slab.c 107.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171 172 173 174 175 176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	void *entry[];	/*
A
Andrew Morton 已提交
195 196 197
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
198 199 200 201
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
202
			 */
L
Linus Torvalds 已提交
203 204
};

J
Joonsoo Kim 已提交
205 206 207 208 209
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

227 228 229
/*
 * Need this for bootstrapping a per node allocator.
 */
230
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
231
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
232
#define	CACHE_CACHE 0
233
#define	SIZE_NODE (MAX_NUMNODES)
234

235
static int drain_freelist(struct kmem_cache *cache,
236
			struct kmem_cache_node *n, int tofree);
237
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
238 239
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
240
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
241
static void cache_reap(struct work_struct *unused);
242

243 244
static int slab_early_init = 1;

245
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
246

247
static void kmem_cache_node_init(struct kmem_cache_node *parent)
248 249 250 251 252 253
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
254
	parent->colour_next = 0;
255 256 257 258 259
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
260 261 262
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
263
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
264 265
	} while (0)

A
Andrew Morton 已提交
266 267
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
268 269 270 271
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
272 273 274

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
275
#define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
L
Linus Torvalds 已提交
276 277

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
278 279 280
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
281
 *
A
Adrian Bunk 已提交
282
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
283 284
 * which could lock up otherwise freeable slabs.
 */
285 286
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
287 288 289 290 291 292

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
293
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
294 295 296 297 298
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
299 300
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
301
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
302
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
303 304 305 306 307
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
308 309 310 311 312 313 314 315 316
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
317
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
318 319 320
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
321
#define	STATS_INC_NODEFREES(x)	do { } while (0)
322
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
323
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
324 325 326 327 328 329 330 331
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
332 333
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
334
 * 0		: objp
335
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
336 337
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
338
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
339
 * 		redzone word.
340
 * cachep->obj_offset: The real object.
341 342
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
343
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
344
 */
345
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
346
{
347
	return cachep->obj_offset;
L
Linus Torvalds 已提交
348 349
}

350
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
351 352
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
353 354
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
355 356
}

357
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
358 359 360
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
361
		return (unsigned long long *)(objp + cachep->size -
362
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
363
					      REDZONE_ALIGN);
364
	return (unsigned long long *) (objp + cachep->size -
365
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
366 367
}

368
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
369 370
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
371
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
372 373 374 375
}

#else

376
#define obj_offset(x)			0
377 378
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
379 380 381 382
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

383 384
#ifdef CONFIG_DEBUG_SLAB_LEAK

385
static inline bool is_store_user_clean(struct kmem_cache *cachep)
386
{
387 388
	return atomic_read(&cachep->store_user_clean) == 1;
}
389

390 391 392 393
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
394

395 396 397 398
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
399 400 401
}

#else
402
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
403 404 405

#endif

L
Linus Torvalds 已提交
406
/*
407 408
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
409
 */
410 411 412
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
413
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
414

415 416
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
417
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
418
	return page->slab_cache;
419 420
}

421
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
422 423
				 unsigned int idx)
{
424
	return page->s_mem + cache->size * idx;
425 426
}

427
/*
428 429 430
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
431 432 433
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
434
					const struct page *page, void *obj)
435
{
436
	u32 offset = (obj - page->s_mem);
437
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
438 439
}

440
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
441
/* internal cache of cache description objs */
442
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
443 444 445
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
446
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
447
	.name = "kmem_cache",
L
Linus Torvalds 已提交
448 449
};

450 451
#define BAD_ALIEN_MAGIC 0x01020304ul

452
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
453

454
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
455
{
456
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
457 458
}

459 460 461 462 463 464 465 466 467 468 469
static size_t calculate_freelist_size(int nr_objs, size_t align)
{
	size_t freelist_size;

	freelist_size = nr_objs * sizeof(freelist_idx_t);
	if (align)
		freelist_size = ALIGN(freelist_size, align);

	return freelist_size;
}

470 471
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
L
Linus Torvalds 已提交
472
{
473
	int nr_objs;
474
	size_t remained_size;
475 476 477 478 479 480 481 482 483 484
	size_t freelist_size;

	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
485
	nr_objs = slab_size / (buffer_size + idx_size);
486 487 488 489 490

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
491 492 493
	remained_size = slab_size - nr_objs * buffer_size;
	freelist_size = calculate_freelist_size(nr_objs, align);
	if (remained_size < freelist_size)
494 495 496
		nr_objs--;

	return nr_objs;
497
}
L
Linus Torvalds 已提交
498

A
Andrew Morton 已提交
499 500 501
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
502 503 504 505 506 507 508
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
509

510 511 512 513 514
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
J
Joonsoo Kim 已提交
515
	 * - One freelist_idx_t for each object
516 517 518 519 520 521 522 523 524 525 526 527 528
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
529
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
530
					sizeof(freelist_idx_t), align);
531
		mgmt_size = calculate_freelist_size(nr_objs, align);
532 533 534
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
535 536
}

537
#if DEBUG
538
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
539

A
Andrew Morton 已提交
540 541
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
542 543
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
544
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
545
	dump_stack();
546
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
547
}
548
#endif
L
Linus Torvalds 已提交
549

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

566 567 568 569 570 571 572 573 574 575 576
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

577 578 579 580 581 582 583
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
584
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
585 586 587 588 589

static void init_reap_node(int cpu)
{
	int node;

590
	node = next_node(cpu_to_mem(cpu), node_online_map);
591
	if (node == MAX_NUMNODES)
592
		node = first_node(node_online_map);
593

594
	per_cpu(slab_reap_node, cpu) = node;
595 596 597 598
}

static void next_reap_node(void)
{
599
	int node = __this_cpu_read(slab_reap_node);
600 601 602 603

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
604
	__this_cpu_write(slab_reap_node, node);
605 606 607 608 609 610 611
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
612 613 614 615 616 617 618
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
619
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
620
{
621
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
622 623 624 625 626 627

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
628
	if (keventd_up() && reap_work->work.func == NULL) {
629
		init_reap_node(cpu);
630
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
631 632
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
633 634 635
	}
}

636
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
637
{
638 639
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
640
	 * However, when such objects are allocated or transferred to another
641 642 643 644
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
645 646 647 648 649 650
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
651
	}
652 653 654 655 656
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
657
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
658 659 660 661 662
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
663 664
}

665
static inline bool is_slab_pfmemalloc(struct page *page)
666 667 668 669 670 671 672 673
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
674
	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
675
	struct page *page;
676 677 678 679 680
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

681
	spin_lock_irqsave(&n->list_lock, flags);
682 683
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
684 685
			goto out;

686 687
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
688 689
			goto out;

690 691
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
692 693 694 695
			goto out;

	pfmemalloc_active = false;
out:
696
	spin_unlock_irqrestore(&n->list_lock, flags);
697 698
}

699
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
700 701 702 703 704 705 706
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
707
		struct kmem_cache_node *n;
708 709 710 711 712 713 714

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
715
		for (i = 0; i < ac->avail; i++) {
716 717 718 719 720 721 722 723 724 725 726 727 728
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
729
		n = get_node(cachep, numa_mem_id());
730
		if (!list_empty(&n->slabs_free) && force_refill) {
731
			struct page *page = virt_to_head_page(objp);
732
			ClearPageSlabPfmemalloc(page);
733 734 735 736 737 738 739 740 741 742 743 744 745
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

746 747 748 749 750 751 752 753 754 755 756 757 758
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

J
Joonsoo Kim 已提交
759 760
static noinline void *__ac_put_obj(struct kmem_cache *cachep,
			struct array_cache *ac, void *objp)
761 762 763
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
764
		struct page *page = virt_to_head_page(objp);
765 766 767 768
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

769 770 771 772 773 774 775 776 777
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

778 779 780
	ac->entry[ac->avail++] = objp;
}

781 782 783 784 785 786 787 788 789 790
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
791
	int nr = min3(from->avail, max, to->limit - to->avail);
792 793 794 795 796 797 798 799 800 801 802 803

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

804 805 806
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
807
#define reap_alien(cachep, n) do { } while (0)
808

J
Joonsoo Kim 已提交
809 810
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
811
{
812
	return (struct alien_cache **)BAD_ALIEN_MAGIC;
813 814
}

J
Joonsoo Kim 已提交
815
static inline void free_alien_cache(struct alien_cache **ac_ptr)
816 817 818 819 820 821 822 823 824 825 826 827 828 829
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

830
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
831 832 833 834 835
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
836 837 838 839 840
static inline gfp_t gfp_exact_node(gfp_t flags)
{
	return flags;
}

841 842
#else	/* CONFIG_NUMA */

843
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
844
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
845

J
Joonsoo Kim 已提交
846 847 848
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
849
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
850 851 852 853
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
854
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
855 856 857 858
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
859
{
J
Joonsoo Kim 已提交
860
	struct alien_cache **alc_ptr;
861
	size_t memsize = sizeof(void *) * nr_node_ids;
862 863 864 865
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
879 880
		}
	}
J
Joonsoo Kim 已提交
881
	return alc_ptr;
882 883
}

J
Joonsoo Kim 已提交
884
static void free_alien_cache(struct alien_cache **alc_ptr)
885 886 887
{
	int i;

J
Joonsoo Kim 已提交
888
	if (!alc_ptr)
889 890
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
891 892
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
893 894
}

895
static void __drain_alien_cache(struct kmem_cache *cachep,
896 897
				struct array_cache *ac, int node,
				struct list_head *list)
898
{
899
	struct kmem_cache_node *n = get_node(cachep, node);
900 901

	if (ac->avail) {
902
		spin_lock(&n->list_lock);
903 904 905 906 907
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
908 909
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
910

911
		free_block(cachep, ac->entry, ac->avail, node, list);
912
		ac->avail = 0;
913
		spin_unlock(&n->list_lock);
914 915 916
	}
}

917 918 919
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
920
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
921
{
922
	int node = __this_cpu_read(slab_reap_node);
923

924
	if (n->alien) {
J
Joonsoo Kim 已提交
925 926 927 928 929
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
930
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
931 932 933
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
934
				spin_unlock_irq(&alc->lock);
935
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
936
			}
937 938 939 940
		}
	}
}

A
Andrew Morton 已提交
941
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
942
				struct alien_cache **alien)
943
{
P
Pekka Enberg 已提交
944
	int i = 0;
J
Joonsoo Kim 已提交
945
	struct alien_cache *alc;
946 947 948 949
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
950 951
		alc = alien[i];
		if (alc) {
952 953
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
954
			ac = &alc->ac;
955
			spin_lock_irqsave(&alc->lock, flags);
956
			__drain_alien_cache(cachep, ac, i, &list);
957
			spin_unlock_irqrestore(&alc->lock, flags);
958
			slabs_destroy(cachep, &list);
959 960 961
		}
	}
}
962

963 964
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
965
{
966
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
967 968
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
969
	LIST_HEAD(list);
P
Pekka Enberg 已提交
970

971
	n = get_node(cachep, node);
972
	STATS_INC_NODEFREES(cachep);
973 974
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
975
		ac = &alien->ac;
976
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
977
		if (unlikely(ac->avail == ac->limit)) {
978
			STATS_INC_ACOVERFLOW(cachep);
979
			__drain_alien_cache(cachep, ac, page_node, &list);
980
		}
J
Joonsoo Kim 已提交
981
		ac_put_obj(cachep, ac, objp);
982
		spin_unlock(&alien->lock);
983
		slabs_destroy(cachep, &list);
984
	} else {
985
		n = get_node(cachep, page_node);
986
		spin_lock(&n->list_lock);
987
		free_block(cachep, &objp, 1, page_node, &list);
988
		spin_unlock(&n->list_lock);
989
		slabs_destroy(cachep, &list);
990 991 992
	}
	return 1;
}
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
1007 1008

/*
1009 1010
 * Construct gfp mask to allocate from a specific node but do not direct reclaim
 * or warn about failures. kswapd may still wake to reclaim in the background.
D
David Rientjes 已提交
1011 1012 1013
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
1014
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
D
David Rientjes 已提交
1015
}
1016 1017
#endif

1018
/*
1019
 * Allocates and initializes node for a node on each slab cache, used for
1020
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1021
 * will be allocated off-node since memory is not yet online for the new node.
1022
 * When hotplugging memory or a cpu, existing node are not replaced if
1023 1024
 * already in use.
 *
1025
 * Must hold slab_mutex.
1026
 */
1027
static int init_cache_node_node(int node)
1028 1029
{
	struct kmem_cache *cachep;
1030
	struct kmem_cache_node *n;
1031
	const size_t memsize = sizeof(struct kmem_cache_node);
1032

1033
	list_for_each_entry(cachep, &slab_caches, list) {
1034
		/*
1035
		 * Set up the kmem_cache_node for cpu before we can
1036 1037 1038
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1039 1040
		n = get_node(cachep, node);
		if (!n) {
1041 1042
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1043
				return -ENOMEM;
1044
			kmem_cache_node_init(n);
1045 1046
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1047 1048

			/*
1049 1050
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
1051 1052
			 * protection here.
			 */
1053
			cachep->node[node] = n;
1054 1055
		}

1056 1057
		spin_lock_irq(&n->list_lock);
		n->free_limit =
1058 1059
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1060
		spin_unlock_irq(&n->list_lock);
1061 1062 1063 1064
	}
	return 0;
}

1065 1066 1067 1068 1069 1070
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1071
static void cpuup_canceled(long cpu)
1072 1073
{
	struct kmem_cache *cachep;
1074
	struct kmem_cache_node *n = NULL;
1075
	int node = cpu_to_mem(cpu);
1076
	const struct cpumask *mask = cpumask_of_node(node);
1077

1078
	list_for_each_entry(cachep, &slab_caches, list) {
1079 1080
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
1081
		struct alien_cache **alien;
1082
		LIST_HEAD(list);
1083

1084
		n = get_node(cachep, node);
1085
		if (!n)
1086
			continue;
1087

1088
		spin_lock_irq(&n->list_lock);
1089

1090 1091
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1092 1093 1094 1095

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1096
			free_block(cachep, nc->entry, nc->avail, node, &list);
1097 1098
			nc->avail = 0;
		}
1099

1100
		if (!cpumask_empty(mask)) {
1101
			spin_unlock_irq(&n->list_lock);
1102
			goto free_slab;
1103 1104
		}

1105
		shared = n->shared;
1106 1107
		if (shared) {
			free_block(cachep, shared->entry,
1108
				   shared->avail, node, &list);
1109
			n->shared = NULL;
1110 1111
		}

1112 1113
		alien = n->alien;
		n->alien = NULL;
1114

1115
		spin_unlock_irq(&n->list_lock);
1116 1117 1118 1119 1120 1121

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1122 1123

free_slab:
1124
		slabs_destroy(cachep, &list);
1125 1126 1127 1128 1129 1130
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1131
	list_for_each_entry(cachep, &slab_caches, list) {
1132
		n = get_node(cachep, node);
1133
		if (!n)
1134
			continue;
1135
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1136 1137 1138
	}
}

1139
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1140
{
1141
	struct kmem_cache *cachep;
1142
	struct kmem_cache_node *n = NULL;
1143
	int node = cpu_to_mem(cpu);
1144
	int err;
L
Linus Torvalds 已提交
1145

1146 1147 1148 1149
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1150
	 * kmem_cache_node and not this cpu's kmem_cache_node
1151
	 */
1152
	err = init_cache_node_node(node);
1153 1154
	if (err < 0)
		goto bad;
1155 1156 1157 1158 1159

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1160
	list_for_each_entry(cachep, &slab_caches, list) {
1161
		struct array_cache *shared = NULL;
J
Joonsoo Kim 已提交
1162
		struct alien_cache **alien = NULL;
1163 1164 1165 1166

		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1167
				0xbaadf00d, GFP_KERNEL);
1168
			if (!shared)
L
Linus Torvalds 已提交
1169
				goto bad;
1170 1171
		}
		if (use_alien_caches) {
1172
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1173 1174
			if (!alien) {
				kfree(shared);
1175
				goto bad;
1176
			}
1177
		}
1178
		n = get_node(cachep, node);
1179
		BUG_ON(!n);
1180

1181 1182
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1183 1184 1185 1186
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1187
			n->shared = shared;
1188 1189
			shared = NULL;
		}
1190
#ifdef CONFIG_NUMA
1191 1192
		if (!n->alien) {
			n->alien = alien;
1193
			alien = NULL;
L
Linus Torvalds 已提交
1194
		}
1195
#endif
1196
		spin_unlock_irq(&n->list_lock);
1197 1198 1199
		kfree(shared);
		free_alien_cache(alien);
	}
1200

1201 1202
	return 0;
bad:
1203
	cpuup_canceled(cpu);
1204 1205 1206
	return -ENOMEM;
}

1207
static int cpuup_callback(struct notifier_block *nfb,
1208 1209 1210 1211 1212 1213 1214 1215
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1216
		mutex_lock(&slab_mutex);
1217
		err = cpuup_prepare(cpu);
1218
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1219 1220
		break;
	case CPU_ONLINE:
1221
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1222 1223 1224
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1225
  	case CPU_DOWN_PREPARE:
1226
  	case CPU_DOWN_PREPARE_FROZEN:
1227
		/*
1228
		 * Shutdown cache reaper. Note that the slab_mutex is
1229 1230 1231 1232
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1233
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1234
		/* Now the cache_reaper is guaranteed to be not running. */
1235
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1236 1237
  		break;
  	case CPU_DOWN_FAILED:
1238
  	case CPU_DOWN_FAILED_FROZEN:
1239 1240
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1241
	case CPU_DEAD:
1242
	case CPU_DEAD_FROZEN:
1243 1244
		/*
		 * Even if all the cpus of a node are down, we don't free the
1245
		 * kmem_cache_node of any cache. This to avoid a race between
1246
		 * cpu_down, and a kmalloc allocation from another cpu for
1247
		 * memory from the node of the cpu going down.  The node
1248 1249 1250
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1251
		/* fall through */
1252
#endif
L
Linus Torvalds 已提交
1253
	case CPU_UP_CANCELED:
1254
	case CPU_UP_CANCELED_FROZEN:
1255
		mutex_lock(&slab_mutex);
1256
		cpuup_canceled(cpu);
1257
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1258 1259
		break;
	}
1260
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1261 1262
}

1263
static struct notifier_block cpucache_notifier = {
1264 1265
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1266

1267 1268 1269 1270 1271 1272
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1273
 * Must hold slab_mutex.
1274
 */
1275
static int __meminit drain_cache_node_node(int node)
1276 1277 1278 1279
{
	struct kmem_cache *cachep;
	int ret = 0;

1280
	list_for_each_entry(cachep, &slab_caches, list) {
1281
		struct kmem_cache_node *n;
1282

1283
		n = get_node(cachep, node);
1284
		if (!n)
1285 1286
			continue;

1287
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1288

1289 1290
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1311
		mutex_lock(&slab_mutex);
1312
		ret = init_cache_node_node(nid);
1313
		mutex_unlock(&slab_mutex);
1314 1315
		break;
	case MEM_GOING_OFFLINE:
1316
		mutex_lock(&slab_mutex);
1317
		ret = drain_cache_node_node(nid);
1318
		mutex_unlock(&slab_mutex);
1319 1320 1321 1322 1323 1324 1325 1326
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1327
	return notifier_from_errno(ret);
1328 1329 1330
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1331
/*
1332
 * swap the static kmem_cache_node with kmalloced memory
1333
 */
1334
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1335
				int nodeid)
1336
{
1337
	struct kmem_cache_node *ptr;
1338

1339
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1340 1341
	BUG_ON(!ptr);

1342
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1343 1344 1345 1346 1347
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1348
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1349
	cachep->node[nodeid] = ptr;
1350 1351
}

1352
/*
1353 1354
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1355
 */
1356
static void __init set_up_node(struct kmem_cache *cachep, int index)
1357 1358 1359 1360
{
	int node;

	for_each_online_node(node) {
1361
		cachep->node[node] = &init_kmem_cache_node[index + node];
1362
		cachep->node[node]->next_reap = jiffies +
1363 1364
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1365 1366 1367
	}
}

A
Andrew Morton 已提交
1368 1369 1370
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1371 1372 1373
 */
void __init kmem_cache_init(void)
{
1374 1375
	int i;

1376 1377
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1378 1379
	kmem_cache = &kmem_cache_boot;

1380
	if (num_possible_nodes() == 1)
1381 1382
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1383
	for (i = 0; i < NUM_INIT_LISTS; i++)
1384
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1385

L
Linus Torvalds 已提交
1386 1387
	/*
	 * Fragmentation resistance on low memory - only use bigger
1388 1389
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1390
	 */
1391
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1392
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1393 1394 1395

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1396 1397 1398
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1399
	 *    Initially an __init data area is used for the head array and the
1400
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1401
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1402
	 * 2) Create the first kmalloc cache.
1403
	 *    The struct kmem_cache for the new cache is allocated normally.
1404 1405 1406
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1407
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1408
	 *    kmalloc cache with kmalloc allocated arrays.
1409
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1410 1411
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1412 1413
	 */

1414
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1415

E
Eric Dumazet 已提交
1416
	/*
1417
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1418
	 */
1419
	create_boot_cache(kmem_cache, "kmem_cache",
1420
		offsetof(struct kmem_cache, node) +
1421
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1422 1423
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1424
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1425

A
Andrew Morton 已提交
1426
	/*
1427 1428
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1429
	 */
1430
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1431
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1432
	slab_state = PARTIAL_NODE;
1433
	setup_kmalloc_cache_index_table();
1434

1435 1436
	slab_early_init = 0;

1437
	/* 5) Replace the bootstrap kmem_cache_node */
1438
	{
P
Pekka Enberg 已提交
1439 1440
		int nid;

1441
		for_each_online_node(nid) {
1442
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1443

1444
			init_list(kmalloc_caches[INDEX_NODE],
1445
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1446 1447
		}
	}
L
Linus Torvalds 已提交
1448

1449
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1450 1451 1452 1453 1454 1455
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1456
	slab_state = UP;
P
Peter Zijlstra 已提交
1457

1458
	/* 6) resize the head arrays to their final sizes */
1459 1460
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1461 1462
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1463
	mutex_unlock(&slab_mutex);
1464

1465 1466 1467
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1468 1469 1470
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1471 1472 1473
	 */
	register_cpu_notifier(&cpucache_notifier);

1474 1475 1476
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1477
	 * node.
1478 1479 1480 1481
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1482 1483 1484
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1485 1486 1487 1488 1489 1490 1491
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1492 1493
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1494
	 */
1495
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1496
		start_cpu_timer(cpu);
1497 1498

	/* Done! */
1499
	slab_state = FULL;
L
Linus Torvalds 已提交
1500 1501 1502 1503
	return 0;
}
__initcall(cpucache_init);

1504 1505 1506
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1507
#if DEBUG
1508
	struct kmem_cache_node *n;
1509
	struct page *page;
1510 1511
	unsigned long flags;
	int node;
1512 1513 1514 1515 1516
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1517 1518 1519 1520 1521

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1522
		cachep->name, cachep->size, cachep->gfporder);
1523

1524
	for_each_kmem_cache_node(cachep, node, n) {
1525 1526 1527
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1528
		spin_lock_irqsave(&n->list_lock, flags);
1529
		list_for_each_entry(page, &n->slabs_full, lru) {
1530 1531 1532
			active_objs += cachep->num;
			active_slabs++;
		}
1533 1534
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1535 1536
			active_slabs++;
		}
1537
		list_for_each_entry(page, &n->slabs_free, lru)
1538 1539
			num_slabs++;

1540 1541
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1542 1543 1544 1545 1546 1547 1548 1549

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1550
#endif
1551 1552
}

L
Linus Torvalds 已提交
1553
/*
W
Wang Sheng-Hui 已提交
1554 1555
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1556 1557 1558 1559 1560
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1561 1562
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1563 1564
{
	struct page *page;
1565
	int nr_pages;
1566

1567
	flags |= cachep->allocflags;
1568 1569
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1570

1571
	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1572
	if (!page) {
1573
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1574
		return NULL;
1575
	}
L
Linus Torvalds 已提交
1576

1577 1578 1579 1580 1581
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1582
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1583
	if (page_is_pfmemalloc(page))
1584 1585
		pfmemalloc_active = true;

1586
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1587
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1588 1589 1590 1591 1592
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1593
	__SetPageSlab(page);
1594
	if (page_is_pfmemalloc(page))
1595
		SetPageSlabPfmemalloc(page);
1596

1597 1598 1599 1600 1601 1602 1603 1604
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1605

1606
	return page;
L
Linus Torvalds 已提交
1607 1608 1609 1610 1611
}

/*
 * Interface to system's page release.
 */
1612
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1613
{
1614
	const unsigned long nr_freed = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1615

1616
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1617

1618 1619 1620 1621 1622 1623
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1624

1625
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1626
	__ClearPageSlabPfmemalloc(page);
1627
	__ClearPageSlab(page);
1628 1629
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1630

L
Linus Torvalds 已提交
1631 1632
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1633
	__free_kmem_pages(page, cachep->gfporder);
L
Linus Torvalds 已提交
1634 1635 1636 1637
}

static void kmem_rcu_free(struct rcu_head *head)
{
1638 1639
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1640

1641 1642 1643 1644
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1645 1646 1647
}

#if DEBUG
1648 1649 1650 1651 1652 1653 1654 1655
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1656 1657

#ifdef CONFIG_DEBUG_PAGEALLOC
1658
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1659
			    unsigned long caller)
L
Linus Torvalds 已提交
1660
{
1661
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1662

1663
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1664

P
Pekka Enberg 已提交
1665
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1666 1667
		return;

P
Pekka Enberg 已提交
1668 1669 1670 1671
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1672 1673 1674 1675 1676 1677 1678
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1679
				*addr++ = svalue;
L
Linus Torvalds 已提交
1680 1681 1682 1683 1684 1685 1686
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1687
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1688
}
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

L
Linus Torvalds 已提交
1706 1707
#endif

1708
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1709
{
1710
	int size = cachep->object_size;
1711
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1712 1713

	memset(addr, val, size);
P
Pekka Enberg 已提交
1714
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1715 1716 1717 1718 1719
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1720 1721 1722
	unsigned char error = 0;
	int bad_count = 0;

1723
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1724 1725 1726 1727 1728 1729
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1730 1731
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1746 1747 1748 1749 1750
}
#endif

#if DEBUG

1751
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1752 1753 1754 1755 1756
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1757
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1758 1759
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1760 1761 1762
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1763 1764 1765
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1766
	}
1767
	realobj = (char *)objp + obj_offset(cachep);
1768
	size = cachep->object_size;
P
Pekka Enberg 已提交
1769
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1770 1771
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1772 1773
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1774 1775 1776 1777
		dump_line(realobj, i, limit);
	}
}

1778
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1779 1780 1781 1782 1783
{
	char *realobj;
	int size, i;
	int lines = 0;

1784 1785 1786
	if (is_debug_pagealloc_cache(cachep))
		return;

1787
	realobj = (char *)objp + obj_offset(cachep);
1788
	size = cachep->object_size;
L
Linus Torvalds 已提交
1789

P
Pekka Enberg 已提交
1790
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1791
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1792
		if (i == size - 1)
L
Linus Torvalds 已提交
1793 1794 1795 1796 1797 1798
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1799
				printk(KERN_ERR
1800 1801
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1802 1803 1804
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1805
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1806
			limit = 16;
P
Pekka Enberg 已提交
1807 1808
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1821
		struct page *page = virt_to_head_page(objp);
1822
		unsigned int objnr;
L
Linus Torvalds 已提交
1823

1824
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1825
		if (objnr) {
1826
			objp = index_to_obj(cachep, page, objnr - 1);
1827
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1828
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1829
			       realobj, size);
L
Linus Torvalds 已提交
1830 1831
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1832
		if (objnr + 1 < cachep->num) {
1833
			objp = index_to_obj(cachep, page, objnr + 1);
1834
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1835
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1836
			       realobj, size);
L
Linus Torvalds 已提交
1837 1838 1839 1840 1841 1842
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1843
#if DEBUG
1844 1845
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1846 1847 1848
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1849
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1850 1851 1852

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1853
			slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
1854 1855 1856 1857
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1858
					   "was overwritten");
L
Linus Torvalds 已提交
1859 1860
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1861
					   "was overwritten");
L
Linus Torvalds 已提交
1862 1863
		}
	}
1864
}
L
Linus Torvalds 已提交
1865
#else
1866 1867
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1868 1869
{
}
L
Linus Torvalds 已提交
1870 1871
#endif

1872 1873 1874
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1875
 * @page: page pointer being destroyed
1876
 *
W
Wang Sheng-Hui 已提交
1877 1878 1879
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1880
 */
1881
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1882
{
1883
	void *freelist;
1884

1885 1886
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1887 1888 1889
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1890
		kmem_freepages(cachep, page);
1891 1892

	/*
1893
	 * From now on, we don't use freelist
1894 1895 1896
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1897
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1898 1899
}

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1910
/**
1911 1912 1913 1914 1915 1916 1917
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1918 1919 1920 1921 1922
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1923
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1924
			size_t size, size_t align, unsigned long flags)
1925
{
1926
	unsigned long offslab_limit;
1927
	size_t left_over = 0;
1928
	int gfporder;
1929

1930
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1931 1932 1933
		unsigned int num;
		size_t remainder;

1934
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1935 1936
		if (!num)
			continue;
1937

1938 1939 1940 1941
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1942 1943 1944 1945 1946 1947
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
1948
			offslab_limit = size;
1949
			offslab_limit /= sizeof(freelist_idx_t);
1950 1951 1952 1953

 			if (num > offslab_limit)
				break;
		}
1954

1955
		/* Found something acceptable - save it away */
1956
		cachep->num = num;
1957
		cachep->gfporder = gfporder;
1958 1959
		left_over = remainder;

1960 1961 1962 1963 1964 1965 1966 1967
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1968 1969 1970 1971
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1972
		if (gfporder >= slab_max_order)
1973 1974
			break;

1975 1976 1977
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1978
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1979 1980 1981 1982 1983
			break;
	}
	return left_over;
}

1984 1985 1986 1987 1988 1989 1990 1991
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1992
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

2005
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2006
{
2007
	if (slab_state >= FULL)
2008
		return enable_cpucache(cachep, gfp);
2009

2010 2011 2012 2013
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

2014
	if (slab_state == DOWN) {
2015 2016
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
2017
	} else if (slab_state == PARTIAL) {
2018 2019
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
2020
	} else {
2021
		int node;
2022

2023 2024 2025 2026 2027
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
2028 2029
		}
	}
2030

2031
	cachep->node[numa_mem_id()]->next_reap =
2032 2033
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2034 2035 2036 2037 2038 2039 2040

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2041
	return 0;
2042 2043
}

J
Joonsoo Kim 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

L
Linus Torvalds 已提交
2070
/**
2071
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2072
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2073 2074 2075 2076
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2077
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2091
int
2092
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2093
{
2094 2095
	size_t left_over, freelist_size;
	size_t ralign = BYTES_PER_WORD;
2096
	gfp_t gfp;
2097
	int err;
2098
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2108 2109
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2110
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2111 2112 2113 2114 2115
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
2116 2117
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2118 2119 2120
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2121 2122 2123
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2124 2125
	}

D
David Woodhouse 已提交
2126 2127 2128 2129 2130 2131 2132
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2133

2134
	/* 3) caller mandated alignment */
2135 2136
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2137
	}
2138 2139
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2140
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2141
	/*
2142
	 * 4) Store it.
L
Linus Torvalds 已提交
2143
	 */
2144
	cachep->align = ralign;
L
Linus Torvalds 已提交
2145

2146 2147 2148 2149 2150
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2151 2152
#if DEBUG

2153 2154 2155 2156
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2157 2158
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2159 2160
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2161 2162
	}
	if (flags & SLAB_STORE_USER) {
2163
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2164 2165
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2166
		 */
D
David Woodhouse 已提交
2167 2168 2169 2170
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2171
	}
2172 2173 2174 2175 2176 2177 2178
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2179
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2180
		!slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2181 2182
		size >= 256 && cachep->object_size > cache_line_size() &&
		ALIGN(size, cachep->align) < PAGE_SIZE) {
2183
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2184 2185 2186 2187
		size = PAGE_SIZE;
	}
#endif

2188 2189 2190
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2191 2192
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2193
	 */
2194
	if (size >= OFF_SLAB_MIN_SIZE && !slab_early_init &&
2195
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2196 2197 2198 2199 2200 2201
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2202
	size = ALIGN(size, cachep->align);
2203 2204 2205 2206 2207 2208
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
L
Linus Torvalds 已提交
2209

2210
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2211

2212
	if (!cachep->num)
2213
		return -E2BIG;
L
Linus Torvalds 已提交
2214

2215
	freelist_size = calculate_freelist_size(cachep->num, cachep->align);
L
Linus Torvalds 已提交
2216 2217 2218 2219 2220

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
2221
	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
L
Linus Torvalds 已提交
2222
		flags &= ~CFLGS_OFF_SLAB;
2223
		left_over -= freelist_size;
L
Linus Torvalds 已提交
2224 2225 2226 2227
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
2228
		freelist_size = calculate_freelist_size(cachep->num, 0);
L
Linus Torvalds 已提交
2229 2230 2231 2232
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2233 2234
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2235
	cachep->colour = left_over / cachep->colour_off;
2236
	cachep->freelist_size = freelist_size;
L
Linus Torvalds 已提交
2237
	cachep->flags = flags;
2238
	cachep->allocflags = __GFP_COMP;
2239
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2240
		cachep->allocflags |= GFP_DMA;
2241
	cachep->size = size;
2242
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2243

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2257
		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2258
		/*
2259
		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2260
		 * But since we go off slab only for object size greater than
2261
		 * OFF_SLAB_MIN_SIZE, and kmalloc_{dma,}_caches get created
2262
		 * in ascending order,this should not happen at all.
2263 2264
		 * But leave a BUG_ON for some lucky dude.
		 */
2265
		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2266
	}
L
Linus Torvalds 已提交
2267

2268 2269
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2270
		__kmem_cache_release(cachep);
2271
		return err;
2272
	}
L
Linus Torvalds 已提交
2273

2274
	return 0;
L
Linus Torvalds 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2288
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2289 2290 2291
{
#ifdef CONFIG_SMP
	check_irq_off();
2292
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2293 2294
#endif
}
2295

2296
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2297 2298 2299
{
#ifdef CONFIG_SMP
	check_irq_off();
2300
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2301 2302 2303
#endif
}

L
Linus Torvalds 已提交
2304 2305 2306 2307
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2308
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2309 2310
#endif

2311
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2312 2313 2314
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2315 2316
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2317
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2318
	struct array_cache *ac;
2319
	int node = numa_mem_id();
2320
	struct kmem_cache_node *n;
2321
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2322 2323

	check_irq_off();
2324
	ac = cpu_cache_get(cachep);
2325 2326
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2327
	free_block(cachep, ac->entry, ac->avail, node, &list);
2328
	spin_unlock(&n->list_lock);
2329
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2330 2331 2332
	ac->avail = 0;
}

2333
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2334
{
2335
	struct kmem_cache_node *n;
2336 2337
	int node;

2338
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2339
	check_irq_on();
2340 2341
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2342
			drain_alien_cache(cachep, n->alien);
2343

2344 2345
	for_each_kmem_cache_node(cachep, node, n)
		drain_array(cachep, n, n->shared, 1, node);
L
Linus Torvalds 已提交
2346 2347
}

2348 2349 2350 2351 2352 2353 2354
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2355
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2356
{
2357 2358
	struct list_head *p;
	int nr_freed;
2359
	struct page *page;
L
Linus Torvalds 已提交
2360

2361
	nr_freed = 0;
2362
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2363

2364 2365 2366 2367
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2368 2369
			goto out;
		}
L
Linus Torvalds 已提交
2370

2371 2372
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2373 2374 2375 2376
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2377 2378
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2379
		slab_destroy(cache, page);
2380
		nr_freed++;
L
Linus Torvalds 已提交
2381
	}
2382 2383
out:
	return nr_freed;
L
Linus Torvalds 已提交
2384 2385
}

2386
int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2387
{
2388 2389
	int ret = 0;
	int node;
2390
	struct kmem_cache_node *n;
2391 2392 2393 2394

	drain_cpu_caches(cachep);

	check_irq_on();
2395
	for_each_kmem_cache_node(cachep, node, n) {
2396
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2397

2398 2399
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2400 2401 2402 2403
	}
	return (ret ? 1 : 0);
}

2404
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2405 2406 2407 2408 2409
{
	return __kmem_cache_shrink(cachep, false);
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2410
{
2411
	int i;
2412
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2413

2414
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2415

2416
	/* NUMA: free the node structures */
2417 2418 2419 2420 2421
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2422
	}
L
Linus Torvalds 已提交
2423 2424
}

2425 2426
/*
 * Get the memory for a slab management obj.
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2438
 */
2439
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2440 2441
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2442
{
2443
	void *freelist;
2444
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2445

L
Linus Torvalds 已提交
2446 2447
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2448
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2449
					      local_flags, nodeid);
2450
		if (!freelist)
L
Linus Torvalds 已提交
2451 2452
			return NULL;
	} else {
2453 2454
		freelist = addr + colour_off;
		colour_off += cachep->freelist_size;
L
Linus Torvalds 已提交
2455
	}
2456 2457 2458
	page->active = 0;
	page->s_mem = addr + colour_off;
	return freelist;
L
Linus Torvalds 已提交
2459 2460
}

2461
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2462
{
2463
	return ((freelist_idx_t *)page->freelist)[idx];
2464 2465 2466
}

static inline void set_free_obj(struct page *page,
2467
					unsigned int idx, freelist_idx_t val)
2468
{
2469
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2470 2471
}

2472
static void cache_init_objs(struct kmem_cache *cachep,
2473
			    struct page *page)
L
Linus Torvalds 已提交
2474 2475 2476 2477
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2478
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
2479 2480 2481 2482 2483 2484 2485 2486 2487
#if DEBUG
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2488 2489 2490
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2491 2492
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2493
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2494 2495 2496 2497

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2498
					   " end of an object");
L
Linus Torvalds 已提交
2499 2500
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2501
					   " start of an object");
L
Linus Torvalds 已提交
2502
		}
2503 2504 2505 2506 2507
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
L
Linus Torvalds 已提交
2508 2509
#else
		if (cachep->ctor)
2510
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2511
#endif
2512
		set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2513 2514 2515
	}
}

2516
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2517
{
2518 2519
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2520
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2521
		else
2522
			BUG_ON(cachep->allocflags & GFP_DMA);
2523
	}
L
Linus Torvalds 已提交
2524 2525
}

2526
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2527
{
2528
	void *objp;
2529

2530
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2531
	page->active++;
2532

2533 2534 2535 2536 2537
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2538 2539 2540
	return objp;
}

2541 2542
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2543
{
2544
	unsigned int objnr = obj_to_index(cachep, page, objp);
2545
#if DEBUG
J
Joonsoo Kim 已提交
2546
	unsigned int i;
2547 2548

	/* Verify double free bug */
2549
	for (i = page->active; i < cachep->num; i++) {
2550
		if (get_free_obj(page, i) == objnr) {
2551 2552 2553 2554
			printk(KERN_ERR "slab: double free detected in cache "
					"'%s', objp %p\n", cachep->name, objp);
			BUG();
		}
2555 2556
	}
#endif
2557
	page->active--;
2558
	set_free_obj(page, page->active, objnr);
2559 2560
}

2561 2562 2563
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2564
 * virtual address for kfree, ksize, and slab debugging.
2565
 */
2566
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2567
			   void *freelist)
L
Linus Torvalds 已提交
2568
{
2569
	page->slab_cache = cache;
2570
	page->freelist = freelist;
L
Linus Torvalds 已提交
2571 2572 2573 2574 2575 2576
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2577
static int cache_grow(struct kmem_cache *cachep,
2578
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2579
{
2580
	void *freelist;
P
Pekka Enberg 已提交
2581 2582
	size_t offset;
	gfp_t local_flags;
2583
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2584

A
Andrew Morton 已提交
2585 2586 2587
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2588
	 */
2589 2590 2591 2592
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}
C
Christoph Lameter 已提交
2593
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2594

2595
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2596
	check_irq_off();
2597
	n = get_node(cachep, nodeid);
2598
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2599 2600

	/* Get colour for the slab, and cal the next value. */
2601 2602 2603 2604 2605
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2606

2607
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2608

2609
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2620 2621 2622
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2623
	 */
2624 2625 2626
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2627 2628 2629
		goto failed;

	/* Get slab management. */
2630
	freelist = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2631
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2632
	if (!freelist)
L
Linus Torvalds 已提交
2633 2634
		goto opps1;

2635
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2636

2637
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2638

2639
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2640 2641
		local_irq_disable();
	check_irq_off();
2642
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2643 2644

	/* Make slab active. */
2645
	list_add_tail(&page->lru, &(n->slabs_free));
L
Linus Torvalds 已提交
2646
	STATS_INC_GROWN(cachep);
2647 2648
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2649
	return 1;
A
Andrew Morton 已提交
2650
opps1:
2651
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2652
failed:
2653
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2669 2670
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2671 2672 2673
	}
}

2674 2675
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2676
	unsigned long long redzone1, redzone2;
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2692
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2693 2694 2695
			obj, redzone1, redzone2);
}

2696
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2697
				   unsigned long caller)
L
Linus Torvalds 已提交
2698 2699
{
	unsigned int objnr;
2700
	struct page *page;
L
Linus Torvalds 已提交
2701

2702 2703
	BUG_ON(virt_to_cache(objp) != cachep);

2704
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2705
	kfree_debugcheck(objp);
2706
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2707 2708

	if (cachep->flags & SLAB_RED_ZONE) {
2709
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2710 2711 2712
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2713 2714
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2715
		*dbg_userword(cachep, objp) = (void *)caller;
2716
	}
L
Linus Torvalds 已提交
2717

2718
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2719 2720

	BUG_ON(objnr >= cachep->num);
2721
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2722 2723 2724

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2725
		slab_kernel_map(cachep, objp, 0, caller);
L
Linus Torvalds 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
static struct page *get_first_slab(struct kmem_cache_node *n)
{
	struct page *page;

	page = list_first_entry_or_null(&n->slabs_partial,
			struct page, lru);
	if (!page) {
		n->free_touched = 1;
		page = list_first_entry_or_null(&n->slabs_free,
				struct page, lru);
	}

	return page;
}

2750 2751
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2752 2753
{
	int batchcount;
2754
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2755
	struct array_cache *ac;
P
Pekka Enberg 已提交
2756 2757
	int node;

L
Linus Torvalds 已提交
2758
	check_irq_off();
2759
	node = numa_mem_id();
2760 2761 2762
	if (unlikely(force_refill))
		goto force_grow;
retry:
2763
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2764 2765
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2766 2767 2768 2769
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2770 2771 2772
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2773
	n = get_node(cachep, node);
2774

2775 2776
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2777

2778
	/* See if we can refill from the shared array */
2779 2780
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2781
		goto alloc_done;
2782
	}
2783

L
Linus Torvalds 已提交
2784
	while (batchcount > 0) {
2785
		struct page *page;
L
Linus Torvalds 已提交
2786
		/* Get slab alloc is to come from. */
2787 2788 2789
		page = get_first_slab(n);
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
2790 2791

		check_spinlock_acquired(cachep);
2792 2793 2794 2795 2796 2797

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2798
		BUG_ON(page->active >= cachep->num);
2799

2800
		while (page->active < cachep->num && batchcount--) {
L
Linus Torvalds 已提交
2801 2802 2803 2804
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2805
			ac_put_obj(cachep, ac, slab_get_obj(cachep, page));
L
Linus Torvalds 已提交
2806 2807 2808
		}

		/* move slabp to correct slabp list: */
2809 2810
		list_del(&page->lru);
		if (page->active == cachep->num)
2811
			list_add(&page->lru, &n->slabs_full);
L
Linus Torvalds 已提交
2812
		else
2813
			list_add(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
2814 2815
	}

A
Andrew Morton 已提交
2816
must_grow:
2817
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2818
alloc_done:
2819
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2820 2821 2822

	if (unlikely(!ac->avail)) {
		int x;
2823
force_grow:
D
David Rientjes 已提交
2824
		x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2825

A
Andrew Morton 已提交
2826
		/* cache_grow can reenable interrupts, then ac could change. */
2827
		ac = cpu_cache_get(cachep);
2828
		node = numa_mem_id();
2829 2830 2831

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
2832 2833
			return NULL;

A
Andrew Morton 已提交
2834
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2835 2836 2837
			goto retry;
	}
	ac->touched = 1;
2838 2839

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
2840 2841
}

A
Andrew Morton 已提交
2842 2843
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2844
{
2845
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
2846 2847 2848 2849 2850 2851
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2852
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2853
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2854
{
P
Pekka Enberg 已提交
2855
	if (!objp)
L
Linus Torvalds 已提交
2856
		return objp;
P
Pekka Enberg 已提交
2857
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2858
		check_poison_obj(cachep, objp);
2859
		slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
2860 2861 2862
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
2863
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2864 2865

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2866 2867 2868 2869
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2870
			printk(KERN_ERR
2871
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
2872 2873
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2874 2875 2876 2877
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2878

2879
	objp += obj_offset(cachep);
2880
	if (cachep->ctor && cachep->flags & SLAB_POISON)
2881
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
2882 2883
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2884
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
2885
		       objp, (int)ARCH_SLAB_MINALIGN);
2886
	}
L
Linus Torvalds 已提交
2887 2888 2889 2890 2891 2892
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

2893
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2894
{
P
Pekka Enberg 已提交
2895
	void *objp;
L
Linus Torvalds 已提交
2896
	struct array_cache *ac;
2897
	bool force_refill = false;
L
Linus Torvalds 已提交
2898

2899
	check_irq_off();
2900

2901
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2902 2903
	if (likely(ac->avail)) {
		ac->touched = 1;
2904 2905
		objp = ac_get_obj(cachep, ac, flags, false);

2906
		/*
2907 2908
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
2909
		 */
2910 2911 2912 2913 2914
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
2915
	}
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
2926 2927 2928 2929 2930
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
2931 2932
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
2933 2934 2935
	return objp;
}

2936
#ifdef CONFIG_NUMA
2937
/*
2938
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2939 2940 2941 2942 2943 2944 2945 2946
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

2947
	if (in_interrupt() || (flags & __GFP_THISNODE))
2948
		return NULL;
2949
	nid_alloc = nid_here = numa_mem_id();
2950
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2951
		nid_alloc = cpuset_slab_spread_node();
2952
	else if (current->mempolicy)
2953
		nid_alloc = mempolicy_slab_node();
2954
	if (nid_alloc != nid_here)
2955
		return ____cache_alloc_node(cachep, flags, nid_alloc);
2956 2957 2958
	return NULL;
}

2959 2960
/*
 * Fallback function if there was no memory available and no objects on a
2961
 * certain node and fall back is permitted. First we scan all the
2962
 * available node for available objects. If that fails then we
2963 2964 2965
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
2966
 */
2967
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2968
{
2969 2970
	struct zonelist *zonelist;
	gfp_t local_flags;
2971
	struct zoneref *z;
2972 2973
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
2974
	void *obj = NULL;
2975
	int nid;
2976
	unsigned int cpuset_mems_cookie;
2977 2978 2979 2980

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
2981
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2982

2983
retry_cpuset:
2984
	cpuset_mems_cookie = read_mems_allowed_begin();
2985
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
2986

2987 2988 2989 2990 2991
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
2992 2993
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
2994

2995
		if (cpuset_zone_allowed(zone, flags) &&
2996 2997
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
2998
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
2999
					gfp_exact_node(flags), nid);
3000 3001 3002
				if (obj)
					break;
		}
3003 3004
	}

3005
	if (!obj) {
3006 3007 3008 3009 3010 3011
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3012 3013
		struct page *page;

3014
		if (gfpflags_allow_blocking(local_flags))
3015 3016
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3017
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3018
		if (gfpflags_allow_blocking(local_flags))
3019
			local_irq_disable();
3020
		if (page) {
3021 3022 3023
			/*
			 * Insert into the appropriate per node queues
			 */
3024 3025
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3026
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3027
					gfp_exact_node(flags), nid);
3028 3029 3030 3031 3032 3033 3034 3035
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3036
				/* cache_grow already freed obj */
3037 3038 3039
				obj = NULL;
			}
		}
3040
	}
3041

3042
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3043
		goto retry_cpuset;
3044 3045 3046
	return obj;
}

3047 3048
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3049
 */
3050
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3051
				int nodeid)
3052
{
3053
	struct page *page;
3054
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3055 3056 3057
	void *obj;
	int x;

3058
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3059
	n = get_node(cachep, nodeid);
3060
	BUG_ON(!n);
P
Pekka Enberg 已提交
3061

A
Andrew Morton 已提交
3062
retry:
3063
	check_irq_off();
3064
	spin_lock(&n->list_lock);
3065 3066 3067
	page = get_first_slab(n);
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3068 3069 3070 3071 3072 3073 3074

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3075
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3076

3077
	obj = slab_get_obj(cachep, page);
3078
	n->free_objects--;
P
Pekka Enberg 已提交
3079
	/* move slabp to correct slabp list: */
3080
	list_del(&page->lru);
P
Pekka Enberg 已提交
3081

3082 3083
	if (page->active == cachep->num)
		list_add(&page->lru, &n->slabs_full);
A
Andrew Morton 已提交
3084
	else
3085
		list_add(&page->lru, &n->slabs_partial);
3086

3087
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3088
	goto done;
3089

A
Andrew Morton 已提交
3090
must_grow:
3091
	spin_unlock(&n->list_lock);
D
David Rientjes 已提交
3092
	x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3093 3094
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3095

3096
	return fallback_alloc(cachep, flags);
3097

A
Andrew Morton 已提交
3098
done:
P
Pekka Enberg 已提交
3099
	return obj;
3100
}
3101 3102

static __always_inline void *
3103
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3104
		   unsigned long caller)
3105 3106 3107
{
	unsigned long save_flags;
	void *ptr;
3108
	int slab_node = numa_mem_id();
3109

3110
	flags &= gfp_allowed_mask;
3111 3112
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3113 3114
		return NULL;

3115 3116 3117
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3118
	if (nodeid == NUMA_NO_NODE)
3119
		nodeid = slab_node;
3120

3121
	if (unlikely(!get_node(cachep, nodeid))) {
3122 3123 3124 3125 3126
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3127
	if (nodeid == slab_node) {
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3144 3145
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3146

3147
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3148 3149 3150 3151 3152 3153 3154 3155
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3156
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3167 3168
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3184
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3185 3186 3187 3188
{
	unsigned long save_flags;
	void *objp;

3189
	flags &= gfp_allowed_mask;
3190 3191
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3192 3193
		return NULL;

3194 3195 3196 3197 3198 3199 3200
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3201 3202
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3203

3204
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3205 3206
	return objp;
}
3207 3208

/*
3209
 * Caller needs to acquire correct kmem_cache_node's list_lock
3210
 * @list: List of detached free slabs should be freed by caller
3211
 */
3212 3213
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3214 3215
{
	int i;
3216
	struct kmem_cache_node *n = get_node(cachep, node);
L
Linus Torvalds 已提交
3217 3218

	for (i = 0; i < nr_objects; i++) {
3219
		void *objp;
3220
		struct page *page;
L
Linus Torvalds 已提交
3221

3222 3223 3224
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3225 3226
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3227
		check_spinlock_acquired_node(cachep, node);
3228
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3229
		STATS_DEC_ACTIVE(cachep);
3230
		n->free_objects++;
L
Linus Torvalds 已提交
3231 3232

		/* fixup slab chains */
3233
		if (page->active == 0) {
3234 3235
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3236
				list_add_tail(&page->lru, list);
L
Linus Torvalds 已提交
3237
			} else {
3238
				list_add(&page->lru, &n->slabs_free);
L
Linus Torvalds 已提交
3239 3240 3241 3242 3243 3244
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3245
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3246 3247 3248 3249
		}
	}
}

3250
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3251 3252
{
	int batchcount;
3253
	struct kmem_cache_node *n;
3254
	int node = numa_mem_id();
3255
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3256 3257

	batchcount = ac->batchcount;
3258

L
Linus Torvalds 已提交
3259
	check_irq_off();
3260
	n = get_node(cachep, node);
3261 3262 3263
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3264
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3265 3266 3267
		if (max) {
			if (batchcount > max)
				batchcount = max;
3268
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3269
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3270 3271 3272 3273 3274
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3275
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3276
free_done:
L
Linus Torvalds 已提交
3277 3278 3279
#if STATS
	{
		int i = 0;
3280
		struct page *page;
L
Linus Torvalds 已提交
3281

3282
		list_for_each_entry(page, &n->slabs_free, lru) {
3283
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3284 3285 3286 3287 3288 3289

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3290
	spin_unlock(&n->list_lock);
3291
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3292
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3293
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3294 3295 3296
}

/*
A
Andrew Morton 已提交
3297 3298
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3299
 */
3300
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3301
				unsigned long caller)
L
Linus Torvalds 已提交
3302
{
3303
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3304 3305

	check_irq_off();
3306
	kmemleak_free_recursive(objp, cachep->flags);
3307
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3308

3309
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3310

3311 3312 3313 3314 3315 3316 3317
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3318
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3319 3320
		return;

3321
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3322 3323 3324 3325 3326
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3327

3328
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3339
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3340
{
3341
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3342

3343
	trace_kmem_cache_alloc(_RET_IP_, ret,
3344
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3345 3346

	return ret;
L
Linus Torvalds 已提交
3347 3348 3349
}
EXPORT_SYMBOL(kmem_cache_alloc);

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3360
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3361
			  void **p)
3362
{
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3381 3382
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3393
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3394 3395 3396
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3397 3398 3399
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3400
#ifdef CONFIG_TRACING
3401
void *
3402
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3403
{
3404 3405
	void *ret;

3406
	ret = slab_alloc(cachep, flags, _RET_IP_);
3407 3408

	trace_kmalloc(_RET_IP_, ret,
3409
		      size, cachep->size, flags);
3410
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3411
}
3412
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3413 3414
#endif

L
Linus Torvalds 已提交
3415
#ifdef CONFIG_NUMA
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3427 3428
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3429
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3430

3431
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3432
				    cachep->object_size, cachep->size,
3433
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3434 3435

	return ret;
3436
}
L
Linus Torvalds 已提交
3437 3438
EXPORT_SYMBOL(kmem_cache_alloc_node);

3439
#ifdef CONFIG_TRACING
3440
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3441
				  gfp_t flags,
3442 3443
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3444
{
3445 3446
	void *ret;

3447
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3448

3449
	trace_kmalloc_node(_RET_IP_, ret,
3450
			   size, cachep->size,
3451 3452
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3453
}
3454
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3455 3456
#endif

3457
static __always_inline void *
3458
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3459
{
3460
	struct kmem_cache *cachep;
3461

3462
	cachep = kmalloc_slab(size, flags);
3463 3464
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3465
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3466
}
3467 3468 3469

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3470
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3471
}
3472
EXPORT_SYMBOL(__kmalloc_node);
3473 3474

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3475
		int node, unsigned long caller)
3476
{
3477
	return __do_kmalloc_node(size, flags, node, caller);
3478 3479 3480
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3481 3482

/**
3483
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3484
 * @size: how many bytes of memory are required.
3485
 * @flags: the type of memory to allocate (see kmalloc).
3486
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3487
 */
3488
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3489
					  unsigned long caller)
L
Linus Torvalds 已提交
3490
{
3491
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3492
	void *ret;
L
Linus Torvalds 已提交
3493

3494
	cachep = kmalloc_slab(size, flags);
3495 3496
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3497
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3498

3499
	trace_kmalloc(caller, ret,
3500
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3501 3502

	return ret;
3503 3504 3505 3506
}

void *__kmalloc(size_t size, gfp_t flags)
{
3507
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3508 3509 3510
}
EXPORT_SYMBOL(__kmalloc);

3511
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3512
{
3513
	return __do_kmalloc(size, flags, caller);
3514 3515
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3516

L
Linus Torvalds 已提交
3517 3518 3519 3520 3521 3522 3523 3524
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3525
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3526 3527
{
	unsigned long flags;
3528 3529 3530
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3531 3532

	local_irq_save(flags);
3533
	debug_check_no_locks_freed(objp, cachep->object_size);
3534
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3535
		debug_check_no_obj_freed(objp, cachep->object_size);
3536
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3537
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3538

3539
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3540 3541 3542
}
EXPORT_SYMBOL(kmem_cache_free);

3543 3544 3545 3546 3547 3548 3549 3550 3551
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3552 3553 3554 3555
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3569 3570 3571 3572
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3573 3574
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3575 3576 3577 3578 3579
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3580
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3581 3582
	unsigned long flags;

3583 3584
	trace_kfree(_RET_IP_, objp);

3585
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3586 3587 3588
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3589
	c = virt_to_cache(objp);
3590 3591 3592
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3593
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3594 3595 3596 3597
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3598
/*
3599
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3600
 */
3601
static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3602 3603
{
	int node;
3604
	struct kmem_cache_node *n;
3605
	struct array_cache *new_shared;
J
Joonsoo Kim 已提交
3606
	struct alien_cache **new_alien = NULL;
3607

3608
	for_each_online_node(node) {
3609

3610 3611 3612 3613 3614
		if (use_alien_caches) {
			new_alien = alloc_alien_cache(node, cachep->limit, gfp);
			if (!new_alien)
				goto fail;
		}
3615

3616 3617 3618
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3619
				cachep->shared*cachep->batchcount,
3620
					0xbaadf00d, gfp);
3621 3622 3623 3624
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3625
		}
3626

3627
		n = get_node(cachep, node);
3628 3629
		if (n) {
			struct array_cache *shared = n->shared;
3630
			LIST_HEAD(list);
3631

3632
			spin_lock_irq(&n->list_lock);
3633

3634
			if (shared)
3635
				free_block(cachep, shared->entry,
3636
						shared->avail, node, &list);
3637

3638 3639 3640
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3641 3642
				new_alien = NULL;
			}
3643
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3644
					cachep->batchcount + cachep->num;
3645
			spin_unlock_irq(&n->list_lock);
3646
			slabs_destroy(cachep, &list);
3647
			kfree(shared);
3648 3649 3650
			free_alien_cache(new_alien);
			continue;
		}
3651 3652
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3653 3654
			free_alien_cache(new_alien);
			kfree(new_shared);
3655
			goto fail;
3656
		}
3657

3658
		kmem_cache_node_init(n);
3659 3660
		n->next_reap = jiffies + REAPTIMEOUT_NODE +
				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3661 3662 3663
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3664
					cachep->batchcount + cachep->num;
3665
		cachep->node[node] = n;
3666
	}
3667
	return 0;
3668

A
Andrew Morton 已提交
3669
fail:
3670
	if (!cachep->list.next) {
3671 3672 3673
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3674 3675
			n = get_node(cachep, node);
			if (n) {
3676 3677 3678
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3679
				cachep->node[node] = NULL;
3680 3681 3682 3683
			}
			node--;
		}
	}
3684
	return -ENOMEM;
3685 3686
}

3687
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3688
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3689
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3690
{
3691 3692
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3693

3694 3695
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3696 3697
		return -ENOMEM;

3698 3699 3700
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
	kick_all_cpus_sync();
3701

L
Linus Torvalds 已提交
3702 3703 3704
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3705
	cachep->shared = shared;
L
Linus Torvalds 已提交
3706

3707 3708 3709 3710
	if (!prev)
		goto alloc_node;

	for_each_online_cpu(cpu) {
3711
		LIST_HEAD(list);
3712 3713
		int node;
		struct kmem_cache_node *n;
3714
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3715

3716
		node = cpu_to_mem(cpu);
3717 3718
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3719
		free_block(cachep, ac->entry, ac->avail, node, &list);
3720
		spin_unlock_irq(&n->list_lock);
3721
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3722
	}
3723 3724 3725
	free_percpu(prev);

alloc_node:
3726
	return alloc_kmem_cache_node(cachep, gfp);
L
Linus Torvalds 已提交
3727 3728
}

G
Glauber Costa 已提交
3729 3730 3731 3732
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3733
	struct kmem_cache *c;
G
Glauber Costa 已提交
3734 3735 3736 3737 3738 3739 3740 3741 3742

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3743 3744 3745 3746
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3747 3748 3749 3750 3751
	}

	return ret;
}

3752
/* Called with slab_mutex held always */
3753
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3754 3755
{
	int err;
G
Glauber Costa 已提交
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3766

G
Glauber Costa 已提交
3767 3768
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3769 3770
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3771 3772
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3773
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3774 3775 3776 3777
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3778
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3779
		limit = 1;
3780
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3781
		limit = 8;
3782
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3783
		limit = 24;
3784
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3785 3786 3787 3788
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3789 3790
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3791 3792 3793 3794 3795 3796 3797 3798
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3799
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3800 3801 3802
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3803 3804 3805
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3806 3807 3808 3809
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3810 3811 3812
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
3813 3814
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3815
		       cachep->name, -err);
3816
	return err;
L
Linus Torvalds 已提交
3817 3818
}

3819
/*
3820 3821
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3822
 * if drain_array() is used on the shared array.
3823
 */
3824
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3825
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3826
{
3827
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3828 3829
	int tofree;

3830 3831
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3832 3833
	if (ac->touched && !force) {
		ac->touched = 0;
3834
	} else {
3835
		spin_lock_irq(&n->list_lock);
3836 3837 3838 3839
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
3840
			free_block(cachep, ac->entry, tofree, node, &list);
3841 3842 3843 3844
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3845
		spin_unlock_irq(&n->list_lock);
3846
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3847 3848 3849 3850 3851
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3852
 * @w: work descriptor
L
Linus Torvalds 已提交
3853 3854 3855 3856 3857 3858
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3859 3860
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3861
 */
3862
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3863
{
3864
	struct kmem_cache *searchp;
3865
	struct kmem_cache_node *n;
3866
	int node = numa_mem_id();
3867
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
3868

3869
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
3870
		/* Give up. Setup the next iteration. */
3871
		goto out;
L
Linus Torvalds 已提交
3872

3873
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
3874 3875
		check_irq_on();

3876
		/*
3877
		 * We only take the node lock if absolutely necessary and we
3878 3879 3880
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3881
		n = get_node(searchp, node);
3882

3883
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
3884

3885
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3886

3887 3888 3889 3890
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3891
		if (time_after(n->next_reap, jiffies))
3892
			goto next;
L
Linus Torvalds 已提交
3893

3894
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
3895

3896
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
3897

3898 3899
		if (n->free_touched)
			n->free_touched = 0;
3900 3901
		else {
			int freed;
L
Linus Torvalds 已提交
3902

3903
			freed = drain_freelist(searchp, n, (n->free_limit +
3904 3905 3906
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3907
next:
L
Linus Torvalds 已提交
3908 3909 3910
		cond_resched();
	}
	check_irq_on();
3911
	mutex_unlock(&slab_mutex);
3912
	next_reap_node();
3913
out:
A
Andrew Morton 已提交
3914
	/* Set up the next iteration */
3915
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
3916 3917
}

3918
#ifdef CONFIG_SLABINFO
3919
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
3920
{
3921
	struct page *page;
P
Pekka Enberg 已提交
3922 3923 3924 3925
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3926
	const char *name;
L
Linus Torvalds 已提交
3927
	char *error = NULL;
3928
	int node;
3929
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3930 3931 3932

	active_objs = 0;
	num_slabs = 0;
3933
	for_each_kmem_cache_node(cachep, node, n) {
3934

3935
		check_irq_on();
3936
		spin_lock_irq(&n->list_lock);
3937

3938 3939
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
3940 3941 3942 3943
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
3944 3945
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
3946
				error = "slabs_partial accounting error";
3947
			if (!page->active && !error)
3948
				error = "slabs_partial accounting error";
3949
			active_objs += page->active;
3950 3951
			active_slabs++;
		}
3952 3953
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
3954
				error = "slabs_free accounting error";
3955 3956
			num_slabs++;
		}
3957 3958 3959
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
3960

3961
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
3962
	}
P
Pekka Enberg 已提交
3963 3964
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3965
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3966 3967
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3968
	name = cachep->name;
L
Linus Torvalds 已提交
3969 3970 3971
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
3986
#if STATS
3987
	{			/* node stats */
L
Linus Torvalds 已提交
3988 3989 3990 3991 3992 3993 3994
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
3995
		unsigned long node_frees = cachep->node_frees;
3996
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
3997

J
Joe Perches 已提交
3998 3999 4000 4001 4002
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4012
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4025
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4026
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4027
{
P
Pekka Enberg 已提交
4028
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4029
	int limit, batchcount, shared, res;
4030
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4031

L
Linus Torvalds 已提交
4032 4033 4034 4035
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4036
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4047
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4048
	res = -EINVAL;
4049
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4050
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4051 4052
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4053
				res = 0;
L
Linus Torvalds 已提交
4054
			} else {
4055
				res = do_tune_cpucache(cachep, limit,
4056 4057
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4058 4059 4060 4061
			}
			break;
		}
	}
4062
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4063 4064 4065 4066
	if (res >= 0)
		res = count;
	return res;
}
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4100 4101
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4102 4103
{
	void *p;
4104 4105
	int i, j;
	unsigned long v;
4106

4107 4108
	if (n[0] == n[1])
		return;
4109
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4120
			continue;
4121

4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4132 4133 4134 4135 4136 4137 4138 4139
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4140
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4141

4142
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4143
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4144
		if (modname[0])
4145 4146 4147 4148 4149 4150 4151 4152 4153
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4154
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4155
	struct page *page;
4156
	struct kmem_cache_node *n;
4157
	const char *name;
4158
	unsigned long *x = m->private;
4159 4160 4161 4162 4163 4164 4165 4166
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4178

4179
		for_each_kmem_cache_node(cachep, node, n) {
4180

4181 4182
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4183

4184 4185 4186 4187 4188 4189 4190
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4191 4192

	name = cachep->name;
4193
	if (x[0] == x[1]) {
4194
		/* Increase the buffer size */
4195
		mutex_unlock(&slab_mutex);
4196
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4197 4198
		if (!m->private) {
			/* Too bad, we are really out */
4199
			m->private = x;
4200
			mutex_lock(&slab_mutex);
4201 4202
			return -ENOMEM;
		}
4203 4204
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4205
		mutex_lock(&slab_mutex);
4206 4207 4208 4209
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4210 4211 4212
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4213 4214
		seq_putc(m, '\n');
	}
4215

4216 4217 4218
	return 0;
}

4219
static const struct seq_operations slabstats_op = {
4220
	.start = slab_start,
4221 4222
	.next = slab_next,
	.stop = slab_stop,
4223 4224
	.show = leaks_show,
};
4225 4226 4227

static int slabstats_open(struct inode *inode, struct file *file)
{
4228 4229 4230 4231 4232 4233 4234 4235 4236
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4251
#endif
4252 4253 4254
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4255 4256
#endif

4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4269
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4270
{
4271 4272
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4273
		return 0;
L
Linus Torvalds 已提交
4274

4275
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4276
}
K
Kirill A. Shutemov 已提交
4277
EXPORT_SYMBOL(ksize);