slab.c 110.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
30
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
54
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
55 56 57 58
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
59
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
60 61 62 63 64 65 66 67 68 69 70 71
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
72
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
73 74 75 76 77 78
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
79 80 81 82 83 84 85 86 87
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
88 89 90 91
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
119
#include	<linux/sched/task_stack.h>
L
Linus Torvalds 已提交
120

121 122
#include	<net/sock.h>

L
Linus Torvalds 已提交
123 124 125 126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127 128
#include <trace/events/kmem.h>

129 130
#include	"internal.h"

131 132
#include	"slab.h"

L
Linus Torvalds 已提交
133
/*
134
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
155
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
156 157 158 159 160

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

161 162 163 164 165 166 167 168 169
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

170
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171

L
Linus Torvalds 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
189
	void *entry[];	/*
A
Andrew Morton 已提交
190 191 192 193
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
194 195
};

J
Joonsoo Kim 已提交
196 197 198 199 200
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

201 202 203
/*
 * Need this for bootstrapping a per node allocator.
 */
204
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206
#define	CACHE_CACHE 0
207
#define	SIZE_NODE (MAX_NUMNODES)
208

209
static int drain_freelist(struct kmem_cache *cache,
210
			struct kmem_cache_node *n, int tofree);
211
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 213
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215
static void cache_reap(struct work_struct *unused);
216

217 218 219 220 221
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
222 223
static int slab_early_init = 1;

224
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
225

226
static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 228 229 230
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
231
	parent->total_slabs = 0;
232
	parent->free_slabs = 0;
233 234
	parent->shared = NULL;
	parent->alien = NULL;
235
	parent->colour_next = 0;
236 237 238 239 240
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
241 242 243
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
244
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 246
	} while (0)

A
Andrew Morton 已提交
247 248
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
249 250 251 252
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
253

254 255
#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
256
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
257 258 259
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
260 261 262
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
263
 *
A
Adrian Bunk 已提交
264
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
265 266
 * which could lock up otherwise freeable slabs.
 */
267 268
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
269 270 271 272 273 274

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
275
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
276 277 278 279 280
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
281 282
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
285 286 287 288 289
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
290 291 292 293 294 295 296 297 298
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
299
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
300 301 302
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303
#define	STATS_INC_NODEFREES(x)	do { } while (0)
304
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
305
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
306 307 308 309 310 311 312 313
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
314 315
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
316
 * 0		: objp
317
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
318 319
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
320
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
321
 * 		redzone word.
322
 * cachep->obj_offset: The real object.
323 324
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
325
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
326
 */
327
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
328
{
329
	return cachep->obj_offset;
L
Linus Torvalds 已提交
330 331
}

332
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
333 334
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 336
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
337 338
}

339
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
340 341 342
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
343
		return (unsigned long long *)(objp + cachep->size -
344
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
345
					      REDZONE_ALIGN);
346
	return (unsigned long long *) (objp + cachep->size -
347
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
348 349
}

350
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
351 352
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
354 355 356 357
}

#else

358
#define obj_offset(x)			0
359 360
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
361 362 363 364
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

365 366
#ifdef CONFIG_DEBUG_SLAB_LEAK

367
static inline bool is_store_user_clean(struct kmem_cache *cachep)
368
{
369 370
	return atomic_read(&cachep->store_user_clean) == 1;
}
371

372 373 374 375
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
376

377 378 379 380
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
381 382 383
}

#else
384
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385 386 387

#endif

L
Linus Torvalds 已提交
388
/*
389 390
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
391
 */
392 393 394
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
395
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
396

397 398
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
399
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
400
	return page->slab_cache;
401 402
}

403
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 405
				 unsigned int idx)
{
406
	return page->s_mem + cache->size * idx;
407 408
}

409
/*
410 411 412
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
413 414 415
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416
					const struct page *page, void *obj)
417
{
418
	u32 offset = (obj - page->s_mem);
419
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 421
}

422
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
423
/* internal cache of cache description objs */
424
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
425 426 427
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
428
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
429
	.name = "kmem_cache",
L
Linus Torvalds 已提交
430 431
};

432
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
433

434
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
435
{
436
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
437 438
}

A
Andrew Morton 已提交
439 440 441
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
442
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443
		slab_flags_t flags, size_t *left_over)
444
{
445
	unsigned int num;
446
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
447

448 449 450 451 452 453
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
454 455 456 457 458
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
459 460 461 462 463 464
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
465
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466
		num = slab_size / buffer_size;
467
		*left_over = slab_size % buffer_size;
468
	} else {
469
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 471
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
472
	}
473 474

	return num;
L
Linus Torvalds 已提交
475 476
}

477
#if DEBUG
478
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
479

A
Andrew Morton 已提交
480 481
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
482
{
483
	pr_err("slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
484
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
485
	dump_stack();
486
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
487
}
488
#endif
L
Linus Torvalds 已提交
489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

506 507 508 509 510 511 512 513 514 515 516
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

517 518 519 520 521 522 523
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
524
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525 526 527

static void init_reap_node(int cpu)
{
528 529
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
530 531 532 533
}

static void next_reap_node(void)
{
534
	int node = __this_cpu_read(slab_reap_node);
535

536
	node = next_node_in(node, node_online_map);
537
	__this_cpu_write(slab_reap_node, node);
538 539 540 541 542 543 544
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
545 546 547 548 549 550 551
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
552
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
553
{
554
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
555

556
	if (reap_work->work.func == NULL) {
557
		init_reap_node(cpu);
558
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 560
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
561 562 563
	}
}

564
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
565
{
566 567
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
568
	 * However, when such objects are allocated or transferred to another
569 570 571 572
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
573 574 575 576 577 578
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
579
	}
580 581 582 583 584
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
585
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
586 587 588 589 590
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
591 592
}

593 594
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
595
{
596 597 598
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
599

600 601
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
602

603 604 605
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
606

607
	slabs_destroy(cachep, &list);
608 609
}

610 611 612 613 614 615 616 617 618 619
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
620
	int nr = min3(from->avail, max, to->limit - to->avail);
621 622 623 624 625 626 627 628 629 630 631 632

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

633 634 635
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
636
#define reap_alien(cachep, n) do { } while (0)
637

J
Joonsoo Kim 已提交
638 639
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
640
{
641
	return NULL;
642 643
}

J
Joonsoo Kim 已提交
644
static inline void free_alien_cache(struct alien_cache **ac_ptr)
645 646 647 648 649 650 651 652 653 654 655 656 657 658
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

659
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 661 662 663 664
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
665 666
static inline gfp_t gfp_exact_node(gfp_t flags)
{
667
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
668 669
}

670 671
#else	/* CONFIG_NUMA */

672
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674

J
Joonsoo Kim 已提交
675 676 677
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
678
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
679 680 681 682
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
683
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
684 685 686 687
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
688
{
J
Joonsoo Kim 已提交
689
	struct alien_cache **alc_ptr;
690
	size_t memsize = sizeof(void *) * nr_node_ids;
691 692 693 694
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
708 709
		}
	}
J
Joonsoo Kim 已提交
710
	return alc_ptr;
711 712
}

J
Joonsoo Kim 已提交
713
static void free_alien_cache(struct alien_cache **alc_ptr)
714 715 716
{
	int i;

J
Joonsoo Kim 已提交
717
	if (!alc_ptr)
718 719
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
720 721
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
722 723
}

724
static void __drain_alien_cache(struct kmem_cache *cachep,
725 726
				struct array_cache *ac, int node,
				struct list_head *list)
727
{
728
	struct kmem_cache_node *n = get_node(cachep, node);
729 730

	if (ac->avail) {
731
		spin_lock(&n->list_lock);
732 733 734 735 736
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
737 738
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
739

740
		free_block(cachep, ac->entry, ac->avail, node, list);
741
		ac->avail = 0;
742
		spin_unlock(&n->list_lock);
743 744 745
	}
}

746 747 748
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
749
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
750
{
751
	int node = __this_cpu_read(slab_reap_node);
752

753
	if (n->alien) {
J
Joonsoo Kim 已提交
754 755 756 757 758
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
759
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
760 761 762
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
763
				spin_unlock_irq(&alc->lock);
764
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
765
			}
766 767 768 769
		}
	}
}

A
Andrew Morton 已提交
770
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
771
				struct alien_cache **alien)
772
{
P
Pekka Enberg 已提交
773
	int i = 0;
J
Joonsoo Kim 已提交
774
	struct alien_cache *alc;
775 776 777 778
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
779 780
		alc = alien[i];
		if (alc) {
781 782
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
783
			ac = &alc->ac;
784
			spin_lock_irqsave(&alc->lock, flags);
785
			__drain_alien_cache(cachep, ac, i, &list);
786
			spin_unlock_irqrestore(&alc->lock, flags);
787
			slabs_destroy(cachep, &list);
788 789 790
		}
	}
}
791

792 793
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
794
{
795
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
796 797
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
798
	LIST_HEAD(list);
P
Pekka Enberg 已提交
799

800
	n = get_node(cachep, node);
801
	STATS_INC_NODEFREES(cachep);
802 803
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
804
		ac = &alien->ac;
805
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
806
		if (unlikely(ac->avail == ac->limit)) {
807
			STATS_INC_ACOVERFLOW(cachep);
808
			__drain_alien_cache(cachep, ac, page_node, &list);
809
		}
810
		ac->entry[ac->avail++] = objp;
811
		spin_unlock(&alien->lock);
812
		slabs_destroy(cachep, &list);
813
	} else {
814
		n = get_node(cachep, page_node);
815
		spin_lock(&n->list_lock);
816
		free_block(cachep, &objp, 1, page_node, &list);
817
		spin_unlock(&n->list_lock);
818
		slabs_destroy(cachep, &list);
819 820 821
	}
	return 1;
}
822 823 824 825 826 827 828 829 830 831 832 833 834 835

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
836 837

/*
838 839
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
840 841 842
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
843
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
844
}
845 846
#endif

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

887
#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
888
/*
889
 * Allocates and initializes node for a node on each slab cache, used for
890
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
891
 * will be allocated off-node since memory is not yet online for the new node.
892
 * When hotplugging memory or a cpu, existing node are not replaced if
893 894
 * already in use.
 *
895
 * Must hold slab_mutex.
896
 */
897
static int init_cache_node_node(int node)
898
{
899
	int ret;
900 901
	struct kmem_cache *cachep;

902
	list_for_each_entry(cachep, &slab_caches, list) {
903 904 905
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
906
	}
907

908 909
	return 0;
}
910
#endif
911

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

961 962 963 964 965 966
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
	 * freed after synchronize_sched().
	 */
967
	if (old_shared && force_change)
968 969
		synchronize_sched();

970 971 972 973 974 975 976 977
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

978 979
#ifdef CONFIG_SMP

980
static void cpuup_canceled(long cpu)
981 982
{
	struct kmem_cache *cachep;
983
	struct kmem_cache_node *n = NULL;
984
	int node = cpu_to_mem(cpu);
985
	const struct cpumask *mask = cpumask_of_node(node);
986

987
	list_for_each_entry(cachep, &slab_caches, list) {
988 989
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
990
		struct alien_cache **alien;
991
		LIST_HEAD(list);
992

993
		n = get_node(cachep, node);
994
		if (!n)
995
			continue;
996

997
		spin_lock_irq(&n->list_lock);
998

999 1000
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1001 1002 1003 1004

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1005
			free_block(cachep, nc->entry, nc->avail, node, &list);
1006 1007
			nc->avail = 0;
		}
1008

1009
		if (!cpumask_empty(mask)) {
1010
			spin_unlock_irq(&n->list_lock);
1011
			goto free_slab;
1012 1013
		}

1014
		shared = n->shared;
1015 1016
		if (shared) {
			free_block(cachep, shared->entry,
1017
				   shared->avail, node, &list);
1018
			n->shared = NULL;
1019 1020
		}

1021 1022
		alien = n->alien;
		n->alien = NULL;
1023

1024
		spin_unlock_irq(&n->list_lock);
1025 1026 1027 1028 1029 1030

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1031 1032

free_slab:
1033
		slabs_destroy(cachep, &list);
1034 1035 1036 1037 1038 1039
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1040
	list_for_each_entry(cachep, &slab_caches, list) {
1041
		n = get_node(cachep, node);
1042
		if (!n)
1043
			continue;
1044
		drain_freelist(cachep, n, INT_MAX);
1045 1046 1047
	}
}

1048
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1049
{
1050
	struct kmem_cache *cachep;
1051
	int node = cpu_to_mem(cpu);
1052
	int err;
L
Linus Torvalds 已提交
1053

1054 1055 1056 1057
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1058
	 * kmem_cache_node and not this cpu's kmem_cache_node
1059
	 */
1060
	err = init_cache_node_node(node);
1061 1062
	if (err < 0)
		goto bad;
1063 1064 1065 1066 1067

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1068
	list_for_each_entry(cachep, &slab_caches, list) {
1069 1070 1071
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1072
	}
1073

1074 1075
	return 0;
bad:
1076
	cpuup_canceled(cpu);
1077 1078 1079
	return -ENOMEM;
}

1080
int slab_prepare_cpu(unsigned int cpu)
1081
{
1082
	int err;
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	mutex_lock(&slab_mutex);
	err = cpuup_prepare(cpu);
	mutex_unlock(&slab_mutex);
	return err;
}

/*
 * This is called for a failed online attempt and for a successful
 * offline.
 *
 * Even if all the cpus of a node are down, we don't free the
 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
 * a kmalloc allocation from another cpu for memory from the node of
 * the cpu going down.  The list3 structure is usually allocated from
 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
 */
int slab_dead_cpu(unsigned int cpu)
{
	mutex_lock(&slab_mutex);
	cpuup_canceled(cpu);
	mutex_unlock(&slab_mutex);
	return 0;
}
1107
#endif
1108 1109 1110 1111 1112

static int slab_online_cpu(unsigned int cpu)
{
	start_cpu_timer(cpu);
	return 0;
L
Linus Torvalds 已提交
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
static int slab_offline_cpu(unsigned int cpu)
{
	/*
	 * Shutdown cache reaper. Note that the slab_mutex is held so
	 * that if cache_reap() is invoked it cannot do anything
	 * expensive but will only modify reap_work and reschedule the
	 * timer.
	 */
	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
	/* Now the cache_reaper is guaranteed to be not running. */
	per_cpu(slab_reap_work, cpu).work.func = NULL;
	return 0;
}
L
Linus Torvalds 已提交
1128

1129 1130 1131 1132 1133 1134
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1135
 * Must hold slab_mutex.
1136
 */
1137
static int __meminit drain_cache_node_node(int node)
1138 1139 1140 1141
{
	struct kmem_cache *cachep;
	int ret = 0;

1142
	list_for_each_entry(cachep, &slab_caches, list) {
1143
		struct kmem_cache_node *n;
1144

1145
		n = get_node(cachep, node);
1146
		if (!n)
1147 1148
			continue;

1149
		drain_freelist(cachep, n, INT_MAX);
1150

1151 1152
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1173
		mutex_lock(&slab_mutex);
1174
		ret = init_cache_node_node(nid);
1175
		mutex_unlock(&slab_mutex);
1176 1177
		break;
	case MEM_GOING_OFFLINE:
1178
		mutex_lock(&slab_mutex);
1179
		ret = drain_cache_node_node(nid);
1180
		mutex_unlock(&slab_mutex);
1181 1182 1183 1184 1185 1186 1187 1188
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1189
	return notifier_from_errno(ret);
1190 1191 1192
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1193
/*
1194
 * swap the static kmem_cache_node with kmalloced memory
1195
 */
1196
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197
				int nodeid)
1198
{
1199
	struct kmem_cache_node *ptr;
1200

1201
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202 1203
	BUG_ON(!ptr);

1204
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205 1206 1207 1208 1209
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1210
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211
	cachep->node[nodeid] = ptr;
1212 1213
}

1214
/*
1215 1216
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1217
 */
1218
static void __init set_up_node(struct kmem_cache *cachep, int index)
1219 1220 1221 1222
{
	int node;

	for_each_online_node(node) {
1223
		cachep->node[node] = &init_kmem_cache_node[index + node];
1224
		cachep->node[node]->next_reap = jiffies +
1225 1226
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227 1228 1229
	}
}

A
Andrew Morton 已提交
1230 1231 1232
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1233 1234 1235
 */
void __init kmem_cache_init(void)
{
1236 1237
	int i;

1238 1239
	kmem_cache = &kmem_cache_boot;

1240
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1241 1242
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1243
	for (i = 0; i < NUM_INIT_LISTS; i++)
1244
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1245

L
Linus Torvalds 已提交
1246 1247
	/*
	 * Fragmentation resistance on low memory - only use bigger
1248 1249
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1250
	 */
1251
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1252
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1253 1254 1255

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1256 1257 1258
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1259
	 *    Initially an __init data area is used for the head array and the
1260
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1261
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1262
	 * 2) Create the first kmalloc cache.
1263
	 *    The struct kmem_cache for the new cache is allocated normally.
1264 1265 1266
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1267
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1268
	 *    kmalloc cache with kmalloc allocated arrays.
1269
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1270 1271
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1272 1273
	 */

1274
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1275

E
Eric Dumazet 已提交
1276
	/*
1277
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1278
	 */
1279
	create_boot_cache(kmem_cache, "kmem_cache",
1280
		offsetof(struct kmem_cache, node) +
1281
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1282
				  SLAB_HWCACHE_ALIGN, 0, 0);
1283
	list_add(&kmem_cache->list, &slab_caches);
1284
	memcg_link_cache(kmem_cache);
1285
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1286

A
Andrew Morton 已提交
1287
	/*
1288 1289
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1290
	 */
1291 1292
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
				kmalloc_info[INDEX_NODE].name,
1293 1294
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
				0, kmalloc_size(INDEX_NODE));
1295
	slab_state = PARTIAL_NODE;
1296
	setup_kmalloc_cache_index_table();
1297

1298 1299
	slab_early_init = 0;

1300
	/* 5) Replace the bootstrap kmem_cache_node */
1301
	{
P
Pekka Enberg 已提交
1302 1303
		int nid;

1304
		for_each_online_node(nid) {
1305
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1306

1307
			init_list(kmalloc_caches[INDEX_NODE],
1308
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1309 1310
		}
	}
L
Linus Torvalds 已提交
1311

1312
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1313 1314 1315 1316 1317 1318 1319
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/* 6) resize the head arrays to their final sizes */
1320 1321
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1322 1323
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1324
	mutex_unlock(&slab_mutex);
1325

1326 1327 1328
	/* Done! */
	slab_state = FULL;

1329 1330 1331
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1332
	 * node.
1333 1334 1335 1336
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1337 1338 1339
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1340 1341 1342 1343 1344
	 */
}

static int __init cpucache_init(void)
{
1345
	int ret;
L
Linus Torvalds 已提交
1346

A
Andrew Morton 已提交
1347 1348
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1349
	 */
1350 1351 1352
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
				slab_online_cpu, slab_offline_cpu);
	WARN_ON(ret < 0);
1353

L
Linus Torvalds 已提交
1354 1355 1356 1357
	return 0;
}
__initcall(cpucache_init);

1358 1359 1360
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1361
#if DEBUG
1362
	struct kmem_cache_node *n;
1363 1364
	unsigned long flags;
	int node;
1365 1366 1367 1368 1369
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1370

1371 1372 1373
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1374
		cachep->name, cachep->size, cachep->gfporder);
1375

1376
	for_each_kmem_cache_node(cachep, node, n) {
1377
		unsigned long total_slabs, free_slabs, free_objs;
1378

1379
		spin_lock_irqsave(&n->list_lock, flags);
1380 1381 1382
		total_slabs = n->total_slabs;
		free_slabs = n->free_slabs;
		free_objs = n->free_objects;
1383
		spin_unlock_irqrestore(&n->list_lock, flags);
1384

1385 1386 1387 1388
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
			node, total_slabs - free_slabs, total_slabs,
			(total_slabs * cachep->num) - free_objs,
			total_slabs * cachep->num);
1389
	}
1390
#endif
1391 1392
}

L
Linus Torvalds 已提交
1393
/*
W
Wang Sheng-Hui 已提交
1394 1395
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1396 1397 1398 1399 1400
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1401 1402
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1403 1404
{
	struct page *page;
1405
	int nr_pages;
1406

1407
	flags |= cachep->allocflags;
1408

1409
	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1410
	if (!page) {
1411
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1412
		return NULL;
1413
	}
L
Linus Torvalds 已提交
1414

1415 1416 1417 1418 1419
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1420
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1421
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1422
		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1423
	else
1424
		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1425

1426
	__SetPageSlab(page);
1427 1428
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1429
		SetPageSlabPfmemalloc(page);
1430

1431
	return page;
L
Linus Torvalds 已提交
1432 1433 1434 1435 1436
}

/*
 * Interface to system's page release.
 */
1437
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1438
{
1439 1440
	int order = cachep->gfporder;
	unsigned long nr_freed = (1 << order);
L
Linus Torvalds 已提交
1441

1442
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1443
		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1444
	else
1445
		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
J
Joonsoo Kim 已提交
1446

1447
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1448
	__ClearPageSlabPfmemalloc(page);
1449
	__ClearPageSlab(page);
1450 1451
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1452

L
Linus Torvalds 已提交
1453 1454
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1455 1456
	memcg_uncharge_slab(page, order, cachep);
	__free_pages(page, order);
L
Linus Torvalds 已提交
1457 1458 1459 1460
}

static void kmem_rcu_free(struct rcu_head *head)
{
1461 1462
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1463

1464 1465 1466 1467
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1468 1469 1470
}

#if DEBUG
1471 1472 1473 1474 1475 1476 1477 1478
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1479 1480

#ifdef CONFIG_DEBUG_PAGEALLOC
1481
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1482
			    unsigned long caller)
L
Linus Torvalds 已提交
1483
{
1484
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1485

1486
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1487

P
Pekka Enberg 已提交
1488
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1489 1490
		return;

P
Pekka Enberg 已提交
1491 1492 1493 1494
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1495 1496 1497 1498 1499 1500 1501
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1502
				*addr++ = svalue;
L
Linus Torvalds 已提交
1503 1504 1505 1506 1507 1508 1509
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1510
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1511
}
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

L
Linus Torvalds 已提交
1529 1530
#endif

1531
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1532
{
1533
	int size = cachep->object_size;
1534
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1535 1536

	memset(addr, val, size);
P
Pekka Enberg 已提交
1537
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1538 1539 1540 1541 1542
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1543 1544 1545
	unsigned char error = 0;
	int bad_count = 0;

1546
	pr_err("%03x: ", offset);
D
Dave Jones 已提交
1547 1548 1549 1550 1551 1552
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1553 1554
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1555 1556 1557 1558

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1559
			pr_err("Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1560
#ifdef CONFIG_X86
1561
			pr_err("Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1562
#else
1563
			pr_err("Run a memory test tool.\n");
D
Dave Jones 已提交
1564 1565 1566
#endif
		}
	}
L
Linus Torvalds 已提交
1567 1568 1569 1570 1571
}
#endif

#if DEBUG

1572
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1573 1574 1575 1576 1577
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1578 1579 1580
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1581 1582
	}

1583 1584
	if (cachep->flags & SLAB_STORE_USER)
		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1585
	realobj = (char *)objp + obj_offset(cachep);
1586
	size = cachep->object_size;
P
Pekka Enberg 已提交
1587
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1588 1589
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1590 1591
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1592 1593 1594 1595
		dump_line(realobj, i, limit);
	}
}

1596
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1597 1598 1599 1600 1601
{
	char *realobj;
	int size, i;
	int lines = 0;

1602 1603 1604
	if (is_debug_pagealloc_cache(cachep))
		return;

1605
	realobj = (char *)objp + obj_offset(cachep);
1606
	size = cachep->object_size;
L
Linus Torvalds 已提交
1607

P
Pekka Enberg 已提交
1608
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1609
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1610
		if (i == size - 1)
L
Linus Torvalds 已提交
1611 1612 1613 1614 1615 1616
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1617
				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1618 1619
				       print_tainted(), cachep->name,
				       realobj, size);
L
Linus Torvalds 已提交
1620 1621 1622
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1623
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1624
			limit = 16;
P
Pekka Enberg 已提交
1625 1626
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1639
		struct page *page = virt_to_head_page(objp);
1640
		unsigned int objnr;
L
Linus Torvalds 已提交
1641

1642
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1643
		if (objnr) {
1644
			objp = index_to_obj(cachep, page, objnr - 1);
1645
			realobj = (char *)objp + obj_offset(cachep);
1646
			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1647 1648
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1649
		if (objnr + 1 < cachep->num) {
1650
			objp = index_to_obj(cachep, page, objnr + 1);
1651
			realobj = (char *)objp + obj_offset(cachep);
1652
			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1653 1654 1655 1656 1657 1658
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1659
#if DEBUG
1660 1661
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1662 1663
{
	int i;
1664 1665 1666 1667 1668 1669

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1670
	for (i = 0; i < cachep->num; i++) {
1671
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1672 1673 1674

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1675
			slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
1676 1677 1678
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1679
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1680
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1681
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1682 1683
		}
	}
1684
}
L
Linus Torvalds 已提交
1685
#else
1686 1687
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1688 1689
{
}
L
Linus Torvalds 已提交
1690 1691
#endif

1692 1693 1694
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1695
 * @page: page pointer being destroyed
1696
 *
W
Wang Sheng-Hui 已提交
1697 1698 1699
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1700
 */
1701
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1702
{
1703
	void *freelist;
1704

1705 1706
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1707
	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1708 1709
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1710
		kmem_freepages(cachep, page);
1711 1712

	/*
1713
	 * From now on, we don't use freelist
1714 1715 1716
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1717
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1718 1719
}

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1730
/**
1731 1732 1733 1734 1735 1736
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1737 1738 1739 1740 1741
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1742
static size_t calculate_slab_order(struct kmem_cache *cachep,
1743
				size_t size, slab_flags_t flags)
1744 1745
{
	size_t left_over = 0;
1746
	int gfporder;
1747

1748
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1749 1750 1751
		unsigned int num;
		size_t remainder;

1752
		num = cache_estimate(gfporder, size, flags, &remainder);
1753 1754
		if (!num)
			continue;
1755

1756 1757 1758 1759
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1760
		if (flags & CFLGS_OFF_SLAB) {
1761 1762 1763 1764 1765 1766 1767 1768
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1769
			/*
1770
			 * Needed to avoid possible looping condition
1771
			 * in cache_grow_begin()
1772
			 */
1773 1774
			if (OFF_SLAB(freelist_cache))
				continue;
1775

1776 1777 1778
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1779
		}
1780

1781
		/* Found something acceptable - save it away */
1782
		cachep->num = num;
1783
		cachep->gfporder = gfporder;
1784 1785
		left_over = remainder;

1786 1787 1788 1789 1790 1791 1792 1793
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1794 1795 1796 1797
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1798
		if (gfporder >= slab_max_order)
1799 1800
			break;

1801 1802 1803
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1804
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1805 1806 1807 1808 1809
			break;
	}
	return left_over;
}

1810 1811 1812 1813 1814 1815 1816 1817
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1818
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1831
static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1832
{
1833
	if (slab_state >= FULL)
1834
		return enable_cpucache(cachep, gfp);
1835

1836 1837 1838 1839
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1840
	if (slab_state == DOWN) {
1841 1842
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1843
	} else if (slab_state == PARTIAL) {
1844 1845
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1846
	} else {
1847
		int node;
1848

1849 1850 1851 1852 1853
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1854 1855
		}
	}
1856

1857
	cachep->node[numa_mem_id()]->next_reap =
1858 1859
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1860 1861 1862 1863 1864 1865 1866

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1867
	return 0;
1868 1869
}

1870
slab_flags_t kmem_cache_flags(unsigned int object_size,
1871
	slab_flags_t flags, const char *name,
J
Joonsoo Kim 已提交
1872 1873 1874 1875 1876 1877
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
1878
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1879
		   slab_flags_t flags, void (*ctor)(void *))
J
Joonsoo Kim 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1896
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1897
			size_t size, slab_flags_t flags)
1898 1899 1900 1901 1902
{
	size_t left;

	cachep->num = 0;

1903
	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1919
static bool set_off_slab_cache(struct kmem_cache *cachep,
1920
			size_t size, slab_flags_t flags)
1921 1922 1923 1924 1925 1926
{
	size_t left;

	cachep->num = 0;

	/*
1927 1928
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
1954
			size_t size, slab_flags_t flags)
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
1969
/**
1970
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
1971
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
1972 1973 1974 1975
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
1976
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
1990
int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
L
Linus Torvalds 已提交
1991
{
1992
	size_t ralign = BYTES_PER_WORD;
1993
	gfp_t gfp;
1994
	int err;
1995
	unsigned int size = cachep->size;
L
Linus Torvalds 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2005 2006
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2007
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2008
	if (!(flags & SLAB_TYPESAFE_BY_RCU))
L
Linus Torvalds 已提交
2009 2010 2011 2012
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
2013 2014
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2015 2016 2017
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
2018
	size = ALIGN(size, BYTES_PER_WORD);
L
Linus Torvalds 已提交
2019

D
David Woodhouse 已提交
2020 2021 2022 2023
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
2024
		size = ALIGN(size, REDZONE_ALIGN);
D
David Woodhouse 已提交
2025
	}
2026

2027
	/* 3) caller mandated alignment */
2028 2029
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2030
	}
2031 2032
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2033
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2034
	/*
2035
	 * 4) Store it.
L
Linus Torvalds 已提交
2036
	 */
2037
	cachep->align = ralign;
2038 2039 2040 2041
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
2042

2043 2044 2045 2046 2047
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2048 2049
#if DEBUG

2050 2051 2052 2053
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2054 2055
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2056 2057
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2058 2059
	}
	if (flags & SLAB_STORE_USER) {
2060
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2061 2062
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2063
		 */
D
David Woodhouse 已提交
2064 2065 2066 2067
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2068
	}
2069 2070
#endif

A
Alexander Potapenko 已提交
2071 2072
	kasan_cache_create(cachep, &size, &flags);

2073 2074 2075 2076 2077 2078 2079 2080 2081
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2082 2083 2084 2085 2086 2087 2088
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2089
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2101 2102 2103
	}
#endif

2104 2105 2106 2107 2108
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2109
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2110
		flags |= CFLGS_OFF_SLAB;
2111
		goto done;
2112
	}
L
Linus Torvalds 已提交
2113

2114 2115
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2116

2117
	return -E2BIG;
L
Linus Torvalds 已提交
2118

2119 2120
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2121
	cachep->flags = flags;
2122
	cachep->allocflags = __GFP_COMP;
Y
Yang Shi 已提交
2123
	if (flags & SLAB_CACHE_DMA)
2124
		cachep->allocflags |= GFP_DMA;
2125 2126
	if (flags & SLAB_RECLAIM_ACCOUNT)
		cachep->allocflags |= __GFP_RECLAIMABLE;
2127
	cachep->size = size;
2128
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2129

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2143 2144
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2145
	}
L
Linus Torvalds 已提交
2146

2147 2148
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2149
		__kmem_cache_release(cachep);
2150
		return err;
2151
	}
L
Linus Torvalds 已提交
2152

2153
	return 0;
L
Linus Torvalds 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2167 2168 2169 2170 2171
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2172
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2173 2174 2175
{
#ifdef CONFIG_SMP
	check_irq_off();
2176
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2177 2178
#endif
}
2179

2180
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2181 2182 2183
{
#ifdef CONFIG_SMP
	check_irq_off();
2184
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2185 2186 2187
#endif
}

L
Linus Torvalds 已提交
2188 2189 2190
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2191
#define check_mutex_acquired()	do { } while(0)
L
Linus Torvalds 已提交
2192
#define check_spinlock_acquired(x) do { } while(0)
2193
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2194 2195
#endif

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2212

L
Linus Torvalds 已提交
2213 2214
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2215
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2216
	struct array_cache *ac;
2217
	int node = numa_mem_id();
2218
	struct kmem_cache_node *n;
2219
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2220 2221

	check_irq_off();
2222
	ac = cpu_cache_get(cachep);
2223 2224
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2225
	free_block(cachep, ac->entry, ac->avail, node, &list);
2226
	spin_unlock(&n->list_lock);
2227
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2228 2229 2230
	ac->avail = 0;
}

2231
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2232
{
2233
	struct kmem_cache_node *n;
2234
	int node;
2235
	LIST_HEAD(list);
2236

2237
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2238
	check_irq_on();
2239 2240
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2241
			drain_alien_cache(cachep, n->alien);
2242

2243 2244 2245 2246 2247 2248 2249
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
L
Linus Torvalds 已提交
2250 2251
}

2252 2253 2254 2255 2256 2257 2258
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2259
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2260
{
2261 2262
	struct list_head *p;
	int nr_freed;
2263
	struct page *page;
L
Linus Torvalds 已提交
2264

2265
	nr_freed = 0;
2266
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2267

2268 2269 2270 2271
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2272 2273
			goto out;
		}
L
Linus Torvalds 已提交
2274

2275 2276
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2277
		n->free_slabs--;
2278
		n->total_slabs--;
2279 2280 2281 2282
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2283 2284
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2285
		slab_destroy(cache, page);
2286
		nr_freed++;
L
Linus Torvalds 已提交
2287
	}
2288 2289
out:
	return nr_freed;
L
Linus Torvalds 已提交
2290 2291
}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
bool __kmem_cache_empty(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n)
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial))
			return false;
	return true;
}

2304
int __kmem_cache_shrink(struct kmem_cache *cachep)
2305
{
2306 2307
	int ret = 0;
	int node;
2308
	struct kmem_cache_node *n;
2309 2310 2311 2312

	drain_cpu_caches(cachep);

	check_irq_on();
2313
	for_each_kmem_cache_node(cachep, node, n) {
2314
		drain_freelist(cachep, n, INT_MAX);
2315

2316 2317
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2318 2319 2320 2321
	}
	return (ret ? 1 : 0);
}

2322 2323 2324 2325 2326 2327 2328
#ifdef CONFIG_MEMCG
void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
{
	__kmem_cache_shrink(cachep);
}
#endif

2329
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2330
{
2331
	return __kmem_cache_shrink(cachep);
2332 2333 2334
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2335
{
2336
	int i;
2337
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2338

T
Thomas Garnier 已提交
2339 2340
	cache_random_seq_destroy(cachep);

2341
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2342

2343
	/* NUMA: free the node structures */
2344 2345 2346 2347 2348
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2349
	}
L
Linus Torvalds 已提交
2350 2351
}

2352 2353
/*
 * Get the memory for a slab management obj.
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2365
 */
2366
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2367 2368
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2369
{
2370
	void *freelist;
2371
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2372

2373 2374 2375
	page->s_mem = addr + colour_off;
	page->active = 0;

2376 2377 2378
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2379
		/* Slab management obj is off-slab. */
2380
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2381
					      local_flags, nodeid);
2382
		if (!freelist)
L
Linus Torvalds 已提交
2383 2384
			return NULL;
	} else {
2385 2386 2387
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2388
	}
2389

2390
	return freelist;
L
Linus Torvalds 已提交
2391 2392
}

2393
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2394
{
2395
	return ((freelist_idx_t *)page->freelist)[idx];
2396 2397 2398
}

static inline void set_free_obj(struct page *page,
2399
					unsigned int idx, freelist_idx_t val)
2400
{
2401
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2402 2403
}

2404
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2405
{
2406
#if DEBUG
L
Linus Torvalds 已提交
2407 2408 2409
	int i;

	for (i = 0; i < cachep->num; i++) {
2410
		void *objp = index_to_obj(cachep, page, i);
2411

L
Linus Torvalds 已提交
2412 2413 2414 2415 2416 2417 2418 2419
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2420 2421 2422
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2423
		 */
A
Alexander Potapenko 已提交
2424 2425 2426
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2427
			cachep->ctor(objp + obj_offset(cachep));
A
Alexander Potapenko 已提交
2428 2429 2430
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
L
Linus Torvalds 已提交
2431 2432 2433

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2434
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2435
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2436
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2437
		}
2438 2439 2440 2441 2442
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
2443
	}
L
Linus Torvalds 已提交
2444
#endif
2445 2446
}

T
Thomas Garnier 已提交
2447 2448 2449 2450 2451
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Hold information during a freelist initialization */
union freelist_init_state {
	struct {
		unsigned int pos;
2452
		unsigned int *list;
T
Thomas Garnier 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
		unsigned int count;
	};
	struct rnd_state rnd_state;
};

/*
 * Initialize the state based on the randomization methode available.
 * return true if the pre-computed list is available, false otherwize.
 */
static bool freelist_state_initialize(union freelist_init_state *state,
				struct kmem_cache *cachep,
				unsigned int count)
{
	bool ret;
	unsigned int rand;

	/* Use best entropy available to define a random shift */
2470
	rand = get_random_int();
T
Thomas Garnier 已提交
2471 2472 2473 2474 2475 2476 2477 2478

	/* Use a random state if the pre-computed list is not available */
	if (!cachep->random_seq) {
		prandom_seed_state(&state->rnd_state, rand);
		ret = false;
	} else {
		state->list = cachep->random_seq;
		state->count = count;
2479
		state->pos = rand % count;
T
Thomas Garnier 已提交
2480 2481 2482 2483 2484 2485 2486 2487
		ret = true;
	}
	return ret;
}

/* Get the next entry on the list and randomize it using a random shift */
static freelist_idx_t next_random_slot(union freelist_init_state *state)
{
2488 2489 2490
	if (state->pos >= state->count)
		state->pos = 0;
	return state->list[state->pos++];
T
Thomas Garnier 已提交
2491 2492
}

2493 2494 2495 2496 2497 2498 2499
/* Swap two freelist entries */
static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
{
	swap(((freelist_idx_t *)page->freelist)[a],
		((freelist_idx_t *)page->freelist)[b]);
}

T
Thomas Garnier 已提交
2500 2501 2502 2503 2504 2505
/*
 * Shuffle the freelist initialization state based on pre-computed lists.
 * return true if the list was successfully shuffled, false otherwise.
 */
static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
{
2506
	unsigned int objfreelist = 0, i, rand, count = cachep->num;
T
Thomas Garnier 已提交
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
	union freelist_init_state state;
	bool precomputed;

	if (count < 2)
		return false;

	precomputed = freelist_state_initialize(&state, cachep, count);

	/* Take a random entry as the objfreelist */
	if (OBJFREELIST_SLAB(cachep)) {
		if (!precomputed)
			objfreelist = count - 1;
		else
			objfreelist = next_random_slot(&state);
		page->freelist = index_to_obj(cachep, page, objfreelist) +
						obj_offset(cachep);
		count--;
	}

	/*
	 * On early boot, generate the list dynamically.
	 * Later use a pre-computed list for speed.
	 */
	if (!precomputed) {
2531 2532 2533 2534 2535 2536 2537 2538 2539
		for (i = 0; i < count; i++)
			set_free_obj(page, i, i);

		/* Fisher-Yates shuffle */
		for (i = count - 1; i > 0; i--) {
			rand = prandom_u32_state(&state.rnd_state);
			rand %= (i + 1);
			swap_free_obj(page, i, rand);
		}
T
Thomas Garnier 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
	} else {
		for (i = 0; i < count; i++)
			set_free_obj(page, i, next_random_slot(&state));
	}

	if (OBJFREELIST_SLAB(cachep))
		set_free_obj(page, cachep->num - 1, objfreelist);

	return true;
}
#else
static inline bool shuffle_freelist(struct kmem_cache *cachep,
				struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

2558 2559 2560 2561
static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
A
Alexander Potapenko 已提交
2562
	void *objp;
T
Thomas Garnier 已提交
2563
	bool shuffled;
2564 2565 2566

	cache_init_objs_debug(cachep, page);

T
Thomas Garnier 已提交
2567 2568 2569 2570
	/* Try to randomize the freelist if enabled */
	shuffled = shuffle_freelist(cachep, page);

	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2571 2572 2573 2574
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2575
	for (i = 0; i < cachep->num; i++) {
2576 2577 2578
		objp = index_to_obj(cachep, page, i);
		kasan_init_slab_obj(cachep, objp);

2579
		/* constructor could break poison info */
A
Alexander Potapenko 已提交
2580 2581 2582 2583 2584
		if (DEBUG == 0 && cachep->ctor) {
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2585

T
Thomas Garnier 已提交
2586 2587
		if (!shuffled)
			set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2588 2589 2590
	}
}

2591
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2592
{
2593
	void *objp;
2594

2595
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2596
	page->active++;
2597

2598 2599 2600 2601 2602
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2603 2604 2605
	return objp;
}

2606 2607
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2608
{
2609
	unsigned int objnr = obj_to_index(cachep, page, objp);
2610
#if DEBUG
J
Joonsoo Kim 已提交
2611
	unsigned int i;
2612 2613

	/* Verify double free bug */
2614
	for (i = page->active; i < cachep->num; i++) {
2615
		if (get_free_obj(page, i) == objnr) {
2616
			pr_err("slab: double free detected in cache '%s', objp %px\n",
J
Joe Perches 已提交
2617
			       cachep->name, objp);
2618 2619
			BUG();
		}
2620 2621
	}
#endif
2622
	page->active--;
2623 2624 2625
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2626
	set_free_obj(page, page->active, objnr);
2627 2628
}

2629 2630 2631
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2632
 * virtual address for kfree, ksize, and slab debugging.
2633
 */
2634
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2635
			   void *freelist)
L
Linus Torvalds 已提交
2636
{
2637
	page->slab_cache = cache;
2638
	page->freelist = freelist;
L
Linus Torvalds 已提交
2639 2640 2641 2642 2643 2644
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2645 2646
static struct page *cache_grow_begin(struct kmem_cache *cachep,
				gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2647
{
2648
	void *freelist;
P
Pekka Enberg 已提交
2649 2650
	size_t offset;
	gfp_t local_flags;
2651
	int page_node;
2652
	struct kmem_cache_node *n;
2653
	struct page *page;
L
Linus Torvalds 已提交
2654

A
Andrew Morton 已提交
2655 2656 2657
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2658
	 */
2659
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2660
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2661 2662 2663 2664
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
		dump_stack();
2665
	}
2666
	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
C
Christoph Lameter 已提交
2667
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2668 2669

	check_irq_off();
2670
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2671 2672
		local_irq_enable();

A
Andrew Morton 已提交
2673 2674 2675
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2676
	 */
2677
	page = kmem_getpages(cachep, local_flags, nodeid);
2678
	if (!page)
L
Linus Torvalds 已提交
2679 2680
		goto failed;

2681 2682
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

L
Linus Torvalds 已提交
2695
	/* Get slab management. */
2696
	freelist = alloc_slabmgmt(cachep, page, offset,
2697
			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2698
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2699 2700
		goto opps1;

2701
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2702

A
Alexander Potapenko 已提交
2703
	kasan_poison_slab(page);
2704
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2705

2706
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2707 2708
		local_irq_disable();

2709 2710
	return page;

A
Andrew Morton 已提交
2711
opps1:
2712
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2713
failed:
2714
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2715
		local_irq_disable();
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
	return NULL;
}

static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
{
	struct kmem_cache_node *n;
	void *list = NULL;

	check_irq_off();

	if (!page)
		return;

	INIT_LIST_HEAD(&page->lru);
	n = get_node(cachep, page_to_nid(page));

	spin_lock(&n->list_lock);
2733
	n->total_slabs++;
2734
	if (!page->active) {
2735
		list_add_tail(&page->lru, &(n->slabs_free));
2736
		n->free_slabs++;
2737
	} else
2738
		fixup_slab_list(cachep, n, page, &list);
2739

2740 2741 2742 2743 2744
	STATS_INC_GROWN(cachep);
	n->free_objects += cachep->num - page->active;
	spin_unlock(&n->list_lock);

	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2757
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
P
Pekka Enberg 已提交
2758 2759
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2760 2761 2762
	}
}

2763 2764
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2765
	unsigned long long redzone1, redzone2;
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2781
	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2782
	       obj, redzone1, redzone2);
2783 2784
}

2785
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2786
				   unsigned long caller)
L
Linus Torvalds 已提交
2787 2788
{
	unsigned int objnr;
2789
	struct page *page;
L
Linus Torvalds 已提交
2790

2791 2792
	BUG_ON(virt_to_cache(objp) != cachep);

2793
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2794
	kfree_debugcheck(objp);
2795
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2796 2797

	if (cachep->flags & SLAB_RED_ZONE) {
2798
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2799 2800 2801
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2802 2803
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2804
		*dbg_userword(cachep, objp) = (void *)caller;
2805
	}
L
Linus Torvalds 已提交
2806

2807
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2808 2809

	BUG_ON(objnr >= cachep->num);
2810
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2811 2812 2813

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2814
		slab_kernel_map(cachep, objp, 0, caller);
L
Linus Torvalds 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2839
static inline void fixup_slab_list(struct kmem_cache *cachep,
2840 2841
				struct kmem_cache_node *n, struct page *page,
				void **list)
2842 2843 2844
{
	/* move slabp to correct slabp list: */
	list_del(&page->lru);
2845
	if (page->active == cachep->num) {
2846
		list_add(&page->lru, &n->slabs_full);
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2860 2861 2862
		list_add(&page->lru, &n->slabs_partial);
}

2863 2864
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2865
					struct page *page, bool pfmemalloc)
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&page->lru);
2884
	if (!page->active) {
2885
		list_add_tail(&page->lru, &n->slabs_free);
2886
		n->free_slabs++;
2887
	} else
2888 2889 2890 2891 2892 2893 2894
		list_add_tail(&page->lru, &n->slabs_partial);

	list_for_each_entry(page, &n->slabs_partial, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

2895
	n->free_touched = 1;
2896
	list_for_each_entry(page, &n->slabs_free, lru) {
2897
		if (!PageSlabPfmemalloc(page)) {
2898
			n->free_slabs--;
2899
			return page;
2900
		}
2901 2902 2903 2904 2905 2906
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2907 2908 2909
{
	struct page *page;

2910
	assert_spin_locked(&n->list_lock);
2911
	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2912 2913
	if (!page) {
		n->free_touched = 1;
2914 2915
		page = list_first_entry_or_null(&n->slabs_free, struct page,
						lru);
2916
		if (page)
2917
			n->free_slabs--;
2918 2919
	}

2920
	if (sk_memalloc_socks())
2921
		page = get_valid_first_slab(n, page, pfmemalloc);
2922

2923 2924 2925
	return page;
}

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
/*
 * Slab list should be fixed up by fixup_slab_list() for existing slab
 * or cache_grow_end() for new slab
 */
static __always_inline int alloc_block(struct kmem_cache *cachep,
		struct array_cache *ac, struct page *page, int batchcount)
{
	/*
	 * There must be at least one object available for
	 * allocation.
	 */
	BUG_ON(page->active >= cachep->num);

	while (page->active < cachep->num && batchcount--) {
		STATS_INC_ALLOCED(cachep);
		STATS_INC_ACTIVE(cachep);
		STATS_SET_HIGH(cachep);

		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
	}

	return batchcount;
}

2978
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2979 2980
{
	int batchcount;
2981
	struct kmem_cache_node *n;
2982
	struct array_cache *ac, *shared;
P
Pekka Enberg 已提交
2983
	int node;
2984
	void *list = NULL;
2985
	struct page *page;
P
Pekka Enberg 已提交
2986

L
Linus Torvalds 已提交
2987
	check_irq_off();
2988
	node = numa_mem_id();
2989

2990
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2991 2992
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2993 2994 2995 2996
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2997 2998 2999
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
3000
	n = get_node(cachep, node);
3001

3002
	BUG_ON(ac->avail > 0 || !n);
3003 3004 3005 3006
	shared = READ_ONCE(n->shared);
	if (!n->free_objects && (!shared || !shared->avail))
		goto direct_grow;

3007
	spin_lock(&n->list_lock);
3008
	shared = READ_ONCE(n->shared);
L
Linus Torvalds 已提交
3009

3010
	/* See if we can refill from the shared array */
3011 3012
	if (shared && transfer_objects(ac, shared, batchcount)) {
		shared->touched = 1;
3013
		goto alloc_done;
3014
	}
3015

L
Linus Torvalds 已提交
3016 3017
	while (batchcount > 0) {
		/* Get slab alloc is to come from. */
3018
		page = get_first_slab(n, false);
3019 3020
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
3021 3022

		check_spinlock_acquired(cachep);
3023

3024
		batchcount = alloc_block(cachep, ac, page, batchcount);
3025
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
3026 3027
	}

A
Andrew Morton 已提交
3028
must_grow:
3029
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
3030
alloc_done:
3031
	spin_unlock(&n->list_lock);
3032
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
3033

3034
direct_grow:
L
Linus Torvalds 已提交
3035
	if (unlikely(!ac->avail)) {
3036 3037 3038 3039 3040 3041 3042 3043
		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

3044
		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3045

3046 3047 3048 3049
		/*
		 * cache_grow_begin() can reenable interrupts,
		 * then ac could change.
		 */
3050
		ac = cpu_cache_get(cachep);
3051 3052 3053
		if (!ac->avail && page)
			alloc_block(cachep, ac, page, batchcount);
		cache_grow_end(cachep, page);
3054

3055
		if (!ac->avail)
L
Linus Torvalds 已提交
3056 3057 3058
			return NULL;
	}
	ac->touched = 1;
3059

3060
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3061 3062
}

A
Andrew Morton 已提交
3063 3064
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3065
{
3066
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
3067 3068 3069
}

#if DEBUG
A
Andrew Morton 已提交
3070
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3071
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3072
{
3073
	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
P
Pekka Enberg 已提交
3074
	if (!objp)
L
Linus Torvalds 已提交
3075
		return objp;
P
Pekka Enberg 已提交
3076
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3077
		check_poison_obj(cachep, objp);
3078
		slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
3079 3080 3081
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3082
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3083 3084

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3085 3086
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
3087
			slab_error(cachep, "double free, or memory outside object was overwritten");
3088
			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3089 3090
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3091 3092 3093 3094
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3095

3096
	objp += obj_offset(cachep);
3097
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3098
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3099 3100
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3101
		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3102
		       objp, (int)ARCH_SLAB_MINALIGN);
3103
	}
L
Linus Torvalds 已提交
3104 3105 3106 3107 3108 3109
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3110
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3111
{
P
Pekka Enberg 已提交
3112
	void *objp;
L
Linus Torvalds 已提交
3113 3114
	struct array_cache *ac;

3115
	check_irq_off();
3116

3117
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3118 3119
	if (likely(ac->avail)) {
		ac->touched = 1;
3120
		objp = ac->entry[--ac->avail];
3121

3122 3123
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
3124
	}
3125 3126

	STATS_INC_ALLOCMISS(cachep);
3127
	objp = cache_alloc_refill(cachep, flags);
3128 3129 3130 3131 3132 3133 3134
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3135 3136 3137 3138 3139
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3140 3141
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3142 3143 3144
	return objp;
}

3145
#ifdef CONFIG_NUMA
3146
/*
3147
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3148 3149 3150 3151 3152 3153 3154 3155
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3156
	if (in_interrupt() || (flags & __GFP_THISNODE))
3157
		return NULL;
3158
	nid_alloc = nid_here = numa_mem_id();
3159
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3160
		nid_alloc = cpuset_slab_spread_node();
3161
	else if (current->mempolicy)
3162
		nid_alloc = mempolicy_slab_node();
3163
	if (nid_alloc != nid_here)
3164
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3165 3166 3167
	return NULL;
}

3168 3169
/*
 * Fallback function if there was no memory available and no objects on a
3170
 * certain node and fall back is permitted. First we scan all the
3171
 * available node for available objects. If that fails then we
3172 3173 3174
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3175
 */
3176
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3177
{
3178
	struct zonelist *zonelist;
3179
	struct zoneref *z;
3180 3181
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3182
	void *obj = NULL;
3183
	struct page *page;
3184
	int nid;
3185
	unsigned int cpuset_mems_cookie;
3186 3187 3188 3189

	if (flags & __GFP_THISNODE)
		return NULL;

3190
retry_cpuset:
3191
	cpuset_mems_cookie = read_mems_allowed_begin();
3192
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3193

3194 3195 3196 3197 3198
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3199 3200
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3201

3202
		if (cpuset_zone_allowed(zone, flags) &&
3203 3204
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3205
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3206
					gfp_exact_node(flags), nid);
3207 3208 3209
				if (obj)
					break;
		}
3210 3211
	}

3212
	if (!obj) {
3213 3214 3215 3216 3217 3218
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3219 3220 3221 3222
		page = cache_grow_begin(cache, flags, numa_mem_id());
		cache_grow_end(cache, page);
		if (page) {
			nid = page_to_nid(page);
3223 3224
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);
3225

3226
			/*
3227 3228
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
3229
			 */
3230 3231
			if (!obj)
				goto retry;
3232
		}
3233
	}
3234

3235
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3236
		goto retry_cpuset;
3237 3238 3239
	return obj;
}

3240 3241
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3242
 */
3243
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3244
				int nodeid)
3245
{
3246
	struct page *page;
3247
	struct kmem_cache_node *n;
3248
	void *obj = NULL;
3249
	void *list = NULL;
P
Pekka Enberg 已提交
3250

3251
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3252
	n = get_node(cachep, nodeid);
3253
	BUG_ON(!n);
P
Pekka Enberg 已提交
3254

3255
	check_irq_off();
3256
	spin_lock(&n->list_lock);
3257
	page = get_first_slab(n, false);
3258 3259
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3260 3261 3262 3263 3264 3265 3266

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3267
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3268

3269
	obj = slab_get_obj(cachep, page);
3270
	n->free_objects--;
P
Pekka Enberg 已提交
3271

3272
	fixup_slab_list(cachep, n, page, &list);
3273

3274
	spin_unlock(&n->list_lock);
3275
	fixup_objfreelist_debug(cachep, &list);
3276
	return obj;
3277

A
Andrew Morton 已提交
3278
must_grow:
3279
	spin_unlock(&n->list_lock);
3280
	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3281 3282 3283 3284
	if (page) {
		/* This slab isn't counted yet so don't update free_objects */
		obj = slab_get_obj(cachep, page);
	}
3285
	cache_grow_end(cachep, page);
L
Linus Torvalds 已提交
3286

3287
	return obj ? obj : fallback_alloc(cachep, flags);
3288
}
3289 3290

static __always_inline void *
3291
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3292
		   unsigned long caller)
3293 3294 3295
{
	unsigned long save_flags;
	void *ptr;
3296
	int slab_node = numa_mem_id();
3297

3298
	flags &= gfp_allowed_mask;
3299 3300
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3301 3302
		return NULL;

3303 3304 3305
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3306
	if (nodeid == NUMA_NO_NODE)
3307
		nodeid = slab_node;
3308

3309
	if (unlikely(!get_node(cachep, nodeid))) {
3310 3311 3312 3313 3314
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3315
	if (nodeid == slab_node) {
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3332 3333
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3334

3335
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3336 3337 3338 3339 3340 3341 3342 3343
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3344
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3355 3356
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3372
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3373 3374 3375 3376
{
	unsigned long save_flags;
	void *objp;

3377
	flags &= gfp_allowed_mask;
3378 3379
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3380 3381
		return NULL;

3382 3383 3384 3385 3386 3387 3388
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3389 3390
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3391

3392
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3393 3394
	return objp;
}
3395 3396

/*
3397
 * Caller needs to acquire correct kmem_cache_node's list_lock
3398
 * @list: List of detached free slabs should be freed by caller
3399
 */
3400 3401
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3402 3403
{
	int i;
3404
	struct kmem_cache_node *n = get_node(cachep, node);
3405 3406 3407
	struct page *page;

	n->free_objects += nr_objects;
L
Linus Torvalds 已提交
3408 3409

	for (i = 0; i < nr_objects; i++) {
3410
		void *objp;
3411
		struct page *page;
L
Linus Torvalds 已提交
3412

3413 3414
		objp = objpp[i];

3415 3416
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3417
		check_spinlock_acquired_node(cachep, node);
3418
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3419 3420 3421
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
3422
		if (page->active == 0) {
3423
			list_add(&page->lru, &n->slabs_free);
3424 3425
			n->free_slabs++;
		} else {
L
Linus Torvalds 已提交
3426 3427 3428 3429
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3430
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3431 3432
		}
	}
3433 3434 3435 3436 3437

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

		page = list_last_entry(&n->slabs_free, struct page, lru);
3438
		list_move(&page->lru, list);
3439
		n->free_slabs--;
3440
		n->total_slabs--;
3441
	}
L
Linus Torvalds 已提交
3442 3443
}

3444
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3445 3446
{
	int batchcount;
3447
	struct kmem_cache_node *n;
3448
	int node = numa_mem_id();
3449
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3450 3451

	batchcount = ac->batchcount;
3452

L
Linus Torvalds 已提交
3453
	check_irq_off();
3454
	n = get_node(cachep, node);
3455 3456 3457
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3458
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3459 3460 3461
		if (max) {
			if (batchcount > max)
				batchcount = max;
3462
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3463
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3464 3465 3466 3467 3468
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3469
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3470
free_done:
L
Linus Torvalds 已提交
3471 3472 3473
#if STATS
	{
		int i = 0;
3474
		struct page *page;
L
Linus Torvalds 已提交
3475

3476
		list_for_each_entry(page, &n->slabs_free, lru) {
3477
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3478 3479 3480 3481 3482 3483

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3484
	spin_unlock(&n->list_lock);
3485
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3486
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3487
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3488 3489 3490
}

/*
A
Andrew Morton 已提交
3491 3492
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3493
 */
3494 3495
static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
					 unsigned long caller)
L
Linus Torvalds 已提交
3496
{
3497
	/* Put the object into the quarantine, don't touch it for now. */
3498
	if (kasan_slab_free(cachep, objp, _RET_IP_))
3499 3500 3501 3502
		return;

	___cache_free(cachep, objp, caller);
}
L
Linus Torvalds 已提交
3503

3504 3505 3506 3507
void ___cache_free(struct kmem_cache *cachep, void *objp,
		unsigned long caller)
{
	struct array_cache *ac = cpu_cache_get(cachep);
A
Alexander Potapenko 已提交
3508

L
Linus Torvalds 已提交
3509
	check_irq_off();
3510
	kmemleak_free_recursive(objp, cachep->flags);
3511
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3512

3513 3514 3515 3516 3517 3518 3519
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3520
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3521 3522
		return;

3523
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3524 3525 3526 3527 3528
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3529

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3550
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3551
{
3552
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3553

3554
	kasan_slab_alloc(cachep, ret, flags);
3555
	trace_kmem_cache_alloc(_RET_IP_, ret,
3556
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3557 3558

	return ret;
L
Linus Torvalds 已提交
3559 3560 3561
}
EXPORT_SYMBOL(kmem_cache_alloc);

3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3572
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3573
			  void **p)
3574
{
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3593 3594
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3605
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3606 3607 3608
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3609 3610 3611
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3612
#ifdef CONFIG_TRACING
3613
void *
3614
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3615
{
3616 3617
	void *ret;

3618
	ret = slab_alloc(cachep, flags, _RET_IP_);
3619

3620
	kasan_kmalloc(cachep, ret, size, flags);
3621
	trace_kmalloc(_RET_IP_, ret,
3622
		      size, cachep->size, flags);
3623
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3624
}
3625
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3626 3627
#endif

L
Linus Torvalds 已提交
3628
#ifdef CONFIG_NUMA
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3640 3641
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3642
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3643

3644
	kasan_slab_alloc(cachep, ret, flags);
3645
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3646
				    cachep->object_size, cachep->size,
3647
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3648 3649

	return ret;
3650
}
L
Linus Torvalds 已提交
3651 3652
EXPORT_SYMBOL(kmem_cache_alloc_node);

3653
#ifdef CONFIG_TRACING
3654
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3655
				  gfp_t flags,
3656 3657
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3658
{
3659 3660
	void *ret;

3661
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3662 3663

	kasan_kmalloc(cachep, ret, size, flags);
3664
	trace_kmalloc_node(_RET_IP_, ret,
3665
			   size, cachep->size,
3666 3667
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3668
}
3669
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3670 3671
#endif

3672
static __always_inline void *
3673
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3674
{
3675
	struct kmem_cache *cachep;
A
Alexander Potapenko 已提交
3676
	void *ret;
3677

3678
	cachep = kmalloc_slab(size, flags);
3679 3680
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
A
Alexander Potapenko 已提交
3681
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3682
	kasan_kmalloc(cachep, ret, size, flags);
A
Alexander Potapenko 已提交
3683 3684

	return ret;
3685
}
3686 3687 3688

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3689
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3690
}
3691
EXPORT_SYMBOL(__kmalloc_node);
3692 3693

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3694
		int node, unsigned long caller)
3695
{
3696
	return __do_kmalloc_node(size, flags, node, caller);
3697 3698 3699
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3700 3701

/**
3702
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3703
 * @size: how many bytes of memory are required.
3704
 * @flags: the type of memory to allocate (see kmalloc).
3705
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3706
 */
3707
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3708
					  unsigned long caller)
L
Linus Torvalds 已提交
3709
{
3710
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3711
	void *ret;
L
Linus Torvalds 已提交
3712

3713
	cachep = kmalloc_slab(size, flags);
3714 3715
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3716
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3717

3718
	kasan_kmalloc(cachep, ret, size, flags);
3719
	trace_kmalloc(caller, ret,
3720
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3721 3722

	return ret;
3723 3724 3725 3726
}

void *__kmalloc(size_t size, gfp_t flags)
{
3727
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3728 3729 3730
}
EXPORT_SYMBOL(__kmalloc);

3731
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3732
{
3733
	return __do_kmalloc(size, flags, caller);
3734 3735
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3736

L
Linus Torvalds 已提交
3737 3738 3739 3740 3741 3742 3743 3744
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3745
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3746 3747
{
	unsigned long flags;
3748 3749 3750
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3751 3752

	local_irq_save(flags);
3753
	debug_check_no_locks_freed(objp, cachep->object_size);
3754
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3755
		debug_check_no_obj_freed(objp, cachep->object_size);
3756
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3757
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3758

3759
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3760 3761 3762
}
EXPORT_SYMBOL(kmem_cache_free);

3763 3764 3765 3766 3767 3768 3769 3770 3771
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3772 3773 3774 3775
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3789 3790 3791 3792
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3793 3794
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3795 3796 3797 3798 3799
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3800
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3801 3802
	unsigned long flags;

3803 3804
	trace_kfree(_RET_IP_, objp);

3805
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3806 3807 3808
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3809
	c = virt_to_cache(objp);
3810 3811 3812
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3813
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3814 3815 3816 3817
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3818
/*
3819
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3820
 */
3821
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3822
{
3823
	int ret;
3824
	int node;
3825
	struct kmem_cache_node *n;
3826

3827
	for_each_online_node(node) {
3828 3829
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
3830 3831 3832
			goto fail;

	}
3833

3834
	return 0;
3835

A
Andrew Morton 已提交
3836
fail:
3837
	if (!cachep->list.next) {
3838 3839 3840
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3841 3842
			n = get_node(cachep, node);
			if (n) {
3843 3844 3845
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3846
				cachep->node[node] = NULL;
3847 3848 3849 3850
			}
			node--;
		}
	}
3851
	return -ENOMEM;
3852 3853
}

3854
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3855
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3856
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3857
{
3858 3859
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3860

3861 3862
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3863 3864
		return -ENOMEM;

3865 3866
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
3867 3868 3869 3870 3871 3872
	/*
	 * Without a previous cpu_cache there's no need to synchronize remote
	 * cpus, so skip the IPIs.
	 */
	if (prev)
		kick_all_cpus_sync();
3873

L
Linus Torvalds 已提交
3874 3875 3876
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3877
	cachep->shared = shared;
L
Linus Torvalds 已提交
3878

3879
	if (!prev)
3880
		goto setup_node;
3881 3882

	for_each_online_cpu(cpu) {
3883
		LIST_HEAD(list);
3884 3885
		int node;
		struct kmem_cache_node *n;
3886
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3887

3888
		node = cpu_to_mem(cpu);
3889 3890
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3891
		free_block(cachep, ac->entry, ac->avail, node, &list);
3892
		spin_unlock_irq(&n->list_lock);
3893
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3894
	}
3895 3896
	free_percpu(prev);

3897 3898
setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
L
Linus Torvalds 已提交
3899 3900
}

G
Glauber Costa 已提交
3901 3902 3903 3904
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3905
	struct kmem_cache *c;
G
Glauber Costa 已提交
3906 3907 3908 3909 3910 3911 3912 3913 3914

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3915 3916 3917 3918
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3919 3920 3921 3922 3923
	}

	return ret;
}

3924
/* Called with slab_mutex held always */
3925
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3926 3927
{
	int err;
G
Glauber Costa 已提交
3928 3929 3930 3931
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

3932
	err = cache_random_seq_create(cachep, cachep->num, gfp);
T
Thomas Garnier 已提交
3933 3934 3935
	if (err)
		goto end;

G
Glauber Costa 已提交
3936 3937 3938 3939 3940 3941
	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3942

G
Glauber Costa 已提交
3943 3944
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3945 3946
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3947 3948
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3949
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3950 3951 3952 3953
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3954
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3955
		limit = 1;
3956
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3957
		limit = 8;
3958
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3959
		limit = 24;
3960
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3961 3962 3963 3964
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3965 3966
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3967 3968 3969 3970 3971 3972 3973 3974
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3975
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3976 3977 3978
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3979 3980 3981
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3982 3983 3984 3985
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3986 3987 3988
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
T
Thomas Garnier 已提交
3989
end:
L
Linus Torvalds 已提交
3990
	if (err)
3991
		pr_err("enable_cpucache failed for %s, error %d\n",
P
Pekka Enberg 已提交
3992
		       cachep->name, -err);
3993
	return err;
L
Linus Torvalds 已提交
3994 3995
}

3996
/*
3997 3998
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3999
 * if drain_array() is used on the shared array.
4000
 */
4001
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4002
			 struct array_cache *ac, int node)
L
Linus Torvalds 已提交
4003
{
4004
	LIST_HEAD(list);
4005 4006 4007

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
L
Linus Torvalds 已提交
4008

4009 4010
	if (!ac || !ac->avail)
		return;
4011 4012

	if (ac->touched) {
L
Linus Torvalds 已提交
4013
		ac->touched = 0;
4014
		return;
L
Linus Torvalds 已提交
4015
	}
4016 4017 4018 4019 4020 4021

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
4022 4023 4024 4025
}

/**
 * cache_reap - Reclaim memory from caches.
4026
 * @w: work descriptor
L
Linus Torvalds 已提交
4027 4028 4029 4030 4031 4032
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4033 4034
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4035
 */
4036
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4037
{
4038
	struct kmem_cache *searchp;
4039
	struct kmem_cache_node *n;
4040
	int node = numa_mem_id();
4041
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4042

4043
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4044
		/* Give up. Setup the next iteration. */
4045
		goto out;
L
Linus Torvalds 已提交
4046

4047
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4048 4049
		check_irq_on();

4050
		/*
4051
		 * We only take the node lock if absolutely necessary and we
4052 4053 4054
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4055
		n = get_node(searchp, node);
4056

4057
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4058

4059
		drain_array(searchp, n, cpu_cache_get(searchp), node);
L
Linus Torvalds 已提交
4060

4061 4062 4063 4064
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4065
		if (time_after(n->next_reap, jiffies))
4066
			goto next;
L
Linus Torvalds 已提交
4067

4068
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4069

4070
		drain_array(searchp, n, n->shared, node);
L
Linus Torvalds 已提交
4071

4072 4073
		if (n->free_touched)
			n->free_touched = 0;
4074 4075
		else {
			int freed;
L
Linus Torvalds 已提交
4076

4077
			freed = drain_freelist(searchp, n, (n->free_limit +
4078 4079 4080
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4081
next:
L
Linus Torvalds 已提交
4082 4083 4084
		cond_resched();
	}
	check_irq_on();
4085
	mutex_unlock(&slab_mutex);
4086
	next_reap_node();
4087
out:
A
Andrew Morton 已提交
4088
	/* Set up the next iteration */
4089 4090
	schedule_delayed_work_on(smp_processor_id(), work,
				round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4091 4092
}

4093
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4094
{
4095
	unsigned long active_objs, num_objs, active_slabs;
4096 4097
	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
	unsigned long free_slabs = 0;
4098
	int node;
4099
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4100

4101
	for_each_kmem_cache_node(cachep, node, n) {
4102
		check_irq_on();
4103
		spin_lock_irq(&n->list_lock);
4104

4105 4106
		total_slabs += n->total_slabs;
		free_slabs += n->free_slabs;
4107
		free_objs += n->free_objects;
4108

4109 4110
		if (n->shared)
			shared_avail += n->shared->avail;
4111

4112
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4113
	}
4114 4115
	num_objs = total_slabs * cachep->num;
	active_slabs = total_slabs - free_slabs;
4116
	active_objs = num_objs - free_objs;
L
Linus Torvalds 已提交
4117

4118 4119 4120
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
4121
	sinfo->num_slabs = total_slabs;
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4132
#if STATS
4133
	{			/* node stats */
L
Linus Torvalds 已提交
4134 4135 4136 4137 4138 4139 4140
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4141
		unsigned long node_frees = cachep->node_frees;
4142
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4143

J
Joe Perches 已提交
4144
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4145 4146 4147
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4148 4149 4150 4151 4152 4153 4154 4155 4156
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4157
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4170
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4171
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4172
{
P
Pekka Enberg 已提交
4173
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4174
	int limit, batchcount, shared, res;
4175
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4176

L
Linus Torvalds 已提交
4177 4178 4179 4180
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4181
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4192
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4193
	res = -EINVAL;
4194
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4195
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4196 4197
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4198
				res = 0;
L
Linus Torvalds 已提交
4199
			} else {
4200
				res = do_tune_cpucache(cachep, limit,
4201 4202
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4203 4204 4205 4206
			}
			break;
		}
	}
4207
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4208 4209 4210 4211
	if (res >= 0)
		res = count;
	return res;
}
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4245 4246
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4247 4248
{
	void *p;
4249 4250
	int i, j;
	unsigned long v;
4251

4252 4253
	if (n[0] == n[1])
		return;
4254
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4265
			continue;
4266

4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4277 4278 4279 4280 4281 4282 4283 4284
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4285
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4286

4287
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4288
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4289
		if (modname[0])
4290 4291 4292 4293
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
4294
	seq_printf(m, "%px", (void *)address);
4295 4296 4297 4298
}

static int leaks_show(struct seq_file *m, void *p)
{
4299
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4300
	struct page *page;
4301
	struct kmem_cache_node *n;
4302
	const char *name;
4303
	unsigned long *x = m->private;
4304 4305 4306 4307 4308 4309 4310 4311
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4323

4324
		for_each_kmem_cache_node(cachep, node, n) {
4325

4326 4327
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4328

4329 4330 4331 4332 4333 4334 4335
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4336 4337

	name = cachep->name;
4338
	if (x[0] == x[1]) {
4339
		/* Increase the buffer size */
4340
		mutex_unlock(&slab_mutex);
4341
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4342 4343
		if (!m->private) {
			/* Too bad, we are really out */
4344
			m->private = x;
4345
			mutex_lock(&slab_mutex);
4346 4347
			return -ENOMEM;
		}
4348 4349
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4350
		mutex_lock(&slab_mutex);
4351 4352 4353 4354
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4355 4356 4357
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4358 4359
		seq_putc(m, '\n');
	}
4360

4361 4362 4363
	return 0;
}

4364
static const struct seq_operations slabstats_op = {
4365
	.start = slab_start,
4366 4367
	.next = slab_next,
	.stop = slab_stop,
4368 4369
	.show = leaks_show,
};
4370 4371 4372

static int slabstats_open(struct inode *inode, struct file *file)
{
4373 4374 4375 4376 4377 4378 4379 4380 4381
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4396
#endif
4397 4398 4399
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4400

K
Kees Cook 已提交
4401 4402
#ifdef CONFIG_HARDENED_USERCOPY
/*
4403 4404 4405
 * Rejects incorrectly sized objects and objects that are to be copied
 * to/from userspace but do not fall entirely within the containing slab
 * cache's usercopy region.
K
Kees Cook 已提交
4406 4407 4408 4409
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
4410 4411
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			 bool to_user)
K
Kees Cook 已提交
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
{
	struct kmem_cache *cachep;
	unsigned int objnr;
	unsigned long offset;

	/* Find and validate object. */
	cachep = page->slab_cache;
	objnr = obj_to_index(cachep, page, (void *)ptr);
	BUG_ON(objnr >= cachep->num);

	/* Find offset within object. */
	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);

4425 4426 4427 4428
	/* Allow address range falling entirely within usercopy region. */
	if (offset >= cachep->useroffset &&
	    offset - cachep->useroffset <= cachep->usersize &&
	    n <= cachep->useroffset - offset + cachep->usersize)
4429
		return;
K
Kees Cook 已提交
4430

4431 4432 4433 4434 4435 4436
	/*
	 * If the copy is still within the allocated object, produce
	 * a warning instead of rejecting the copy. This is intended
	 * to be a temporary method to find any missing usercopy
	 * whitelists.
	 */
4437 4438
	if (usercopy_fallback &&
	    offset <= cachep->object_size &&
4439 4440 4441 4442
	    n <= cachep->object_size - offset) {
		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
		return;
	}
K
Kees Cook 已提交
4443

4444
	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
K
Kees Cook 已提交
4445 4446 4447
}
#endif /* CONFIG_HARDENED_USERCOPY */

4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4460
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4461
{
A
Alexander Potapenko 已提交
4462 4463
	size_t size;

4464 4465
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4466
		return 0;
L
Linus Torvalds 已提交
4467

A
Alexander Potapenko 已提交
4468 4469 4470 4471
	size = virt_to_cache(objp)->object_size;
	/* We assume that ksize callers could use the whole allocated area,
	 * so we need to unpoison this area.
	 */
4472
	kasan_unpoison_shadow(objp, size);
A
Alexander Potapenko 已提交
4473 4474

	return size;
L
Linus Torvalds 已提交
4475
}
K
Kirill A. Shutemov 已提交
4476
EXPORT_SYMBOL(ksize);