's portion.
 */
430 431
static void wb_writeout_fraction(struct bdi_writeback *wb,
				 long *numerator, long *denominator)
P
Peter Zijlstra 已提交
432
{
433
	fprop_fraction_percpu(&writeout_completions, &wb->completions,
P
Peter Zijlstra 已提交
434 435 436
				numerator, denominator);
}

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
/*
 * On idle system, we can be called long after we scheduled because we use
 * deferred timers so count with missed periods.
 */
static void writeout_period(unsigned long t)
{
	int miss_periods = (jiffies - writeout_period_time) /
						 VM_COMPLETIONS_PERIOD_LEN;

	if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
		writeout_period_time = wp_next_time(writeout_period_time +
				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
		mod_timer(&writeout_period_timer, writeout_period_time);
	} else {
		/*
		 * Aging has zeroed all fractions. Stop wasting CPU on period
		 * updates.
		 */
		writeout_period_time = 0;
	}
}

459
/*
460 461 462
 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 * registered backing devices, which, for obvious reasons, can not
 * exceed 100%.
463 464 465 466 467 468 469
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

470
	spin_lock_bh(&bdi_lock);
471
	if (min_ratio > bdi->max_ratio) {
472
		ret = -EINVAL;
473 474 475 476 477 478 479 480 481
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
482
	spin_unlock_bh(&bdi_lock);
483 484 485 486 487 488 489 490 491 492 493

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

494
	spin_lock_bh(&bdi_lock);
495 496 497 498
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
499
		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
500
	}
501
	spin_unlock_bh(&bdi_lock);
502 503 504

	return ret;
}
505
EXPORT_SYMBOL(bdi_set_max_ratio);
506

W
Wu Fengguang 已提交
507 508 509 510 511 512
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
					   unsigned long bg_thresh)
{
	return (thresh + bg_thresh) / 2;
}

513 514 515 516 517
static unsigned long hard_dirty_limit(unsigned long thresh)
{
	return max(thresh, global_dirty_limit);
}

518
/**
519 520
 * wb_dirty_limit - @wb's share of dirty throttling threshold
 * @wb: bdi_writeback to query
521
 * @dirty: global dirty limit in pages
522
 *
523
 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
524
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
525 526 527 528 529 530
 *
 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 * when sleeping max_pause per page is not enough to keep the dirty pages under
 * control. For example, when the device is completely stalled due to some error
 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 * In the other normal situations, it acts more gently by throttling the tasks
531
 * more (rather than completely block them) when the wb dirty pages go high.
532
 *
533
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
534 535 536
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
537
 * The wb's share of dirty limit will be adapting to its throughput and
538 539
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
540
unsigned long wb_dirty_limit(struct bdi_writeback *wb, unsigned long dirty)
541
{
542 543
	struct backing_dev_info *bdi = wb->bdi;
	u64 wb_dirty;
544
	long numerator, denominator;
P
Peter Zijlstra 已提交
545

546 547 548
	/*
	 * Calculate this BDI's share of the dirty ratio.
	 */
549
	wb_writeout_fraction(wb, &numerator, &denominator);
P
Peter Zijlstra 已提交
550

551 552 553
	wb_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
	wb_dirty *= numerator;
	do_div(wb_dirty, denominator);
P
Peter Zijlstra 已提交
554

555 556 557
	wb_dirty += (dirty * bdi->min_ratio) / 100;
	if (wb_dirty > (dirty * bdi->max_ratio) / 100)
		wb_dirty = dirty * bdi->max_ratio / 100;
558

559
	return wb_dirty;
L
Linus Torvalds 已提交
560 561
}

562 563 564 565 566 567 568 569 570 571 572 573 574 575
/*
 *                           setpoint - dirty 3
 *        f(dirty) := 1.0 + (----------------)
 *                           limit - setpoint
 *
 * it's a 3rd order polynomial that subjects to
 *
 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 * (2) f(setpoint) = 1.0 => the balance point
 * (3) f(limit)    = 0   => the hard limit
 * (4) df/dx      <= 0	 => negative feedback control
 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 *     => fast response on large errors; small oscillation near setpoint
 */
576
static long long pos_ratio_polynom(unsigned long setpoint,
577 578 579 580 581 582
					  unsigned long dirty,
					  unsigned long limit)
{
	long long pos_ratio;
	long x;

583
	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
584 585 586 587 588 589 590 591 592
		    limit - setpoint + 1);
	pos_ratio = x;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;

	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
}

W
Wu Fengguang 已提交
593 594 595 596 597
/*
 * Dirty position control.
 *
 * (o) global/bdi setpoints
 *
598
 * We want the dirty pages be balanced around the global/wb setpoints.
W
Wu Fengguang 已提交
599 600 601 602 603 604 605 606 607
 * When the number of dirty pages is higher/lower than the setpoint, the
 * dirty position control ratio (and hence task dirty ratelimit) will be
 * decreased/increased to bring the dirty pages back to the setpoint.
 *
 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 *
 *     if (dirty < setpoint) scale up   pos_ratio
 *     if (dirty > setpoint) scale down pos_ratio
 *
608 609
 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
W
Wu Fengguang 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
 *
 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 *
 * (o) global control line
 *
 *     ^ pos_ratio
 *     |
 *     |            |<===== global dirty control scope ======>|
 * 2.0 .............*
 *     |            .*
 *     |            . *
 *     |            .   *
 *     |            .     *
 *     |            .        *
 *     |            .            *
 * 1.0 ................................*
 *     |            .                  .     *
 *     |            .                  .          *
 *     |            .                  .              *
 *     |            .                  .                 *
 *     |            .                  .                    *
 *   0 +------------.------------------.----------------------*------------->
 *           freerun^          setpoint^                 limit^   dirty pages
 *
634
 * (o) wb control line
W
Wu Fengguang 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
 *
 *     ^ pos_ratio
 *     |
 *     |            *
 *     |              *
 *     |                *
 *     |                  *
 *     |                    * |<=========== span ============>|
 * 1.0 .......................*
 *     |                      . *
 *     |                      .   *
 *     |                      .     *
 *     |                      .       *
 *     |                      .         *
 *     |                      .           *
 *     |                      .             *
 *     |                      .               *
 *     |                      .                 *
 *     |                      .                   *
 *     |                      .                     *
 * 1/4 ...............................................* * * * * * * * * * * *
 *     |                      .                         .
 *     |                      .                           .
 *     |                      .                             .
 *   0 +----------------------.-------------------------------.------------->
660
 *                wb_setpoint^                    x_intercept^
W
Wu Fengguang 已提交
661
 *
662
 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
W
Wu Fengguang 已提交
663 664
 * be smoothly throttled down to normal if it starts high in situations like
 * - start writing to a slow SD card and a fast disk at the same time. The SD
665 666
 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 * - the wb dirty thresh drops quickly due to change of JBOD workload
W
Wu Fengguang 已提交
667
 */
668 669 670 671
static unsigned long wb_position_ratio(struct bdi_writeback *wb,
				       unsigned long thresh,
				       unsigned long bg_thresh,
				       unsigned long dirty,
672 673
				       unsigned long wb_thresh,
				       unsigned long wb_dirty)
W
Wu Fengguang 已提交
674
{
675
	unsigned long write_bw = wb->avg_write_bandwidth;
W
Wu Fengguang 已提交
676 677 678 679
	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
	unsigned long limit = hard_dirty_limit(thresh);
	unsigned long x_intercept;
	unsigned long setpoint;		/* dirty pages' target balance point */
680
	unsigned long wb_setpoint;
W
Wu Fengguang 已提交
681 682 683 684 685 686 687 688 689 690
	unsigned long span;
	long long pos_ratio;		/* for scaling up/down the rate limit */
	long x;

	if (unlikely(dirty >= limit))
		return 0;

	/*
	 * global setpoint
	 *
691 692 693 694 695 696 697 698
	 * See comment for pos_ratio_polynom().
	 */
	setpoint = (freerun + limit) / 2;
	pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);

	/*
	 * The strictlimit feature is a tool preventing mistrusted filesystems
	 * from growing a large number of dirty pages before throttling. For
699 700
	 * such filesystems balance_dirty_pages always checks wb counters
	 * against wb limits. Even if global "nr_dirty" is under "freerun".
701 702 703 704
	 * This is especially important for fuse which sets bdi->max_ratio to
	 * 1% by default. Without strictlimit feature, fuse writeback may
	 * consume arbitrary amount of RAM because it is accounted in
	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
W
Wu Fengguang 已提交
705
	 *
706
	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
707
	 * two values: wb_dirty and wb_thresh. Let's consider an example:
708 709
	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
	 * limits are set by default to 10% and 20% (background and throttle).
710 711 712
	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
	 * wb_dirty_limit(wb, bg_thresh) is about ~4K pages. wb_setpoint is
	 * about ~6K pages (as the average of background and throttle wb
713
	 * limits). The 3rd order polynomial will provide positive feedback if
714
	 * wb_dirty is under wb_setpoint and vice versa.
W
Wu Fengguang 已提交
715
	 *
716
	 * Note, that we cannot use global counters in these calculations
717
	 * because we want to throttle process writing to a strictlimit wb
718 719
	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
	 * in the example above).
W
Wu Fengguang 已提交
720
	 */
721
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
722 723
		long long wb_pos_ratio;
		unsigned long wb_bg_thresh;
724

725
		if (wb_dirty < 8)
726 727 728
			return min_t(long long, pos_ratio * 2,
				     2 << RATELIMIT_CALC_SHIFT);

729
		if (wb_dirty >= wb_thresh)
730 731
			return 0;

732 733
		wb_bg_thresh = div_u64((u64)wb_thresh * bg_thresh, thresh);
		wb_setpoint = dirty_freerun_ceiling(wb_thresh, wb_bg_thresh);
734

735
		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
736 737
			return 0;

738 739
		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, wb_dirty,
						 wb_thresh);
740 741

		/*
742 743
		 * Typically, for strictlimit case, wb_setpoint << setpoint
		 * and pos_ratio >> wb_pos_ratio. In the other words global
744
		 * state ("dirty") is not limiting factor and we have to
745
		 * make decision based on wb counters. But there is an
746 747
		 * important case when global pos_ratio should get precedence:
		 * global limits are exceeded (e.g. due to activities on other
748
		 * wb's) while given strictlimit wb is below limit.
749
		 *
750
		 * "pos_ratio * wb_pos_ratio" would work for the case above,
751
		 * but it would look too non-natural for the case of all
752
		 * activity in the system coming from a single strictlimit wb
753 754 755 756
		 * with bdi->max_ratio == 100%.
		 *
		 * Note that min() below somewhat changes the dynamics of the
		 * control system. Normally, pos_ratio value can be well over 3
757
		 * (when globally we are at freerun and wb is well below wb
758 759 760 761
		 * setpoint). Now the maximum pos_ratio in the same situation
		 * is 2. We might want to tweak this if we observe the control
		 * system is too slow to adapt.
		 */
762
		return min(pos_ratio, wb_pos_ratio);
763
	}
W
Wu Fengguang 已提交
764 765 766

	/*
	 * We have computed basic pos_ratio above based on global situation. If
767
	 * the wb is over/under its share of dirty pages, we want to scale
W
Wu Fengguang 已提交
768 769 770 771
	 * pos_ratio further down/up. That is done by the following mechanism.
	 */

	/*
772
	 * wb setpoint
W
Wu Fengguang 已提交
773
	 *
774
	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
W
Wu Fengguang 已提交
775
	 *
776
	 *                        x_intercept - wb_dirty
W
Wu Fengguang 已提交
777
	 *                     := --------------------------
778
	 *                        x_intercept - wb_setpoint
W
Wu Fengguang 已提交
779
	 *
780
	 * The main wb control line is a linear function that subjects to
W
Wu Fengguang 已提交
781
	 *
782 783 784
	 * (1) f(wb_setpoint) = 1.0
	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
W
Wu Fengguang 已提交
785
	 *
786
	 * For single wb case, the dirty pages are observed to fluctuate
W
Wu Fengguang 已提交
787
	 * regularly within range
788
	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
W
Wu Fengguang 已提交
789 790 791
	 * for various filesystems, where (2) can yield in a reasonable 12.5%
	 * fluctuation range for pos_ratio.
	 *
792
	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
W
Wu Fengguang 已提交
793
	 * own size, so move the slope over accordingly and choose a slope that
794
	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
W
Wu Fengguang 已提交
795
	 */
796 797
	if (unlikely(wb_thresh > thresh))
		wb_thresh = thresh;
798
	/*
799
	 * It's very possible that wb_thresh is close to 0 not because the
800 801 802 803 804
	 * device is slow, but that it has remained inactive for long time.
	 * Honour such devices a reasonable good (hopefully IO efficient)
	 * threshold, so that the occasional writes won't be blocked and active
	 * writes can rampup the threshold quickly.
	 */
805
	wb_thresh = max(wb_thresh, (limit - dirty) / 8);
W
Wu Fengguang 已提交
806
	/*
807 808
	 * scale global setpoint to wb's:
	 *	wb_setpoint = setpoint * wb_thresh / thresh
W
Wu Fengguang 已提交
809
	 */
810 811
	x = div_u64((u64)wb_thresh << 16, thresh + 1);
	wb_setpoint = setpoint * (u64)x >> 16;
W
Wu Fengguang 已提交
812
	/*
813 814
	 * Use span=(8*write_bw) in single wb case as indicated by
	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
W
Wu Fengguang 已提交
815
	 *
816 817 818
	 *        wb_thresh                    thresh - wb_thresh
	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
	 *         thresh                           thresh
W
Wu Fengguang 已提交
819
	 */
820 821
	span = (thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
	x_intercept = wb_setpoint + span;
W
Wu Fengguang 已提交
822

823 824 825
	if (wb_dirty < x_intercept - span / 4) {
		pos_ratio = div64_u64(pos_ratio * (x_intercept - wb_dirty),
				    x_intercept - wb_setpoint + 1);
W
Wu Fengguang 已提交
826 827 828
	} else
		pos_ratio /= 4;

829
	/*
830
	 * wb reserve area, safeguard against dirty pool underrun and disk idle
831 832 833
	 * It may push the desired control point of global dirty pages higher
	 * than setpoint.
	 */
834 835 836 837
	x_intercept = wb_thresh / 2;
	if (wb_dirty < x_intercept) {
		if (wb_dirty > x_intercept / 8)
			pos_ratio = div_u64(pos_ratio * x_intercept, wb_dirty);
838
		else
839 840 841
			pos_ratio *= 8;
	}

W
Wu Fengguang 已提交
842 843 844
	return pos_ratio;
}

845 846 847
static void wb_update_write_bandwidth(struct bdi_writeback *wb,
				      unsigned long elapsed,
				      unsigned long written)
848 849
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
850 851
	unsigned long avg = wb->avg_write_bandwidth;
	unsigned long old = wb->write_bandwidth;
852 853 854 855 856 857 858 859
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
860 861 862
	 *
	 * @written may have decreased due to account_page_redirty().
	 * Avoid underflowing @bw calculation.
863
	 */
864
	bw = written - min(written, wb->written_stamp);
865 866 867 868 869 870
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
871
	bw += (u64)wb->write_bandwidth * (period - elapsed);
872 873 874 875 876 877 878 879 880 881 882 883
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
884 885
	wb->write_bandwidth = bw;
	wb->avg_write_bandwidth = avg;
886 887
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
/*
 * The global dirtyable memory and dirty threshold could be suddenly knocked
 * down by a large amount (eg. on the startup of KVM in a swapless system).
 * This may throw the system into deep dirty exceeded state and throttle
 * heavy/light dirtiers alike. To retain good responsiveness, maintain
 * global_dirty_limit for tracking slowly down to the knocked down dirty
 * threshold.
 */
static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
{
	unsigned long limit = global_dirty_limit;

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
	 */
	thresh = max(thresh, dirty);
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
	global_dirty_limit = limit;
}

static void global_update_bandwidth(unsigned long thresh,
				    unsigned long dirty,
				    unsigned long now)
{
	static DEFINE_SPINLOCK(dirty_lock);
928
	static unsigned long update_time = INITIAL_JIFFIES;
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
		return;

	spin_lock(&dirty_lock);
	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
		update_dirty_limit(thresh, dirty);
		update_time = now;
	}
	spin_unlock(&dirty_lock);
}

W
Wu Fengguang 已提交
944
/*
945
 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
W
Wu Fengguang 已提交
946
 *
947
 * Normal wb tasks will be curbed at or below it in long term.
W
Wu Fengguang 已提交
948 949
 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 */
950 951 952 953
static void wb_update_dirty_ratelimit(struct bdi_writeback *wb,
				      unsigned long thresh,
				      unsigned long bg_thresh,
				      unsigned long dirty,
954 955
				      unsigned long wb_thresh,
				      unsigned long wb_dirty,
956 957
				      unsigned long dirtied,
				      unsigned long elapsed)
W
Wu Fengguang 已提交
958
{
959 960 961
	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
	unsigned long limit = hard_dirty_limit(thresh);
	unsigned long setpoint = (freerun + limit) / 2;
962 963
	unsigned long write_bw = wb->avg_write_bandwidth;
	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
W
Wu Fengguang 已提交
964 965 966 967
	unsigned long dirty_rate;
	unsigned long task_ratelimit;
	unsigned long balanced_dirty_ratelimit;
	unsigned long pos_ratio;
968 969
	unsigned long step;
	unsigned long x;
W
Wu Fengguang 已提交
970 971 972 973 974

	/*
	 * The dirty rate will match the writeout rate in long term, except
	 * when dirty pages are truncated by userspace or re-dirtied by FS.
	 */
975
	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
W
Wu Fengguang 已提交
976

977
	pos_ratio = wb_position_ratio(wb, thresh, bg_thresh, dirty,
978
				      wb_thresh, wb_dirty);
W
Wu Fengguang 已提交
979 980 981 982 983 984 985 986 987
	/*
	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
	 */
	task_ratelimit = (u64)dirty_ratelimit *
					pos_ratio >> RATELIMIT_CALC_SHIFT;
	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */

	/*
	 * A linear estimation of the "balanced" throttle rate. The theory is,
988
	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
W
Wu Fengguang 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
	 * formula will yield the balanced rate limit (write_bw / N).
	 *
	 * Note that the expanded form is not a pure rate feedback:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
	 * but also takes pos_ratio into account:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
	 *
	 * (1) is not realistic because pos_ratio also takes part in balancing
	 * the dirty rate.  Consider the state
	 *	pos_ratio = 0.5						     (3)
	 *	rate = 2 * (write_bw / N)				     (4)
	 * If (1) is used, it will stuck in that state! Because each dd will
	 * be throttled at
	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
	 * yielding
	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
	 * put (6) into (1) we get
	 *	rate_(i+1) = rate_(i)					     (7)
	 *
	 * So we end up using (2) to always keep
	 *	rate_(i+1) ~= (write_bw / N)				     (8)
	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
	 * pos_ratio is able to drive itself to 1.0, which is not only where
	 * the dirty count meet the setpoint, but also where the slope of
	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
	 */
	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
					   dirty_rate | 1);
1018 1019 1020 1021 1022
	/*
	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
	 */
	if (unlikely(balanced_dirty_ratelimit > write_bw))
		balanced_dirty_ratelimit = write_bw;
W
Wu Fengguang 已提交
1023

1024 1025 1026
	/*
	 * We could safely do this and return immediately:
	 *
1027
	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1028 1029
	 *
	 * However to get a more stable dirty_ratelimit, the below elaborated
W
Wanpeng Li 已提交
1030
	 * code makes use of task_ratelimit to filter out singular points and
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	 * limit the step size.
	 *
	 * The below code essentially only uses the relative value of
	 *
	 *	task_ratelimit - dirty_ratelimit
	 *	= (pos_ratio - 1) * dirty_ratelimit
	 *
	 * which reflects the direction and size of dirty position error.
	 */

	/*
	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
	 * task_ratelimit is on the same side of dirty_ratelimit, too.
	 * For example, when
	 * - dirty_ratelimit > balanced_dirty_ratelimit
	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
	 * lowering dirty_ratelimit will help meet both the position and rate
	 * control targets. Otherwise, don't update dirty_ratelimit if it will
	 * only help meet the rate target. After all, what the users ultimately
	 * feel and care are stable dirty rate and small position error.
	 *
	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
W
Wanpeng Li 已提交
1053
	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1054 1055 1056 1057 1058
	 * keeps jumping around randomly and can even leap far away at times
	 * due to the small 200ms estimation period of dirty_rate (we want to
	 * keep that period small to reduce time lags).
	 */
	step = 0;
1059 1060

	/*
1061
	 * For strictlimit case, calculations above were based on wb counters
1062
	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1063
	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1064 1065
	 * Hence, to calculate "step" properly, we have to use wb_dirty as
	 * "dirty" and wb_setpoint as "setpoint".
1066
	 *
1067 1068
	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
	 * it's possible that wb_thresh is close to zero due to inactivity
1069
	 * of backing device (see the implementation of wb_dirty_limit()).
1070
	 */
1071
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1072 1073 1074
		dirty = wb_dirty;
		if (wb_dirty < 8)
			setpoint = wb_dirty + 1;
1075
		else
1076
			setpoint = (wb_thresh +
1077
				    wb_dirty_limit(wb, bg_thresh)) / 2;
1078 1079
	}

1080
	if (dirty < setpoint) {
1081
		x = min3(wb->balanced_dirty_ratelimit,
1082
			 balanced_dirty_ratelimit, task_ratelimit);
1083 1084 1085
		if (dirty_ratelimit < x)
			step = x - dirty_ratelimit;
	} else {
1086
		x = max3(wb->balanced_dirty_ratelimit,
1087
			 balanced_dirty_ratelimit, task_ratelimit);
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
		if (dirty_ratelimit > x)
			step = dirty_ratelimit - x;
	}

	/*
	 * Don't pursue 100% rate matching. It's impossible since the balanced
	 * rate itself is constantly fluctuating. So decrease the track speed
	 * when it gets close to the target. Helps eliminate pointless tremors.
	 */
	step >>= dirty_ratelimit / (2 * step + 1);
	/*
	 * Limit the tracking speed to avoid overshooting.
	 */
	step = (step + 7) / 8;

	if (dirty_ratelimit < balanced_dirty_ratelimit)
		dirty_ratelimit += step;
	else
		dirty_ratelimit -= step;

1108 1109
	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1110

1111
	trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
W
Wu Fengguang 已提交
1112 1113
}

1114 1115 1116 1117
void __wb_update_bandwidth(struct bdi_writeback *wb,
			   unsigned long thresh,
			   unsigned long bg_thresh,
			   unsigned long dirty,
1118 1119
			   unsigned long wb_thresh,
			   unsigned long wb_dirty,
1120
			   unsigned long start_time)
1121 1122
{
	unsigned long now = jiffies;
1123
	unsigned long elapsed = now - wb->bw_time_stamp;
W
Wu Fengguang 已提交
1124
	unsigned long dirtied;
1125 1126 1127 1128 1129 1130 1131 1132
	unsigned long written;

	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

1133 1134
	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1135 1136 1137 1138 1139

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
1140
	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1141 1142
		goto snapshot;

W
Wu Fengguang 已提交
1143
	if (thresh) {
1144
		global_update_bandwidth(thresh, dirty, now);
1145
		wb_update_dirty_ratelimit(wb, thresh, bg_thresh, dirty,
1146
					  wb_thresh, wb_dirty,
1147
					  dirtied, elapsed);
W
Wu Fengguang 已提交
1148
	}
1149
	wb_update_write_bandwidth(wb, elapsed, written);
1150 1151

snapshot:
1152 1153 1154
	wb->dirtied_stamp = dirtied;
	wb->written_stamp = written;
	wb->bw_time_stamp = now;
1155 1156
}

1157 1158 1159 1160
static void wb_update_bandwidth(struct bdi_writeback *wb,
				unsigned long thresh,
				unsigned long bg_thresh,
				unsigned long dirty,
1161 1162
				unsigned long wb_thresh,
				unsigned long wb_dirty,
1163
				unsigned long start_time)
1164
{
1165
	if (time_is_after_eq_jiffies(wb->bw_time_stamp + BANDWIDTH_INTERVAL))
1166
		return;
1167 1168
	spin_lock(&wb->list_lock);
	__wb_update_bandwidth(wb, thresh, bg_thresh, dirty,
1169
			      wb_thresh, wb_dirty, start_time);
1170
	spin_unlock(&wb->list_lock);
1171 1172
}

1173
/*
1174
 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
 * will look to see if it needs to start dirty throttling.
 *
 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
 * global_page_state() too often. So scale it near-sqrt to the safety margin
 * (the number of pages we may dirty without exceeding the dirty limits).
 */
static unsigned long dirty_poll_interval(unsigned long dirty,
					 unsigned long thresh)
{
	if (thresh > dirty)
		return 1UL << (ilog2(thresh - dirty) >> 1);

	return 1;
}

1190
static unsigned long wb_max_pause(struct bdi_writeback *wb,
1191
				  unsigned long wb_dirty)
1192
{
1193
	unsigned long bw = wb->avg_write_bandwidth;
1194
	unsigned long t;
1195

1196 1197 1198 1199 1200 1201 1202
	/*
	 * Limit pause time for small memory systems. If sleeping for too long
	 * time, a small pool of dirty/writeback pages may go empty and disk go
	 * idle.
	 *
	 * 8 serves as the safety ratio.
	 */
1203
	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1204 1205
	t++;

1206
	return min_t(unsigned long, t, MAX_PAUSE);
1207 1208
}

1209 1210 1211 1212 1213
static long wb_min_pause(struct bdi_writeback *wb,
			 long max_pause,
			 unsigned long task_ratelimit,
			 unsigned long dirty_ratelimit,
			 int *nr_dirtied_pause)
1214
{
1215 1216
	long hi = ilog2(wb->avg_write_bandwidth);
	long lo = ilog2(wb->dirty_ratelimit);
1217 1218 1219
	long t;		/* target pause */
	long pause;	/* estimated next pause */
	int pages;	/* target nr_dirtied_pause */
1220

1221 1222
	/* target for 10ms pause on 1-dd case */
	t = max(1, HZ / 100);
1223 1224 1225 1226 1227

	/*
	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
	 * overheads.
	 *
1228
	 * (N * 10ms) on 2^N concurrent tasks.
1229 1230
	 */
	if (hi > lo)
1231
		t += (hi - lo) * (10 * HZ) / 1024;
1232 1233

	/*
1234 1235 1236 1237 1238 1239 1240 1241
	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
	 * on the much more stable dirty_ratelimit. However the next pause time
	 * will be computed based on task_ratelimit and the two rate limits may
	 * depart considerably at some time. Especially if task_ratelimit goes
	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
	 * result task_ratelimit won't be executed faithfully, which could
	 * eventually bring down dirty_ratelimit.
1242
	 *
1243 1244 1245 1246 1247 1248 1249
	 * We apply two rules to fix it up:
	 * 1) try to estimate the next pause time and if necessary, use a lower
	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
	 * 2) limit the target pause time to max_pause/2, so that the normal
	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1250
	 */
1251 1252
	t = min(t, 1 + max_pause / 2);
	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1253 1254

	/*
1255 1256 1257 1258 1259 1260
	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
	 * When the 16 consecutive reads are often interrupted by some dirty
	 * throttling pause during the async writes, cfq will go into idles
	 * (deadline is fine). So push nr_dirtied_pause as high as possible
	 * until reaches DIRTY_POLL_THRESH=32 pages.
1261
	 */
1262 1263 1264 1265 1266 1267 1268 1269 1270
	if (pages < DIRTY_POLL_THRESH) {
		t = max_pause;
		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
		if (pages > DIRTY_POLL_THRESH) {
			pages = DIRTY_POLL_THRESH;
			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
		}
	}

1271 1272 1273 1274 1275
	pause = HZ * pages / (task_ratelimit + 1);
	if (pause > max_pause) {
		t = max_pause;
		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
	}
1276

1277
	*nr_dirtied_pause = pages;
1278
	/*
1279
	 * The minimal pause time will normally be half the target pause time.
1280
	 */
1281
	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1282 1283
}

1284 1285 1286
static inline void wb_dirty_limits(struct bdi_writeback *wb,
				   unsigned long dirty_thresh,
				   unsigned long background_thresh,
1287 1288 1289
				   unsigned long *wb_dirty,
				   unsigned long *wb_thresh,
				   unsigned long *wb_bg_thresh)
1290
{
1291
	unsigned long wb_reclaimable;
1292 1293

	/*
1294
	 * wb_thresh is not treated as some limiting factor as
1295
	 * dirty_thresh, due to reasons
1296
	 * - in JBOD setup, wb_thresh can fluctuate a lot
1297
	 * - in a system with HDD and USB key, the USB key may somehow
1298 1299
	 *   go into state (wb_dirty >> wb_thresh) either because
	 *   wb_dirty starts high, or because wb_thresh drops low.
1300
	 *   In this case we don't want to hard throttle the USB key
1301 1302
	 *   dirtiers for 100 seconds until wb_dirty drops under
	 *   wb_thresh. Instead the auxiliary wb control line in
1303
	 *   wb_position_ratio() will let the dirtier task progress
1304
	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1305
	 */
1306
	*wb_thresh = wb_dirty_limit(wb, dirty_thresh);
1307

1308 1309 1310 1311
	if (wb_bg_thresh)
		*wb_bg_thresh = dirty_thresh ? div_u64((u64)*wb_thresh *
						       background_thresh,
						       dirty_thresh) : 0;
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

	/*
	 * In order to avoid the stacked BDI deadlock we need
	 * to ensure we accurately count the 'dirty' pages when
	 * the threshold is low.
	 *
	 * Otherwise it would be possible to get thresh+n pages
	 * reported dirty, even though there are thresh-m pages
	 * actually dirty; with m+n sitting in the percpu
	 * deltas.
	 */
1323
	if (*wb_thresh < 2 * wb_stat_error(wb)) {
1324
		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1325
		*wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1326
	} else {
1327
		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1328
		*wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1329 1330 1331
	}
}

L
Linus Torvalds 已提交
1332 1333 1334
/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
1335
 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1336 1337
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
L
Linus Torvalds 已提交
1338
 */
1339
static void balance_dirty_pages(struct address_space *mapping,
1340
				unsigned long pages_dirtied)
L
Linus Torvalds 已提交
1341
{
1342
	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1343
	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1344 1345
	unsigned long background_thresh;
	unsigned long dirty_thresh;
1346
	long period;
1347 1348 1349 1350
	long pause;
	long max_pause;
	long min_pause;
	int nr_dirtied_pause;
1351
	bool dirty_exceeded = false;
1352
	unsigned long task_ratelimit;
1353
	unsigned long dirty_ratelimit;
1354
	unsigned long pos_ratio;
1355
	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
1356
	struct bdi_writeback *wb = &bdi->wb;
1357
	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1358
	unsigned long start_time = jiffies;
L
Linus Torvalds 已提交
1359 1360

	for (;;) {
1361
		unsigned long now = jiffies;
1362
		unsigned long uninitialized_var(wb_thresh);
1363
		unsigned long thresh;
1364
		unsigned long uninitialized_var(wb_dirty);
1365 1366
		unsigned long dirty;
		unsigned long bg_thresh;
1367

1368 1369 1370 1371 1372 1373
		/*
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
		 */
1374 1375
		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
					global_page_state(NR_UNSTABLE_NFS);
1376
		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1377

1378 1379
		global_dirty_limits(&background_thresh, &dirty_thresh);

1380
		if (unlikely(strictlimit)) {
1381
			wb_dirty_limits(wb, dirty_thresh, background_thresh,
1382
					&wb_dirty, &wb_thresh, &bg_thresh);
1383

1384 1385
			dirty = wb_dirty;
			thresh = wb_thresh;
1386 1387 1388 1389 1390 1391
		} else {
			dirty = nr_dirty;
			thresh = dirty_thresh;
			bg_thresh = background_thresh;
		}

1392 1393 1394
		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
1395
		 * when the wb limits are ramping up in case of !strictlimit.
1396
		 *
1397 1398
		 * In strictlimit case make decision based on the wb counters
		 * and limits. Small writeouts when the wb limits are ramping
1399
		 * up are the price we consciously pay for strictlimit-ing.
1400
		 */
1401
		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1402 1403
			current->dirty_paused_when = now;
			current->nr_dirtied = 0;
1404
			current->nr_dirtied_pause =
1405
				dirty_poll_interval(dirty, thresh);
1406
			break;
1407
		}
1408

1409 1410 1411
		if (unlikely(!writeback_in_progress(bdi)))
			bdi_start_background_writeback(bdi);

1412
		if (!strictlimit)
1413
			wb_dirty_limits(wb, dirty_thresh, background_thresh,
1414
					&wb_dirty, &wb_thresh, NULL);
1415

1416
		dirty_exceeded = (wb_dirty > wb_thresh) &&
1417
				 ((nr_dirty > dirty_thresh) || strictlimit);
1418 1419
		if (dirty_exceeded && !wb->dirty_exceeded)
			wb->dirty_exceeded = 1;
L
Linus Torvalds 已提交
1420

1421
		wb_update_bandwidth(wb, dirty_thresh, background_thresh,
1422
				    nr_dirty, wb_thresh, wb_dirty, start_time);
1423

1424 1425 1426
		dirty_ratelimit = wb->dirty_ratelimit;
		pos_ratio = wb_position_ratio(wb, dirty_thresh,
					      background_thresh, nr_dirty,
1427
					      wb_thresh, wb_dirty);
1428 1429
		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
							RATELIMIT_CALC_SHIFT;
1430
		max_pause = wb_max_pause(wb, wb_dirty);
1431 1432 1433
		min_pause = wb_min_pause(wb, max_pause,
					 task_ratelimit, dirty_ratelimit,
					 &nr_dirtied_pause);
1434

1435
		if (unlikely(task_ratelimit == 0)) {
1436
			period = max_pause;
1437
			pause = max_pause;
1438
			goto pause;
P
Peter Zijlstra 已提交
1439
		}
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
		period = HZ * pages_dirtied / task_ratelimit;
		pause = period;
		if (current->dirty_paused_when)
			pause -= now - current->dirty_paused_when;
		/*
		 * For less than 1s think time (ext3/4 may block the dirtier
		 * for up to 800ms from time to time on 1-HDD; so does xfs,
		 * however at much less frequency), try to compensate it in
		 * future periods by updating the virtual time; otherwise just
		 * do a reset, as it may be a light dirtier.
		 */
1451
		if (pause < min_pause) {
1452 1453 1454 1455
			trace_balance_dirty_pages(bdi,
						  dirty_thresh,
						  background_thresh,
						  nr_dirty,
1456 1457
						  wb_thresh,
						  wb_dirty,
1458 1459 1460
						  dirty_ratelimit,
						  task_ratelimit,
						  pages_dirtied,
1461
						  period,
1462
						  min(pause, 0L),
1463
						  start_time);
1464 1465 1466 1467 1468 1469
			if (pause < -HZ) {
				current->dirty_paused_when = now;
				current->nr_dirtied = 0;
			} else if (period) {
				current->dirty_paused_when += period;
				current->nr_dirtied = 0;
1470 1471
			} else if (current->nr_dirtied_pause <= pages_dirtied)
				current->nr_dirtied_pause += pages_dirtied;
W
Wu Fengguang 已提交
1472
			break;
P
Peter Zijlstra 已提交
1473
		}
1474 1475 1476 1477 1478
		if (unlikely(pause > max_pause)) {
			/* for occasional dropped task_ratelimit */
			now += min(pause - max_pause, max_pause);
			pause = max_pause;
		}
1479 1480

pause:
1481 1482 1483 1484
		trace_balance_dirty_pages(bdi,
					  dirty_thresh,
					  background_thresh,
					  nr_dirty,
1485 1486
					  wb_thresh,
					  wb_dirty,
1487 1488 1489
					  dirty_ratelimit,
					  task_ratelimit,
					  pages_dirtied,
1490
					  period,
1491 1492
					  pause,
					  start_time);
1493
		__set_current_state(TASK_KILLABLE);
1494
		io_schedule_timeout(pause);
1495

1496 1497
		current->dirty_paused_when = now + pause;
		current->nr_dirtied = 0;
1498
		current->nr_dirtied_pause = nr_dirtied_pause;
1499

1500
		/*
1501 1502
		 * This is typically equal to (nr_dirty < dirty_thresh) and can
		 * also keep "1000+ dd on a slow USB stick" under control.
1503
		 */
1504
		if (task_ratelimit)
1505
			break;
1506

1507 1508
		/*
		 * In the case of an unresponding NFS server and the NFS dirty
1509
		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1510 1511 1512 1513
		 * to go through, so that tasks on them still remain responsive.
		 *
		 * In theory 1 page is enough to keep the comsumer-producer
		 * pipe going: the flusher cleans 1 page => the task dirties 1
1514
		 * more page. However wb_dirty has accounting errors.  So use
1515
		 * the larger and more IO friendly wb_stat_error.
1516
		 */
1517
		if (wb_dirty <= wb_stat_error(wb))
1518 1519
			break;

1520 1521
		if (fatal_signal_pending(current))
			break;
L
Linus Torvalds 已提交
1522 1523
	}

1524 1525
	if (!dirty_exceeded && wb->dirty_exceeded)
		wb->dirty_exceeded = 0;
L
Linus Torvalds 已提交
1526 1527

	if (writeback_in_progress(bdi))
1528
		return;
L
Linus Torvalds 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
1538 1539 1540 1541
	if (laptop_mode)
		return;

	if (nr_reclaimable > background_thresh)
1542
		bdi_start_background_writeback(bdi);
L
Linus Torvalds 已提交
1543 1544
}

1545
static DEFINE_PER_CPU(int, bdp_ratelimits);
1546

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
/*
 * Normal tasks are throttled by
 *	loop {
 *		dirty tsk->nr_dirtied_pause pages;
 *		take a snap in balance_dirty_pages();
 *	}
 * However there is a worst case. If every task exit immediately when dirtied
 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
 * called to throttle the page dirties. The solution is to save the not yet
 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
 * randomly into the running tasks. This works well for the above worst case,
 * as the new task will pick up and accumulate the old task's leaked dirty
 * count and eventually get throttled.
 */
DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;

L
Linus Torvalds 已提交
1563
/**
1564
 * balance_dirty_pages_ratelimited - balance dirty memory state
1565
 * @mapping: address_space which was dirtied
L
Linus Torvalds 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
1576
void balance_dirty_pages_ratelimited(struct address_space *mapping)
L
Linus Torvalds 已提交
1577
{
1578
	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
1579
	struct bdi_writeback *wb = &bdi->wb;
1580 1581
	int ratelimit;
	int *p;
L
Linus Torvalds 已提交
1582

1583 1584 1585
	if (!bdi_cap_account_dirty(bdi))
		return;

1586
	ratelimit = current->nr_dirtied_pause;
1587
	if (wb->dirty_exceeded)
1588 1589 1590
		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));

	preempt_disable();
L
Linus Torvalds 已提交
1591
	/*
1592 1593 1594 1595
	 * This prevents one CPU to accumulate too many dirtied pages without
	 * calling into balance_dirty_pages(), which can happen when there are
	 * 1000+ tasks, all of them start dirtying pages at exactly the same
	 * time, hence all honoured too large initial task->nr_dirtied_pause.
L
Linus Torvalds 已提交
1596
	 */
1597
	p =  this_cpu_ptr(&bdp_ratelimits);
1598
	if (unlikely(current->nr_dirtied >= ratelimit))
1599
		*p = 0;
1600 1601 1602
	else if (unlikely(*p >= ratelimit_pages)) {
		*p = 0;
		ratelimit = 0;
L
Linus Torvalds 已提交
1603
	}
1604 1605 1606 1607 1608
	/*
	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
	 * the dirty throttling and livelock other long-run dirtiers.
	 */
1609
	p = this_cpu_ptr(&dirty_throttle_leaks);
1610
	if (*p > 0 && current->nr_dirtied < ratelimit) {
1611
		unsigned long nr_pages_dirtied;
1612 1613 1614
		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
		*p -= nr_pages_dirtied;
		current->nr_dirtied += nr_pages_dirtied;
L
Linus Torvalds 已提交
1615
	}
1616
	preempt_enable();
1617 1618 1619

	if (unlikely(current->nr_dirtied >= ratelimit))
		balance_dirty_pages(mapping, current->nr_dirtied);
L
Linus Torvalds 已提交
1620
}
1621
EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
L
Linus Torvalds 已提交
1622

1623
void throttle_vm_writeout(gfp_t gfp_mask)
L
Linus Torvalds 已提交
1624
{
1625 1626
	unsigned long background_thresh;
	unsigned long dirty_thresh;
L
Linus Torvalds 已提交
1627 1628

        for ( ; ; ) {
1629
		global_dirty_limits(&background_thresh, &dirty_thresh);
1630
		dirty_thresh = hard_dirty_limit(dirty_thresh);
L
Linus Torvalds 已提交
1631 1632 1633 1634 1635 1636 1637

                /*
                 * Boost the allowable dirty threshold a bit for page
                 * allocators so they don't get DoS'ed by heavy writers
                 */
                dirty_thresh += dirty_thresh / 10;      /* wheeee... */

1638 1639 1640
                if (global_page_state(NR_UNSTABLE_NFS) +
			global_page_state(NR_WRITEBACK) <= dirty_thresh)
                        	break;
1641
                congestion_wait(BLK_RW_ASYNC, HZ/10);
1642 1643 1644 1645 1646 1647 1648 1649

		/*
		 * The caller might hold locks which can prevent IO completion
		 * or progress in the filesystem.  So we cannot just sit here
		 * waiting for IO to complete.
		 */
		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
			break;
L
Linus Torvalds 已提交
1650 1651 1652 1653 1654 1655
        }
}

/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
1656
int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1657
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1658
{
1659
	proc_dointvec(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
1660 1661 1662
	return 0;
}

1663
#ifdef CONFIG_BLOCK
1664
void laptop_mode_timer_fn(unsigned long data)
L
Linus Torvalds 已提交
1665
{
1666 1667 1668
	struct request_queue *q = (struct request_queue *)data;
	int nr_pages = global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS);
L
Linus Torvalds 已提交
1669

1670 1671 1672 1673 1674
	/*
	 * We want to write everything out, not just down to the dirty
	 * threshold
	 */
	if (bdi_has_dirty_io(&q->backing_dev_info))
1675 1676
		bdi_start_writeback(&q->backing_dev_info, nr_pages,
					WB_REASON_LAPTOP_TIMER);
L
Linus Torvalds 已提交
1677 1678 1679 1680 1681 1682 1683
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
1684
void laptop_io_completion(struct backing_dev_info *info)
L
Linus Torvalds 已提交
1685
{
1686
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
L
Linus Torvalds 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
1696 1697 1698 1699 1700 1701 1702 1703
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
L
Linus Torvalds 已提交
1704
}
1705
#endif
L
Linus Torvalds 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1715
 * thresholds.
L
Linus Torvalds 已提交
1716 1717
 */

1718
void writeback_set_ratelimit(void)
L
Linus Torvalds 已提交
1719
{
1720 1721 1722
	unsigned long background_thresh;
	unsigned long dirty_thresh;
	global_dirty_limits(&background_thresh, &dirty_thresh);
1723
	global_dirty_limit = dirty_thresh;
1724
	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
L
Linus Torvalds 已提交
1725 1726 1727 1728
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
}

1729
static int
1730 1731
ratelimit_handler(struct notifier_block *self, unsigned long action,
		  void *hcpu)
L
Linus Torvalds 已提交
1732
{
1733 1734 1735 1736 1737 1738 1739 1740 1741

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DEAD:
		writeback_set_ratelimit();
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
L
Linus Torvalds 已提交
1742 1743
}

1744
static struct notifier_block ratelimit_nb = {
L
Linus Torvalds 已提交
1745 1746 1747 1748 1749
	.notifier_call	= ratelimit_handler,
	.next		= NULL,
};

/*
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
L
Linus Torvalds 已提交
1766 1767 1768
 */
void __init page_writeback_init(void)
{
1769
	writeback_set_ratelimit();
L
Linus Torvalds 已提交
1770
	register_cpu_notifier(&ratelimit_nb);
P
Peter Zijlstra 已提交
1771

1772
	fprop_global_init(&writeout_completions, GFP_KERNEL);
L
Linus Torvalds 已提交
1773 1774
}

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
R
Randy Dunlap 已提交
1795
#define WRITEBACK_TAG_BATCH 4096
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	unsigned long tagged;

	do {
		spin_lock_irq(&mapping->tree_lock);
		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
				&start, end, WRITEBACK_TAG_BATCH,
				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
		spin_unlock_irq(&mapping->tree_lock);
		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
		cond_resched();
1806 1807
		/* We check 'start' to handle wrapping when end == ~0UL */
	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1808 1809 1810
}
EXPORT_SYMBOL(tag_pages_for_writeback);

1811
/**
1812
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1813 1814
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1815 1816
 * @writepage: function called for each page
 * @data: data passed to writepage function
1817
 *
1818
 * If a page is already under I/O, write_cache_pages() skips it, even
1819 1820 1821 1822 1823 1824
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
1825 1826 1827 1828 1829 1830 1831
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
1832
 */
1833 1834 1835
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
1836 1837 1838 1839 1840
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
N
Nick Piggin 已提交
1841
	pgoff_t uninitialized_var(writeback_index);
1842 1843
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
1844
	pgoff_t done_index;
N
Nick Piggin 已提交
1845
	int cycled;
1846
	int range_whole = 0;
1847
	int tag;
1848 1849 1850

	pagevec_init(&pvec, 0);
	if (wbc->range_cyclic) {
N
Nick Piggin 已提交
1851 1852 1853 1854 1855 1856
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
		if (index == 0)
			cycled = 1;
		else
			cycled = 0;
1857 1858 1859 1860 1861 1862
		end = -1;
	} else {
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
N
Nick Piggin 已提交
1863
		cycled = 1; /* ignore range_cyclic tests */
1864
	}
1865
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1866 1867 1868
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
1869
retry:
1870
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1871
		tag_pages_for_writeback(mapping, index, end);
1872
	done_index = index;
N
Nick Piggin 已提交
1873 1874 1875
	while (!done && (index <= end)) {
		int i;

1876
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
N
Nick Piggin 已提交
1877 1878 1879
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;
1880 1881 1882 1883 1884

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
1885 1886 1887 1888 1889
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
1890
			 */
1891 1892 1893 1894 1895 1896 1897 1898 1899
			if (page->index > end) {
				/*
				 * can't be range_cyclic (1st pass) because
				 * end == -1 in that case.
				 */
				done = 1;
				break;
			}

1900
			done_index = page->index;
1901

1902 1903
			lock_page(page);

N
Nick Piggin 已提交
1904 1905 1906 1907 1908 1909 1910 1911
			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
1912
			if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
1913
continue_unlock:
1914 1915 1916 1917
				unlock_page(page);
				continue;
			}

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}
1929

1930 1931
			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
N
Nick Piggin 已提交
1932
				goto continue_unlock;
1933

1934
			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
1935
			ret = (*writepage)(page, wbc, data);
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					/*
					 * done_index is set past this page,
					 * so media errors will not choke
					 * background writeout for the entire
					 * file. This has consequences for
					 * range_cyclic semantics (ie. it may
					 * not be suitable for data integrity
					 * writeout).
					 */
1950
					done_index = page->index + 1;
1951 1952 1953
					done = 1;
					break;
				}
1954
			}
1955

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
1966
			}
1967 1968 1969 1970
		}
		pagevec_release(&pvec);
		cond_resched();
	}
1971
	if (!cycled && !done) {
1972
		/*
N
Nick Piggin 已提交
1973
		 * range_cyclic:
1974 1975 1976
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
N
Nick Piggin 已提交
1977
		cycled = 1;
1978
		index = 0;
N
Nick Piggin 已提交
1979
		end = writeback_index - 1;
1980 1981
		goto retry;
	}
1982 1983
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;
1984

1985 1986
	return ret;
}
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
2013 2014 2015
	struct blk_plug plug;
	int ret;

2016 2017 2018 2019
	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

2020 2021 2022 2023
	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
2024
}
2025 2026 2027

EXPORT_SYMBOL(generic_writepages);

L
Linus Torvalds 已提交
2028 2029
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
2030 2031
	int ret;

L
Linus Torvalds 已提交
2032 2033 2034
	if (wbc->nr_to_write <= 0)
		return 0;
	if (mapping->a_ops->writepages)
2035
		ret = mapping->a_ops->writepages(mapping, wbc);
2036 2037 2038
	else
		ret = generic_writepages(mapping, wbc);
	return ret;
L
Linus Torvalds 已提交
2039 2040 2041 2042
}

/**
 * write_one_page - write out a single page and optionally wait on I/O
2043 2044
 * @page: the page to write
 * @wait: if true, wait on writeout
L
Linus Torvalds 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
 * write_one_page() returns a negative error code if I/O failed.
 */
int write_one_page(struct page *page, int wait)
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

	if (wait)
		wait_on_page_writeback(page);

	if (clear_page_dirty_for_io(page)) {
		page_cache_get(page);
		ret = mapping->a_ops->writepage(page, &wbc);
		if (ret == 0 && wait) {
			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
		page_cache_release(page);
	} else {
		unlock_page(page);
	}
	return ret;
}
EXPORT_SYMBOL(write_one_page);

2080 2081 2082 2083 2084 2085
/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
2086
		return !TestSetPageDirty(page);
2087 2088 2089
	return 0;
}

2090 2091
/*
 * Helper function for set_page_dirty family.
2092 2093 2094
 *
 * Caller must hold mem_cgroup_begin_page_stat().
 *
2095 2096
 * NOTE: This relies on being atomic wrt interrupts.
 */
2097 2098
void account_page_dirtied(struct page *page, struct address_space *mapping,
			  struct mem_cgroup *memcg)
2099
{
T
Tejun Heo 已提交
2100 2101
	trace_writeback_dirty_page(page, mapping);

2102
	if (mapping_cap_account_dirty(mapping)) {
2103 2104
		struct backing_dev_info *bdi = inode_to_bdi(mapping->host);

2105
		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2106
		__inc_zone_page_state(page, NR_FILE_DIRTY);
2107
		__inc_zone_page_state(page, NR_DIRTIED);
2108 2109
		__inc_wb_stat(&bdi->wb, WB_RECLAIMABLE);
		__inc_wb_stat(&bdi->wb, WB_DIRTIED);
2110
		task_io_account_write(PAGE_CACHE_SIZE);
2111 2112
		current->nr_dirtied++;
		this_cpu_inc(bdp_ratelimits);
2113 2114
	}
}
M
Michael Rubin 已提交
2115
EXPORT_SYMBOL(account_page_dirtied);
2116

2117 2118
/*
 * Helper function for deaccounting dirty page without writeback.
2119 2120
 *
 * Caller must hold mem_cgroup_begin_page_stat().
2121
 */
2122 2123
void account_page_cleaned(struct page *page, struct address_space *mapping,
			  struct mem_cgroup *memcg)
2124 2125
{
	if (mapping_cap_account_dirty(mapping)) {
2126
		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2127
		dec_zone_page_state(page, NR_FILE_DIRTY);
2128
		dec_wb_stat(&inode_to_bdi(mapping->host)->wb, WB_RECLAIMABLE);
2129 2130 2131 2132
		task_io_account_cancelled_write(PAGE_CACHE_SIZE);
	}
}

L
Linus Torvalds 已提交
2133 2134 2135 2136 2137 2138 2139 2140
/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
2141 2142 2143
 * The caller must ensure this doesn't race with truncation.  Most will simply
 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
 * the pte lock held, which also locks out truncation.
L
Linus Torvalds 已提交
2144 2145 2146
 */
int __set_page_dirty_nobuffers(struct page *page)
{
2147 2148 2149
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2150 2151
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
2152
		unsigned long flags;
L
Linus Torvalds 已提交
2153

2154 2155
		if (!mapping) {
			mem_cgroup_end_page_stat(memcg);
2156
			return 1;
2157
		}
2158

2159
		spin_lock_irqsave(&mapping->tree_lock, flags);
2160 2161
		BUG_ON(page_mapping(page) != mapping);
		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2162
		account_page_dirtied(page, mapping, memcg);
2163 2164
		radix_tree_tag_set(&mapping->page_tree, page_index(page),
				   PAGECACHE_TAG_DIRTY);
2165
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2166 2167
		mem_cgroup_end_page_stat(memcg);

2168 2169 2170
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
L
Linus Torvalds 已提交
2171
		}
2172
		return 1;
L
Linus Torvalds 已提交
2173
	}
2174
	mem_cgroup_end_page_stat(memcg);
2175
	return 0;
L
Linus Torvalds 已提交
2176 2177 2178
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
/*
 * Call this whenever redirtying a page, to de-account the dirty counters
 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
 * control.
 */
void account_page_redirty(struct page *page)
{
	struct address_space *mapping = page->mapping;
	if (mapping && mapping_cap_account_dirty(mapping)) {
		current->nr_dirtied--;
		dec_zone_page_state(page, NR_DIRTIED);
2192
		dec_wb_stat(&inode_to_bdi(mapping->host)->wb, WB_DIRTIED);
2193 2194 2195 2196
	}
}
EXPORT_SYMBOL(account_page_redirty);

L
Linus Torvalds 已提交
2197 2198 2199 2200 2201 2202 2203
/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
2204 2205
	int ret;

L
Linus Torvalds 已提交
2206
	wbc->pages_skipped++;
2207
	ret = __set_page_dirty_nobuffers(page);
2208
	account_page_redirty(page);
2209
	return ret;
L
Linus Torvalds 已提交
2210 2211 2212 2213
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
2214 2215 2216 2217 2218 2219 2220
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
L
Linus Torvalds 已提交
2221 2222 2223
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
N
Nick Piggin 已提交
2224
int set_page_dirty(struct page *page)
L
Linus Torvalds 已提交
2225 2226 2227 2228 2229
{
	struct address_space *mapping = page_mapping(page);

	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
M
Minchan Kim 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
2240 2241
		if (PageReclaim(page))
			ClearPageReclaim(page);
2242 2243 2244 2245 2246
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
L
Linus Torvalds 已提交
2247
	}
2248 2249 2250 2251
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
L
Linus Torvalds 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

J
Jens Axboe 已提交
2270
	lock_page(page);
L
Linus Torvalds 已提交
2271 2272 2273 2274 2275 2276
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
/*
 * This cancels just the dirty bit on the kernel page itself, it does NOT
 * actually remove dirty bits on any mmap's that may be around. It also
 * leaves the page tagged dirty, so any sync activity will still find it on
 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
 * look at the dirty bits in the VM.
 *
 * Doing this should *normally* only ever be done when a page is truncated,
 * and is not actually mapped anywhere at all. However, fs/buffer.c does
 * this when it notices that somebody has cleaned out all the buffers on a
 * page without actually doing it through the VM. Can you say "ext3 is
 * horribly ugly"? Thought you could.
 */
void cancel_dirty_page(struct page *page)
{
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
	struct address_space *mapping = page_mapping(page);

	if (mapping_cap_account_dirty(mapping)) {
		struct mem_cgroup *memcg;

		memcg = mem_cgroup_begin_page_stat(page);

		if (TestClearPageDirty(page))
			account_page_cleaned(page, mapping, memcg);

		mem_cgroup_end_page_stat(memcg);
	} else {
		ClearPageDirty(page);
	}
2306 2307 2308
}
EXPORT_SYMBOL(cancel_dirty_page);

L
Linus Torvalds 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2326 2327
	struct mem_cgroup *memcg;
	int ret = 0;
L
Linus Torvalds 已提交
2328

2329 2330
	BUG_ON(!PageLocked(page));

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	if (mapping && mapping_cap_account_dirty(mapping)) {
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
2359 2360 2361
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
2362 2363 2364 2365
		 * at this point.  We do this by having them hold the
		 * page lock while dirtying the page, and pages are
		 * always locked coming in here, so we get the desired
		 * exclusion.
2366
		 */
2367
		memcg = mem_cgroup_begin_page_stat(page);
2368
		if (TestClearPageDirty(page)) {
2369
			mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2370
			dec_zone_page_state(page, NR_FILE_DIRTY);
2371 2372
			dec_wb_stat(&inode_to_bdi(mapping->host)->wb,
				    WB_RECLAIMABLE);
2373
			ret = 1;
L
Linus Torvalds 已提交
2374
		}
2375 2376
		mem_cgroup_end_page_stat(memcg);
		return ret;
L
Linus Torvalds 已提交
2377
	}
2378
	return TestClearPageDirty(page);
L
Linus Torvalds 已提交
2379
}
2380
EXPORT_SYMBOL(clear_page_dirty_for_io);
L
Linus Torvalds 已提交
2381 2382 2383 2384

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2385 2386
	struct mem_cgroup *memcg;
	int ret;
L
Linus Torvalds 已提交
2387

2388
	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2389
	if (mapping) {
2390
		struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
L
Linus Torvalds 已提交
2391 2392
		unsigned long flags;

N
Nick Piggin 已提交
2393
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2394
		ret = TestClearPageWriteback(page);
P
Peter Zijlstra 已提交
2395
		if (ret) {
L
Linus Torvalds 已提交
2396 2397 2398
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2399
			if (bdi_cap_account_writeback(bdi)) {
2400 2401
				__dec_wb_stat(&bdi->wb, WB_WRITEBACK);
				__wb_writeout_inc(&bdi->wb);
P
Peter Zijlstra 已提交
2402
			}
P
Peter Zijlstra 已提交
2403
		}
N
Nick Piggin 已提交
2404
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2405 2406 2407
	} else {
		ret = TestClearPageWriteback(page);
	}
2408
	if (ret) {
2409
		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2410
		dec_zone_page_state(page, NR_WRITEBACK);
2411 2412
		inc_zone_page_state(page, NR_WRITTEN);
	}
2413
	mem_cgroup_end_page_stat(memcg);
L
Linus Torvalds 已提交
2414 2415 2416
	return ret;
}

2417
int __test_set_page_writeback(struct page *page, bool keep_write)
L
Linus Torvalds 已提交
2418 2419
{
	struct address_space *mapping = page_mapping(page);
2420 2421
	struct mem_cgroup *memcg;
	int ret;
L
Linus Torvalds 已提交
2422

2423
	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2424
	if (mapping) {
2425
		struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
L
Linus Torvalds 已提交
2426 2427
		unsigned long flags;

N
Nick Piggin 已提交
2428
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2429
		ret = TestSetPageWriteback(page);
P
Peter Zijlstra 已提交
2430
		if (!ret) {
L
Linus Torvalds 已提交
2431 2432 2433
			radix_tree_tag_set(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2434
			if (bdi_cap_account_writeback(bdi))
2435
				__inc_wb_stat(&bdi->wb, WB_WRITEBACK);
P
Peter Zijlstra 已提交
2436
		}
L
Linus Torvalds 已提交
2437 2438 2439 2440
		if (!PageDirty(page))
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_DIRTY);
2441 2442 2443 2444
		if (!keep_write)
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_TOWRITE);
N
Nick Piggin 已提交
2445
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2446 2447 2448
	} else {
		ret = TestSetPageWriteback(page);
	}
2449
	if (!ret) {
2450
		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2451 2452
		inc_zone_page_state(page, NR_WRITEBACK);
	}
2453
	mem_cgroup_end_page_stat(memcg);
L
Linus Torvalds 已提交
2454 2455 2456
	return ret;

}
2457
EXPORT_SYMBOL(__test_set_page_writeback);
L
Linus Torvalds 已提交
2458 2459

/*
N
Nick Piggin 已提交
2460
 * Return true if any of the pages in the mapping are marked with the
L
Linus Torvalds 已提交
2461 2462 2463 2464
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
2465
	return radix_tree_tagged(&mapping->page_tree, tag);
L
Linus Torvalds 已提交
2466 2467
}
EXPORT_SYMBOL(mapping_tagged);
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478

/**
 * wait_for_stable_page() - wait for writeback to finish, if necessary.
 * @page:	The page to wait on.
 *
 * This function determines if the given page is related to a backing device
 * that requires page contents to be held stable during writeback.  If so, then
 * it will wait for any pending writeback to complete.
 */
void wait_for_stable_page(struct page *page)
{
2479 2480
	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
		wait_on_page_writeback(page);
2481 2482
}
EXPORT_SYMBOL_GPL(wait_for_stable_page);