timekeeping.c 32.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17
#include <linux/syscore_ops.h>
18 19 20 21
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26 27
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
	struct clocksource *clock;
28 29
	/* The shift value of the current clocksource. */
	int	shift;
30 31 32 33 34

	/* Number of clock cycles in one NTP interval. */
	cycle_t cycle_interval;
	/* Number of clock shifted nano seconds in one NTP interval. */
	u64	xtime_interval;
35 36
	/* shifted nano seconds left over when rounding cycle_interval */
	s64	xtime_remainder;
37 38 39 40 41 42 43 44
	/* Raw nano seconds accumulated per NTP interval. */
	u32	raw_interval;

	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
	u64	xtime_nsec;
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
	s64	ntp_error;
45 46 47
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
	int	ntp_error_shift;
48 49
	/* NTP adjusted clock multiplier */
	u32	mult;
50 51 52 53

	/* time spent in suspend */
	struct timespec total_sleep_time;

54 55
};

56
static struct timekeeper timekeeper;
57 58 59 60 61 62 63 64 65 66 67 68 69 70

/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void timekeeper_setup_internals(struct clocksource *clock)
{
	cycle_t interval;
71
	u64 tmp, ntpinterval;
72 73 74 75 76 77 78

	timekeeper.clock = clock;
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
79
	ntpinterval = tmp;
80 81
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
82 83 84 85 86 87 88 89
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
	timekeeper.cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	timekeeper.xtime_interval = (u64) interval * clock->mult;
90
	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
91
	timekeeper.raw_interval =
92
		((u64) interval * clock->mult) >> clock->shift;
93 94

	timekeeper.xtime_nsec = 0;
95
	timekeeper.shift = clock->shift;
96 97

	timekeeper.ntp_error = 0;
98
	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
99 100 101 102 103 104 105

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	timekeeper.mult = clock->mult;
106
}
107

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
}

static inline s64 timekeeping_get_ns_raw(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

138
	/* return delta convert to nanoseconds. */
139 140 141
	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}

142 143
/*
 * This read-write spinlock protects us from races in SMP while
144
 * playing with xtime.
145
 */
A
Adrian Bunk 已提交
146
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
147 148 149 150 151 152 153 154 155


/*
 * The current time
 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
 * at zero at system boot time, so wall_to_monotonic will be negative,
 * however, we will ALWAYS keep the tv_nsec part positive so we can use
 * the usual normalization.
T
Tomas Janousek 已提交
156 157 158 159 160 161 162
 *
 * wall_to_monotonic is moved after resume from suspend for the monotonic
 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
 * to get the real boot based time offset.
 *
 * - wall_to_monotonic is no longer the boot time, getboottime must be
 * used instead.
163
 */
164 165
static struct timespec xtime __attribute__ ((aligned (16)));
static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
166

167 168 169
/*
 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
 */
170
static struct timespec raw_time;
171

172 173 174
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

175 176 177 178 179
/* must hold xtime_lock */
void timekeeping_leap_insert(int leapsecond)
{
	xtime.tv_sec += leapsecond;
	wall_to_monotonic.tv_sec -= leapsecond;
180 181
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
			timekeeper.mult);
182
}
183 184

/**
185
 * timekeeping_forward_now - update clock to the current time
186
 *
187 188 189
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
190
 */
191
static void timekeeping_forward_now(void)
192 193
{
	cycle_t cycle_now, cycle_delta;
194
	struct clocksource *clock;
195
	s64 nsec;
196

197
	clock = timekeeper.clock;
198
	cycle_now = clock->read(clock);
199
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
200
	clock->cycle_last = cycle_now;
201

202 203
	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
204 205 206 207

	/* If arch requires, add in gettimeoffset() */
	nsec += arch_gettimeoffset();

208
	timespec_add_ns(&xtime, nsec);
209

210
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
211
	timespec_add_ns(&raw_time, nsec);
212 213 214
}

/**
215
 * getnstimeofday - Returns the time of day in a timespec
216 217
 * @ts:		pointer to the timespec to be set
 *
218
 * Returns the time of day in a timespec.
219
 */
220
void getnstimeofday(struct timespec *ts)
221 222 223 224
{
	unsigned long seq;
	s64 nsecs;

225 226
	WARN_ON(timekeeping_suspended);

227 228 229 230
	do {
		seq = read_seqbegin(&xtime_lock);

		*ts = xtime;
231
		nsecs = timekeeping_get_ns();
232

233 234 235
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

236 237 238 239 240 241 242
	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}

EXPORT_SYMBOL(getnstimeofday);

243 244 245 246 247 248 249 250 251 252 253
ktime_t ktime_get(void)
{
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
254
		nsecs += timekeeping_get_ns();
255 256
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

	} while (read_seqretry(&xtime_lock, seq));
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		*ts = xtime;
		tomono = wall_to_monotonic;
287
		nsecs = timekeeping_get_ns();
288 289
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();
290 291 292 293 294 295 296 297

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
		u32 arch_offset;

		seq = read_seqbegin(&xtime_lock);

		*ts_raw = raw_time;
		*ts_real = xtime;

		nsecs_raw = timekeeping_get_ns_raw();
		nsecs_real = timekeeping_get_ns();

		/* If arch requires, add in gettimeoffset() */
		arch_offset = arch_gettimeoffset();
		nsecs_raw += arch_offset;
		nsecs_real += arch_offset;

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

341 342 343 344
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
345
 * NOTE: Users should be converted to using getnstimeofday()
346 347 348 349 350
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

351
	getnstimeofday(&now);
352 353 354 355 356 357 358 359 360 361 362
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}

EXPORT_SYMBOL(do_gettimeofday);
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
363
int do_settimeofday(const struct timespec *tv)
364
{
365
	struct timespec ts_delta;
366 367 368 369 370 371 372
	unsigned long flags;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

373
	timekeeping_forward_now();
374 375 376 377

	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
378

379
	xtime = *tv;
380

381
	timekeeper.ntp_error = 0;
382 383
	ntp_clear();

384 385
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);
386 387 388 389 390 391 392 393 394 395 396

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
	unsigned long flags;

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

	timekeeping_forward_now();

	xtime = timespec_add(xtime, *ts);
	wall_to_monotonic = timespec_sub(wall_to_monotonic, *ts);

	timekeeper.ntp_error = 0;
	ntp_clear();

	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(timekeeping_inject_offset);

433 434 435 436 437
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
438
static int change_clocksource(void *data)
439
{
440
	struct clocksource *new, *old;
441

442
	new = (struct clocksource *) data;
443

444
	timekeeping_forward_now();
445 446 447 448 449 450 451 452
	if (!new->enable || new->enable(new) == 0) {
		old = timekeeper.clock;
		timekeeper_setup_internals(new);
		if (old->disable)
			old->disable(old);
	}
	return 0;
}
453

454 455 456 457 458 459 460 461 462 463
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
	if (timekeeper.clock == clock)
464
		return;
465
	stop_machine(change_clocksource, clock, NULL);
466 467
	tick_clock_notify();
}
468

469 470 471 472 473 474 475 476 477 478 479 480 481 482
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
483

484 485 486 487 488 489 490 491 492 493 494 495 496
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
		seq = read_seqbegin(&xtime_lock);
497
		nsecs = timekeeping_get_ns_raw();
498
		*ts = raw_time;
499 500 501 502 503 504 505 506

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);


507
/**
508
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
509
 */
510
int timekeeping_valid_for_hres(void)
511 512 513 514 515 516 517
{
	unsigned long seq;
	int ret;

	do {
		seq = read_seqbegin(&xtime_lock);

518
		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
519 520 521 522 523 524

	} while (read_seqretry(&xtime_lock, seq));

	return ret;
}

525 526 527 528 529 530 531 532 533 534 535
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 *
 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
 * ensure that the clocksource does not change!
 */
u64 timekeeping_max_deferment(void)
{
	return timekeeper.clock->max_idle_ns;
}

536
/**
537
 * read_persistent_clock -  Return time from the persistent clock.
538 539
 *
 * Weak dummy function for arches that do not yet support it.
540 541
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
542 543 544
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
545
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
546
{
547 548
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
549 550
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

566 567 568 569 570
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
571
	struct clocksource *clock;
572
	unsigned long flags;
573
	struct timespec now, boot;
574 575

	read_persistent_clock(&now);
576
	read_boot_clock(&boot);
577 578 579

	write_seqlock_irqsave(&xtime_lock, flags);

R
Roman Zippel 已提交
580
	ntp_init();
581

582
	clock = clocksource_default_clock();
583 584
	if (clock->enable)
		clock->enable(clock);
585
	timekeeper_setup_internals(clock);
586

587 588
	xtime.tv_sec = now.tv_sec;
	xtime.tv_nsec = now.tv_nsec;
589 590
	raw_time.tv_sec = 0;
	raw_time.tv_nsec = 0;
591 592 593 594
	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
		boot.tv_sec = xtime.tv_sec;
		boot.tv_nsec = xtime.tv_nsec;
	}
595
	set_normalized_timespec(&wall_to_monotonic,
596
				-boot.tv_sec, -boot.tv_nsec);
597 598
	timekeeper.total_sleep_time.tv_sec = 0;
	timekeeper.total_sleep_time.tv_nsec = 0;
599 600 601 602
	write_sequnlock_irqrestore(&xtime_lock, flags);
}

/* time in seconds when suspend began */
603
static struct timespec timekeeping_suspend_time;
604

605 606 607 608 609 610 611 612 613
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
static void __timekeeping_inject_sleeptime(struct timespec *delta)
{
614
	if (!timespec_valid(delta)) {
615
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
616 617 618 619
					"sleep delta value!\n");
		return;
	}

620 621
	xtime = timespec_add(xtime, *delta);
	wall_to_monotonic = timespec_sub(wall_to_monotonic, *delta);
622 623
	timekeeper.total_sleep_time = timespec_add(
					timekeeper.total_sleep_time, *delta);
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
}


/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
	unsigned long flags;
	struct timespec ts;

	/* Make sure we don't set the clock twice */
	read_persistent_clock(&ts);
	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
		return;

	write_seqlock_irqsave(&xtime_lock, flags);
	timekeeping_forward_now();

	__timekeeping_inject_sleeptime(delta);

	timekeeper.ntp_error = 0;
	ntp_clear();
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();
}


664 665 666 667 668 669 670
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
671
static void timekeeping_resume(void)
672 673
{
	unsigned long flags;
674 675 676
	struct timespec ts;

	read_persistent_clock(&ts);
677

678 679
	clocksource_resume();

680 681
	write_seqlock_irqsave(&xtime_lock, flags);

682 683
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
684
		__timekeeping_inject_sleeptime(&ts);
685 686
	}
	/* re-base the last cycle value */
687 688
	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
	timekeeper.ntp_error = 0;
689 690 691 692 693 694 695 696
	timekeeping_suspended = 0;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
697
	hrtimers_resume();
698 699
}

700
static int timekeeping_suspend(void)
701 702
{
	unsigned long flags;
703 704
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
705

706
	read_persistent_clock(&timekeeping_suspend_time);
707

708
	write_seqlock_irqsave(&xtime_lock, flags);
709
	timekeeping_forward_now();
710
	timekeeping_suspended = 1;
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
	delta = timespec_sub(xtime, timekeeping_suspend_time);
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
731 732 733
	write_sequnlock_irqrestore(&xtime_lock, flags);

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
734
	clocksource_suspend();
735 736 737 738 739

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
740
static struct syscore_ops timekeeping_syscore_ops = {
741 742 743 744
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

745
static int __init timekeeping_init_ops(void)
746
{
747 748
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
749 750
}

751
device_initcall(timekeeping_init_ops);
752 753 754 755 756

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
757
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
758 759 760 761 762 763 764 765 766 767 768 769
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
770
	 * here.  This is tuned so that an error of about 1 msec is adjusted
771 772
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
773
	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
774 775 776 777 778 779 780 781
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
782
	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
783
	tick_error -= timekeeper.xtime_interval >> 1;
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
808
static void timekeeping_adjust(s64 offset)
809
{
810
	s64 error, interval = timekeeper.cycle_interval;
811 812
	int adj;

813 814 815 816 817 818 819
	/*
	 * The point of this is to check if the error is greater then half
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
820 821
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
822 823
	 * larger then half an interval.
	 *
824
	 * Note: It does not "save" on aggravation when reading the code.
825
	 */
826
	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
827
	if (error > interval) {
828 829 830 831 832 833
		/*
		 * We now divide error by 4(via shift), which checks if
		 * the error is greater then twice the interval.
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
834
		error >>= 2;
835 836 837 838 839
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
840
		 * The proper fix is to avoid rounding up by using
841 842 843 844
		 * the high precision timekeeper.xtime_nsec instead of
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
845 846 847
		if (likely(error <= interval))
			adj = 1;
		else
848
			adj = timekeeping_bigadjust(error, &interval, &offset);
849
	} else if (error < -interval) {
850
		/* See comment above, this is just switched for the negative */
851 852 853 854 855 856
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
857
			adj = timekeeping_bigadjust(error, &interval, &offset);
858
	} else /* No adjustment needed */
859 860
		return;

861 862 863 864 865 866 867
	WARN_ONCE(timekeeper.clock->maxadj &&
			(timekeeper.mult + adj > timekeeper.clock->mult +
						timekeeper.clock->maxadj),
			"Adjusting %s more then 11%% (%ld vs %ld)\n",
			timekeeper.clock->name, (long)timekeeper.mult + adj,
			(long)timekeeper.clock->mult +
				timekeeper.clock->maxadj);
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
917
	timekeeper.mult += adj;
918 919 920
	timekeeper.xtime_interval += interval;
	timekeeper.xtime_nsec -= offset;
	timekeeper.ntp_error -= (interval - offset) <<
921
				timekeeper.ntp_error_shift;
922 923
}

L
Linus Torvalds 已提交
924

925 926 927 928 929 930 931 932 933 934 935 936
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
{
	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
937
	u64 raw_nsecs;
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953

	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < timekeeper.cycle_interval<<shift)
		return offset;

	/* Accumulate one shifted interval */
	offset -= timekeeper.cycle_interval << shift;
	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;

	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
	while (timekeeper.xtime_nsec >= nsecps) {
		timekeeper.xtime_nsec -= nsecps;
		xtime.tv_sec++;
		second_overflow();
	}

954 955 956
	/* Accumulate raw time */
	raw_nsecs = timekeeper.raw_interval << shift;
	raw_nsecs += raw_time.tv_nsec;
957 958 959 960
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
		raw_time.tv_sec += raw_secs;
961
	}
962
	raw_time.tv_nsec = raw_nsecs;
963 964 965

	/* Accumulate error between NTP and clock interval */
	timekeeper.ntp_error += tick_length << shift;
966 967
	timekeeper.ntp_error -=
	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
968 969 970 971 972
				(timekeeper.ntp_error_shift + shift);

	return offset;
}

L
Linus Torvalds 已提交
973

974 975 976 977 978
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 * Called from the timer interrupt, must hold a write on xtime_lock.
 */
979
static void update_wall_time(void)
980
{
981
	struct clocksource *clock;
982
	cycle_t offset;
983
	int shift = 0, maxshift;
984 985 986 987 988

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
		return;

989
	clock = timekeeper.clock;
J
John Stultz 已提交
990 991

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
992
	offset = timekeeper.cycle_interval;
J
John Stultz 已提交
993 994
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
995
#endif
996
	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
997

998 999 1000 1001 1002 1003 1004
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
	 * that is smaller then the offset. We then accumulate that
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1005
	 */
1006 1007 1008 1009 1010
	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
	shift = max(0, shift);
	/* Bound shift to one less then what overflows tick_length */
	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
	shift = min(shift, maxshift);
1011
	while (offset >= timekeeper.cycle_interval) {
1012
		offset = logarithmic_accumulation(offset, shift);
1013 1014
		if(offset < timekeeper.cycle_interval<<shift)
			shift--;
1015 1016 1017
	}

	/* correct the clock when NTP error is too big */
1018
	timekeeping_adjust(offset);
1019

1020 1021 1022 1023
	/*
	 * Since in the loop above, we accumulate any amount of time
	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
	 * xtime_nsec to be fairly small after the loop. Further, if we're
1024
	 * slightly speeding the clocksource up in timekeeping_adjust(),
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	 * its possible the required corrective factor to xtime_nsec could
	 * cause it to underflow.
	 *
	 * Now, we cannot simply roll the accumulated second back, since
	 * the NTP subsystem has been notified via second_overflow. So
	 * instead we push xtime_nsec forward by the amount we underflowed,
	 * and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1036 1037 1038
	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
		s64 neg = -(s64)timekeeper.xtime_nsec;
		timekeeper.xtime_nsec = 0;
1039
		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1040 1041
	}

J
John Stultz 已提交
1042 1043 1044

	/*
	 * Store full nanoseconds into xtime after rounding it up and
1045 1046
	 * add the remainder to the error difference.
	 */
1047 1048 1049 1050
	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
				timekeeper.ntp_error_shift;
1051

J
John Stultz 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060
	/*
	 * Finally, make sure that after the rounding
	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
	 */
	if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
		xtime.tv_nsec -= NSEC_PER_SEC;
		xtime.tv_sec++;
		second_overflow();
	}
L
Linus Torvalds 已提交
1061

1062
	/* check to see if there is a new clocksource to use */
1063 1064
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);
1065
}
T
Tomas Janousek 已提交
1066 1067 1068 1069 1070

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1071
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1072 1073 1074 1075 1076 1077 1078 1079
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1080
	struct timespec boottime = {
1081 1082 1083 1084
		.tv_sec = wall_to_monotonic.tv_sec +
				timekeeper.total_sleep_time.tv_sec,
		.tv_nsec = wall_to_monotonic.tv_nsec +
				timekeeper.total_sleep_time.tv_nsec
1085
	};
1086 1087

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1088
}
1089
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
	struct timespec tomono, sleep;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		*ts = xtime;
		tomono = wall_to_monotonic;
1113
		sleep = timekeeper.total_sleep_time;
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
		nsecs = timekeeping_get_ns();

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1140 1141 1142 1143 1144 1145
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1146
	*ts = timespec_add(*ts, timekeeper.total_sleep_time);
T
Tomas Janousek 已提交
1147
}
1148
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1149

1150 1151
unsigned long get_seconds(void)
{
J
John Stultz 已提交
1152
	return xtime.tv_sec;
1153 1154 1155
}
EXPORT_SYMBOL(get_seconds);

1156 1157
struct timespec __current_kernel_time(void)
{
J
John Stultz 已提交
1158
	return xtime;
1159
}
1160

1161 1162 1163 1164 1165 1166 1167
struct timespec current_kernel_time(void)
{
	struct timespec now;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
1168

J
John Stultz 已提交
1169
		now = xtime;
1170 1171 1172 1173 1174
	} while (read_seqretry(&xtime_lock, seq));

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1175 1176 1177 1178 1179 1180 1181 1182

struct timespec get_monotonic_coarse(void)
{
	struct timespec now, mono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
1183

J
John Stultz 已提交
1184
		now = xtime;
1185 1186 1187 1188 1189 1190 1191
		mono = wall_to_monotonic;
	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1204 1205

/**
1206 1207
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1208 1209
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1210
 * @sleep:	pointer to timespec to be set with time in suspend
1211
 */
1212 1213
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1214 1215 1216 1217 1218 1219 1220
{
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		*xtim = xtime;
		*wtom = wall_to_monotonic;
1221
		*sleep = timekeeper.total_sleep_time;
1222 1223
	} while (read_seqretry(&xtime_lock, seq));
}
T
Torben Hohn 已提交
1224

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
	unsigned long seq;
	struct timespec wtom;

	do {
		seq = read_seqbegin(&xtime_lock);
		wtom = wall_to_monotonic;
	} while (read_seqretry(&xtime_lock, seq));
	return timespec_to_ktime(wtom);
}

T
Torben Hohn 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
	write_seqlock(&xtime_lock);
	do_timer(ticks);
	write_sequnlock(&xtime_lock);
}