timekeeping.c 32.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17
#include <linux/syscore_ops.h>
18 19 20 21
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26 27
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
	struct clocksource *clock;
28 29
	/* The shift value of the current clocksource. */
	int	shift;
30 31 32 33 34

	/* Number of clock cycles in one NTP interval. */
	cycle_t cycle_interval;
	/* Number of clock shifted nano seconds in one NTP interval. */
	u64	xtime_interval;
35 36
	/* shifted nano seconds left over when rounding cycle_interval */
	s64	xtime_remainder;
37 38 39 40 41 42 43 44
	/* Raw nano seconds accumulated per NTP interval. */
	u32	raw_interval;

	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
	u64	xtime_nsec;
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
	s64	ntp_error;
45 46 47
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
	int	ntp_error_shift;
48 49
	/* NTP adjusted clock multiplier */
	u32	mult;
50 51
};

52
static struct timekeeper timekeeper;
53 54 55 56 57 58 59 60 61 62 63 64 65 66

/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void timekeeper_setup_internals(struct clocksource *clock)
{
	cycle_t interval;
67
	u64 tmp, ntpinterval;
68 69 70 71 72 73 74

	timekeeper.clock = clock;
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
75
	ntpinterval = tmp;
76 77
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
78 79 80 81 82 83 84 85
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
	timekeeper.cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	timekeeper.xtime_interval = (u64) interval * clock->mult;
86
	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
87
	timekeeper.raw_interval =
88
		((u64) interval * clock->mult) >> clock->shift;
89 90

	timekeeper.xtime_nsec = 0;
91
	timekeeper.shift = clock->shift;
92 93

	timekeeper.ntp_error = 0;
94
	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
95 96 97 98 99 100 101

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	timekeeper.mult = clock->mult;
102
}
103

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
}

static inline s64 timekeeping_get_ns_raw(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

134
	/* return delta convert to nanoseconds. */
135 136 137
	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}

138 139
/*
 * This read-write spinlock protects us from races in SMP while
140
 * playing with xtime.
141
 */
A
Adrian Bunk 已提交
142
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
143 144 145 146 147 148 149 150 151


/*
 * The current time
 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
 * at zero at system boot time, so wall_to_monotonic will be negative,
 * however, we will ALWAYS keep the tv_nsec part positive so we can use
 * the usual normalization.
T
Tomas Janousek 已提交
152 153 154 155 156 157 158
 *
 * wall_to_monotonic is moved after resume from suspend for the monotonic
 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
 * to get the real boot based time offset.
 *
 * - wall_to_monotonic is no longer the boot time, getboottime must be
 * used instead.
159
 */
160 161
static struct timespec xtime __attribute__ ((aligned (16)));
static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
162
static struct timespec total_sleep_time;
163

164 165 166
/*
 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
 */
167
static struct timespec raw_time;
168

169 170 171
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

172 173 174 175 176
/* must hold xtime_lock */
void timekeeping_leap_insert(int leapsecond)
{
	xtime.tv_sec += leapsecond;
	wall_to_monotonic.tv_sec -= leapsecond;
177 178
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
			timekeeper.mult);
179
}
180 181

/**
182
 * timekeeping_forward_now - update clock to the current time
183
 *
184 185 186
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
187
 */
188
static void timekeeping_forward_now(void)
189 190
{
	cycle_t cycle_now, cycle_delta;
191
	struct clocksource *clock;
192
	s64 nsec;
193

194
	clock = timekeeper.clock;
195
	cycle_now = clock->read(clock);
196
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
197
	clock->cycle_last = cycle_now;
198

199 200
	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
201 202 203 204

	/* If arch requires, add in gettimeoffset() */
	nsec += arch_gettimeoffset();

205
	timespec_add_ns(&xtime, nsec);
206

207
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
208
	timespec_add_ns(&raw_time, nsec);
209 210 211
}

/**
212
 * getnstimeofday - Returns the time of day in a timespec
213 214
 * @ts:		pointer to the timespec to be set
 *
215
 * Returns the time of day in a timespec.
216
 */
217
void getnstimeofday(struct timespec *ts)
218 219 220 221
{
	unsigned long seq;
	s64 nsecs;

222 223
	WARN_ON(timekeeping_suspended);

224 225 226 227
	do {
		seq = read_seqbegin(&xtime_lock);

		*ts = xtime;
228
		nsecs = timekeeping_get_ns();
229

230 231 232
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

233 234 235 236 237 238 239
	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}

EXPORT_SYMBOL(getnstimeofday);

240 241 242 243 244 245 246 247 248 249 250
ktime_t ktime_get(void)
{
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
251
		nsecs += timekeeping_get_ns();
252 253
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

	} while (read_seqretry(&xtime_lock, seq));
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		*ts = xtime;
		tomono = wall_to_monotonic;
284
		nsecs = timekeeping_get_ns();
285 286
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();
287 288 289 290 291 292 293 294

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
		u32 arch_offset;

		seq = read_seqbegin(&xtime_lock);

		*ts_raw = raw_time;
		*ts_real = xtime;

		nsecs_raw = timekeeping_get_ns_raw();
		nsecs_real = timekeeping_get_ns();

		/* If arch requires, add in gettimeoffset() */
		arch_offset = arch_gettimeoffset();
		nsecs_raw += arch_offset;
		nsecs_real += arch_offset;

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

338 339 340 341
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
342
 * NOTE: Users should be converted to using getnstimeofday()
343 344 345 346 347
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

348
	getnstimeofday(&now);
349 350 351 352 353 354 355 356 357 358 359
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}

EXPORT_SYMBOL(do_gettimeofday);
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
360
int do_settimeofday(const struct timespec *tv)
361
{
362
	struct timespec ts_delta;
363 364 365 366 367 368 369
	unsigned long flags;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

370
	timekeeping_forward_now();
371 372 373 374

	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
375

376
	xtime = *tv;
377

378
	timekeeper.ntp_error = 0;
379 380
	ntp_clear();

381 382
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);
383 384 385 386 387 388 389 390 391 392 393

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
	unsigned long flags;

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

	timekeeping_forward_now();

	xtime = timespec_add(xtime, *ts);
	wall_to_monotonic = timespec_sub(wall_to_monotonic, *ts);

	timekeeper.ntp_error = 0;
	ntp_clear();

	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(timekeeping_inject_offset);

430 431 432 433 434
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
435
static int change_clocksource(void *data)
436
{
437
	struct clocksource *new, *old;
438

439
	new = (struct clocksource *) data;
440

441
	timekeeping_forward_now();
442 443 444 445 446 447 448 449
	if (!new->enable || new->enable(new) == 0) {
		old = timekeeper.clock;
		timekeeper_setup_internals(new);
		if (old->disable)
			old->disable(old);
	}
	return 0;
}
450

451 452 453 454 455 456 457 458 459 460
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
	if (timekeeper.clock == clock)
461
		return;
462
	stop_machine(change_clocksource, clock, NULL);
463 464
	tick_clock_notify();
}
465

466 467 468 469 470 471 472 473 474 475 476 477 478 479
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
480

481 482 483 484 485 486 487 488 489 490 491 492 493
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
		seq = read_seqbegin(&xtime_lock);
494
		nsecs = timekeeping_get_ns_raw();
495
		*ts = raw_time;
496 497 498 499 500 501 502 503

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);


504
/**
505
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
506
 */
507
int timekeeping_valid_for_hres(void)
508 509 510 511 512 513 514
{
	unsigned long seq;
	int ret;

	do {
		seq = read_seqbegin(&xtime_lock);

515
		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
516 517 518 519 520 521

	} while (read_seqretry(&xtime_lock, seq));

	return ret;
}

522 523 524 525 526 527 528 529 530 531 532
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 *
 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
 * ensure that the clocksource does not change!
 */
u64 timekeeping_max_deferment(void)
{
	return timekeeper.clock->max_idle_ns;
}

533
/**
534
 * read_persistent_clock -  Return time from the persistent clock.
535 536
 *
 * Weak dummy function for arches that do not yet support it.
537 538
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
539 540 541
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
542
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
543
{
544 545
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
546 547
}

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

563 564 565 566 567
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
568
	struct clocksource *clock;
569
	unsigned long flags;
570
	struct timespec now, boot;
571 572

	read_persistent_clock(&now);
573
	read_boot_clock(&boot);
574 575 576

	write_seqlock_irqsave(&xtime_lock, flags);

R
Roman Zippel 已提交
577
	ntp_init();
578

579
	clock = clocksource_default_clock();
580 581
	if (clock->enable)
		clock->enable(clock);
582
	timekeeper_setup_internals(clock);
583

584 585
	xtime.tv_sec = now.tv_sec;
	xtime.tv_nsec = now.tv_nsec;
586 587
	raw_time.tv_sec = 0;
	raw_time.tv_nsec = 0;
588 589 590 591
	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
		boot.tv_sec = xtime.tv_sec;
		boot.tv_nsec = xtime.tv_nsec;
	}
592
	set_normalized_timespec(&wall_to_monotonic,
593
				-boot.tv_sec, -boot.tv_nsec);
594 595
	total_sleep_time.tv_sec = 0;
	total_sleep_time.tv_nsec = 0;
596 597 598 599
	write_sequnlock_irqrestore(&xtime_lock, flags);
}

/* time in seconds when suspend began */
600
static struct timespec timekeeping_suspend_time;
601

602 603 604 605 606 607 608 609 610
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
static void __timekeeping_inject_sleeptime(struct timespec *delta)
{
611
	if (!timespec_valid(delta)) {
612
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
613 614 615 616
					"sleep delta value!\n");
		return;
	}

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
	xtime = timespec_add(xtime, *delta);
	wall_to_monotonic = timespec_sub(wall_to_monotonic, *delta);
	total_sleep_time = timespec_add(total_sleep_time, *delta);
}


/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
	unsigned long flags;
	struct timespec ts;

	/* Make sure we don't set the clock twice */
	read_persistent_clock(&ts);
	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
		return;

	write_seqlock_irqsave(&xtime_lock, flags);
	timekeeping_forward_now();

	__timekeeping_inject_sleeptime(delta);

	timekeeper.ntp_error = 0;
	ntp_clear();
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();
}


660 661 662 663 664 665 666
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
667
static void timekeeping_resume(void)
668 669
{
	unsigned long flags;
670 671 672
	struct timespec ts;

	read_persistent_clock(&ts);
673

674 675
	clocksource_resume();

676 677
	write_seqlock_irqsave(&xtime_lock, flags);

678 679
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
680
		__timekeeping_inject_sleeptime(&ts);
681 682
	}
	/* re-base the last cycle value */
683 684
	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
	timekeeper.ntp_error = 0;
685 686 687 688 689 690 691 692
	timekeeping_suspended = 0;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
693
	hrtimers_resume();
694 695
}

696
static int timekeeping_suspend(void)
697 698
{
	unsigned long flags;
699 700
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
701

702
	read_persistent_clock(&timekeeping_suspend_time);
703

704
	write_seqlock_irqsave(&xtime_lock, flags);
705
	timekeeping_forward_now();
706
	timekeeping_suspended = 1;
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
	delta = timespec_sub(xtime, timekeeping_suspend_time);
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
727 728 729
	write_sequnlock_irqrestore(&xtime_lock, flags);

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
730
	clocksource_suspend();
731 732 733 734 735

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
736
static struct syscore_ops timekeeping_syscore_ops = {
737 738 739 740
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

741
static int __init timekeeping_init_ops(void)
742
{
743 744
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
745 746
}

747
device_initcall(timekeeping_init_ops);
748 749 750 751 752

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
753
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
754 755 756 757 758 759 760 761 762 763 764 765
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
766
	 * here.  This is tuned so that an error of about 1 msec is adjusted
767 768
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
769
	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
770 771 772 773 774 775 776 777
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
778
	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
779
	tick_error -= timekeeper.xtime_interval >> 1;
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
804
static void timekeeping_adjust(s64 offset)
805
{
806
	s64 error, interval = timekeeper.cycle_interval;
807 808
	int adj;

809 810 811 812 813 814 815
	/*
	 * The point of this is to check if the error is greater then half
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
816 817
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
818 819
	 * larger then half an interval.
	 *
820
	 * Note: It does not "save" on aggravation when reading the code.
821
	 */
822
	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
823
	if (error > interval) {
824 825 826 827 828 829
		/*
		 * We now divide error by 4(via shift), which checks if
		 * the error is greater then twice the interval.
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
830
		error >>= 2;
831 832 833 834 835
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
836
		 * The proper fix is to avoid rounding up by using
837 838 839 840
		 * the high precision timekeeper.xtime_nsec instead of
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
841 842 843
		if (likely(error <= interval))
			adj = 1;
		else
844
			adj = timekeeping_bigadjust(error, &interval, &offset);
845
	} else if (error < -interval) {
846
		/* See comment above, this is just switched for the negative */
847 848 849 850 851 852
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
853
			adj = timekeeping_bigadjust(error, &interval, &offset);
854
	} else /* No adjustment needed */
855 856
		return;

857 858 859 860 861 862 863
	WARN_ONCE(timekeeper.clock->maxadj &&
			(timekeeper.mult + adj > timekeeper.clock->mult +
						timekeeper.clock->maxadj),
			"Adjusting %s more then 11%% (%ld vs %ld)\n",
			timekeeper.clock->name, (long)timekeeper.mult + adj,
			(long)timekeeper.clock->mult +
				timekeeper.clock->maxadj);
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
913
	timekeeper.mult += adj;
914 915 916
	timekeeper.xtime_interval += interval;
	timekeeper.xtime_nsec -= offset;
	timekeeper.ntp_error -= (interval - offset) <<
917
				timekeeper.ntp_error_shift;
918 919
}

L
Linus Torvalds 已提交
920

921 922 923 924 925 926 927 928 929 930 931 932
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
{
	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
933
	u64 raw_nsecs;
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949

	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < timekeeper.cycle_interval<<shift)
		return offset;

	/* Accumulate one shifted interval */
	offset -= timekeeper.cycle_interval << shift;
	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;

	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
	while (timekeeper.xtime_nsec >= nsecps) {
		timekeeper.xtime_nsec -= nsecps;
		xtime.tv_sec++;
		second_overflow();
	}

950 951 952
	/* Accumulate raw time */
	raw_nsecs = timekeeper.raw_interval << shift;
	raw_nsecs += raw_time.tv_nsec;
953 954 955 956
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
		raw_time.tv_sec += raw_secs;
957
	}
958
	raw_time.tv_nsec = raw_nsecs;
959 960 961

	/* Accumulate error between NTP and clock interval */
	timekeeper.ntp_error += tick_length << shift;
962 963
	timekeeper.ntp_error -=
	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
964 965 966 967 968
				(timekeeper.ntp_error_shift + shift);

	return offset;
}

L
Linus Torvalds 已提交
969

970 971 972 973 974
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 * Called from the timer interrupt, must hold a write on xtime_lock.
 */
975
static void update_wall_time(void)
976
{
977
	struct clocksource *clock;
978
	cycle_t offset;
979
	int shift = 0, maxshift;
980 981 982 983 984

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
		return;

985
	clock = timekeeper.clock;
J
John Stultz 已提交
986 987

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
988
	offset = timekeeper.cycle_interval;
J
John Stultz 已提交
989 990
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
991
#endif
992
	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
993

994 995 996 997 998 999 1000
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
	 * that is smaller then the offset. We then accumulate that
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1001
	 */
1002 1003 1004 1005 1006
	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
	shift = max(0, shift);
	/* Bound shift to one less then what overflows tick_length */
	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
	shift = min(shift, maxshift);
1007
	while (offset >= timekeeper.cycle_interval) {
1008
		offset = logarithmic_accumulation(offset, shift);
1009 1010
		if(offset < timekeeper.cycle_interval<<shift)
			shift--;
1011 1012 1013
	}

	/* correct the clock when NTP error is too big */
1014
	timekeeping_adjust(offset);
1015

1016 1017 1018 1019
	/*
	 * Since in the loop above, we accumulate any amount of time
	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
	 * xtime_nsec to be fairly small after the loop. Further, if we're
1020
	 * slightly speeding the clocksource up in timekeeping_adjust(),
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	 * its possible the required corrective factor to xtime_nsec could
	 * cause it to underflow.
	 *
	 * Now, we cannot simply roll the accumulated second back, since
	 * the NTP subsystem has been notified via second_overflow. So
	 * instead we push xtime_nsec forward by the amount we underflowed,
	 * and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1032 1033 1034
	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
		s64 neg = -(s64)timekeeper.xtime_nsec;
		timekeeper.xtime_nsec = 0;
1035
		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1036 1037
	}

J
John Stultz 已提交
1038 1039 1040

	/*
	 * Store full nanoseconds into xtime after rounding it up and
1041 1042
	 * add the remainder to the error difference.
	 */
1043 1044 1045 1046
	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
				timekeeper.ntp_error_shift;
1047

J
John Stultz 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056
	/*
	 * Finally, make sure that after the rounding
	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
	 */
	if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
		xtime.tv_nsec -= NSEC_PER_SEC;
		xtime.tv_sec++;
		second_overflow();
	}
L
Linus Torvalds 已提交
1057

1058
	/* check to see if there is a new clocksource to use */
1059 1060
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);
1061
}
T
Tomas Janousek 已提交
1062 1063 1064 1065 1066

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1067
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1068 1069 1070 1071 1072 1073 1074 1075
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1076 1077 1078 1079
	struct timespec boottime = {
		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
	};
1080 1081

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1082
}
1083
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1084

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
	struct timespec tomono, sleep;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		*ts = xtime;
		tomono = wall_to_monotonic;
		sleep = total_sleep_time;
		nsecs = timekeeping_get_ns();

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1134 1135 1136 1137 1138 1139
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
J
John Stultz 已提交
1140
	*ts = timespec_add(*ts, total_sleep_time);
T
Tomas Janousek 已提交
1141
}
1142
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1143

1144 1145
unsigned long get_seconds(void)
{
J
John Stultz 已提交
1146
	return xtime.tv_sec;
1147 1148 1149
}
EXPORT_SYMBOL(get_seconds);

1150 1151
struct timespec __current_kernel_time(void)
{
J
John Stultz 已提交
1152
	return xtime;
1153
}
1154

1155 1156 1157 1158 1159 1160 1161
struct timespec current_kernel_time(void)
{
	struct timespec now;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
1162

J
John Stultz 已提交
1163
		now = xtime;
1164 1165 1166 1167 1168
	} while (read_seqretry(&xtime_lock, seq));

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1169 1170 1171 1172 1173 1174 1175 1176

struct timespec get_monotonic_coarse(void)
{
	struct timespec now, mono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
1177

J
John Stultz 已提交
1178
		now = xtime;
1179 1180 1181 1182 1183 1184 1185
		mono = wall_to_monotonic;
	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1198 1199

/**
1200 1201
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1202 1203
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1204
 * @sleep:	pointer to timespec to be set with time in suspend
1205
 */
1206 1207
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1208 1209 1210 1211 1212 1213 1214
{
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		*xtim = xtime;
		*wtom = wall_to_monotonic;
1215
		*sleep = total_sleep_time;
1216 1217
	} while (read_seqretry(&xtime_lock, seq));
}
T
Torben Hohn 已提交
1218

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
	unsigned long seq;
	struct timespec wtom;

	do {
		seq = read_seqbegin(&xtime_lock);
		wtom = wall_to_monotonic;
	} while (read_seqretry(&xtime_lock, seq));
	return timespec_to_ktime(wtom);
}

T
Torben Hohn 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
	write_seqlock(&xtime_lock);
	do_timer(ticks);
	write_sequnlock(&xtime_lock);
}