blk-mq.c 58.4 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

45
	for (i = 0; i < hctx->ctx_map.size; i++)
46
		if (hctx->ctx_map.map[i].word)
47 48 49 50 51
			return true;

	return false;
}

52 53 54 55 56 57 58 59 60
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

61 62 63 64 65 66
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
67 68 69 70 71 72 73 74 75 76 77 78
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 80
}

81
void blk_mq_freeze_queue_start(struct request_queue *q)
82
{
83
	int freeze_depth;
84

85 86
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
87
		percpu_ref_kill(&q->q_usage_counter);
88
		blk_mq_run_hw_queues(q, false);
89
	}
90
}
91
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 93 94

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
95
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 97
}

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111 112 113
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
146 147 148 149 150 151 152

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
153 154
}

155 156 157 158 159 160
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

161
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 163
			       struct request *rq, int op,
			       unsigned int op_flags)
164
{
165
	if (blk_queue_io_stat(q))
166
		op_flags |= REQ_IO_STAT;
167

168 169 170
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
171
	rq->mq_ctx = ctx;
172
	req_set_op_attrs(rq, op, op_flags);
173 174 175 176 177 178
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
179
	rq->start_time = jiffies;
180 181
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
182
	set_start_time_ns(rq);
183 184 185 186 187 188 189 190 191 192
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

193 194
	rq->cmd = rq->__cmd;

195 196 197 198 199 200
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
201 202
	rq->timeout = 0;

203 204 205 206
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

207
	ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
208 209
}

210
static struct request *
211
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
212 213 214 215
{
	struct request *rq;
	unsigned int tag;

216
	tag = blk_mq_get_tag(data);
217
	if (tag != BLK_MQ_TAG_FAIL) {
218
		rq = data->hctx->tags->rqs[tag];
219

220
		if (blk_mq_tag_busy(data->hctx)) {
221
			rq->cmd_flags = REQ_MQ_INFLIGHT;
222
			atomic_inc(&data->hctx->nr_active);
223 224 225
		}

		rq->tag = tag;
226
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
227 228 229 230 231 232
		return rq;
	}

	return NULL;
}

233 234
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
235
{
236 237
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
238
	struct request *rq;
239
	struct blk_mq_alloc_data alloc_data;
240
	int ret;
241

242
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
243 244
	if (ret)
		return ERR_PTR(ret);
245

246 247
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
248
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
249

250
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
251
	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
252 253 254 255 256
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
257
		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
258
		rq =  __blk_mq_alloc_request(&alloc_data, rw, 0);
259
		ctx = alloc_data.ctx;
260 261
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
262
	if (!rq) {
263
		blk_queue_exit(q);
264
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
265
	}
266 267 268 269

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
270 271
	return rq;
}
272
EXPORT_SYMBOL(blk_mq_alloc_request);
273

M
Ming Lin 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

	hctx = q->queue_hw_ctx[hctx_idx];
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
	if (!rq) {
		blk_queue_exit(q);
		return ERR_PTR(-EWOULDBLOCK);
	}

	return rq;
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

313 314 315 316 317 318
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

319 320
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
321
	rq->cmd_flags = 0;
322

323
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
324
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
325
	blk_queue_exit(q);
326 327
}

328
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
329 330 331 332 333
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
334 335 336 337 338 339 340 341 342 343 344

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
345
}
J
Jens Axboe 已提交
346
EXPORT_SYMBOL_GPL(blk_mq_free_request);
347

348
inline void __blk_mq_end_request(struct request *rq, int error)
349
{
M
Ming Lei 已提交
350 351
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
352
	if (rq->end_io) {
353
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
354 355 356
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
357
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
358
	}
359
}
360
EXPORT_SYMBOL(__blk_mq_end_request);
361

362
void blk_mq_end_request(struct request *rq, int error)
363 364 365
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
366
	__blk_mq_end_request(rq, error);
367
}
368
EXPORT_SYMBOL(blk_mq_end_request);
369

370
static void __blk_mq_complete_request_remote(void *data)
371
{
372
	struct request *rq = data;
373

374
	rq->q->softirq_done_fn(rq);
375 376
}

377
static void blk_mq_ipi_complete_request(struct request *rq)
378 379
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
380
	bool shared = false;
381 382
	int cpu;

C
Christoph Hellwig 已提交
383
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
384 385 386
		rq->q->softirq_done_fn(rq);
		return;
	}
387 388

	cpu = get_cpu();
C
Christoph Hellwig 已提交
389 390 391 392
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
393
		rq->csd.func = __blk_mq_complete_request_remote;
394 395
		rq->csd.info = rq;
		rq->csd.flags = 0;
396
		smp_call_function_single_async(ctx->cpu, &rq->csd);
397
	} else {
398
		rq->q->softirq_done_fn(rq);
399
	}
400 401
	put_cpu();
}
402

403
static void __blk_mq_complete_request(struct request *rq)
404 405 406 407
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
408
		blk_mq_end_request(rq, rq->errors);
409 410 411 412
	else
		blk_mq_ipi_complete_request(rq);
}

413 414 415 416 417 418 419 420
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
421
void blk_mq_complete_request(struct request *rq, int error)
422
{
423 424 425
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
426
		return;
427 428
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
429
		__blk_mq_complete_request(rq);
430
	}
431 432
}
EXPORT_SYMBOL(blk_mq_complete_request);
433

434 435 436 437 438 439
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

440
void blk_mq_start_request(struct request *rq)
441 442 443 444 445
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
446
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
447 448
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
449

450
	blk_add_timer(rq);
451

452 453 454 455 456 457
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

458 459 460 461 462 463
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
464 465 466 467
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
468 469 470 471 472 473 474 475 476

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
477
}
478
EXPORT_SYMBOL(blk_mq_start_request);
479

480
static void __blk_mq_requeue_request(struct request *rq)
481 482 483 484
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
485

486 487 488 489
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
490 491
}

492 493 494 495 496
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
497
	blk_mq_add_to_requeue_list(rq, true);
498 499 500
}
EXPORT_SYMBOL(blk_mq_requeue_request);

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

528 529 530 531 532
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

557 558 559 560 561 562
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

563 564 565 566 567 568
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

589 590
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
591 592 593 594
	if (tag < tags->nr_tags)
		return tags->rqs[tag];

	return NULL;
595 596 597
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

598
struct blk_mq_timeout_data {
599 600
	unsigned long next;
	unsigned int next_set;
601 602
};

603
void blk_mq_rq_timed_out(struct request *req, bool reserved)
604
{
605 606
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
607 608 609 610 611 612 613 614 615 616

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
617 618
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
619

620
	if (ops->timeout)
621
		ret = ops->timeout(req, reserved);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
637
}
638

639 640 641 642
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
643

644 645 646 647 648
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
649 650 651 652
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
653
		return;
654
	}
655

656 657
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
658
			blk_mq_rq_timed_out(rq, reserved);
659 660 661 662
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
663 664
}

665
static void blk_mq_timeout_work(struct work_struct *work)
666
{
667 668
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
669 670 671 672 673
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
674

675 676 677 678 679 680 681 682 683 684 685 686 687 688
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
689 690
		return;

691
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
692

693 694 695
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
696
	} else {
697 698
		struct blk_mq_hw_ctx *hctx;

699 700 701 702 703
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
704
	}
705
	blk_queue_exit(q);
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

747 748 749 750 751 752 753 754 755
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

756
	for (i = 0; i < hctx->ctx_map.size; i++) {
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

781 782 783 784 785 786 787 788 789 790 791
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
792 793
	LIST_HEAD(driver_list);
	struct list_head *dptr;
794
	int queued;
795

796
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
797

798
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
799 800 801 802 803 804 805
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
806
	flush_busy_ctxs(hctx, &rq_list);
807 808 809 810 811 812 813 814 815 816 817 818

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

819 820 821 822 823 824
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

825 826 827
	/*
	 * Now process all the entries, sending them to the driver.
	 */
828
	queued = 0;
829
	while (!list_empty(&rq_list)) {
830
		struct blk_mq_queue_data bd;
831 832 833 834 835
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

836 837 838 839 840
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
841 842 843
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
844
			break;
845 846
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
847
			__blk_mq_requeue_request(rq);
848 849 850 851
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
852
			rq->errors = -EIO;
853
			blk_mq_end_request(rq, rq->errors);
854 855 856 857 858
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
859 860 861 862 863 864 865

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
881 882 883 884 885 886 887 888 889 890
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
891 892 893
	}
}

894 895 896 897 898 899 900 901
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
902 903
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
904 905

	if (--hctx->next_cpu_batch <= 0) {
906
		int cpu = hctx->next_cpu, next_cpu;
907 908 909 910 911 912 913

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
914 915

		return cpu;
916 917
	}

918
	return hctx->next_cpu;
919 920
}

921 922
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
923 924
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
925 926
		return;

927
	if (!async) {
928 929
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
930
			__blk_mq_run_hw_queue(hctx);
931
			put_cpu();
932 933
			return;
		}
934

935
		put_cpu();
936
	}
937

938 939
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
940 941
}

942
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
943 944 945 946 947 948 949
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
950
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
951 952
			continue;

953
		blk_mq_run_hw_queue(hctx, async);
954 955
	}
}
956
EXPORT_SYMBOL(blk_mq_run_hw_queues);
957 958 959

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
960 961
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
962 963 964 965
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

966 967 968 969 970 971 972 973 974 975
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

976 977 978
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
979

980
	blk_mq_run_hw_queue(hctx, false);
981 982 983
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

984 985 986 987 988 989 990 991 992 993
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

994
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
995 996 997 998 999 1000 1001 1002 1003
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1004
		blk_mq_run_hw_queue(hctx, async);
1005 1006 1007 1008
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1009
static void blk_mq_run_work_fn(struct work_struct *work)
1010 1011 1012
{
	struct blk_mq_hw_ctx *hctx;

1013
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1014

1015 1016 1017
	__blk_mq_run_hw_queue(hctx);
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1030 1031
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1032

1033 1034
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1035 1036 1037
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1038 1039 1040 1041
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct blk_mq_ctx *ctx,
					    struct request *rq,
					    bool at_head)
1042
{
1043 1044
	trace_block_rq_insert(hctx->queue, rq);

1045 1046 1047 1048
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1049
}
1050

1051 1052 1053 1054 1055 1056
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
1057 1058 1059
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1060 1061
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
1062
{
1063
	struct request_queue *q = rq->q;
1064
	struct blk_mq_hw_ctx *hctx;
1065 1066 1067 1068 1069
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
1070 1071 1072

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1073 1074 1075
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1076 1077 1078

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1079 1080

	blk_mq_put_ctx(current_ctx);
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1112
		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1113
	}
1114
	blk_mq_hctx_mark_pending(hctx, ctx);
1115 1116 1117
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1118
	blk_mq_put_ctx(current_ctx);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1181

1182
	blk_account_io_start(rq, 1);
1183 1184
}

1185 1186 1187 1188 1189 1190
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1191 1192 1193
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1194
{
1195
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1196 1197 1198 1199 1200 1201 1202
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1203 1204
		struct request_queue *q = hctx->queue;

1205 1206 1207 1208 1209
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1210

1211 1212 1213
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1214
	}
1215
}
1216

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1229 1230
	int op = bio_data_dir(bio);
	int op_flags = 0;
1231
	struct blk_mq_alloc_data alloc_data;
1232

1233
	blk_queue_enter_live(q);
1234 1235 1236
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1237
	if (rw_is_sync(bio_op(bio), bio->bi_rw))
1238
		op_flags |= REQ_SYNC;
1239

1240
	trace_block_getrq(q, bio, op);
1241
	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1242
	rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1243
	if (unlikely(!rq)) {
1244
		__blk_mq_run_hw_queue(hctx);
1245
		blk_mq_put_ctx(ctx);
1246
		trace_block_sleeprq(q, bio, op);
1247 1248

		ctx = blk_mq_get_ctx(q);
1249
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1250
		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1251
		rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1252 1253
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1254 1255 1256
	}

	hctx->queued++;
1257 1258 1259 1260 1261
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1262
static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1273
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1274 1275 1276 1277 1278 1279 1280

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1281 1282
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1283
		return 0;
1284
	}
1285

1286 1287 1288 1289 1290 1291 1292
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
		return 0;
1293
	}
1294 1295

	return -1;
1296 1297
}

1298 1299 1300 1301 1302
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1303
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1304
{
1305
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_rw);
1306
	const int is_flush_fua = bio->bi_rw & (REQ_PREFLUSH | REQ_FUA);
1307 1308
	struct blk_map_ctx data;
	struct request *rq;
1309 1310
	unsigned int request_count = 0;
	struct blk_plug *plug;
1311
	struct request *same_queue_rq = NULL;
1312
	blk_qc_t cookie;
1313 1314 1315 1316

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1317
		bio_io_error(bio);
1318
		return BLK_QC_T_NONE;
1319 1320
	}

1321 1322
	blk_queue_split(q, &bio, q->bio_split);

1323 1324 1325
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1326

1327 1328
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1329
		return BLK_QC_T_NONE;
1330

1331
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1332 1333 1334 1335 1336 1337 1338

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1339
	plug = current->plug;
1340 1341 1342 1343 1344
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1345 1346 1347
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1348 1349 1350 1351

		blk_mq_bio_to_request(rq, bio);

		/*
1352
		 * We do limited pluging. If the bio can be merged, do that.
1353 1354
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1355
		 */
1356
		if (plug) {
1357 1358
			/*
			 * The plug list might get flushed before this. If that
1359 1360 1361
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1362 1363
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1364
				list_del_init(&old_rq->queuelist);
1365
			}
1366 1367 1368 1369 1370
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1371 1372 1373
			goto done;
		if (!blk_mq_direct_issue_request(old_rq, &cookie))
			goto done;
1374
		blk_mq_insert_request(old_rq, false, true, true);
1375
		goto done;
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1389 1390
done:
	return cookie;
1391 1392 1393 1394 1395 1396
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1397
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1398
{
1399
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_rw);
1400
	const int is_flush_fua = bio->bi_rw & (REQ_PREFLUSH | REQ_FUA);
1401 1402
	struct blk_plug *plug;
	unsigned int request_count = 0;
1403 1404
	struct blk_map_ctx data;
	struct request *rq;
1405
	blk_qc_t cookie;
1406 1407 1408 1409

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1410
		bio_io_error(bio);
1411
		return BLK_QC_T_NONE;
1412 1413
	}

1414 1415
	blk_queue_split(q, &bio, q->bio_split);

1416 1417 1418 1419 1420
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1421 1422

	rq = blk_mq_map_request(q, bio, &data);
1423
	if (unlikely(!rq))
1424
		return BLK_QC_T_NONE;
1425

1426
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1439 1440 1441
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1442
		if (!request_count)
1443
			trace_block_plug(q);
1444 1445 1446 1447

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1448 1449
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1450
		}
1451

1452
		list_add_tail(&rq->queuelist, &plug->mq_list);
1453
		return cookie;
1454 1455
	}

1456 1457 1458 1459 1460 1461 1462 1463 1464
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1465 1466
	}

1467
	blk_mq_put_ctx(data.ctx);
1468
	return cookie;
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1480 1481
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1482
{
1483
	struct page *page;
1484

1485
	if (tags->rqs && set->ops->exit_request) {
1486
		int i;
1487

1488 1489
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1490
				continue;
1491 1492
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1493
			tags->rqs[i] = NULL;
1494
		}
1495 1496
	}

1497 1498
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1499
		list_del_init(&page->lru);
1500 1501 1502 1503 1504
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1505 1506 1507
		__free_pages(page, page->private);
	}

1508
	kfree(tags->rqs);
1509

1510
	blk_mq_free_tags(tags);
1511 1512 1513 1514
}

static size_t order_to_size(unsigned int order)
{
1515
	return (size_t)PAGE_SIZE << order;
1516 1517
}

1518 1519
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1520
{
1521
	struct blk_mq_tags *tags;
1522 1523 1524
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1525
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1526 1527
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1528 1529
	if (!tags)
		return NULL;
1530

1531 1532
	INIT_LIST_HEAD(&tags->page_list);

1533 1534 1535
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1536 1537 1538 1539
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1540 1541 1542 1543 1544

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1545
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1546
				cache_line_size());
1547
	left = rq_size * set->queue_depth;
1548

1549
	for (i = 0; i < set->queue_depth; ) {
1550 1551 1552 1553 1554
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1555
		while (this_order && left < order_to_size(this_order - 1))
1556 1557 1558
			this_order--;

		do {
1559
			page = alloc_pages_node(set->numa_node,
1560
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1561
				this_order);
1562 1563 1564 1565 1566 1567 1568 1569 1570
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1571
			goto fail;
1572 1573

		page->private = this_order;
1574
		list_add_tail(&page->lru, &tags->page_list);
1575 1576

		p = page_address(page);
1577 1578 1579 1580 1581
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1582
		entries_per_page = order_to_size(this_order) / rq_size;
1583
		to_do = min(entries_per_page, set->queue_depth - i);
1584 1585
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1586 1587 1588 1589
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1590 1591
						set->numa_node)) {
					tags->rqs[i] = NULL;
1592
					goto fail;
1593
				}
1594 1595
			}

1596 1597 1598 1599
			p += rq_size;
			i++;
		}
	}
1600
	return tags;
1601

1602 1603 1604
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1605 1606
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1682 1683 1684 1685 1686

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1687 1688 1689 1690

	return NOTIFY_OK;
}

1691
/* hctx->ctxs will be freed in queue's release handler */
1692 1693 1694 1695
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1696 1697
	unsigned flush_start_tag = set->queue_depth;

1698 1699
	blk_mq_tag_idle(hctx);

1700 1701 1702 1703 1704
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1705 1706 1707 1708
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1709
	blk_free_flush_queue(hctx->fq);
1710 1711 1712
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1722
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1732
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1733 1734 1735
		free_cpumask_var(hctx->cpumask);
}

1736 1737 1738
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1739
{
1740
	int node;
1741
	unsigned flush_start_tag = set->queue_depth;
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1753
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1754 1755 1756 1757 1758 1759

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1760 1761

	/*
1762 1763
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1764
	 */
1765 1766 1767 1768
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1769

1770 1771
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1772

1773
	hctx->nr_ctx = 0;
1774

1775 1776 1777
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1778

1779 1780 1781
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1782

1783 1784 1785 1786 1787
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1788

1789
	return 0;
1790

1791 1792 1793 1794 1795
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1796 1797 1798 1799 1800 1801
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1802

1803 1804
	return -1;
}
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1825 1826
		hctx = q->mq_ops->map_queue(q, i);

1827 1828 1829 1830 1831
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1832
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1833 1834 1835
	}
}

1836 1837
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1838 1839 1840 1841
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1842
	struct blk_mq_tag_set *set = q->tag_set;
1843

1844 1845 1846 1847 1848
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1849
	queue_for_each_hw_ctx(q, hctx, i) {
1850
		cpumask_clear(hctx->cpumask);
1851 1852 1853 1854 1855 1856
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1857
	for_each_possible_cpu(i) {
1858
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1859
		if (!cpumask_test_cpu(i, online_mask))
1860 1861
			continue;

1862
		ctx = per_cpu_ptr(q->queue_ctx, i);
1863
		hctx = q->mq_ops->map_queue(q, i);
K
Keith Busch 已提交
1864

1865
		cpumask_set_cpu(i, hctx->cpumask);
1866 1867 1868
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1869

1870 1871
	mutex_unlock(&q->sysfs_lock);

1872
	queue_for_each_hw_ctx(q, hctx, i) {
1873 1874
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1875
		/*
1876 1877
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1878 1879 1880 1881 1882 1883
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1884
			hctx->tags = NULL;
1885 1886 1887
			continue;
		}

M
Ming Lei 已提交
1888 1889 1890 1891 1892 1893
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1894
		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1895 1896 1897 1898 1899
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1900
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1901

1902 1903 1904
		/*
		 * Initialize batch roundrobin counts
		 */
1905 1906 1907
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1908 1909
}

1910
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1911 1912 1913 1914
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1926 1927 1928

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1929
		queue_set_hctx_shared(q, shared);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1940 1941 1942 1943 1944 1945
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1946 1947 1948 1949 1950 1951 1952 1953 1954
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1955 1956 1957 1958 1959 1960 1961 1962 1963

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1964
	list_add_tail(&q->tag_set_list, &set->tag_list);
1965

1966 1967 1968
	mutex_unlock(&set->tag_list_lock);
}

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1981 1982 1983 1984
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1985
		kfree(hctx);
1986
	}
1987

1988 1989 1990
	kfree(q->mq_map);
	q->mq_map = NULL;

1991 1992 1993 1994 1995 1996
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1997
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2013 2014
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2015
{
K
Keith Busch 已提交
2016 2017
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2018

K
Keith Busch 已提交
2019
	blk_mq_sysfs_unregister(q);
2020
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2021
		int node;
2022

K
Keith Busch 已提交
2023 2024 2025 2026
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2027 2028
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2029
		if (!hctxs[i])
K
Keith Busch 已提交
2030
			break;
2031

2032
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2033 2034 2035 2036 2037
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2038

2039
		atomic_set(&hctxs[i]->nr_active, 0);
2040
		hctxs[i]->numa_node = node;
2041
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2042 2043 2044 2045 2046 2047 2048 2049

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2050
	}
K
Keith Busch 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2075 2076 2077
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2078 2079
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2080
		goto err_exit;
K
Keith Busch 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

	q->mq_map = blk_mq_make_queue_map(set);
	if (!q->mq_map)
		goto err_map;

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2094

2095
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2096
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2097 2098 2099

	q->nr_queues = nr_cpu_ids;

2100
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2101

2102 2103 2104
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2105 2106
	q->sg_reserved_size = INT_MAX;

2107 2108 2109 2110
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2111 2112 2113 2114 2115
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2116 2117 2118 2119 2120
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2121 2122
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2123

2124
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2125

2126
	get_online_cpus();
2127 2128
	mutex_lock(&all_q_mutex);

2129
	list_add_tail(&q->all_q_node, &all_q_list);
2130
	blk_mq_add_queue_tag_set(set, q);
2131
	blk_mq_map_swqueue(q, cpu_online_mask);
2132

2133
	mutex_unlock(&all_q_mutex);
2134
	put_online_cpus();
2135

2136
	return q;
2137

2138
err_hctxs:
K
Keith Busch 已提交
2139
	kfree(q->mq_map);
2140
err_map:
K
Keith Busch 已提交
2141
	kfree(q->queue_hw_ctx);
2142
err_percpu:
K
Keith Busch 已提交
2143
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2144 2145
err_exit:
	q->mq_ops = NULL;
2146 2147
	return ERR_PTR(-ENOMEM);
}
2148
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2149 2150 2151

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2152
	struct blk_mq_tag_set	*set = q->tag_set;
2153

2154 2155 2156 2157
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2158 2159
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2160 2161
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2162 2163 2164
}

/* Basically redo blk_mq_init_queue with queue frozen */
2165 2166
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2167
{
2168
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2169

2170 2171
	blk_mq_sysfs_unregister(q);

2172
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2173 2174 2175 2176 2177 2178 2179

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2180
	blk_mq_map_swqueue(q, online_mask);
2181

2182
	blk_mq_sysfs_register(q);
2183 2184
}

2185 2186
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2187 2188
{
	struct request_queue *q;
2189 2190 2191 2192 2193 2194 2195
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2196 2197

	/*
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2213
	 */
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2224
		return NOTIFY_OK;
2225
	}
2226 2227

	mutex_lock(&all_q_mutex);
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2238
	list_for_each_entry(q, &all_q_list, all_q_node) {
2239 2240
		blk_mq_freeze_queue_wait(q);

2241 2242 2243 2244 2245 2246 2247
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2248
	list_for_each_entry(q, &all_q_list, all_q_node)
2249
		blk_mq_queue_reinit(q, &online_new);
2250 2251 2252 2253

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2254 2255 2256 2257
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2312 2313 2314 2315 2316 2317
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2318 2319 2320 2321 2322 2323
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2324 2325
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2326 2327
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2328 2329
	if (!set->nr_hw_queues)
		return -EINVAL;
2330
	if (!set->queue_depth)
2331 2332 2333 2334
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2335
	if (!set->ops->queue_rq || !set->ops->map_queue)
2336 2337
		return -EINVAL;

2338 2339 2340 2341 2342
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2343

2344 2345 2346 2347 2348 2349 2350 2351 2352
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2353 2354 2355 2356 2357
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2358

K
Keith Busch 已提交
2359
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2360 2361
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2362
		return -ENOMEM;
2363

2364 2365
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2366

2367 2368 2369
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2370
	return 0;
2371
enomem:
2372 2373
	kfree(set->tags);
	set->tags = NULL;
2374 2375 2376 2377 2378 2379 2380 2381
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2382
	for (i = 0; i < nr_cpu_ids; i++) {
2383
		if (set->tags[i])
2384 2385 2386
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2387
	kfree(set->tags);
2388
	set->tags = NULL;
2389 2390 2391
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2403 2404
		if (!hctx->tags)
			continue;
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2455 2456 2457 2458
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2459
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2460 2461 2462 2463

	return 0;
}
subsys_initcall(blk_mq_init);