page-writeback.c 58.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * mm/page-writeback.c
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2002, Linus Torvalds.
P
Peter Zijlstra 已提交
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
L
Linus Torvalds 已提交
6 7 8 9
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
10
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
11 12 13 14
 *		Initial version
 */

#include <linux/kernel.h>
15
#include <linux/export.h>
L
Linus Torvalds 已提交
16 17 18 19 20 21 22 23 24
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
26 27
#include <linux/blkdev.h>
#include <linux/mpage.h>
28
#include <linux/rmap.h>
L
Linus Torvalds 已提交
29 30 31 32 33 34
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
35
#include <linux/buffer_head.h>
36
#include <linux/pagevec.h>
37
#include <trace/events/writeback.h>
L
Linus Torvalds 已提交
38

39 40 41 42 43
/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

44 45 46 47 48
/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

W
Wu Fengguang 已提交
49 50
#define RATELIMIT_CALC_SHIFT	10

L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58 59
/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/* The following parameters are exported via /proc/sys/vm */

/*
60
 * Start background writeback (via writeback threads) at this percentage
L
Linus Torvalds 已提交
61
 */
62
int dirty_background_ratio = 10;
L
Linus Torvalds 已提交
63

64 65 66 67 68 69
/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

70 71 72 73 74 75
/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

L
Linus Torvalds 已提交
76 77 78
/*
 * The generator of dirty data starts writeback at this percentage
 */
79
int vm_dirty_ratio = 20;
L
Linus Torvalds 已提交
80

81 82 83 84 85 86
/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

L
Linus Torvalds 已提交
87
/*
88
 * The interval between `kupdate'-style writebacks
L
Linus Torvalds 已提交
89
 */
90
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
L
Linus Torvalds 已提交
91 92

/*
93
 * The longest time for which data is allowed to remain dirty
L
Linus Torvalds 已提交
94
 */
95
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
L
Linus Torvalds 已提交
96 97 98 99 100 101 102

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
103 104
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
L
Linus Torvalds 已提交
105 106 107 108 109 110 111
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

112
unsigned long global_dirty_limit;
L
Linus Torvalds 已提交
113

P
Peter Zijlstra 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
/*
 * Scale the writeback cache size proportional to the relative writeout speeds.
 *
 * We do this by keeping a floating proportion between BDIs, based on page
 * writeback completions [end_page_writeback()]. Those devices that write out
 * pages fastest will get the larger share, while the slower will get a smaller
 * share.
 *
 * We use page writeout completions because we are interested in getting rid of
 * dirty pages. Having them written out is the primary goal.
 *
 * We introduce a concept of time, a period over which we measure these events,
 * because demand can/will vary over time. The length of this period itself is
 * measured in page writeback completions.
 *
 */
static struct prop_descriptor vm_completions;
P
Peter Zijlstra 已提交
131
static struct prop_descriptor vm_dirties;
P
Peter Zijlstra 已提交
132 133 134 135 136 137 138 139 140 141

/*
 * couple the period to the dirty_ratio:
 *
 *   period/2 ~ roundup_pow_of_two(dirty limit)
 */
static int calc_period_shift(void)
{
	unsigned long dirty_total;

142 143 144 145 146
	if (vm_dirty_bytes)
		dirty_total = vm_dirty_bytes / PAGE_SIZE;
	else
		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
				100;
P
Peter Zijlstra 已提交
147 148 149 150
	return 2 + ilog2(dirty_total - 1);
}

/*
151
 * update the period when the dirty threshold changes.
P
Peter Zijlstra 已提交
152
 */
153 154 155 156 157
static void update_completion_period(void)
{
	int shift = calc_period_shift();
	prop_change_shift(&vm_completions, shift);
	prop_change_shift(&vm_dirties, shift);
158 159

	writeback_set_ratelimit();
160 161 162
}

int dirty_background_ratio_handler(struct ctl_table *table, int write,
163
		void __user *buffer, size_t *lenp,
164 165 166 167
		loff_t *ppos)
{
	int ret;

168
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
169 170 171 172 173 174
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
175
		void __user *buffer, size_t *lenp,
176 177 178 179
		loff_t *ppos)
{
	int ret;

180
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
181 182 183 184 185
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

P
Peter Zijlstra 已提交
186
int dirty_ratio_handler(struct ctl_table *table, int write,
187
		void __user *buffer, size_t *lenp,
P
Peter Zijlstra 已提交
188 189 190
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
191 192
	int ret;

193
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
194
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
195 196 197 198 199 200 201 202
		update_completion_period();
		vm_dirty_bytes = 0;
	}
	return ret;
}


int dirty_bytes_handler(struct ctl_table *table, int write,
203
		void __user *buffer, size_t *lenp,
204 205
		loff_t *ppos)
{
206
	unsigned long old_bytes = vm_dirty_bytes;
207 208
	int ret;

209
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
210 211 212
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
		update_completion_period();
		vm_dirty_ratio = 0;
P
Peter Zijlstra 已提交
213 214 215 216 217 218 219 220 221 222
	}
	return ret;
}

/*
 * Increment the BDI's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
{
223
	__inc_bdi_stat(bdi, BDI_WRITTEN);
224 225
	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
			      bdi->max_prop_frac);
P
Peter Zijlstra 已提交
226 227
}

228 229 230 231 232 233 234 235 236 237
void bdi_writeout_inc(struct backing_dev_info *bdi)
{
	unsigned long flags;

	local_irq_save(flags);
	__bdi_writeout_inc(bdi);
	local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(bdi_writeout_inc);

N
Nick Piggin 已提交
238
void task_dirty_inc(struct task_struct *tsk)
P
Peter Zijlstra 已提交
239 240 241 242
{
	prop_inc_single(&vm_dirties, &tsk->dirties);
}

P
Peter Zijlstra 已提交
243 244 245 246 247 248
/*
 * Obtain an accurate fraction of the BDI's portion.
 */
static void bdi_writeout_fraction(struct backing_dev_info *bdi,
		long *numerator, long *denominator)
{
249
	prop_fraction_percpu(&vm_completions, &bdi->completions,
P
Peter Zijlstra 已提交
250 251 252
				numerator, denominator);
}

253
/*
254 255 256
 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 * registered backing devices, which, for obvious reasons, can not
 * exceed 100%.
257 258 259 260 261 262 263
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

264
	spin_lock_bh(&bdi_lock);
265
	if (min_ratio > bdi->max_ratio) {
266
		ret = -EINVAL;
267 268 269 270 271 272 273 274 275
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
276
	spin_unlock_bh(&bdi_lock);
277 278 279 280 281 282 283 284 285 286 287

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

288
	spin_lock_bh(&bdi_lock);
289 290 291 292 293 294
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
	}
295
	spin_unlock_bh(&bdi_lock);
296 297 298

	return ret;
}
299
EXPORT_SYMBOL(bdi_set_max_ratio);
300

L
Linus Torvalds 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
/*
 * Work out the current dirty-memory clamping and background writeout
 * thresholds.
 *
 * The main aim here is to lower them aggressively if there is a lot of mapped
 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
 * pages.  It is better to clamp down on writers than to start swapping, and
 * performing lots of scanning.
 *
 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
 *
 * We don't permit the clamping level to fall below 5% - that is getting rather
 * excessive.
 *
 * We make sure that the background writeout level is below the adjusted
 * clamping level.
 */
318 319 320 321 322 323 324

static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
	unsigned long x = 0;

325
	for_each_node_state(node, N_HIGH_MEMORY) {
326 327 328
		struct zone *z =
			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];

329 330
		x += zone_page_state(z, NR_FREE_PAGES) +
		     zone_reclaimable_pages(z);
331 332 333 334 335 336 337 338 339 340 341 342 343
	}
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

S
Steven Rostedt 已提交
344 345 346 347 348 349 350
/**
 * determine_dirtyable_memory - amount of memory that may be used
 *
 * Returns the numebr of pages that can currently be freed and used
 * by the kernel for direct mappings.
 */
unsigned long determine_dirtyable_memory(void)
351 352 353
{
	unsigned long x;

354
	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
355 356 357 358

	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

359 360 361
	return x + 1;	/* Ensure that we never return 0 */
}

W
Wu Fengguang 已提交
362 363 364 365 366 367
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
					   unsigned long bg_thresh)
{
	return (thresh + bg_thresh) / 2;
}

368 369 370 371 372
static unsigned long hard_dirty_limit(unsigned long thresh)
{
	return max(thresh, global_dirty_limit);
}

373
/*
374 375 376 377 378 379
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 *
 * Calculate the dirty thresholds based on sysctl parameters
 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
 * - vm.dirty_ratio             or  vm.dirty_bytes
 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
380
 * real-time tasks.
381
 */
382
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
L
Linus Torvalds 已提交
383
{
384 385
	unsigned long background;
	unsigned long dirty;
386
	unsigned long uninitialized_var(available_memory);
L
Linus Torvalds 已提交
387 388
	struct task_struct *tsk;

389 390 391
	if (!vm_dirty_bytes || !dirty_background_bytes)
		available_memory = determine_dirtyable_memory();

392 393
	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
394 395
	else
		dirty = (vm_dirty_ratio * available_memory) / 100;
L
Linus Torvalds 已提交
396

397 398 399 400
	if (dirty_background_bytes)
		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
	else
		background = (dirty_background_ratio * available_memory) / 100;
L
Linus Torvalds 已提交
401

402 403
	if (background >= dirty)
		background = dirty / 2;
L
Linus Torvalds 已提交
404 405 406 407 408 409 410
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
		background += background / 4;
		dirty += dirty / 4;
	}
	*pbackground = background;
	*pdirty = dirty;
411
	trace_global_dirty_state(background, dirty);
412
}
P
Peter Zijlstra 已提交
413

414
/**
415
 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
416 417
 * @bdi: the backing_dev_info to query
 * @dirty: global dirty limit in pages
418
 *
419 420 421 422
 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 * And the "limit" in the name is not seriously taken as hard limit in
 * balance_dirty_pages().
423
 *
424
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
425 426 427 428 429 430 431
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
 * The bdi's share of dirty limit will be adapting to its throughput and
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
432 433 434
{
	u64 bdi_dirty;
	long numerator, denominator;
P
Peter Zijlstra 已提交
435

436 437 438 439
	/*
	 * Calculate this BDI's share of the dirty ratio.
	 */
	bdi_writeout_fraction(bdi, &numerator, &denominator);
P
Peter Zijlstra 已提交
440

441 442 443
	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
	bdi_dirty *= numerator;
	do_div(bdi_dirty, denominator);
P
Peter Zijlstra 已提交
444

445 446 447 448 449
	bdi_dirty += (dirty * bdi->min_ratio) / 100;
	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
		bdi_dirty = dirty * bdi->max_ratio / 100;

	return bdi_dirty;
L
Linus Torvalds 已提交
450 451
}

W
Wu Fengguang 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/*
 * Dirty position control.
 *
 * (o) global/bdi setpoints
 *
 * We want the dirty pages be balanced around the global/bdi setpoints.
 * When the number of dirty pages is higher/lower than the setpoint, the
 * dirty position control ratio (and hence task dirty ratelimit) will be
 * decreased/increased to bring the dirty pages back to the setpoint.
 *
 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 *
 *     if (dirty < setpoint) scale up   pos_ratio
 *     if (dirty > setpoint) scale down pos_ratio
 *
 *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
 *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
 *
 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 *
 * (o) global control line
 *
 *     ^ pos_ratio
 *     |
 *     |            |<===== global dirty control scope ======>|
 * 2.0 .............*
 *     |            .*
 *     |            . *
 *     |            .   *
 *     |            .     *
 *     |            .        *
 *     |            .            *
 * 1.0 ................................*
 *     |            .                  .     *
 *     |            .                  .          *
 *     |            .                  .              *
 *     |            .                  .                 *
 *     |            .                  .                    *
 *   0 +------------.------------------.----------------------*------------->
 *           freerun^          setpoint^                 limit^   dirty pages
 *
 * (o) bdi control line
 *
 *     ^ pos_ratio
 *     |
 *     |            *
 *     |              *
 *     |                *
 *     |                  *
 *     |                    * |<=========== span ============>|
 * 1.0 .......................*
 *     |                      . *
 *     |                      .   *
 *     |                      .     *
 *     |                      .       *
 *     |                      .         *
 *     |                      .           *
 *     |                      .             *
 *     |                      .               *
 *     |                      .                 *
 *     |                      .                   *
 *     |                      .                     *
 * 1/4 ...............................................* * * * * * * * * * * *
 *     |                      .                         .
 *     |                      .                           .
 *     |                      .                             .
 *   0 +----------------------.-------------------------------.------------->
 *                bdi_setpoint^                    x_intercept^
 *
 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
 * be smoothly throttled down to normal if it starts high in situations like
 * - start writing to a slow SD card and a fast disk at the same time. The SD
 *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
 * - the bdi dirty thresh drops quickly due to change of JBOD workload
 */
static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
					unsigned long thresh,
					unsigned long bg_thresh,
					unsigned long dirty,
					unsigned long bdi_thresh,
					unsigned long bdi_dirty)
{
	unsigned long write_bw = bdi->avg_write_bandwidth;
	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
	unsigned long limit = hard_dirty_limit(thresh);
	unsigned long x_intercept;
	unsigned long setpoint;		/* dirty pages' target balance point */
	unsigned long bdi_setpoint;
	unsigned long span;
	long long pos_ratio;		/* for scaling up/down the rate limit */
	long x;

	if (unlikely(dirty >= limit))
		return 0;

	/*
	 * global setpoint
	 *
	 *                           setpoint - dirty 3
	 *        f(dirty) := 1.0 + (----------------)
	 *                           limit - setpoint
	 *
	 * it's a 3rd order polynomial that subjects to
	 *
	 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
	 * (2) f(setpoint) = 1.0 => the balance point
	 * (3) f(limit)    = 0   => the hard limit
	 * (4) df/dx      <= 0	 => negative feedback control
	 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
	 *     => fast response on large errors; small oscillation near setpoint
	 */
	setpoint = (freerun + limit) / 2;
	x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
		    limit - setpoint + 1);
	pos_ratio = x;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;

	/*
	 * We have computed basic pos_ratio above based on global situation. If
	 * the bdi is over/under its share of dirty pages, we want to scale
	 * pos_ratio further down/up. That is done by the following mechanism.
	 */

	/*
	 * bdi setpoint
	 *
	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
	 *
	 *                        x_intercept - bdi_dirty
	 *                     := --------------------------
	 *                        x_intercept - bdi_setpoint
	 *
	 * The main bdi control line is a linear function that subjects to
	 *
	 * (1) f(bdi_setpoint) = 1.0
	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
	 *
	 * For single bdi case, the dirty pages are observed to fluctuate
	 * regularly within range
	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
	 * for various filesystems, where (2) can yield in a reasonable 12.5%
	 * fluctuation range for pos_ratio.
	 *
	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
	 * own size, so move the slope over accordingly and choose a slope that
	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
	 */
	if (unlikely(bdi_thresh > thresh))
		bdi_thresh = thresh;
604
	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
W
Wu Fengguang 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	/*
	 * scale global setpoint to bdi's:
	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
	 */
	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
	bdi_setpoint = setpoint * (u64)x >> 16;
	/*
	 * Use span=(8*write_bw) in single bdi case as indicated by
	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
	 *
	 *        bdi_thresh                    thresh - bdi_thresh
	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
	 *          thresh                            thresh
	 */
	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
	x_intercept = bdi_setpoint + span;

	if (bdi_dirty < x_intercept - span / 4) {
623 624
		pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
				    x_intercept - bdi_setpoint + 1);
W
Wu Fengguang 已提交
625 626 627
	} else
		pos_ratio /= 4;

628 629 630 631 632 633 634
	/*
	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
	 * It may push the desired control point of global dirty pages higher
	 * than setpoint.
	 */
	x_intercept = bdi_thresh / 2;
	if (bdi_dirty < x_intercept) {
635 636 637
		if (bdi_dirty > x_intercept / 8)
			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
		else
638 639 640
			pos_ratio *= 8;
	}

W
Wu Fengguang 已提交
641 642 643
	return pos_ratio;
}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
				       unsigned long elapsed,
				       unsigned long written)
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
	unsigned long avg = bdi->avg_write_bandwidth;
	unsigned long old = bdi->write_bandwidth;
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
	 */
	bw = written - bdi->written_stamp;
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
	bw += (u64)bdi->write_bandwidth * (period - elapsed);
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
	bdi->write_bandwidth = bw;
	bdi->avg_write_bandwidth = avg;
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
/*
 * The global dirtyable memory and dirty threshold could be suddenly knocked
 * down by a large amount (eg. on the startup of KVM in a swapless system).
 * This may throw the system into deep dirty exceeded state and throttle
 * heavy/light dirtiers alike. To retain good responsiveness, maintain
 * global_dirty_limit for tracking slowly down to the knocked down dirty
 * threshold.
 */
static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
{
	unsigned long limit = global_dirty_limit;

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
	 */
	thresh = max(thresh, dirty);
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
	global_dirty_limit = limit;
}

static void global_update_bandwidth(unsigned long thresh,
				    unsigned long dirty,
				    unsigned long now)
{
	static DEFINE_SPINLOCK(dirty_lock);
	static unsigned long update_time;

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
		return;

	spin_lock(&dirty_lock);
	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
		update_dirty_limit(thresh, dirty);
		update_time = now;
	}
	spin_unlock(&dirty_lock);
}

W
Wu Fengguang 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
/*
 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
 *
 * Normal bdi tasks will be curbed at or below it in long term.
 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 */
static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
				       unsigned long thresh,
				       unsigned long bg_thresh,
				       unsigned long dirty,
				       unsigned long bdi_thresh,
				       unsigned long bdi_dirty,
				       unsigned long dirtied,
				       unsigned long elapsed)
{
755 756 757
	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
	unsigned long limit = hard_dirty_limit(thresh);
	unsigned long setpoint = (freerun + limit) / 2;
W
Wu Fengguang 已提交
758 759 760 761 762 763
	unsigned long write_bw = bdi->avg_write_bandwidth;
	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
	unsigned long dirty_rate;
	unsigned long task_ratelimit;
	unsigned long balanced_dirty_ratelimit;
	unsigned long pos_ratio;
764 765
	unsigned long step;
	unsigned long x;
W
Wu Fengguang 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

	/*
	 * The dirty rate will match the writeout rate in long term, except
	 * when dirty pages are truncated by userspace or re-dirtied by FS.
	 */
	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;

	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
				       bdi_thresh, bdi_dirty);
	/*
	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
	 */
	task_ratelimit = (u64)dirty_ratelimit *
					pos_ratio >> RATELIMIT_CALC_SHIFT;
	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */

	/*
	 * A linear estimation of the "balanced" throttle rate. The theory is,
	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
	 * formula will yield the balanced rate limit (write_bw / N).
	 *
	 * Note that the expanded form is not a pure rate feedback:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
	 * but also takes pos_ratio into account:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
	 *
	 * (1) is not realistic because pos_ratio also takes part in balancing
	 * the dirty rate.  Consider the state
	 *	pos_ratio = 0.5						     (3)
	 *	rate = 2 * (write_bw / N)				     (4)
	 * If (1) is used, it will stuck in that state! Because each dd will
	 * be throttled at
	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
	 * yielding
	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
	 * put (6) into (1) we get
	 *	rate_(i+1) = rate_(i)					     (7)
	 *
	 * So we end up using (2) to always keep
	 *	rate_(i+1) ~= (write_bw / N)				     (8)
	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
	 * pos_ratio is able to drive itself to 1.0, which is not only where
	 * the dirty count meet the setpoint, but also where the slope of
	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
	 */
	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
					   dirty_rate | 1);

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
	/*
	 * We could safely do this and return immediately:
	 *
	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
	 *
	 * However to get a more stable dirty_ratelimit, the below elaborated
	 * code makes use of task_ratelimit to filter out sigular points and
	 * limit the step size.
	 *
	 * The below code essentially only uses the relative value of
	 *
	 *	task_ratelimit - dirty_ratelimit
	 *	= (pos_ratio - 1) * dirty_ratelimit
	 *
	 * which reflects the direction and size of dirty position error.
	 */

	/*
	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
	 * task_ratelimit is on the same side of dirty_ratelimit, too.
	 * For example, when
	 * - dirty_ratelimit > balanced_dirty_ratelimit
	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
	 * lowering dirty_ratelimit will help meet both the position and rate
	 * control targets. Otherwise, don't update dirty_ratelimit if it will
	 * only help meet the rate target. After all, what the users ultimately
	 * feel and care are stable dirty rate and small position error.
	 *
	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
	 * and filter out the sigular points of balanced_dirty_ratelimit. Which
	 * keeps jumping around randomly and can even leap far away at times
	 * due to the small 200ms estimation period of dirty_rate (we want to
	 * keep that period small to reduce time lags).
	 */
	step = 0;
	if (dirty < setpoint) {
		x = min(bdi->balanced_dirty_ratelimit,
			 min(balanced_dirty_ratelimit, task_ratelimit));
		if (dirty_ratelimit < x)
			step = x - dirty_ratelimit;
	} else {
		x = max(bdi->balanced_dirty_ratelimit,
			 max(balanced_dirty_ratelimit, task_ratelimit));
		if (dirty_ratelimit > x)
			step = dirty_ratelimit - x;
	}

	/*
	 * Don't pursue 100% rate matching. It's impossible since the balanced
	 * rate itself is constantly fluctuating. So decrease the track speed
	 * when it gets close to the target. Helps eliminate pointless tremors.
	 */
	step >>= dirty_ratelimit / (2 * step + 1);
	/*
	 * Limit the tracking speed to avoid overshooting.
	 */
	step = (step + 7) / 8;

	if (dirty_ratelimit < balanced_dirty_ratelimit)
		dirty_ratelimit += step;
	else
		dirty_ratelimit -= step;

	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
880 881

	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
W
Wu Fengguang 已提交
882 883
}

884
void __bdi_update_bandwidth(struct backing_dev_info *bdi,
885
			    unsigned long thresh,
886
			    unsigned long bg_thresh,
887 888 889
			    unsigned long dirty,
			    unsigned long bdi_thresh,
			    unsigned long bdi_dirty,
890 891 892 893
			    unsigned long start_time)
{
	unsigned long now = jiffies;
	unsigned long elapsed = now - bdi->bw_time_stamp;
W
Wu Fengguang 已提交
894
	unsigned long dirtied;
895 896 897 898 899 900 901 902
	unsigned long written;

	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

W
Wu Fengguang 已提交
903
	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
904 905 906 907 908 909 910 911 912
	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
		goto snapshot;

W
Wu Fengguang 已提交
913
	if (thresh) {
914
		global_update_bandwidth(thresh, dirty, now);
W
Wu Fengguang 已提交
915 916 917 918
		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
					   bdi_thresh, bdi_dirty,
					   dirtied, elapsed);
	}
919 920 921
	bdi_update_write_bandwidth(bdi, elapsed, written);

snapshot:
W
Wu Fengguang 已提交
922
	bdi->dirtied_stamp = dirtied;
923 924 925 926 927
	bdi->written_stamp = written;
	bdi->bw_time_stamp = now;
}

static void bdi_update_bandwidth(struct backing_dev_info *bdi,
928
				 unsigned long thresh,
929
				 unsigned long bg_thresh,
930 931 932
				 unsigned long dirty,
				 unsigned long bdi_thresh,
				 unsigned long bdi_dirty,
933 934 935 936 937
				 unsigned long start_time)
{
	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
		return;
	spin_lock(&bdi->wb.list_lock);
938 939
	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
			       bdi_thresh, bdi_dirty, start_time);
940 941 942
	spin_unlock(&bdi->wb.list_lock);
}

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
/*
 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
 * will look to see if it needs to start dirty throttling.
 *
 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
 * global_page_state() too often. So scale it near-sqrt to the safety margin
 * (the number of pages we may dirty without exceeding the dirty limits).
 */
static unsigned long dirty_poll_interval(unsigned long dirty,
					 unsigned long thresh)
{
	if (thresh > dirty)
		return 1UL << (ilog2(thresh - dirty) >> 1);

	return 1;
}

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
				   unsigned long bdi_dirty)
{
	unsigned long bw = bdi->avg_write_bandwidth;
	unsigned long hi = ilog2(bw);
	unsigned long lo = ilog2(bdi->dirty_ratelimit);
	unsigned long t;

	/* target for 20ms max pause on 1-dd case */
	t = HZ / 50;

	/*
	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
	 * overheads.
	 *
	 * (N * 20ms) on 2^N concurrent tasks.
	 */
	if (hi > lo)
		t += (hi - lo) * (20 * HZ) / 1024;

	/*
	 * Limit pause time for small memory systems. If sleeping for too long
	 * time, a small pool of dirty/writeback pages may go empty and disk go
	 * idle.
	 *
	 * 8 serves as the safety ratio.
	 */
	if (bdi_dirty)
		t = min(t, bdi_dirty * HZ / (8 * bw + 1));

	/*
	 * The pause time will be settled within range (max_pause/4, max_pause).
	 * Apply a minimal value of 4 to get a non-zero max_pause/4.
	 */
	return clamp_val(t, 4, MAX_PAUSE);
}

L
Linus Torvalds 已提交
997 998 999
/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
1000
 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1001 1002
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
L
Linus Torvalds 已提交
1003
 */
1004
static void balance_dirty_pages(struct address_space *mapping,
1005
				unsigned long pages_dirtied)
L
Linus Torvalds 已提交
1006
{
1007 1008
	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
	unsigned long bdi_reclaimable;
1009 1010
	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
	unsigned long bdi_dirty;
W
Wu Fengguang 已提交
1011
	unsigned long freerun;
1012 1013 1014
	unsigned long background_thresh;
	unsigned long dirty_thresh;
	unsigned long bdi_thresh;
1015
	long pause = 0;
1016
	long uninitialized_var(max_pause);
1017
	bool dirty_exceeded = false;
1018
	unsigned long task_ratelimit;
1019
	unsigned long uninitialized_var(dirty_ratelimit);
1020
	unsigned long pos_ratio;
L
Linus Torvalds 已提交
1021
	struct backing_dev_info *bdi = mapping->backing_dev_info;
1022
	unsigned long start_time = jiffies;
L
Linus Torvalds 已提交
1023 1024

	for (;;) {
1025 1026 1027 1028 1029 1030
		/*
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
		 */
1031 1032
		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
					global_page_state(NR_UNSTABLE_NFS);
1033
		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1034

1035 1036 1037 1038 1039 1040 1041
		global_dirty_limits(&background_thresh, &dirty_thresh);

		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
		 * when the bdi limits are ramping up.
		 */
W
Wu Fengguang 已提交
1042 1043 1044
		freerun = dirty_freerun_ceiling(dirty_thresh,
						background_thresh);
		if (nr_dirty <= freerun)
1045 1046
			break;

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		if (unlikely(!writeback_in_progress(bdi)))
			bdi_start_background_writeback(bdi);

		/*
		 * bdi_thresh is not treated as some limiting factor as
		 * dirty_thresh, due to reasons
		 * - in JBOD setup, bdi_thresh can fluctuate a lot
		 * - in a system with HDD and USB key, the USB key may somehow
		 *   go into state (bdi_dirty >> bdi_thresh) either because
		 *   bdi_dirty starts high, or because bdi_thresh drops low.
		 *   In this case we don't want to hard throttle the USB key
		 *   dirtiers for 100 seconds until bdi_dirty drops under
		 *   bdi_thresh. Instead the auxiliary bdi control line in
		 *   bdi_position_ratio() will let the dirtier task progress
		 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
		 */
1063 1064
		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
		/*
		 * In order to avoid the stacked BDI deadlock we need
		 * to ensure we accurately count the 'dirty' pages when
		 * the threshold is low.
		 *
		 * Otherwise it would be possible to get thresh+n pages
		 * reported dirty, even though there are thresh-m pages
		 * actually dirty; with m+n sitting in the percpu
		 * deltas.
		 */
1075 1076 1077
		if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
			bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
			bdi_dirty = bdi_reclaimable +
1078
				    bdi_stat_sum(bdi, BDI_WRITEBACK);
1079
		} else {
1080 1081
			bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
			bdi_dirty = bdi_reclaimable +
1082
				    bdi_stat(bdi, BDI_WRITEBACK);
1083
		}
1084

1085
		dirty_exceeded = (bdi_dirty > bdi_thresh) ||
1086
				  (nr_dirty > dirty_thresh);
1087
		if (dirty_exceeded && !bdi->dirty_exceeded)
P
Peter Zijlstra 已提交
1088
			bdi->dirty_exceeded = 1;
L
Linus Torvalds 已提交
1089

1090 1091 1092
		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
				     nr_dirty, bdi_thresh, bdi_dirty,
				     start_time);
1093

1094 1095
		max_pause = bdi_max_pause(bdi, bdi_dirty);

1096 1097 1098 1099
		dirty_ratelimit = bdi->dirty_ratelimit;
		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
					       background_thresh, nr_dirty,
					       bdi_thresh, bdi_dirty);
1100 1101 1102
		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
							RATELIMIT_CALC_SHIFT;
		if (unlikely(task_ratelimit == 0)) {
1103
			pause = max_pause;
1104
			goto pause;
P
Peter Zijlstra 已提交
1105
		}
1106
		pause = HZ * pages_dirtied / task_ratelimit;
W
Wu Fengguang 已提交
1107
		if (unlikely(pause <= 0)) {
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
			trace_balance_dirty_pages(bdi,
						  dirty_thresh,
						  background_thresh,
						  nr_dirty,
						  bdi_thresh,
						  bdi_dirty,
						  dirty_ratelimit,
						  task_ratelimit,
						  pages_dirtied,
						  pause,
						  start_time);
W
Wu Fengguang 已提交
1119 1120
			pause = 1; /* avoid resetting nr_dirtied_pause below */
			break;
P
Peter Zijlstra 已提交
1121
		}
1122
		pause = min(pause, max_pause);
1123 1124

pause:
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
		trace_balance_dirty_pages(bdi,
					  dirty_thresh,
					  background_thresh,
					  nr_dirty,
					  bdi_thresh,
					  bdi_dirty,
					  dirty_ratelimit,
					  task_ratelimit,
					  pages_dirtied,
					  pause,
					  start_time);
1136
		__set_current_state(TASK_UNINTERRUPTIBLE);
1137
		io_schedule_timeout(pause);
1138

1139 1140 1141 1142 1143 1144 1145
		dirty_thresh = hard_dirty_limit(dirty_thresh);
		/*
		 * max-pause area. If dirty exceeded but still within this
		 * area, no need to sleep for more than 200ms: (a) 8 pages per
		 * 200ms is typically more than enough to curb heavy dirtiers;
		 * (b) the pause time limit makes the dirtiers more responsive.
		 */
1146
		if (nr_dirty < dirty_thresh)
1147
			break;
L
Linus Torvalds 已提交
1148 1149
	}

1150
	if (!dirty_exceeded && bdi->dirty_exceeded)
P
Peter Zijlstra 已提交
1151
		bdi->dirty_exceeded = 0;
L
Linus Torvalds 已提交
1152

1153
	current->nr_dirtied = 0;
W
Wu Fengguang 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	if (pause == 0) { /* in freerun area */
		current->nr_dirtied_pause =
				dirty_poll_interval(nr_dirty, dirty_thresh);
	} else if (pause <= max_pause / 4 &&
		   pages_dirtied >= current->nr_dirtied_pause) {
		current->nr_dirtied_pause = clamp_val(
					dirty_ratelimit * (max_pause / 2) / HZ,
					pages_dirtied + pages_dirtied / 8,
					pages_dirtied * 4);
	} else if (pause >= max_pause) {
		current->nr_dirtied_pause = 1 | clamp_val(
					dirty_ratelimit * (max_pause / 2) / HZ,
					pages_dirtied / 4,
					pages_dirtied - pages_dirtied / 8);
	}
1169

L
Linus Torvalds 已提交
1170
	if (writeback_in_progress(bdi))
1171
		return;
L
Linus Torvalds 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
1181 1182 1183 1184
	if (laptop_mode)
		return;

	if (nr_reclaimable > background_thresh)
1185
		bdi_start_background_writeback(bdi);
L
Linus Torvalds 已提交
1186 1187
}

1188
void set_page_dirty_balance(struct page *page, int page_mkwrite)
P
Peter Zijlstra 已提交
1189
{
1190
	if (set_page_dirty(page) || page_mkwrite) {
P
Peter Zijlstra 已提交
1191 1192 1193 1194 1195 1196 1197
		struct address_space *mapping = page_mapping(page);

		if (mapping)
			balance_dirty_pages_ratelimited(mapping);
	}
}

1198
static DEFINE_PER_CPU(int, bdp_ratelimits);
1199

L
Linus Torvalds 已提交
1200
/**
1201
 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1202
 * @mapping: address_space which was dirtied
1203
 * @nr_pages_dirtied: number of pages which the caller has just dirtied
L
Linus Torvalds 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
1214 1215
void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
					unsigned long nr_pages_dirtied)
L
Linus Torvalds 已提交
1216
{
1217
	struct backing_dev_info *bdi = mapping->backing_dev_info;
1218 1219
	int ratelimit;
	int *p;
L
Linus Torvalds 已提交
1220

1221 1222 1223
	if (!bdi_cap_account_dirty(bdi))
		return;

1224 1225 1226 1227 1228
	ratelimit = current->nr_dirtied_pause;
	if (bdi->dirty_exceeded)
		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));

	current->nr_dirtied += nr_pages_dirtied;
L
Linus Torvalds 已提交
1229

1230
	preempt_disable();
L
Linus Torvalds 已提交
1231
	/*
1232 1233 1234 1235
	 * This prevents one CPU to accumulate too many dirtied pages without
	 * calling into balance_dirty_pages(), which can happen when there are
	 * 1000+ tasks, all of them start dirtying pages at exactly the same
	 * time, hence all honoured too large initial task->nr_dirtied_pause.
L
Linus Torvalds 已提交
1236
	 */
1237
	p =  &__get_cpu_var(bdp_ratelimits);
1238
	if (unlikely(current->nr_dirtied >= ratelimit))
1239
		*p = 0;
1240 1241 1242 1243 1244 1245
	else {
		*p += nr_pages_dirtied;
		if (unlikely(*p >= ratelimit_pages)) {
			*p = 0;
			ratelimit = 0;
		}
L
Linus Torvalds 已提交
1246
	}
1247
	preempt_enable();
1248 1249 1250

	if (unlikely(current->nr_dirtied >= ratelimit))
		balance_dirty_pages(mapping, current->nr_dirtied);
L
Linus Torvalds 已提交
1251
}
1252
EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
L
Linus Torvalds 已提交
1253

1254
void throttle_vm_writeout(gfp_t gfp_mask)
L
Linus Torvalds 已提交
1255
{
1256 1257
	unsigned long background_thresh;
	unsigned long dirty_thresh;
L
Linus Torvalds 已提交
1258 1259

        for ( ; ; ) {
1260
		global_dirty_limits(&background_thresh, &dirty_thresh);
L
Linus Torvalds 已提交
1261 1262 1263 1264 1265 1266 1267

                /*
                 * Boost the allowable dirty threshold a bit for page
                 * allocators so they don't get DoS'ed by heavy writers
                 */
                dirty_thresh += dirty_thresh / 10;      /* wheeee... */

1268 1269 1270
                if (global_page_state(NR_UNSTABLE_NFS) +
			global_page_state(NR_WRITEBACK) <= dirty_thresh)
                        	break;
1271
                congestion_wait(BLK_RW_ASYNC, HZ/10);
1272 1273 1274 1275 1276 1277 1278 1279

		/*
		 * The caller might hold locks which can prevent IO completion
		 * or progress in the filesystem.  So we cannot just sit here
		 * waiting for IO to complete.
		 */
		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
			break;
L
Linus Torvalds 已提交
1280 1281 1282 1283 1284 1285 1286
        }
}

/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1287
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1288
{
1289
	proc_dointvec(table, write, buffer, length, ppos);
1290
	bdi_arm_supers_timer();
L
Linus Torvalds 已提交
1291 1292 1293
	return 0;
}

1294
#ifdef CONFIG_BLOCK
1295
void laptop_mode_timer_fn(unsigned long data)
L
Linus Torvalds 已提交
1296
{
1297 1298 1299
	struct request_queue *q = (struct request_queue *)data;
	int nr_pages = global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS);
L
Linus Torvalds 已提交
1300

1301 1302 1303 1304 1305
	/*
	 * We want to write everything out, not just down to the dirty
	 * threshold
	 */
	if (bdi_has_dirty_io(&q->backing_dev_info))
1306 1307
		bdi_start_writeback(&q->backing_dev_info, nr_pages,
					WB_REASON_LAPTOP_TIMER);
L
Linus Torvalds 已提交
1308 1309 1310 1311 1312 1313 1314
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
1315
void laptop_io_completion(struct backing_dev_info *info)
L
Linus Torvalds 已提交
1316
{
1317
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
L
Linus Torvalds 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
1327 1328 1329 1330 1331 1332 1333 1334
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
L
Linus Torvalds 已提交
1335
}
1336
#endif
L
Linus Torvalds 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1346
 * thresholds.
L
Linus Torvalds 已提交
1347 1348
 */

1349
void writeback_set_ratelimit(void)
L
Linus Torvalds 已提交
1350
{
1351 1352 1353 1354
	unsigned long background_thresh;
	unsigned long dirty_thresh;
	global_dirty_limits(&background_thresh, &dirty_thresh);
	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
L
Linus Torvalds 已提交
1355 1356 1357 1358
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
}

1359
static int __cpuinit
L
Linus Torvalds 已提交
1360 1361
ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
{
1362
	writeback_set_ratelimit();
1363
	return NOTIFY_DONE;
L
Linus Torvalds 已提交
1364 1365
}

1366
static struct notifier_block __cpuinitdata ratelimit_nb = {
L
Linus Torvalds 已提交
1367 1368 1369 1370 1371
	.notifier_call	= ratelimit_handler,
	.next		= NULL,
};

/*
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
L
Linus Torvalds 已提交
1388 1389 1390
 */
void __init page_writeback_init(void)
{
P
Peter Zijlstra 已提交
1391 1392
	int shift;

1393
	writeback_set_ratelimit();
L
Linus Torvalds 已提交
1394
	register_cpu_notifier(&ratelimit_nb);
P
Peter Zijlstra 已提交
1395 1396 1397

	shift = calc_period_shift();
	prop_descriptor_init(&vm_completions, shift);
P
Peter Zijlstra 已提交
1398
	prop_descriptor_init(&vm_dirties, shift);
L
Linus Torvalds 已提交
1399 1400
}

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
R
Randy Dunlap 已提交
1421
#define WRITEBACK_TAG_BATCH 4096
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	unsigned long tagged;

	do {
		spin_lock_irq(&mapping->tree_lock);
		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
				&start, end, WRITEBACK_TAG_BATCH,
				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
		spin_unlock_irq(&mapping->tree_lock);
		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
		cond_resched();
1432 1433
		/* We check 'start' to handle wrapping when end == ~0UL */
	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1434 1435 1436
}
EXPORT_SYMBOL(tag_pages_for_writeback);

1437
/**
1438
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1439 1440
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1441 1442
 * @writepage: function called for each page
 * @data: data passed to writepage function
1443
 *
1444
 * If a page is already under I/O, write_cache_pages() skips it, even
1445 1446 1447 1448 1449 1450
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
1451 1452 1453 1454 1455 1456 1457
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
1458
 */
1459 1460 1461
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
1462 1463 1464 1465 1466
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
N
Nick Piggin 已提交
1467
	pgoff_t uninitialized_var(writeback_index);
1468 1469
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
1470
	pgoff_t done_index;
N
Nick Piggin 已提交
1471
	int cycled;
1472
	int range_whole = 0;
1473
	int tag;
1474 1475 1476

	pagevec_init(&pvec, 0);
	if (wbc->range_cyclic) {
N
Nick Piggin 已提交
1477 1478 1479 1480 1481 1482
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
		if (index == 0)
			cycled = 1;
		else
			cycled = 0;
1483 1484 1485 1486 1487 1488
		end = -1;
	} else {
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
N
Nick Piggin 已提交
1489
		cycled = 1; /* ignore range_cyclic tests */
1490
	}
1491
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1492 1493 1494
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
1495
retry:
1496
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1497
		tag_pages_for_writeback(mapping, index, end);
1498
	done_index = index;
N
Nick Piggin 已提交
1499 1500 1501
	while (!done && (index <= end)) {
		int i;

1502
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
N
Nick Piggin 已提交
1503 1504 1505
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;
1506 1507 1508 1509 1510

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
1511 1512 1513 1514 1515
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
1516
			 */
1517 1518 1519 1520 1521 1522 1523 1524 1525
			if (page->index > end) {
				/*
				 * can't be range_cyclic (1st pass) because
				 * end == -1 in that case.
				 */
				done = 1;
				break;
			}

1526
			done_index = page->index;
1527

1528 1529
			lock_page(page);

N
Nick Piggin 已提交
1530 1531 1532 1533 1534 1535 1536 1537
			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
1538
			if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
1539
continue_unlock:
1540 1541 1542 1543
				unlock_page(page);
				continue;
			}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}
1555

1556 1557
			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
N
Nick Piggin 已提交
1558
				goto continue_unlock;
1559

1560
			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1561
			ret = (*writepage)(page, wbc, data);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					/*
					 * done_index is set past this page,
					 * so media errors will not choke
					 * background writeout for the entire
					 * file. This has consequences for
					 * range_cyclic semantics (ie. it may
					 * not be suitable for data integrity
					 * writeout).
					 */
1576
					done_index = page->index + 1;
1577 1578 1579
					done = 1;
					break;
				}
1580
			}
1581

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
1592
			}
1593 1594 1595 1596
		}
		pagevec_release(&pvec);
		cond_resched();
	}
1597
	if (!cycled && !done) {
1598
		/*
N
Nick Piggin 已提交
1599
		 * range_cyclic:
1600 1601 1602
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
N
Nick Piggin 已提交
1603
		cycled = 1;
1604
		index = 0;
N
Nick Piggin 已提交
1605
		end = writeback_index - 1;
1606 1607
		goto retry;
	}
1608 1609
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;
1610

1611 1612
	return ret;
}
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
1639 1640 1641
	struct blk_plug plug;
	int ret;

1642 1643 1644 1645
	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

1646 1647 1648 1649
	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
1650
}
1651 1652 1653

EXPORT_SYMBOL(generic_writepages);

L
Linus Torvalds 已提交
1654 1655
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
1656 1657
	int ret;

L
Linus Torvalds 已提交
1658 1659 1660
	if (wbc->nr_to_write <= 0)
		return 0;
	if (mapping->a_ops->writepages)
1661
		ret = mapping->a_ops->writepages(mapping, wbc);
1662 1663 1664
	else
		ret = generic_writepages(mapping, wbc);
	return ret;
L
Linus Torvalds 已提交
1665 1666 1667 1668
}

/**
 * write_one_page - write out a single page and optionally wait on I/O
1669 1670
 * @page: the page to write
 * @wait: if true, wait on writeout
L
Linus Torvalds 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
 * write_one_page() returns a negative error code if I/O failed.
 */
int write_one_page(struct page *page, int wait)
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

	if (wait)
		wait_on_page_writeback(page);

	if (clear_page_dirty_for_io(page)) {
		page_cache_get(page);
		ret = mapping->a_ops->writepage(page, &wbc);
		if (ret == 0 && wait) {
			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
		page_cache_release(page);
	} else {
		unlock_page(page);
	}
	return ret;
}
EXPORT_SYMBOL(write_one_page);

1706 1707 1708 1709 1710 1711
/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
1712
		return !TestSetPageDirty(page);
1713 1714 1715
	return 0;
}

1716 1717 1718 1719 1720 1721 1722 1723
/*
 * Helper function for set_page_dirty family.
 * NOTE: This relies on being atomic wrt interrupts.
 */
void account_page_dirtied(struct page *page, struct address_space *mapping)
{
	if (mapping_cap_account_dirty(mapping)) {
		__inc_zone_page_state(page, NR_FILE_DIRTY);
1724
		__inc_zone_page_state(page, NR_DIRTIED);
1725
		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1726
		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1727 1728 1729 1730
		task_dirty_inc(current);
		task_io_account_write(PAGE_CACHE_SIZE);
	}
}
M
Michael Rubin 已提交
1731
EXPORT_SYMBOL(account_page_dirtied);
1732

M
Michael Rubin 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
/*
 * Helper function for set_page_writeback family.
 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
 * wrt interrupts.
 */
void account_page_writeback(struct page *page)
{
	inc_zone_page_state(page, NR_WRITEBACK);
}
EXPORT_SYMBOL(account_page_writeback);

L
Linus Torvalds 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
 * Most callers have locked the page, which pins the address_space in memory.
 * But zap_pte_range() does not lock the page, however in that case the
 * mapping is pinned by the vma's ->vm_file reference.
 *
 * We take care to handle the case where the page was truncated from the
S
Simon Arlott 已提交
1757
 * mapping by re-checking page_mapping() inside tree_lock.
L
Linus Torvalds 已提交
1758 1759 1760 1761 1762 1763 1764
 */
int __set_page_dirty_nobuffers(struct page *page)
{
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
		struct address_space *mapping2;

1765 1766 1767
		if (!mapping)
			return 1;

N
Nick Piggin 已提交
1768
		spin_lock_irq(&mapping->tree_lock);
1769 1770 1771
		mapping2 = page_mapping(page);
		if (mapping2) { /* Race with truncate? */
			BUG_ON(mapping2 != mapping);
1772
			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1773
			account_page_dirtied(page, mapping);
1774 1775 1776
			radix_tree_tag_set(&mapping->page_tree,
				page_index(page), PAGECACHE_TAG_DIRTY);
		}
N
Nick Piggin 已提交
1777
		spin_unlock_irq(&mapping->tree_lock);
1778 1779 1780
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
L
Linus Torvalds 已提交
1781
		}
1782
		return 1;
L
Linus Torvalds 已提交
1783
	}
1784
	return 0;
L
Linus Torvalds 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
	wbc->pages_skipped++;
	return __set_page_dirty_nobuffers(page);
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
1801 1802 1803 1804 1805 1806 1807
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
L
Linus Torvalds 已提交
1808 1809 1810
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
N
Nick Piggin 已提交
1811
int set_page_dirty(struct page *page)
L
Linus Torvalds 已提交
1812 1813 1814 1815 1816
{
	struct address_space *mapping = page_mapping(page);

	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
M
Minchan Kim 已提交
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
		ClearPageReclaim(page);
1828 1829 1830 1831 1832
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
L
Linus Torvalds 已提交
1833
	}
1834 1835 1836 1837
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
L
Linus Torvalds 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

J
Jens Axboe 已提交
1856
	lock_page(page);
L
Linus Torvalds 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);

1881 1882
	BUG_ON(!PageLocked(page));

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	if (mapping && mapping_cap_account_dirty(mapping)) {
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
		 * at this point. We do this by having them hold the
		 * page lock at some point after installing their
		 * pte, but before marking the page dirty.
		 * Pages are always locked coming in here, so we get
		 * the desired exclusion. See mm/memory.c:do_wp_page()
		 * for more comments.
		 */
1921
		if (TestClearPageDirty(page)) {
1922
			dec_zone_page_state(page, NR_FILE_DIRTY);
1923 1924
			dec_bdi_stat(mapping->backing_dev_info,
					BDI_RECLAIMABLE);
1925
			return 1;
L
Linus Torvalds 已提交
1926
		}
1927
		return 0;
L
Linus Torvalds 已提交
1928
	}
1929
	return TestClearPageDirty(page);
L
Linus Torvalds 已提交
1930
}
1931
EXPORT_SYMBOL(clear_page_dirty_for_io);
L
Linus Torvalds 已提交
1932 1933 1934 1935 1936 1937 1938

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
	int ret;

	if (mapping) {
P
Peter Zijlstra 已提交
1939
		struct backing_dev_info *bdi = mapping->backing_dev_info;
L
Linus Torvalds 已提交
1940 1941
		unsigned long flags;

N
Nick Piggin 已提交
1942
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
1943
		ret = TestClearPageWriteback(page);
P
Peter Zijlstra 已提交
1944
		if (ret) {
L
Linus Torvalds 已提交
1945 1946 1947
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
1948
			if (bdi_cap_account_writeback(bdi)) {
P
Peter Zijlstra 已提交
1949
				__dec_bdi_stat(bdi, BDI_WRITEBACK);
P
Peter Zijlstra 已提交
1950 1951
				__bdi_writeout_inc(bdi);
			}
P
Peter Zijlstra 已提交
1952
		}
N
Nick Piggin 已提交
1953
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
1954 1955 1956
	} else {
		ret = TestClearPageWriteback(page);
	}
1957
	if (ret) {
1958
		dec_zone_page_state(page, NR_WRITEBACK);
1959 1960
		inc_zone_page_state(page, NR_WRITTEN);
	}
L
Linus Torvalds 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969
	return ret;
}

int test_set_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
	int ret;

	if (mapping) {
P
Peter Zijlstra 已提交
1970
		struct backing_dev_info *bdi = mapping->backing_dev_info;
L
Linus Torvalds 已提交
1971 1972
		unsigned long flags;

N
Nick Piggin 已提交
1973
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
1974
		ret = TestSetPageWriteback(page);
P
Peter Zijlstra 已提交
1975
		if (!ret) {
L
Linus Torvalds 已提交
1976 1977 1978
			radix_tree_tag_set(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
1979
			if (bdi_cap_account_writeback(bdi))
P
Peter Zijlstra 已提交
1980 1981
				__inc_bdi_stat(bdi, BDI_WRITEBACK);
		}
L
Linus Torvalds 已提交
1982 1983 1984 1985
		if (!PageDirty(page))
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_DIRTY);
1986 1987 1988
		radix_tree_tag_clear(&mapping->page_tree,
				     page_index(page),
				     PAGECACHE_TAG_TOWRITE);
N
Nick Piggin 已提交
1989
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
1990 1991 1992
	} else {
		ret = TestSetPageWriteback(page);
	}
1993
	if (!ret)
M
Michael Rubin 已提交
1994
		account_page_writeback(page);
L
Linus Torvalds 已提交
1995 1996 1997 1998 1999 2000
	return ret;

}
EXPORT_SYMBOL(test_set_page_writeback);

/*
N
Nick Piggin 已提交
2001
 * Return true if any of the pages in the mapping are marked with the
L
Linus Torvalds 已提交
2002 2003 2004 2005
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
2006
	return radix_tree_tagged(&mapping->page_tree, tag);
L
Linus Torvalds 已提交
2007 2008
}
EXPORT_SYMBOL(mapping_tagged);