slab.c 111.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
30
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
54
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
55 56 57 58
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
59
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
60 61 62 63 64 65 66 67 68 69 70 71
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
72
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
73 74 75 76 77 78
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
79 80 81 82 83 84 85 86 87
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
88 89 90 91
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
119
#include	<linux/sched/task_stack.h>
L
Linus Torvalds 已提交
120

121 122
#include	<net/sock.h>

L
Linus Torvalds 已提交
123 124 125 126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127 128
#include <trace/events/kmem.h>

129 130
#include	"internal.h"

131 132
#include	"slab.h"

L
Linus Torvalds 已提交
133
/*
134
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
155
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
156 157 158 159 160

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

161 162 163 164 165 166 167 168 169
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

170
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171

L
Linus Torvalds 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
189
	void *entry[];	/*
A
Andrew Morton 已提交
190 191 192 193
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
194 195
};

J
Joonsoo Kim 已提交
196 197 198 199 200
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

201 202 203
/*
 * Need this for bootstrapping a per node allocator.
 */
204
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206
#define	CACHE_CACHE 0
207
#define	SIZE_NODE (MAX_NUMNODES)
208

209
static int drain_freelist(struct kmem_cache *cache,
210
			struct kmem_cache_node *n, int tofree);
211
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 213
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215
static void cache_reap(struct work_struct *unused);
216

217 218 219 220 221
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
222 223
static int slab_early_init = 1;

224
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
225

226
static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 228 229 230
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
231
	parent->total_slabs = 0;
232
	parent->free_slabs = 0;
233 234
	parent->shared = NULL;
	parent->alien = NULL;
235
	parent->colour_next = 0;
236 237 238 239 240
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
241 242 243
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
244
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 246
	} while (0)

A
Andrew Morton 已提交
247 248
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
249 250 251 252
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
253

254 255
#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
256
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
257 258 259
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
260 261 262
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
263
 *
A
Adrian Bunk 已提交
264
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
265 266
 * which could lock up otherwise freeable slabs.
 */
267 268
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
269 270 271 272 273 274

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
275
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
276 277 278 279 280
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
281 282
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
285 286 287 288 289
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
290 291 292 293 294 295 296 297 298
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
299
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
300 301 302
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303
#define	STATS_INC_NODEFREES(x)	do { } while (0)
304
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
305
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
306 307 308 309 310 311 312 313
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
314 315
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
316
 * 0		: objp
317
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
318 319
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
320
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
321
 * 		redzone word.
322
 * cachep->obj_offset: The real object.
323 324
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
325
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
326
 */
327
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
328
{
329
	return cachep->obj_offset;
L
Linus Torvalds 已提交
330 331
}

332
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
333 334
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 336
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
337 338
}

339
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
340 341 342
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
343
		return (unsigned long long *)(objp + cachep->size -
344
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
345
					      REDZONE_ALIGN);
346
	return (unsigned long long *) (objp + cachep->size -
347
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
348 349
}

350
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
351 352
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
354 355 356 357
}

#else

358
#define obj_offset(x)			0
359 360
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
361 362 363 364
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

365 366
#ifdef CONFIG_DEBUG_SLAB_LEAK

367
static inline bool is_store_user_clean(struct kmem_cache *cachep)
368
{
369 370
	return atomic_read(&cachep->store_user_clean) == 1;
}
371

372 373 374 375
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
376

377 378 379 380
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
381 382 383
}

#else
384
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385 386 387

#endif

L
Linus Torvalds 已提交
388
/*
389 390
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
391
 */
392 393 394
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
395
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
396

397 398
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
399
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
400
	return page->slab_cache;
401 402
}

403
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 405
				 unsigned int idx)
{
406
	return page->s_mem + cache->size * idx;
407 408
}

409
/*
410 411 412
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
413 414 415
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416
					const struct page *page, void *obj)
417
{
418
	u32 offset = (obj - page->s_mem);
419
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 421
}

422
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
423
/* internal cache of cache description objs */
424
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
425 426 427
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
428
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
429
	.name = "kmem_cache",
L
Linus Torvalds 已提交
430 431
};

432
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
433

434
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
435
{
436
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
437 438
}

A
Andrew Morton 已提交
439 440 441
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
442
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443
		slab_flags_t flags, size_t *left_over)
444
{
445
	unsigned int num;
446
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
447

448 449 450 451 452 453
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
454 455 456 457 458
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
459 460 461 462 463 464
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
465
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466
		num = slab_size / buffer_size;
467
		*left_over = slab_size % buffer_size;
468
	} else {
469
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 471
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
472
	}
473 474

	return num;
L
Linus Torvalds 已提交
475 476
}

477
#if DEBUG
478
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
479

A
Andrew Morton 已提交
480 481
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
482
{
483
	pr_err("slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
484
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
485
	dump_stack();
486
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
487
}
488
#endif
L
Linus Torvalds 已提交
489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

506 507 508 509 510 511 512 513 514 515 516
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

517 518 519 520 521 522 523
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
524
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525 526 527

static void init_reap_node(int cpu)
{
528 529
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
530 531 532 533
}

static void next_reap_node(void)
{
534
	int node = __this_cpu_read(slab_reap_node);
535

536
	node = next_node_in(node, node_online_map);
537
	__this_cpu_write(slab_reap_node, node);
538 539 540 541 542 543 544
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
545 546 547 548 549 550 551
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
552
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
553
{
554
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
555

556
	if (reap_work->work.func == NULL) {
557
		init_reap_node(cpu);
558
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 560
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
561 562 563
	}
}

564
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
565
{
566 567 568 569 570
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
571
	}
572 573 574 575 576
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
577
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
578 579 580
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
581 582 583 584 585 586 587 588
	/*
	 * The array_cache structures contain pointers to free object.
	 * However, when such objects are allocated or transferred to another
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(ac);
589 590
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
591 592
}

593 594
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
595
{
596 597 598
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
599

600 601
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
602

603 604 605
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
606

607
	slabs_destroy(cachep, &list);
608 609
}

610 611 612 613 614 615 616 617 618 619
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
620
	int nr = min3(from->avail, max, to->limit - to->avail);
621 622 623 624 625 626 627 628 629 630 631 632

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

633 634 635
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
636
#define reap_alien(cachep, n) do { } while (0)
637

J
Joonsoo Kim 已提交
638 639
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
640
{
641
	return NULL;
642 643
}

J
Joonsoo Kim 已提交
644
static inline void free_alien_cache(struct alien_cache **ac_ptr)
645 646 647 648 649 650 651 652 653 654 655 656 657 658
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

659
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 661 662 663 664
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
665 666
static inline gfp_t gfp_exact_node(gfp_t flags)
{
667
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
668 669
}

670 671
#else	/* CONFIG_NUMA */

672
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674

J
Joonsoo Kim 已提交
675 676 677
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
678
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
679 680 681
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
682
	if (alc) {
683
		kmemleak_no_scan(alc);
684 685 686
		init_arraycache(&alc->ac, entries, batch);
		spin_lock_init(&alc->lock);
	}
J
Joonsoo Kim 已提交
687 688 689 690
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
691
{
J
Joonsoo Kim 已提交
692
	struct alien_cache **alc_ptr;
693
	size_t memsize = sizeof(void *) * nr_node_ids;
694 695 696 697
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
711 712
		}
	}
J
Joonsoo Kim 已提交
713
	return alc_ptr;
714 715
}

J
Joonsoo Kim 已提交
716
static void free_alien_cache(struct alien_cache **alc_ptr)
717 718 719
{
	int i;

J
Joonsoo Kim 已提交
720
	if (!alc_ptr)
721 722
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
723 724
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
725 726
}

727
static void __drain_alien_cache(struct kmem_cache *cachep,
728 729
				struct array_cache *ac, int node,
				struct list_head *list)
730
{
731
	struct kmem_cache_node *n = get_node(cachep, node);
732 733

	if (ac->avail) {
734
		spin_lock(&n->list_lock);
735 736 737 738 739
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
740 741
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
742

743
		free_block(cachep, ac->entry, ac->avail, node, list);
744
		ac->avail = 0;
745
		spin_unlock(&n->list_lock);
746 747 748
	}
}

749 750 751
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
752
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
753
{
754
	int node = __this_cpu_read(slab_reap_node);
755

756
	if (n->alien) {
J
Joonsoo Kim 已提交
757 758 759 760 761
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
762
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
763 764 765
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
766
				spin_unlock_irq(&alc->lock);
767
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
768
			}
769 770 771 772
		}
	}
}

A
Andrew Morton 已提交
773
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
774
				struct alien_cache **alien)
775
{
P
Pekka Enberg 已提交
776
	int i = 0;
J
Joonsoo Kim 已提交
777
	struct alien_cache *alc;
778 779 780 781
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
782 783
		alc = alien[i];
		if (alc) {
784 785
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
786
			ac = &alc->ac;
787
			spin_lock_irqsave(&alc->lock, flags);
788
			__drain_alien_cache(cachep, ac, i, &list);
789
			spin_unlock_irqrestore(&alc->lock, flags);
790
			slabs_destroy(cachep, &list);
791 792 793
		}
	}
}
794

795 796
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
797
{
798
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
799 800
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
801
	LIST_HEAD(list);
P
Pekka Enberg 已提交
802

803
	n = get_node(cachep, node);
804
	STATS_INC_NODEFREES(cachep);
805 806
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
807
		ac = &alien->ac;
808
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
809
		if (unlikely(ac->avail == ac->limit)) {
810
			STATS_INC_ACOVERFLOW(cachep);
811
			__drain_alien_cache(cachep, ac, page_node, &list);
812
		}
813
		ac->entry[ac->avail++] = objp;
814
		spin_unlock(&alien->lock);
815
		slabs_destroy(cachep, &list);
816
	} else {
817
		n = get_node(cachep, page_node);
818
		spin_lock(&n->list_lock);
819
		free_block(cachep, &objp, 1, page_node, &list);
820
		spin_unlock(&n->list_lock);
821
		slabs_destroy(cachep, &list);
822 823 824
	}
	return 1;
}
825 826 827 828 829 830 831 832 833 834 835 836 837 838

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
839 840

/*
841 842
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
843 844 845
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
846
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
847
}
848 849
#endif

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

890
#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
891
/*
892
 * Allocates and initializes node for a node on each slab cache, used for
893
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
894
 * will be allocated off-node since memory is not yet online for the new node.
895
 * When hotplugging memory or a cpu, existing node are not replaced if
896 897
 * already in use.
 *
898
 * Must hold slab_mutex.
899
 */
900
static int init_cache_node_node(int node)
901
{
902
	int ret;
903 904
	struct kmem_cache *cachep;

905
	list_for_each_entry(cachep, &slab_caches, list) {
906 907 908
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
909
	}
910

911 912
	return 0;
}
913
#endif
914

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

964 965 966 967 968 969
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
	 * freed after synchronize_sched().
	 */
970
	if (old_shared && force_change)
971 972
		synchronize_sched();

973 974 975 976 977 978 979 980
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

981 982
#ifdef CONFIG_SMP

983
static void cpuup_canceled(long cpu)
984 985
{
	struct kmem_cache *cachep;
986
	struct kmem_cache_node *n = NULL;
987
	int node = cpu_to_mem(cpu);
988
	const struct cpumask *mask = cpumask_of_node(node);
989

990
	list_for_each_entry(cachep, &slab_caches, list) {
991 992
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
993
		struct alien_cache **alien;
994
		LIST_HEAD(list);
995

996
		n = get_node(cachep, node);
997
		if (!n)
998
			continue;
999

1000
		spin_lock_irq(&n->list_lock);
1001

1002 1003
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1004 1005 1006 1007

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1008
			free_block(cachep, nc->entry, nc->avail, node, &list);
1009 1010
			nc->avail = 0;
		}
1011

1012
		if (!cpumask_empty(mask)) {
1013
			spin_unlock_irq(&n->list_lock);
1014
			goto free_slab;
1015 1016
		}

1017
		shared = n->shared;
1018 1019
		if (shared) {
			free_block(cachep, shared->entry,
1020
				   shared->avail, node, &list);
1021
			n->shared = NULL;
1022 1023
		}

1024 1025
		alien = n->alien;
		n->alien = NULL;
1026

1027
		spin_unlock_irq(&n->list_lock);
1028 1029 1030 1031 1032 1033

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1034 1035

free_slab:
1036
		slabs_destroy(cachep, &list);
1037 1038 1039 1040 1041 1042
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1043
	list_for_each_entry(cachep, &slab_caches, list) {
1044
		n = get_node(cachep, node);
1045
		if (!n)
1046
			continue;
1047
		drain_freelist(cachep, n, INT_MAX);
1048 1049 1050
	}
}

1051
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1052
{
1053
	struct kmem_cache *cachep;
1054
	int node = cpu_to_mem(cpu);
1055
	int err;
L
Linus Torvalds 已提交
1056

1057 1058 1059 1060
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1061
	 * kmem_cache_node and not this cpu's kmem_cache_node
1062
	 */
1063
	err = init_cache_node_node(node);
1064 1065
	if (err < 0)
		goto bad;
1066 1067 1068 1069 1070

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1071
	list_for_each_entry(cachep, &slab_caches, list) {
1072 1073 1074
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1075
	}
1076

1077 1078
	return 0;
bad:
1079
	cpuup_canceled(cpu);
1080 1081 1082
	return -ENOMEM;
}

1083
int slab_prepare_cpu(unsigned int cpu)
1084
{
1085
	int err;
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	mutex_lock(&slab_mutex);
	err = cpuup_prepare(cpu);
	mutex_unlock(&slab_mutex);
	return err;
}

/*
 * This is called for a failed online attempt and for a successful
 * offline.
 *
 * Even if all the cpus of a node are down, we don't free the
 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
 * a kmalloc allocation from another cpu for memory from the node of
 * the cpu going down.  The list3 structure is usually allocated from
 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
 */
int slab_dead_cpu(unsigned int cpu)
{
	mutex_lock(&slab_mutex);
	cpuup_canceled(cpu);
	mutex_unlock(&slab_mutex);
	return 0;
}
1110
#endif
1111 1112 1113 1114 1115

static int slab_online_cpu(unsigned int cpu)
{
	start_cpu_timer(cpu);
	return 0;
L
Linus Torvalds 已提交
1116 1117
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
static int slab_offline_cpu(unsigned int cpu)
{
	/*
	 * Shutdown cache reaper. Note that the slab_mutex is held so
	 * that if cache_reap() is invoked it cannot do anything
	 * expensive but will only modify reap_work and reschedule the
	 * timer.
	 */
	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
	/* Now the cache_reaper is guaranteed to be not running. */
	per_cpu(slab_reap_work, cpu).work.func = NULL;
	return 0;
}
L
Linus Torvalds 已提交
1131

1132 1133 1134 1135 1136 1137
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1138
 * Must hold slab_mutex.
1139
 */
1140
static int __meminit drain_cache_node_node(int node)
1141 1142 1143 1144
{
	struct kmem_cache *cachep;
	int ret = 0;

1145
	list_for_each_entry(cachep, &slab_caches, list) {
1146
		struct kmem_cache_node *n;
1147

1148
		n = get_node(cachep, node);
1149
		if (!n)
1150 1151
			continue;

1152
		drain_freelist(cachep, n, INT_MAX);
1153

1154 1155
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1176
		mutex_lock(&slab_mutex);
1177
		ret = init_cache_node_node(nid);
1178
		mutex_unlock(&slab_mutex);
1179 1180
		break;
	case MEM_GOING_OFFLINE:
1181
		mutex_lock(&slab_mutex);
1182
		ret = drain_cache_node_node(nid);
1183
		mutex_unlock(&slab_mutex);
1184 1185 1186 1187 1188 1189 1190 1191
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1192
	return notifier_from_errno(ret);
1193 1194 1195
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1196
/*
1197
 * swap the static kmem_cache_node with kmalloced memory
1198
 */
1199
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1200
				int nodeid)
1201
{
1202
	struct kmem_cache_node *ptr;
1203

1204
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1205 1206
	BUG_ON(!ptr);

1207
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1208 1209 1210 1211 1212
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1213
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1214
	cachep->node[nodeid] = ptr;
1215 1216
}

1217
/*
1218 1219
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1220
 */
1221
static void __init set_up_node(struct kmem_cache *cachep, int index)
1222 1223 1224 1225
{
	int node;

	for_each_online_node(node) {
1226
		cachep->node[node] = &init_kmem_cache_node[index + node];
1227
		cachep->node[node]->next_reap = jiffies +
1228 1229
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1230 1231 1232
	}
}

A
Andrew Morton 已提交
1233 1234 1235
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1236 1237 1238
 */
void __init kmem_cache_init(void)
{
1239 1240
	int i;

1241 1242
	kmem_cache = &kmem_cache_boot;

1243
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1244 1245
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1246
	for (i = 0; i < NUM_INIT_LISTS; i++)
1247
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1248

L
Linus Torvalds 已提交
1249 1250
	/*
	 * Fragmentation resistance on low memory - only use bigger
1251 1252
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1253
	 */
1254
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1255
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1256 1257 1258

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1259 1260 1261
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1262
	 *    Initially an __init data area is used for the head array and the
1263
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1264
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1265
	 * 2) Create the first kmalloc cache.
1266
	 *    The struct kmem_cache for the new cache is allocated normally.
1267 1268 1269
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1270
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1271
	 *    kmalloc cache with kmalloc allocated arrays.
1272
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1273 1274
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1275 1276
	 */

1277
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1278

E
Eric Dumazet 已提交
1279
	/*
1280
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1281
	 */
1282
	create_boot_cache(kmem_cache, "kmem_cache",
1283
		offsetof(struct kmem_cache, node) +
1284
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1285
				  SLAB_HWCACHE_ALIGN, 0, 0);
1286
	list_add(&kmem_cache->list, &slab_caches);
1287
	memcg_link_cache(kmem_cache);
1288
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1289

A
Andrew Morton 已提交
1290
	/*
1291 1292
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1293
	 */
1294 1295
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
				kmalloc_info[INDEX_NODE].name,
1296 1297
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
				0, kmalloc_size(INDEX_NODE));
1298
	slab_state = PARTIAL_NODE;
1299
	setup_kmalloc_cache_index_table();
1300

1301 1302
	slab_early_init = 0;

1303
	/* 5) Replace the bootstrap kmem_cache_node */
1304
	{
P
Pekka Enberg 已提交
1305 1306
		int nid;

1307
		for_each_online_node(nid) {
1308
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1309

1310
			init_list(kmalloc_caches[INDEX_NODE],
1311
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1312 1313
		}
	}
L
Linus Torvalds 已提交
1314

1315
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1316 1317 1318 1319 1320 1321 1322
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/* 6) resize the head arrays to their final sizes */
1323 1324
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1325 1326
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1327
	mutex_unlock(&slab_mutex);
1328

1329 1330 1331
	/* Done! */
	slab_state = FULL;

1332 1333 1334
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1335
	 * node.
1336 1337 1338 1339
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1340 1341 1342
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1343 1344 1345 1346 1347
	 */
}

static int __init cpucache_init(void)
{
1348
	int ret;
L
Linus Torvalds 已提交
1349

A
Andrew Morton 已提交
1350 1351
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1352
	 */
1353 1354 1355
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
				slab_online_cpu, slab_offline_cpu);
	WARN_ON(ret < 0);
1356

L
Linus Torvalds 已提交
1357 1358 1359 1360
	return 0;
}
__initcall(cpucache_init);

1361 1362 1363
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1364
#if DEBUG
1365
	struct kmem_cache_node *n;
1366 1367
	unsigned long flags;
	int node;
1368 1369 1370 1371 1372
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1373

1374 1375 1376
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1377
		cachep->name, cachep->size, cachep->gfporder);
1378

1379
	for_each_kmem_cache_node(cachep, node, n) {
1380
		unsigned long total_slabs, free_slabs, free_objs;
1381

1382
		spin_lock_irqsave(&n->list_lock, flags);
1383 1384 1385
		total_slabs = n->total_slabs;
		free_slabs = n->free_slabs;
		free_objs = n->free_objects;
1386
		spin_unlock_irqrestore(&n->list_lock, flags);
1387

1388 1389 1390 1391
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
			node, total_slabs - free_slabs, total_slabs,
			(total_slabs * cachep->num) - free_objs,
			total_slabs * cachep->num);
1392
	}
1393
#endif
1394 1395
}

L
Linus Torvalds 已提交
1396
/*
W
Wang Sheng-Hui 已提交
1397 1398
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1399 1400 1401 1402 1403
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1404 1405
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1406 1407
{
	struct page *page;
1408
	int nr_pages;
1409

1410
	flags |= cachep->allocflags;
1411

1412
	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1413
	if (!page) {
1414
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1415
		return NULL;
1416
	}
L
Linus Torvalds 已提交
1417

1418 1419 1420 1421 1422
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1423
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1424
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1425
		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1426
	else
1427
		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1428

1429
	__SetPageSlab(page);
1430 1431
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1432
		SetPageSlabPfmemalloc(page);
1433

1434
	return page;
L
Linus Torvalds 已提交
1435 1436 1437 1438 1439
}

/*
 * Interface to system's page release.
 */
1440
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1441
{
1442 1443
	int order = cachep->gfporder;
	unsigned long nr_freed = (1 << order);
L
Linus Torvalds 已提交
1444

1445
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1446
		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1447
	else
1448
		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
J
Joonsoo Kim 已提交
1449

1450
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1451
	__ClearPageSlabPfmemalloc(page);
1452
	__ClearPageSlab(page);
1453 1454
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1455

L
Linus Torvalds 已提交
1456 1457
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1458 1459
	memcg_uncharge_slab(page, order, cachep);
	__free_pages(page, order);
L
Linus Torvalds 已提交
1460 1461 1462 1463
}

static void kmem_rcu_free(struct rcu_head *head)
{
1464 1465
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1466

1467 1468 1469 1470
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1471 1472 1473
}

#if DEBUG
1474 1475 1476 1477 1478 1479 1480 1481
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1482 1483

#ifdef CONFIG_DEBUG_PAGEALLOC
1484
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1485
			    unsigned long caller)
L
Linus Torvalds 已提交
1486
{
1487
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1488

1489
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1490

P
Pekka Enberg 已提交
1491
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1492 1493
		return;

P
Pekka Enberg 已提交
1494 1495 1496 1497
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1498 1499 1500 1501 1502 1503 1504
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1505
				*addr++ = svalue;
L
Linus Torvalds 已提交
1506 1507 1508 1509 1510 1511 1512
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1513
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1514
}
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

L
Linus Torvalds 已提交
1532 1533
#endif

1534
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1535
{
1536
	int size = cachep->object_size;
1537
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1538 1539

	memset(addr, val, size);
P
Pekka Enberg 已提交
1540
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1541 1542 1543 1544 1545
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1546 1547 1548
	unsigned char error = 0;
	int bad_count = 0;

1549
	pr_err("%03x: ", offset);
D
Dave Jones 已提交
1550 1551 1552 1553 1554 1555
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1556 1557
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1558 1559 1560 1561

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1562
			pr_err("Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1563
#ifdef CONFIG_X86
1564
			pr_err("Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1565
#else
1566
			pr_err("Run a memory test tool.\n");
D
Dave Jones 已提交
1567 1568 1569
#endif
		}
	}
L
Linus Torvalds 已提交
1570 1571 1572 1573 1574
}
#endif

#if DEBUG

1575
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1576 1577 1578 1579 1580
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1581 1582 1583
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1584 1585
	}

1586 1587
	if (cachep->flags & SLAB_STORE_USER)
		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1588
	realobj = (char *)objp + obj_offset(cachep);
1589
	size = cachep->object_size;
P
Pekka Enberg 已提交
1590
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1591 1592
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1593 1594
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1595 1596 1597 1598
		dump_line(realobj, i, limit);
	}
}

1599
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1600 1601 1602 1603 1604
{
	char *realobj;
	int size, i;
	int lines = 0;

1605 1606 1607
	if (is_debug_pagealloc_cache(cachep))
		return;

1608
	realobj = (char *)objp + obj_offset(cachep);
1609
	size = cachep->object_size;
L
Linus Torvalds 已提交
1610

P
Pekka Enberg 已提交
1611
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1612
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1613
		if (i == size - 1)
L
Linus Torvalds 已提交
1614 1615 1616 1617 1618 1619
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1620
				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1621 1622
				       print_tainted(), cachep->name,
				       realobj, size);
L
Linus Torvalds 已提交
1623 1624 1625
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1626
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1627
			limit = 16;
P
Pekka Enberg 已提交
1628 1629
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1642
		struct page *page = virt_to_head_page(objp);
1643
		unsigned int objnr;
L
Linus Torvalds 已提交
1644

1645
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1646
		if (objnr) {
1647
			objp = index_to_obj(cachep, page, objnr - 1);
1648
			realobj = (char *)objp + obj_offset(cachep);
1649
			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1650 1651
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1652
		if (objnr + 1 < cachep->num) {
1653
			objp = index_to_obj(cachep, page, objnr + 1);
1654
			realobj = (char *)objp + obj_offset(cachep);
1655
			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1656 1657 1658 1659 1660 1661
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1662
#if DEBUG
1663 1664
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1665 1666
{
	int i;
1667 1668 1669 1670 1671 1672

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1673
	for (i = 0; i < cachep->num; i++) {
1674
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1675 1676 1677

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1678
			slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
1679 1680 1681
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1682
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1683
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1684
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1685 1686
		}
	}
1687
}
L
Linus Torvalds 已提交
1688
#else
1689 1690
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1691 1692
{
}
L
Linus Torvalds 已提交
1693 1694
#endif

1695 1696 1697
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1698
 * @page: page pointer being destroyed
1699
 *
W
Wang Sheng-Hui 已提交
1700 1701 1702
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1703
 */
1704
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1705
{
1706
	void *freelist;
1707

1708 1709
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1710
	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1711 1712
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1713
		kmem_freepages(cachep, page);
1714 1715

	/*
1716
	 * From now on, we don't use freelist
1717 1718 1719
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1720
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1721 1722
}

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1733
/**
1734 1735 1736 1737 1738 1739
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1740 1741 1742 1743 1744
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1745
static size_t calculate_slab_order(struct kmem_cache *cachep,
1746
				size_t size, slab_flags_t flags)
1747 1748
{
	size_t left_over = 0;
1749
	int gfporder;
1750

1751
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1752 1753 1754
		unsigned int num;
		size_t remainder;

1755
		num = cache_estimate(gfporder, size, flags, &remainder);
1756 1757
		if (!num)
			continue;
1758

1759 1760 1761 1762
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1763
		if (flags & CFLGS_OFF_SLAB) {
1764 1765 1766 1767 1768 1769 1770 1771
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1772
			/*
1773
			 * Needed to avoid possible looping condition
1774
			 * in cache_grow_begin()
1775
			 */
1776 1777
			if (OFF_SLAB(freelist_cache))
				continue;
1778

1779 1780 1781
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1782
		}
1783

1784
		/* Found something acceptable - save it away */
1785
		cachep->num = num;
1786
		cachep->gfporder = gfporder;
1787 1788
		left_over = remainder;

1789 1790 1791 1792 1793 1794 1795 1796
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1797 1798 1799 1800
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1801
		if (gfporder >= slab_max_order)
1802 1803
			break;

1804 1805 1806
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1807
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1808 1809 1810 1811 1812
			break;
	}
	return left_over;
}

1813 1814 1815 1816 1817 1818 1819 1820
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1821
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1834
static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1835
{
1836
	if (slab_state >= FULL)
1837
		return enable_cpucache(cachep, gfp);
1838

1839 1840 1841 1842
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1843
	if (slab_state == DOWN) {
1844 1845
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1846
	} else if (slab_state == PARTIAL) {
1847 1848
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1849
	} else {
1850
		int node;
1851

1852 1853 1854 1855 1856
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1857 1858
		}
	}
1859

1860
	cachep->node[numa_mem_id()]->next_reap =
1861 1862
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1863 1864 1865 1866 1867 1868 1869

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1870
	return 0;
1871 1872
}

1873
slab_flags_t kmem_cache_flags(unsigned int object_size,
1874
	slab_flags_t flags, const char *name,
J
Joonsoo Kim 已提交
1875 1876 1877 1878 1879 1880
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
1881
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1882
		   slab_flags_t flags, void (*ctor)(void *))
J
Joonsoo Kim 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1899
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1900
			size_t size, slab_flags_t flags)
1901 1902 1903 1904 1905
{
	size_t left;

	cachep->num = 0;

1906
	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1922
static bool set_off_slab_cache(struct kmem_cache *cachep,
1923
			size_t size, slab_flags_t flags)
1924 1925 1926 1927 1928 1929
{
	size_t left;

	cachep->num = 0;

	/*
1930 1931
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
1957
			size_t size, slab_flags_t flags)
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
1972
/**
1973
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
1974
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
1975 1976 1977 1978
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
1979
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
1993
int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
L
Linus Torvalds 已提交
1994
{
1995
	size_t ralign = BYTES_PER_WORD;
1996
	gfp_t gfp;
1997
	int err;
1998
	unsigned int size = cachep->size;
L
Linus Torvalds 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2008 2009
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2010
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2011
	if (!(flags & SLAB_TYPESAFE_BY_RCU))
L
Linus Torvalds 已提交
2012 2013 2014 2015
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
2016 2017
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2018 2019 2020
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
2021
	size = ALIGN(size, BYTES_PER_WORD);
L
Linus Torvalds 已提交
2022

D
David Woodhouse 已提交
2023 2024 2025 2026
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
2027
		size = ALIGN(size, REDZONE_ALIGN);
D
David Woodhouse 已提交
2028
	}
2029

2030
	/* 3) caller mandated alignment */
2031 2032
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2033
	}
2034 2035
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2036
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2037
	/*
2038
	 * 4) Store it.
L
Linus Torvalds 已提交
2039
	 */
2040
	cachep->align = ralign;
2041 2042 2043 2044
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
2045

2046 2047 2048 2049 2050
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2051 2052
#if DEBUG

2053 2054 2055 2056
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2057 2058
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2059 2060
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2061 2062
	}
	if (flags & SLAB_STORE_USER) {
2063
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2064 2065
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2066
		 */
D
David Woodhouse 已提交
2067 2068 2069 2070
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2071
	}
2072 2073
#endif

A
Alexander Potapenko 已提交
2074 2075
	kasan_cache_create(cachep, &size, &flags);

2076 2077 2078 2079 2080 2081 2082 2083 2084
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2085 2086 2087 2088 2089 2090 2091
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2092
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2104 2105 2106
	}
#endif

2107 2108 2109 2110 2111
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2112
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2113
		flags |= CFLGS_OFF_SLAB;
2114
		goto done;
2115
	}
L
Linus Torvalds 已提交
2116

2117 2118
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2119

2120
	return -E2BIG;
L
Linus Torvalds 已提交
2121

2122 2123
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2124
	cachep->flags = flags;
2125
	cachep->allocflags = __GFP_COMP;
Y
Yang Shi 已提交
2126
	if (flags & SLAB_CACHE_DMA)
2127
		cachep->allocflags |= GFP_DMA;
2128 2129
	if (flags & SLAB_CACHE_DMA32)
		cachep->allocflags |= GFP_DMA32;
2130 2131
	if (flags & SLAB_RECLAIM_ACCOUNT)
		cachep->allocflags |= __GFP_RECLAIMABLE;
2132
	cachep->size = size;
2133
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2134

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2148 2149
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2150
	}
L
Linus Torvalds 已提交
2151

2152 2153
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2154
		__kmem_cache_release(cachep);
2155
		return err;
2156
	}
L
Linus Torvalds 已提交
2157

2158
	return 0;
L
Linus Torvalds 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2172 2173 2174 2175 2176
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2177
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2178 2179 2180
{
#ifdef CONFIG_SMP
	check_irq_off();
2181
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2182 2183
#endif
}
2184

2185
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2186 2187 2188
{
#ifdef CONFIG_SMP
	check_irq_off();
2189
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2190 2191 2192
#endif
}

L
Linus Torvalds 已提交
2193 2194 2195
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2196
#define check_mutex_acquired()	do { } while(0)
L
Linus Torvalds 已提交
2197
#define check_spinlock_acquired(x) do { } while(0)
2198
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2199 2200
#endif

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2217

L
Linus Torvalds 已提交
2218 2219
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2220
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2221
	struct array_cache *ac;
2222
	int node = numa_mem_id();
2223
	struct kmem_cache_node *n;
2224
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2225 2226

	check_irq_off();
2227
	ac = cpu_cache_get(cachep);
2228 2229
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2230
	free_block(cachep, ac->entry, ac->avail, node, &list);
2231
	spin_unlock(&n->list_lock);
2232
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2233 2234 2235
	ac->avail = 0;
}

2236
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2237
{
2238
	struct kmem_cache_node *n;
2239
	int node;
2240
	LIST_HEAD(list);
2241

2242
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2243
	check_irq_on();
2244 2245
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2246
			drain_alien_cache(cachep, n->alien);
2247

2248 2249 2250 2251 2252 2253 2254
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
L
Linus Torvalds 已提交
2255 2256
}

2257 2258 2259 2260 2261 2262 2263
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2264
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2265
{
2266 2267
	struct list_head *p;
	int nr_freed;
2268
	struct page *page;
L
Linus Torvalds 已提交
2269

2270
	nr_freed = 0;
2271
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2272

2273 2274 2275 2276
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2277 2278
			goto out;
		}
L
Linus Torvalds 已提交
2279

2280 2281
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2282
		n->free_slabs--;
2283
		n->total_slabs--;
2284 2285 2286 2287
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2288 2289
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2290
		slab_destroy(cache, page);
2291
		nr_freed++;
L
Linus Torvalds 已提交
2292
	}
2293 2294
out:
	return nr_freed;
L
Linus Torvalds 已提交
2295 2296
}

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
bool __kmem_cache_empty(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n)
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial))
			return false;
	return true;
}

2309
int __kmem_cache_shrink(struct kmem_cache *cachep)
2310
{
2311 2312
	int ret = 0;
	int node;
2313
	struct kmem_cache_node *n;
2314 2315 2316 2317

	drain_cpu_caches(cachep);

	check_irq_on();
2318
	for_each_kmem_cache_node(cachep, node, n) {
2319
		drain_freelist(cachep, n, INT_MAX);
2320

2321 2322
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2323 2324 2325 2326
	}
	return (ret ? 1 : 0);
}

2327 2328 2329 2330 2331 2332 2333
#ifdef CONFIG_MEMCG
void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
{
	__kmem_cache_shrink(cachep);
}
#endif

2334
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2335
{
2336
	return __kmem_cache_shrink(cachep);
2337 2338 2339
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2340
{
2341
	int i;
2342
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2343

T
Thomas Garnier 已提交
2344 2345
	cache_random_seq_destroy(cachep);

2346
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2347

2348
	/* NUMA: free the node structures */
2349 2350 2351 2352 2353
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2354
	}
L
Linus Torvalds 已提交
2355 2356
}

2357 2358
/*
 * Get the memory for a slab management obj.
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2370
 */
2371
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2372 2373
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2374
{
2375
	void *freelist;
2376
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2377

2378 2379 2380
	page->s_mem = addr + colour_off;
	page->active = 0;

2381 2382 2383
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2384
		/* Slab management obj is off-slab. */
2385
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2386
					      local_flags, nodeid);
2387
		if (!freelist)
L
Linus Torvalds 已提交
2388 2389
			return NULL;
	} else {
2390 2391 2392
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2393
	}
2394

2395
	return freelist;
L
Linus Torvalds 已提交
2396 2397
}

2398
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2399
{
2400
	return ((freelist_idx_t *)page->freelist)[idx];
2401 2402 2403
}

static inline void set_free_obj(struct page *page,
2404
					unsigned int idx, freelist_idx_t val)
2405
{
2406
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2407 2408
}

2409
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2410
{
2411
#if DEBUG
L
Linus Torvalds 已提交
2412 2413 2414
	int i;

	for (i = 0; i < cachep->num; i++) {
2415
		void *objp = index_to_obj(cachep, page, i);
2416

L
Linus Torvalds 已提交
2417 2418 2419 2420 2421 2422 2423 2424
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2425 2426 2427
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2428
		 */
A
Alexander Potapenko 已提交
2429 2430 2431
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2432
			cachep->ctor(objp + obj_offset(cachep));
A
Alexander Potapenko 已提交
2433 2434 2435
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
L
Linus Torvalds 已提交
2436 2437 2438

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2439
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2440
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2441
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2442
		}
2443 2444 2445 2446 2447
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
2448
	}
L
Linus Torvalds 已提交
2449
#endif
2450 2451
}

T
Thomas Garnier 已提交
2452 2453 2454 2455 2456
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Hold information during a freelist initialization */
union freelist_init_state {
	struct {
		unsigned int pos;
2457
		unsigned int *list;
T
Thomas Garnier 已提交
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
		unsigned int count;
	};
	struct rnd_state rnd_state;
};

/*
 * Initialize the state based on the randomization methode available.
 * return true if the pre-computed list is available, false otherwize.
 */
static bool freelist_state_initialize(union freelist_init_state *state,
				struct kmem_cache *cachep,
				unsigned int count)
{
	bool ret;
	unsigned int rand;

	/* Use best entropy available to define a random shift */
2475
	rand = get_random_int();
T
Thomas Garnier 已提交
2476 2477 2478 2479 2480 2481 2482 2483

	/* Use a random state if the pre-computed list is not available */
	if (!cachep->random_seq) {
		prandom_seed_state(&state->rnd_state, rand);
		ret = false;
	} else {
		state->list = cachep->random_seq;
		state->count = count;
2484
		state->pos = rand % count;
T
Thomas Garnier 已提交
2485 2486 2487 2488 2489 2490 2491 2492
		ret = true;
	}
	return ret;
}

/* Get the next entry on the list and randomize it using a random shift */
static freelist_idx_t next_random_slot(union freelist_init_state *state)
{
2493 2494 2495
	if (state->pos >= state->count)
		state->pos = 0;
	return state->list[state->pos++];
T
Thomas Garnier 已提交
2496 2497
}

2498 2499 2500 2501 2502 2503 2504
/* Swap two freelist entries */
static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
{
	swap(((freelist_idx_t *)page->freelist)[a],
		((freelist_idx_t *)page->freelist)[b]);
}

T
Thomas Garnier 已提交
2505 2506 2507 2508 2509 2510
/*
 * Shuffle the freelist initialization state based on pre-computed lists.
 * return true if the list was successfully shuffled, false otherwise.
 */
static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
{
2511
	unsigned int objfreelist = 0, i, rand, count = cachep->num;
T
Thomas Garnier 已提交
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	union freelist_init_state state;
	bool precomputed;

	if (count < 2)
		return false;

	precomputed = freelist_state_initialize(&state, cachep, count);

	/* Take a random entry as the objfreelist */
	if (OBJFREELIST_SLAB(cachep)) {
		if (!precomputed)
			objfreelist = count - 1;
		else
			objfreelist = next_random_slot(&state);
		page->freelist = index_to_obj(cachep, page, objfreelist) +
						obj_offset(cachep);
		count--;
	}

	/*
	 * On early boot, generate the list dynamically.
	 * Later use a pre-computed list for speed.
	 */
	if (!precomputed) {
2536 2537 2538 2539 2540 2541 2542 2543 2544
		for (i = 0; i < count; i++)
			set_free_obj(page, i, i);

		/* Fisher-Yates shuffle */
		for (i = count - 1; i > 0; i--) {
			rand = prandom_u32_state(&state.rnd_state);
			rand %= (i + 1);
			swap_free_obj(page, i, rand);
		}
T
Thomas Garnier 已提交
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	} else {
		for (i = 0; i < count; i++)
			set_free_obj(page, i, next_random_slot(&state));
	}

	if (OBJFREELIST_SLAB(cachep))
		set_free_obj(page, cachep->num - 1, objfreelist);

	return true;
}
#else
static inline bool shuffle_freelist(struct kmem_cache *cachep,
				struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

2563 2564 2565 2566
static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
A
Alexander Potapenko 已提交
2567
	void *objp;
T
Thomas Garnier 已提交
2568
	bool shuffled;
2569 2570 2571

	cache_init_objs_debug(cachep, page);

T
Thomas Garnier 已提交
2572 2573 2574 2575
	/* Try to randomize the freelist if enabled */
	shuffled = shuffle_freelist(cachep, page);

	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2576 2577 2578 2579
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2580
	for (i = 0; i < cachep->num; i++) {
2581 2582 2583
		objp = index_to_obj(cachep, page, i);
		kasan_init_slab_obj(cachep, objp);

2584
		/* constructor could break poison info */
A
Alexander Potapenko 已提交
2585 2586 2587 2588 2589
		if (DEBUG == 0 && cachep->ctor) {
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2590

T
Thomas Garnier 已提交
2591 2592
		if (!shuffled)
			set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2593 2594 2595
	}
}

2596
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2597
{
2598
	void *objp;
2599

2600
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2601
	page->active++;
2602

2603 2604 2605 2606 2607
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2608 2609 2610
	return objp;
}

2611 2612
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2613
{
2614
	unsigned int objnr = obj_to_index(cachep, page, objp);
2615
#if DEBUG
J
Joonsoo Kim 已提交
2616
	unsigned int i;
2617 2618

	/* Verify double free bug */
2619
	for (i = page->active; i < cachep->num; i++) {
2620
		if (get_free_obj(page, i) == objnr) {
2621
			pr_err("slab: double free detected in cache '%s', objp %px\n",
J
Joe Perches 已提交
2622
			       cachep->name, objp);
2623 2624
			BUG();
		}
2625 2626
	}
#endif
2627
	page->active--;
2628 2629 2630
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2631
	set_free_obj(page, page->active, objnr);
2632 2633
}

2634 2635 2636
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2637
 * virtual address for kfree, ksize, and slab debugging.
2638
 */
2639
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2640
			   void *freelist)
L
Linus Torvalds 已提交
2641
{
2642
	page->slab_cache = cache;
2643
	page->freelist = freelist;
L
Linus Torvalds 已提交
2644 2645 2646 2647 2648 2649
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2650 2651
static struct page *cache_grow_begin(struct kmem_cache *cachep,
				gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2652
{
2653
	void *freelist;
P
Pekka Enberg 已提交
2654 2655
	size_t offset;
	gfp_t local_flags;
2656
	int page_node;
2657
	struct kmem_cache_node *n;
2658
	struct page *page;
L
Linus Torvalds 已提交
2659

A
Andrew Morton 已提交
2660 2661 2662
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2663
	 */
2664
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2665
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2666 2667 2668 2669
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
		dump_stack();
2670
	}
2671
	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
C
Christoph Lameter 已提交
2672
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2673 2674

	check_irq_off();
2675
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2676 2677
		local_irq_enable();

A
Andrew Morton 已提交
2678 2679 2680
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2681
	 */
2682
	page = kmem_getpages(cachep, local_flags, nodeid);
2683
	if (!page)
L
Linus Torvalds 已提交
2684 2685
		goto failed;

2686 2687
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

L
Linus Torvalds 已提交
2700
	/* Get slab management. */
2701
	freelist = alloc_slabmgmt(cachep, page, offset,
2702
			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2703
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2704 2705
		goto opps1;

2706
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2707

A
Alexander Potapenko 已提交
2708
	kasan_poison_slab(page);
2709
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2710

2711
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2712 2713
		local_irq_disable();

2714 2715
	return page;

A
Andrew Morton 已提交
2716
opps1:
2717
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2718
failed:
2719
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2720
		local_irq_disable();
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
	return NULL;
}

static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
{
	struct kmem_cache_node *n;
	void *list = NULL;

	check_irq_off();

	if (!page)
		return;

	INIT_LIST_HEAD(&page->lru);
	n = get_node(cachep, page_to_nid(page));

	spin_lock(&n->list_lock);
2738
	n->total_slabs++;
2739
	if (!page->active) {
2740
		list_add_tail(&page->lru, &(n->slabs_free));
2741
		n->free_slabs++;
2742
	} else
2743
		fixup_slab_list(cachep, n, page, &list);
2744

2745 2746 2747 2748 2749
	STATS_INC_GROWN(cachep);
	n->free_objects += cachep->num - page->active;
	spin_unlock(&n->list_lock);

	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2762
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
P
Pekka Enberg 已提交
2763 2764
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2765 2766 2767
	}
}

2768 2769
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2770
	unsigned long long redzone1, redzone2;
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2786
	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2787
	       obj, redzone1, redzone2);
2788 2789
}

2790
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2791
				   unsigned long caller)
L
Linus Torvalds 已提交
2792 2793
{
	unsigned int objnr;
2794
	struct page *page;
L
Linus Torvalds 已提交
2795

2796 2797
	BUG_ON(virt_to_cache(objp) != cachep);

2798
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2799
	kfree_debugcheck(objp);
2800
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2801 2802

	if (cachep->flags & SLAB_RED_ZONE) {
2803
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2804 2805 2806
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2807 2808
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2809
		*dbg_userword(cachep, objp) = (void *)caller;
2810
	}
L
Linus Torvalds 已提交
2811

2812
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2813 2814

	BUG_ON(objnr >= cachep->num);
2815
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2816 2817 2818

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2819
		slab_kernel_map(cachep, objp, 0, caller);
L
Linus Torvalds 已提交
2820 2821 2822 2823 2824 2825 2826 2827 2828
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2844
static inline void fixup_slab_list(struct kmem_cache *cachep,
2845 2846
				struct kmem_cache_node *n, struct page *page,
				void **list)
2847 2848 2849
{
	/* move slabp to correct slabp list: */
	list_del(&page->lru);
2850
	if (page->active == cachep->num) {
2851
		list_add(&page->lru, &n->slabs_full);
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2865 2866 2867
		list_add(&page->lru, &n->slabs_partial);
}

2868 2869
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2870
					struct page *page, bool pfmemalloc)
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&page->lru);
2889
	if (!page->active) {
2890
		list_add_tail(&page->lru, &n->slabs_free);
2891
		n->free_slabs++;
2892
	} else
2893 2894 2895 2896 2897 2898 2899
		list_add_tail(&page->lru, &n->slabs_partial);

	list_for_each_entry(page, &n->slabs_partial, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

2900
	n->free_touched = 1;
2901
	list_for_each_entry(page, &n->slabs_free, lru) {
2902
		if (!PageSlabPfmemalloc(page)) {
2903
			n->free_slabs--;
2904
			return page;
2905
		}
2906 2907 2908 2909 2910 2911
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2912 2913 2914
{
	struct page *page;

2915
	assert_spin_locked(&n->list_lock);
2916
	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2917 2918
	if (!page) {
		n->free_touched = 1;
2919 2920
		page = list_first_entry_or_null(&n->slabs_free, struct page,
						lru);
2921
		if (page)
2922
			n->free_slabs--;
2923 2924
	}

2925
	if (sk_memalloc_socks())
2926
		page = get_valid_first_slab(n, page, pfmemalloc);
2927

2928 2929 2930
	return page;
}

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
/*
 * Slab list should be fixed up by fixup_slab_list() for existing slab
 * or cache_grow_end() for new slab
 */
static __always_inline int alloc_block(struct kmem_cache *cachep,
		struct array_cache *ac, struct page *page, int batchcount)
{
	/*
	 * There must be at least one object available for
	 * allocation.
	 */
	BUG_ON(page->active >= cachep->num);

	while (page->active < cachep->num && batchcount--) {
		STATS_INC_ALLOCED(cachep);
		STATS_INC_ACTIVE(cachep);
		STATS_SET_HIGH(cachep);

		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
	}

	return batchcount;
}

2983
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2984 2985
{
	int batchcount;
2986
	struct kmem_cache_node *n;
2987
	struct array_cache *ac, *shared;
P
Pekka Enberg 已提交
2988
	int node;
2989
	void *list = NULL;
2990
	struct page *page;
P
Pekka Enberg 已提交
2991

L
Linus Torvalds 已提交
2992
	check_irq_off();
2993
	node = numa_mem_id();
2994

2995
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2996 2997
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2998 2999 3000 3001
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3002 3003 3004
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
3005
	n = get_node(cachep, node);
3006

3007
	BUG_ON(ac->avail > 0 || !n);
3008 3009 3010 3011
	shared = READ_ONCE(n->shared);
	if (!n->free_objects && (!shared || !shared->avail))
		goto direct_grow;

3012
	spin_lock(&n->list_lock);
3013
	shared = READ_ONCE(n->shared);
L
Linus Torvalds 已提交
3014

3015
	/* See if we can refill from the shared array */
3016 3017
	if (shared && transfer_objects(ac, shared, batchcount)) {
		shared->touched = 1;
3018
		goto alloc_done;
3019
	}
3020

L
Linus Torvalds 已提交
3021 3022
	while (batchcount > 0) {
		/* Get slab alloc is to come from. */
3023
		page = get_first_slab(n, false);
3024 3025
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
3026 3027

		check_spinlock_acquired(cachep);
3028

3029
		batchcount = alloc_block(cachep, ac, page, batchcount);
3030
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
3031 3032
	}

A
Andrew Morton 已提交
3033
must_grow:
3034
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
3035
alloc_done:
3036
	spin_unlock(&n->list_lock);
3037
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
3038

3039
direct_grow:
L
Linus Torvalds 已提交
3040
	if (unlikely(!ac->avail)) {
3041 3042 3043 3044 3045 3046 3047 3048
		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

3049
		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3050

3051 3052 3053 3054
		/*
		 * cache_grow_begin() can reenable interrupts,
		 * then ac could change.
		 */
3055
		ac = cpu_cache_get(cachep);
3056 3057 3058
		if (!ac->avail && page)
			alloc_block(cachep, ac, page, batchcount);
		cache_grow_end(cachep, page);
3059

3060
		if (!ac->avail)
L
Linus Torvalds 已提交
3061 3062 3063
			return NULL;
	}
	ac->touched = 1;
3064

3065
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3066 3067
}

A
Andrew Morton 已提交
3068 3069
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3070
{
3071
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
3072 3073 3074
}

#if DEBUG
A
Andrew Morton 已提交
3075
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3076
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3077
{
3078
	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
P
Pekka Enberg 已提交
3079
	if (!objp)
L
Linus Torvalds 已提交
3080
		return objp;
P
Pekka Enberg 已提交
3081
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3082
		check_poison_obj(cachep, objp);
3083
		slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
3084 3085 3086
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3087
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3088 3089

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3090 3091
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
3092
			slab_error(cachep, "double free, or memory outside object was overwritten");
3093
			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3094 3095
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3096 3097 3098 3099
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3100

3101
	objp += obj_offset(cachep);
3102
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3103
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3104 3105
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3106
		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3107
		       objp, (int)ARCH_SLAB_MINALIGN);
3108
	}
L
Linus Torvalds 已提交
3109 3110 3111 3112 3113 3114
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3115
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3116
{
P
Pekka Enberg 已提交
3117
	void *objp;
L
Linus Torvalds 已提交
3118 3119
	struct array_cache *ac;

3120
	check_irq_off();
3121

3122
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3123 3124
	if (likely(ac->avail)) {
		ac->touched = 1;
3125
		objp = ac->entry[--ac->avail];
3126

3127 3128
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
3129
	}
3130 3131

	STATS_INC_ALLOCMISS(cachep);
3132
	objp = cache_alloc_refill(cachep, flags);
3133 3134 3135 3136 3137 3138 3139
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3140 3141 3142 3143 3144
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3145 3146
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3147 3148 3149
	return objp;
}

3150
#ifdef CONFIG_NUMA
3151
/*
3152
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3153 3154 3155 3156 3157 3158 3159 3160
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3161
	if (in_interrupt() || (flags & __GFP_THISNODE))
3162
		return NULL;
3163
	nid_alloc = nid_here = numa_mem_id();
3164
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3165
		nid_alloc = cpuset_slab_spread_node();
3166
	else if (current->mempolicy)
3167
		nid_alloc = mempolicy_slab_node();
3168
	if (nid_alloc != nid_here)
3169
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3170 3171 3172
	return NULL;
}

3173 3174
/*
 * Fallback function if there was no memory available and no objects on a
3175
 * certain node and fall back is permitted. First we scan all the
3176
 * available node for available objects. If that fails then we
3177 3178 3179
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3180
 */
3181
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3182
{
3183
	struct zonelist *zonelist;
3184
	struct zoneref *z;
3185 3186
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3187
	void *obj = NULL;
3188
	struct page *page;
3189
	int nid;
3190
	unsigned int cpuset_mems_cookie;
3191 3192 3193 3194

	if (flags & __GFP_THISNODE)
		return NULL;

3195
retry_cpuset:
3196
	cpuset_mems_cookie = read_mems_allowed_begin();
3197
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3198

3199 3200 3201 3202 3203
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3204 3205
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3206

3207
		if (cpuset_zone_allowed(zone, flags) &&
3208 3209
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3210
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3211
					gfp_exact_node(flags), nid);
3212 3213 3214
				if (obj)
					break;
		}
3215 3216
	}

3217
	if (!obj) {
3218 3219 3220 3221 3222 3223
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3224 3225 3226 3227
		page = cache_grow_begin(cache, flags, numa_mem_id());
		cache_grow_end(cache, page);
		if (page) {
			nid = page_to_nid(page);
3228 3229
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);
3230

3231
			/*
3232 3233
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
3234
			 */
3235 3236
			if (!obj)
				goto retry;
3237
		}
3238
	}
3239

3240
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3241
		goto retry_cpuset;
3242 3243 3244
	return obj;
}

3245 3246
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3247
 */
3248
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3249
				int nodeid)
3250
{
3251
	struct page *page;
3252
	struct kmem_cache_node *n;
3253
	void *obj = NULL;
3254
	void *list = NULL;
P
Pekka Enberg 已提交
3255

3256
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3257
	n = get_node(cachep, nodeid);
3258
	BUG_ON(!n);
P
Pekka Enberg 已提交
3259

3260
	check_irq_off();
3261
	spin_lock(&n->list_lock);
3262
	page = get_first_slab(n, false);
3263 3264
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3265 3266 3267 3268 3269 3270 3271

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3272
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3273

3274
	obj = slab_get_obj(cachep, page);
3275
	n->free_objects--;
P
Pekka Enberg 已提交
3276

3277
	fixup_slab_list(cachep, n, page, &list);
3278

3279
	spin_unlock(&n->list_lock);
3280
	fixup_objfreelist_debug(cachep, &list);
3281
	return obj;
3282

A
Andrew Morton 已提交
3283
must_grow:
3284
	spin_unlock(&n->list_lock);
3285
	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3286 3287 3288 3289
	if (page) {
		/* This slab isn't counted yet so don't update free_objects */
		obj = slab_get_obj(cachep, page);
	}
3290
	cache_grow_end(cachep, page);
L
Linus Torvalds 已提交
3291

3292
	return obj ? obj : fallback_alloc(cachep, flags);
3293
}
3294 3295

static __always_inline void *
3296
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3297
		   unsigned long caller)
3298 3299 3300
{
	unsigned long save_flags;
	void *ptr;
3301
	int slab_node = numa_mem_id();
3302

3303
	flags &= gfp_allowed_mask;
3304 3305
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3306 3307
		return NULL;

3308 3309 3310
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3311
	if (nodeid == NUMA_NO_NODE)
3312
		nodeid = slab_node;
3313

3314
	if (unlikely(!get_node(cachep, nodeid))) {
3315 3316 3317 3318 3319
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3320
	if (nodeid == slab_node) {
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3337 3338
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3339

3340
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3341 3342 3343 3344 3345 3346 3347 3348
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3349
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3360 3361
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3377
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3378 3379 3380 3381
{
	unsigned long save_flags;
	void *objp;

3382
	flags &= gfp_allowed_mask;
3383 3384
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3385 3386
		return NULL;

3387 3388 3389 3390 3391 3392 3393
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3394 3395
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3396

3397
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3398 3399
	return objp;
}
3400 3401

/*
3402
 * Caller needs to acquire correct kmem_cache_node's list_lock
3403
 * @list: List of detached free slabs should be freed by caller
3404
 */
3405 3406
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3407 3408
{
	int i;
3409
	struct kmem_cache_node *n = get_node(cachep, node);
3410 3411 3412
	struct page *page;

	n->free_objects += nr_objects;
L
Linus Torvalds 已提交
3413 3414

	for (i = 0; i < nr_objects; i++) {
3415
		void *objp;
3416
		struct page *page;
L
Linus Torvalds 已提交
3417

3418 3419
		objp = objpp[i];

3420 3421
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3422
		check_spinlock_acquired_node(cachep, node);
3423
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3424 3425 3426
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
3427
		if (page->active == 0) {
3428
			list_add(&page->lru, &n->slabs_free);
3429 3430
			n->free_slabs++;
		} else {
L
Linus Torvalds 已提交
3431 3432 3433 3434
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3435
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3436 3437
		}
	}
3438 3439 3440 3441 3442

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

		page = list_last_entry(&n->slabs_free, struct page, lru);
3443
		list_move(&page->lru, list);
3444
		n->free_slabs--;
3445
		n->total_slabs--;
3446
	}
L
Linus Torvalds 已提交
3447 3448
}

3449
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3450 3451
{
	int batchcount;
3452
	struct kmem_cache_node *n;
3453
	int node = numa_mem_id();
3454
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3455 3456

	batchcount = ac->batchcount;
3457

L
Linus Torvalds 已提交
3458
	check_irq_off();
3459
	n = get_node(cachep, node);
3460 3461 3462
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3463
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3464 3465 3466
		if (max) {
			if (batchcount > max)
				batchcount = max;
3467
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3468
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3469 3470 3471 3472 3473
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3474
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3475
free_done:
L
Linus Torvalds 已提交
3476 3477 3478
#if STATS
	{
		int i = 0;
3479
		struct page *page;
L
Linus Torvalds 已提交
3480

3481
		list_for_each_entry(page, &n->slabs_free, lru) {
3482
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3483 3484 3485 3486 3487 3488

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3489
	spin_unlock(&n->list_lock);
3490
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3491
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3492
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3493 3494 3495
}

/*
A
Andrew Morton 已提交
3496 3497
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3498
 */
3499 3500
static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
					 unsigned long caller)
L
Linus Torvalds 已提交
3501
{
3502
	/* Put the object into the quarantine, don't touch it for now. */
3503
	if (kasan_slab_free(cachep, objp, _RET_IP_))
3504 3505 3506 3507
		return;

	___cache_free(cachep, objp, caller);
}
L
Linus Torvalds 已提交
3508

3509 3510 3511 3512
void ___cache_free(struct kmem_cache *cachep, void *objp,
		unsigned long caller)
{
	struct array_cache *ac = cpu_cache_get(cachep);
A
Alexander Potapenko 已提交
3513

L
Linus Torvalds 已提交
3514
	check_irq_off();
3515
	kmemleak_free_recursive(objp, cachep->flags);
3516
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3517

3518 3519 3520 3521 3522 3523 3524
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3525
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3526 3527
		return;

3528
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3529 3530 3531 3532 3533
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3534

3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3555
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3556
{
3557
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3558

3559
	kasan_slab_alloc(cachep, ret, flags);
3560
	trace_kmem_cache_alloc(_RET_IP_, ret,
3561
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3562 3563

	return ret;
L
Linus Torvalds 已提交
3564 3565 3566
}
EXPORT_SYMBOL(kmem_cache_alloc);

3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3577
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3578
			  void **p)
3579
{
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3598 3599
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3610
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3611 3612 3613
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3614 3615 3616
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3617
#ifdef CONFIG_TRACING
3618
void *
3619
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3620
{
3621 3622
	void *ret;

3623
	ret = slab_alloc(cachep, flags, _RET_IP_);
3624

3625
	kasan_kmalloc(cachep, ret, size, flags);
3626
	trace_kmalloc(_RET_IP_, ret,
3627
		      size, cachep->size, flags);
3628
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3629
}
3630
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3631 3632
#endif

L
Linus Torvalds 已提交
3633
#ifdef CONFIG_NUMA
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3645 3646
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3647
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3648

3649
	kasan_slab_alloc(cachep, ret, flags);
3650
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3651
				    cachep->object_size, cachep->size,
3652
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3653 3654

	return ret;
3655
}
L
Linus Torvalds 已提交
3656 3657
EXPORT_SYMBOL(kmem_cache_alloc_node);

3658
#ifdef CONFIG_TRACING
3659
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3660
				  gfp_t flags,
3661 3662
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3663
{
3664 3665
	void *ret;

3666
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3667 3668

	kasan_kmalloc(cachep, ret, size, flags);
3669
	trace_kmalloc_node(_RET_IP_, ret,
3670
			   size, cachep->size,
3671 3672
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3673
}
3674
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3675 3676
#endif

3677
static __always_inline void *
3678
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3679
{
3680
	struct kmem_cache *cachep;
A
Alexander Potapenko 已提交
3681
	void *ret;
3682

3683 3684
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
		return NULL;
3685
	cachep = kmalloc_slab(size, flags);
3686 3687
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
A
Alexander Potapenko 已提交
3688
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3689
	kasan_kmalloc(cachep, ret, size, flags);
A
Alexander Potapenko 已提交
3690 3691

	return ret;
3692
}
3693 3694 3695

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3696
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3697
}
3698
EXPORT_SYMBOL(__kmalloc_node);
3699 3700

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3701
		int node, unsigned long caller)
3702
{
3703
	return __do_kmalloc_node(size, flags, node, caller);
3704 3705 3706
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3707 3708

/**
3709
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3710
 * @size: how many bytes of memory are required.
3711
 * @flags: the type of memory to allocate (see kmalloc).
3712
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3713
 */
3714
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3715
					  unsigned long caller)
L
Linus Torvalds 已提交
3716
{
3717
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3718
	void *ret;
L
Linus Torvalds 已提交
3719

3720 3721
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
		return NULL;
3722
	cachep = kmalloc_slab(size, flags);
3723 3724
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3725
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3726

3727
	kasan_kmalloc(cachep, ret, size, flags);
3728
	trace_kmalloc(caller, ret,
3729
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3730 3731

	return ret;
3732 3733 3734 3735
}

void *__kmalloc(size_t size, gfp_t flags)
{
3736
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3737 3738 3739
}
EXPORT_SYMBOL(__kmalloc);

3740
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3741
{
3742
	return __do_kmalloc(size, flags, caller);
3743 3744
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3745

L
Linus Torvalds 已提交
3746 3747 3748 3749 3750 3751 3752 3753
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3754
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3755 3756
{
	unsigned long flags;
3757 3758 3759
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3760 3761

	local_irq_save(flags);
3762
	debug_check_no_locks_freed(objp, cachep->object_size);
3763
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3764
		debug_check_no_obj_freed(objp, cachep->object_size);
3765
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3766
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3767

3768
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3769 3770 3771
}
EXPORT_SYMBOL(kmem_cache_free);

3772 3773 3774 3775 3776 3777 3778 3779 3780
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3781 3782 3783 3784
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3798 3799 3800 3801
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3802 3803
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3804 3805 3806 3807 3808
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3809
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3810 3811
	unsigned long flags;

3812 3813
	trace_kfree(_RET_IP_, objp);

3814
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3815 3816 3817
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3818
	c = virt_to_cache(objp);
3819 3820 3821
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3822
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3823 3824 3825 3826
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3827
/*
3828
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3829
 */
3830
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3831
{
3832
	int ret;
3833
	int node;
3834
	struct kmem_cache_node *n;
3835

3836
	for_each_online_node(node) {
3837 3838
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
3839 3840 3841
			goto fail;

	}
3842

3843
	return 0;
3844

A
Andrew Morton 已提交
3845
fail:
3846
	if (!cachep->list.next) {
3847 3848 3849
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3850 3851
			n = get_node(cachep, node);
			if (n) {
3852 3853 3854
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3855
				cachep->node[node] = NULL;
3856 3857 3858 3859
			}
			node--;
		}
	}
3860
	return -ENOMEM;
3861 3862
}

3863
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3864
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3865
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3866
{
3867 3868
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3869

3870 3871
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3872 3873
		return -ENOMEM;

3874 3875
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
3876 3877 3878 3879 3880 3881
	/*
	 * Without a previous cpu_cache there's no need to synchronize remote
	 * cpus, so skip the IPIs.
	 */
	if (prev)
		kick_all_cpus_sync();
3882

L
Linus Torvalds 已提交
3883 3884 3885
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3886
	cachep->shared = shared;
L
Linus Torvalds 已提交
3887

3888
	if (!prev)
3889
		goto setup_node;
3890 3891

	for_each_online_cpu(cpu) {
3892
		LIST_HEAD(list);
3893 3894
		int node;
		struct kmem_cache_node *n;
3895
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3896

3897
		node = cpu_to_mem(cpu);
3898 3899
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3900
		free_block(cachep, ac->entry, ac->avail, node, &list);
3901
		spin_unlock_irq(&n->list_lock);
3902
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3903
	}
3904 3905
	free_percpu(prev);

3906 3907
setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
L
Linus Torvalds 已提交
3908 3909
}

G
Glauber Costa 已提交
3910 3911 3912 3913
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3914
	struct kmem_cache *c;
G
Glauber Costa 已提交
3915 3916 3917 3918 3919 3920 3921 3922 3923

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3924 3925 3926 3927
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3928 3929 3930 3931 3932
	}

	return ret;
}

3933
/* Called with slab_mutex held always */
3934
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3935 3936
{
	int err;
G
Glauber Costa 已提交
3937 3938 3939 3940
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

3941
	err = cache_random_seq_create(cachep, cachep->num, gfp);
T
Thomas Garnier 已提交
3942 3943 3944
	if (err)
		goto end;

G
Glauber Costa 已提交
3945 3946 3947 3948 3949 3950
	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3951

G
Glauber Costa 已提交
3952 3953
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3954 3955
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3956 3957
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3958
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3959 3960 3961 3962
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3963
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3964
		limit = 1;
3965
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3966
		limit = 8;
3967
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3968
		limit = 24;
3969
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3970 3971 3972 3973
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3974 3975
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3976 3977 3978 3979 3980 3981 3982 3983
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3984
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3985 3986 3987
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3988 3989 3990
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3991 3992 3993 3994
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3995 3996 3997
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
T
Thomas Garnier 已提交
3998
end:
L
Linus Torvalds 已提交
3999
	if (err)
4000
		pr_err("enable_cpucache failed for %s, error %d\n",
P
Pekka Enberg 已提交
4001
		       cachep->name, -err);
4002
	return err;
L
Linus Torvalds 已提交
4003 4004
}

4005
/*
4006 4007
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
4008
 * if drain_array() is used on the shared array.
4009
 */
4010
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4011
			 struct array_cache *ac, int node)
L
Linus Torvalds 已提交
4012
{
4013
	LIST_HEAD(list);
4014 4015 4016

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
L
Linus Torvalds 已提交
4017

4018 4019
	if (!ac || !ac->avail)
		return;
4020 4021

	if (ac->touched) {
L
Linus Torvalds 已提交
4022
		ac->touched = 0;
4023
		return;
L
Linus Torvalds 已提交
4024
	}
4025 4026 4027 4028 4029 4030

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
4031 4032 4033 4034
}

/**
 * cache_reap - Reclaim memory from caches.
4035
 * @w: work descriptor
L
Linus Torvalds 已提交
4036 4037 4038 4039 4040 4041
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4042 4043
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4044
 */
4045
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4046
{
4047
	struct kmem_cache *searchp;
4048
	struct kmem_cache_node *n;
4049
	int node = numa_mem_id();
4050
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4051

4052
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4053
		/* Give up. Setup the next iteration. */
4054
		goto out;
L
Linus Torvalds 已提交
4055

4056
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4057 4058
		check_irq_on();

4059
		/*
4060
		 * We only take the node lock if absolutely necessary and we
4061 4062 4063
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4064
		n = get_node(searchp, node);
4065

4066
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4067

4068
		drain_array(searchp, n, cpu_cache_get(searchp), node);
L
Linus Torvalds 已提交
4069

4070 4071 4072 4073
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4074
		if (time_after(n->next_reap, jiffies))
4075
			goto next;
L
Linus Torvalds 已提交
4076

4077
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4078

4079
		drain_array(searchp, n, n->shared, node);
L
Linus Torvalds 已提交
4080

4081 4082
		if (n->free_touched)
			n->free_touched = 0;
4083 4084
		else {
			int freed;
L
Linus Torvalds 已提交
4085

4086
			freed = drain_freelist(searchp, n, (n->free_limit +
4087 4088 4089
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4090
next:
L
Linus Torvalds 已提交
4091 4092 4093
		cond_resched();
	}
	check_irq_on();
4094
	mutex_unlock(&slab_mutex);
4095
	next_reap_node();
4096
out:
A
Andrew Morton 已提交
4097
	/* Set up the next iteration */
4098 4099
	schedule_delayed_work_on(smp_processor_id(), work,
				round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4100 4101
}

4102
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4103
{
4104
	unsigned long active_objs, num_objs, active_slabs;
4105 4106
	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
	unsigned long free_slabs = 0;
4107
	int node;
4108
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4109

4110
	for_each_kmem_cache_node(cachep, node, n) {
4111
		check_irq_on();
4112
		spin_lock_irq(&n->list_lock);
4113

4114 4115
		total_slabs += n->total_slabs;
		free_slabs += n->free_slabs;
4116
		free_objs += n->free_objects;
4117

4118 4119
		if (n->shared)
			shared_avail += n->shared->avail;
4120

4121
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4122
	}
4123 4124
	num_objs = total_slabs * cachep->num;
	active_slabs = total_slabs - free_slabs;
4125
	active_objs = num_objs - free_objs;
L
Linus Torvalds 已提交
4126

4127 4128 4129
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
4130
	sinfo->num_slabs = total_slabs;
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4141
#if STATS
4142
	{			/* node stats */
L
Linus Torvalds 已提交
4143 4144 4145 4146 4147 4148 4149
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4150
		unsigned long node_frees = cachep->node_frees;
4151
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4152

J
Joe Perches 已提交
4153
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4154 4155 4156
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4157 4158 4159 4160 4161 4162 4163 4164 4165
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4166
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4179
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4180
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4181
{
P
Pekka Enberg 已提交
4182
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4183
	int limit, batchcount, shared, res;
4184
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4185

L
Linus Torvalds 已提交
4186 4187 4188 4189
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4190
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4201
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4202
	res = -EINVAL;
4203
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4204
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4205 4206
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4207
				res = 0;
L
Linus Torvalds 已提交
4208
			} else {
4209
				res = do_tune_cpucache(cachep, limit,
4210 4211
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4212 4213 4214 4215
			}
			break;
		}
	}
4216
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4217 4218 4219 4220
	if (res >= 0)
		res = count;
	return res;
}
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4254 4255
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4256 4257
{
	void *p;
4258 4259
	int i, j;
	unsigned long v;
4260

4261 4262
	if (n[0] == n[1])
		return;
4263
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4274
			continue;
4275

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4286 4287 4288 4289 4290 4291 4292 4293
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4294
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4295

4296
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4297
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4298
		if (modname[0])
4299 4300 4301 4302
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
4303
	seq_printf(m, "%px", (void *)address);
4304 4305 4306 4307
}

static int leaks_show(struct seq_file *m, void *p)
{
4308 4309
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
					       root_caches_node);
4310
	struct page *page;
4311
	struct kmem_cache_node *n;
4312
	const char *name;
4313
	unsigned long *x = m->private;
4314 4315 4316 4317 4318 4319 4320 4321
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4322 4323 4324 4325 4326 4327 4328 4329
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		drain_cpu_caches(cachep);
4330 4331 4332 4333 4334
		/*
		 * drain_cpu_caches() could make kmemleak_object and
		 * debug_objects_cache dirty, so reset afterwards.
		 */
		set_store_user_clean(cachep);
4335 4336

		x[1] = 0;
4337

4338
		for_each_kmem_cache_node(cachep, node, n) {
4339

4340 4341
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4342

4343 4344 4345 4346 4347 4348 4349
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4350 4351

	name = cachep->name;
4352
	if (x[0] == x[1]) {
4353
		/* Increase the buffer size */
4354
		mutex_unlock(&slab_mutex);
K
Kees Cook 已提交
4355 4356
		m->private = kcalloc(x[0] * 4, sizeof(unsigned long),
				     GFP_KERNEL);
4357 4358
		if (!m->private) {
			/* Too bad, we are really out */
4359
			m->private = x;
4360
			mutex_lock(&slab_mutex);
4361 4362
			return -ENOMEM;
		}
4363 4364
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4365
		mutex_lock(&slab_mutex);
4366 4367 4368 4369
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4370 4371 4372
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4373 4374
		seq_putc(m, '\n');
	}
4375

4376 4377 4378
	return 0;
}

4379
static const struct seq_operations slabstats_op = {
4380
	.start = slab_start,
4381 4382
	.next = slab_next,
	.stop = slab_stop,
4383 4384
	.show = leaks_show,
};
4385 4386 4387

static int slabstats_open(struct inode *inode, struct file *file)
{
4388 4389 4390 4391 4392 4393 4394 4395 4396
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4411
#endif
4412 4413 4414
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4415

K
Kees Cook 已提交
4416 4417
#ifdef CONFIG_HARDENED_USERCOPY
/*
4418 4419 4420
 * Rejects incorrectly sized objects and objects that are to be copied
 * to/from userspace but do not fall entirely within the containing slab
 * cache's usercopy region.
K
Kees Cook 已提交
4421 4422 4423 4424
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
4425 4426
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			 bool to_user)
K
Kees Cook 已提交
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
{
	struct kmem_cache *cachep;
	unsigned int objnr;
	unsigned long offset;

	/* Find and validate object. */
	cachep = page->slab_cache;
	objnr = obj_to_index(cachep, page, (void *)ptr);
	BUG_ON(objnr >= cachep->num);

	/* Find offset within object. */
	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);

4440 4441 4442 4443
	/* Allow address range falling entirely within usercopy region. */
	if (offset >= cachep->useroffset &&
	    offset - cachep->useroffset <= cachep->usersize &&
	    n <= cachep->useroffset - offset + cachep->usersize)
4444
		return;
K
Kees Cook 已提交
4445

4446 4447 4448 4449 4450 4451
	/*
	 * If the copy is still within the allocated object, produce
	 * a warning instead of rejecting the copy. This is intended
	 * to be a temporary method to find any missing usercopy
	 * whitelists.
	 */
4452 4453
	if (usercopy_fallback &&
	    offset <= cachep->object_size &&
4454 4455 4456 4457
	    n <= cachep->object_size - offset) {
		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
		return;
	}
K
Kees Cook 已提交
4458

4459
	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
K
Kees Cook 已提交
4460 4461 4462
}
#endif /* CONFIG_HARDENED_USERCOPY */

4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4475
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4476
{
A
Alexander Potapenko 已提交
4477 4478
	size_t size;

4479 4480
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4481
		return 0;
L
Linus Torvalds 已提交
4482

A
Alexander Potapenko 已提交
4483 4484 4485 4486
	size = virt_to_cache(objp)->object_size;
	/* We assume that ksize callers could use the whole allocated area,
	 * so we need to unpoison this area.
	 */
4487
	kasan_unpoison_shadow(objp, size);
A
Alexander Potapenko 已提交
4488 4489

	return size;
L
Linus Torvalds 已提交
4490
}
K
Kirill A. Shutemov 已提交
4491
EXPORT_SYMBOL(ksize);