slab.c 106.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

L
Linus Torvalds 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
188
	void *entry[];	/*
A
Andrew Morton 已提交
189 190 191 192
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
193 194
};

J
Joonsoo Kim 已提交
195 196 197 198 199
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

200 201 202
/*
 * Need this for bootstrapping a per node allocator.
 */
203
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205
#define	CACHE_CACHE 0
206
#define	SIZE_NODE (MAX_NUMNODES)
207

208
static int drain_freelist(struct kmem_cache *cache,
209
			struct kmem_cache_node *n, int tofree);
210
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 212
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214
static void cache_reap(struct work_struct *unused);
215

216 217
static int slab_early_init = 1;

218
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
219

220
static void kmem_cache_node_init(struct kmem_cache_node *parent)
221 222 223 224 225 226
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
227
	parent->colour_next = 0;
228 229 230 231 232
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
233 234 235
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
236
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
237 238
	} while (0)

A
Andrew Morton 已提交
239 240
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
241 242 243 244
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
245

246
#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
L
Linus Torvalds 已提交
247
#define CFLGS_OFF_SLAB		(0x80000000UL)
248
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
249 250 251
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
252 253 254
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
255
 *
A
Adrian Bunk 已提交
256
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
257 258
 * which could lock up otherwise freeable slabs.
 */
259 260
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
261 262 263 264 265 266

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
267
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
268 269 270 271 272
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
273 274
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
275
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
276
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
277 278 279 280 281
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
282 283 284 285 286 287 288 289 290
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
291
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
292 293 294
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
295
#define	STATS_INC_NODEFREES(x)	do { } while (0)
296
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
297
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
298 299 300 301 302 303 304 305
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
306 307
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
308
 * 0		: objp
309
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
310 311
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
312
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
313
 * 		redzone word.
314
 * cachep->obj_offset: The real object.
315 316
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
317
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
318
 */
319
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
320
{
321
	return cachep->obj_offset;
L
Linus Torvalds 已提交
322 323
}

324
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
325 326
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
327 328
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
329 330
}

331
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
332 333 334
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
335
		return (unsigned long long *)(objp + cachep->size -
336
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
337
					      REDZONE_ALIGN);
338
	return (unsigned long long *) (objp + cachep->size -
339
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
340 341
}

342
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
343 344
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
345
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
346 347 348 349
}

#else

350
#define obj_offset(x)			0
351 352
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
353 354 355 356
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

357 358
#ifdef CONFIG_DEBUG_SLAB_LEAK

359
static inline bool is_store_user_clean(struct kmem_cache *cachep)
360
{
361 362
	return atomic_read(&cachep->store_user_clean) == 1;
}
363

364 365 366 367
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
368

369 370 371 372
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
373 374 375
}

#else
376
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
377 378 379

#endif

L
Linus Torvalds 已提交
380
/*
381 382
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
383
 */
384 385 386
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
387
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
388

389 390
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
391
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
392
	return page->slab_cache;
393 394
}

395
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
396 397
				 unsigned int idx)
{
398
	return page->s_mem + cache->size * idx;
399 400
}

401
/*
402 403 404
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
405 406 407
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
408
					const struct page *page, void *obj)
409
{
410
	u32 offset = (obj - page->s_mem);
411
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
412 413
}

414
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
415
/* internal cache of cache description objs */
416
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
417 418 419
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
420
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
421
	.name = "kmem_cache",
L
Linus Torvalds 已提交
422 423
};

424
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
425

426
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
427
{
428
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
429 430
}

A
Andrew Morton 已提交
431 432 433
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
434 435
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
		unsigned long flags, size_t *left_over)
436
{
437
	unsigned int num;
438
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
439

440 441 442 443 444 445
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
446 447 448 449 450
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
451 452 453 454 455 456
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
457
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
458
		num = slab_size / buffer_size;
459
		*left_over = slab_size % buffer_size;
460
	} else {
461
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
462 463
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
464
	}
465 466

	return num;
L
Linus Torvalds 已提交
467 468
}

469
#if DEBUG
470
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
471

A
Andrew Morton 已提交
472 473
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
474
{
475
	pr_err("slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
476
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
477
	dump_stack();
478
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
479
}
480
#endif
L
Linus Torvalds 已提交
481

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

498 499 500 501 502 503 504 505 506 507 508
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

509 510 511 512 513 514 515
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
516
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
517 518 519 520 521

static void init_reap_node(int cpu)
{
	int node;

522
	node = next_node(cpu_to_mem(cpu), node_online_map);
523
	if (node == MAX_NUMNODES)
524
		node = first_node(node_online_map);
525

526
	per_cpu(slab_reap_node, cpu) = node;
527 528 529 530
}

static void next_reap_node(void)
{
531
	int node = __this_cpu_read(slab_reap_node);
532 533 534 535

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
536
	__this_cpu_write(slab_reap_node, node);
537 538 539 540 541 542 543
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
544 545 546 547 548 549 550
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
551
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
552
{
553
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
554 555 556 557 558 559

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
560
	if (keventd_up() && reap_work->work.func == NULL) {
561
		init_reap_node(cpu);
562
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
563 564
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
565 566 567
	}
}

568
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
569
{
570 571
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
572
	 * However, when such objects are allocated or transferred to another
573 574 575 576
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
577 578 579 580 581 582
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
583
	}
584 585 586 587 588
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
589
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
590 591 592 593 594
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
595 596
}

597 598
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
599
{
600 601 602
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
603

604 605
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
606

607 608 609
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
610

611
	slabs_destroy(cachep, &list);
612 613
}

614 615 616 617 618 619 620 621 622 623
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
624
	int nr = min3(from->avail, max, to->limit - to->avail);
625 626 627 628 629 630 631 632 633 634 635 636

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

637 638 639
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
640
#define reap_alien(cachep, n) do { } while (0)
641

J
Joonsoo Kim 已提交
642 643
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
644
{
645
	return NULL;
646 647
}

J
Joonsoo Kim 已提交
648
static inline void free_alien_cache(struct alien_cache **ac_ptr)
649 650 651 652 653 654 655 656 657 658 659 660 661 662
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

663
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
664 665 666 667 668
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
669 670
static inline gfp_t gfp_exact_node(gfp_t flags)
{
671
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
672 673
}

674 675
#else	/* CONFIG_NUMA */

676
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
677
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
678

J
Joonsoo Kim 已提交
679 680 681
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
682
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
683 684 685 686
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
687
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
688 689 690 691
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
692
{
J
Joonsoo Kim 已提交
693
	struct alien_cache **alc_ptr;
694
	size_t memsize = sizeof(void *) * nr_node_ids;
695 696 697 698
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
712 713
		}
	}
J
Joonsoo Kim 已提交
714
	return alc_ptr;
715 716
}

J
Joonsoo Kim 已提交
717
static void free_alien_cache(struct alien_cache **alc_ptr)
718 719 720
{
	int i;

J
Joonsoo Kim 已提交
721
	if (!alc_ptr)
722 723
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
724 725
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
726 727
}

728
static void __drain_alien_cache(struct kmem_cache *cachep,
729 730
				struct array_cache *ac, int node,
				struct list_head *list)
731
{
732
	struct kmem_cache_node *n = get_node(cachep, node);
733 734

	if (ac->avail) {
735
		spin_lock(&n->list_lock);
736 737 738 739 740
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
741 742
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
743

744
		free_block(cachep, ac->entry, ac->avail, node, list);
745
		ac->avail = 0;
746
		spin_unlock(&n->list_lock);
747 748 749
	}
}

750 751 752
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
753
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
754
{
755
	int node = __this_cpu_read(slab_reap_node);
756

757
	if (n->alien) {
J
Joonsoo Kim 已提交
758 759 760 761 762
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
763
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
764 765 766
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
767
				spin_unlock_irq(&alc->lock);
768
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
769
			}
770 771 772 773
		}
	}
}

A
Andrew Morton 已提交
774
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
775
				struct alien_cache **alien)
776
{
P
Pekka Enberg 已提交
777
	int i = 0;
J
Joonsoo Kim 已提交
778
	struct alien_cache *alc;
779 780 781 782
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
783 784
		alc = alien[i];
		if (alc) {
785 786
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
787
			ac = &alc->ac;
788
			spin_lock_irqsave(&alc->lock, flags);
789
			__drain_alien_cache(cachep, ac, i, &list);
790
			spin_unlock_irqrestore(&alc->lock, flags);
791
			slabs_destroy(cachep, &list);
792 793 794
		}
	}
}
795

796 797
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
798
{
799
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
800 801
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
802
	LIST_HEAD(list);
P
Pekka Enberg 已提交
803

804
	n = get_node(cachep, node);
805
	STATS_INC_NODEFREES(cachep);
806 807
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
808
		ac = &alien->ac;
809
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
810
		if (unlikely(ac->avail == ac->limit)) {
811
			STATS_INC_ACOVERFLOW(cachep);
812
			__drain_alien_cache(cachep, ac, page_node, &list);
813
		}
814
		ac->entry[ac->avail++] = objp;
815
		spin_unlock(&alien->lock);
816
		slabs_destroy(cachep, &list);
817
	} else {
818
		n = get_node(cachep, page_node);
819
		spin_lock(&n->list_lock);
820
		free_block(cachep, &objp, 1, page_node, &list);
821
		spin_unlock(&n->list_lock);
822
		slabs_destroy(cachep, &list);
823 824 825
	}
	return 1;
}
826 827 828 829 830 831 832 833 834 835 836 837 838 839

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
840 841

/*
842 843
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
844 845 846
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
847
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
848
}
849 850
#endif

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

891
/*
892
 * Allocates and initializes node for a node on each slab cache, used for
893
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
894
 * will be allocated off-node since memory is not yet online for the new node.
895
 * When hotplugging memory or a cpu, existing node are not replaced if
896 897
 * already in use.
 *
898
 * Must hold slab_mutex.
899
 */
900
static int init_cache_node_node(int node)
901
{
902
	int ret;
903 904
	struct kmem_cache *cachep;

905
	list_for_each_entry(cachep, &slab_caches, list) {
906 907 908
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
909
	}
910

911 912 913
	return 0;
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

971
static void cpuup_canceled(long cpu)
972 973
{
	struct kmem_cache *cachep;
974
	struct kmem_cache_node *n = NULL;
975
	int node = cpu_to_mem(cpu);
976
	const struct cpumask *mask = cpumask_of_node(node);
977

978
	list_for_each_entry(cachep, &slab_caches, list) {
979 980
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
981
		struct alien_cache **alien;
982
		LIST_HEAD(list);
983

984
		n = get_node(cachep, node);
985
		if (!n)
986
			continue;
987

988
		spin_lock_irq(&n->list_lock);
989

990 991
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
992 993 994 995

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
996
			free_block(cachep, nc->entry, nc->avail, node, &list);
997 998
			nc->avail = 0;
		}
999

1000
		if (!cpumask_empty(mask)) {
1001
			spin_unlock_irq(&n->list_lock);
1002
			goto free_slab;
1003 1004
		}

1005
		shared = n->shared;
1006 1007
		if (shared) {
			free_block(cachep, shared->entry,
1008
				   shared->avail, node, &list);
1009
			n->shared = NULL;
1010 1011
		}

1012 1013
		alien = n->alien;
		n->alien = NULL;
1014

1015
		spin_unlock_irq(&n->list_lock);
1016 1017 1018 1019 1020 1021

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1022 1023

free_slab:
1024
		slabs_destroy(cachep, &list);
1025 1026 1027 1028 1029 1030
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1031
	list_for_each_entry(cachep, &slab_caches, list) {
1032
		n = get_node(cachep, node);
1033
		if (!n)
1034
			continue;
1035
		drain_freelist(cachep, n, INT_MAX);
1036 1037 1038
	}
}

1039
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1040
{
1041
	struct kmem_cache *cachep;
1042
	int node = cpu_to_mem(cpu);
1043
	int err;
L
Linus Torvalds 已提交
1044

1045 1046 1047 1048
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1049
	 * kmem_cache_node and not this cpu's kmem_cache_node
1050
	 */
1051
	err = init_cache_node_node(node);
1052 1053
	if (err < 0)
		goto bad;
1054 1055 1056 1057 1058

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1059
	list_for_each_entry(cachep, &slab_caches, list) {
1060 1061 1062
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1063
	}
1064

1065 1066
	return 0;
bad:
1067
	cpuup_canceled(cpu);
1068 1069 1070
	return -ENOMEM;
}

1071
static int cpuup_callback(struct notifier_block *nfb,
1072 1073 1074 1075 1076 1077 1078 1079
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1080
		mutex_lock(&slab_mutex);
1081
		err = cpuup_prepare(cpu);
1082
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1083 1084
		break;
	case CPU_ONLINE:
1085
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1086 1087 1088
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1089
  	case CPU_DOWN_PREPARE:
1090
  	case CPU_DOWN_PREPARE_FROZEN:
1091
		/*
1092
		 * Shutdown cache reaper. Note that the slab_mutex is
1093 1094 1095 1096
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1097
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1098
		/* Now the cache_reaper is guaranteed to be not running. */
1099
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1100 1101
  		break;
  	case CPU_DOWN_FAILED:
1102
  	case CPU_DOWN_FAILED_FROZEN:
1103 1104
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1105
	case CPU_DEAD:
1106
	case CPU_DEAD_FROZEN:
1107 1108
		/*
		 * Even if all the cpus of a node are down, we don't free the
1109
		 * kmem_cache_node of any cache. This to avoid a race between
1110
		 * cpu_down, and a kmalloc allocation from another cpu for
1111
		 * memory from the node of the cpu going down.  The node
1112 1113 1114
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1115
		/* fall through */
1116
#endif
L
Linus Torvalds 已提交
1117
	case CPU_UP_CANCELED:
1118
	case CPU_UP_CANCELED_FROZEN:
1119
		mutex_lock(&slab_mutex);
1120
		cpuup_canceled(cpu);
1121
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1122 1123
		break;
	}
1124
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1125 1126
}

1127
static struct notifier_block cpucache_notifier = {
1128 1129
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1130

1131 1132 1133 1134 1135 1136
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1137
 * Must hold slab_mutex.
1138
 */
1139
static int __meminit drain_cache_node_node(int node)
1140 1141 1142 1143
{
	struct kmem_cache *cachep;
	int ret = 0;

1144
	list_for_each_entry(cachep, &slab_caches, list) {
1145
		struct kmem_cache_node *n;
1146

1147
		n = get_node(cachep, node);
1148
		if (!n)
1149 1150
			continue;

1151
		drain_freelist(cachep, n, INT_MAX);
1152

1153 1154
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1175
		mutex_lock(&slab_mutex);
1176
		ret = init_cache_node_node(nid);
1177
		mutex_unlock(&slab_mutex);
1178 1179
		break;
	case MEM_GOING_OFFLINE:
1180
		mutex_lock(&slab_mutex);
1181
		ret = drain_cache_node_node(nid);
1182
		mutex_unlock(&slab_mutex);
1183 1184 1185 1186 1187 1188 1189 1190
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1191
	return notifier_from_errno(ret);
1192 1193 1194
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1195
/*
1196
 * swap the static kmem_cache_node with kmalloced memory
1197
 */
1198
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1199
				int nodeid)
1200
{
1201
	struct kmem_cache_node *ptr;
1202

1203
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1204 1205
	BUG_ON(!ptr);

1206
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1207 1208 1209 1210 1211
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1212
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1213
	cachep->node[nodeid] = ptr;
1214 1215
}

1216
/*
1217 1218
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1219
 */
1220
static void __init set_up_node(struct kmem_cache *cachep, int index)
1221 1222 1223 1224
{
	int node;

	for_each_online_node(node) {
1225
		cachep->node[node] = &init_kmem_cache_node[index + node];
1226
		cachep->node[node]->next_reap = jiffies +
1227 1228
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1229 1230 1231
	}
}

A
Andrew Morton 已提交
1232 1233 1234
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1235 1236 1237
 */
void __init kmem_cache_init(void)
{
1238 1239
	int i;

1240 1241
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1242 1243
	kmem_cache = &kmem_cache_boot;

1244
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1245 1246
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1247
	for (i = 0; i < NUM_INIT_LISTS; i++)
1248
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1249

L
Linus Torvalds 已提交
1250 1251
	/*
	 * Fragmentation resistance on low memory - only use bigger
1252 1253
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1254
	 */
1255
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1256
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1257 1258 1259

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1260 1261 1262
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1263
	 *    Initially an __init data area is used for the head array and the
1264
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1265
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1266
	 * 2) Create the first kmalloc cache.
1267
	 *    The struct kmem_cache for the new cache is allocated normally.
1268 1269 1270
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1271
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1272
	 *    kmalloc cache with kmalloc allocated arrays.
1273
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1274 1275
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1276 1277
	 */

1278
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1279

E
Eric Dumazet 已提交
1280
	/*
1281
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1282
	 */
1283
	create_boot_cache(kmem_cache, "kmem_cache",
1284
		offsetof(struct kmem_cache, node) +
1285
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1286 1287
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1288
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1289

A
Andrew Morton 已提交
1290
	/*
1291 1292
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1293
	 */
1294
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1295
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1296
	slab_state = PARTIAL_NODE;
1297
	setup_kmalloc_cache_index_table();
1298

1299 1300
	slab_early_init = 0;

1301
	/* 5) Replace the bootstrap kmem_cache_node */
1302
	{
P
Pekka Enberg 已提交
1303 1304
		int nid;

1305
		for_each_online_node(nid) {
1306
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1307

1308
			init_list(kmalloc_caches[INDEX_NODE],
1309
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1310 1311
		}
	}
L
Linus Torvalds 已提交
1312

1313
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1314 1315 1316 1317 1318 1319
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1320
	slab_state = UP;
P
Peter Zijlstra 已提交
1321

1322
	/* 6) resize the head arrays to their final sizes */
1323 1324
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1325 1326
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1327
	mutex_unlock(&slab_mutex);
1328

1329 1330 1331
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1332 1333 1334
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1335 1336 1337
	 */
	register_cpu_notifier(&cpucache_notifier);

1338 1339 1340
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1341
	 * node.
1342 1343 1344 1345
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1346 1347 1348
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1349 1350 1351 1352 1353 1354 1355
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1356 1357
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1358
	 */
1359
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1360
		start_cpu_timer(cpu);
1361 1362

	/* Done! */
1363
	slab_state = FULL;
L
Linus Torvalds 已提交
1364 1365 1366 1367
	return 0;
}
__initcall(cpucache_init);

1368 1369 1370
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1371
#if DEBUG
1372
	struct kmem_cache_node *n;
1373
	struct page *page;
1374 1375
	unsigned long flags;
	int node;
1376 1377 1378 1379 1380
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1381

1382 1383 1384
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1385
		cachep->name, cachep->size, cachep->gfporder);
1386

1387
	for_each_kmem_cache_node(cachep, node, n) {
1388 1389 1390
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1391
		spin_lock_irqsave(&n->list_lock, flags);
1392
		list_for_each_entry(page, &n->slabs_full, lru) {
1393 1394 1395
			active_objs += cachep->num;
			active_slabs++;
		}
1396 1397
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1398 1399
			active_slabs++;
		}
1400
		list_for_each_entry(page, &n->slabs_free, lru)
1401 1402
			num_slabs++;

1403 1404
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1405 1406 1407

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
1408
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1409 1410 1411
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1412
#endif
1413 1414
}

L
Linus Torvalds 已提交
1415
/*
W
Wang Sheng-Hui 已提交
1416 1417
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1418 1419 1420 1421 1422
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1423 1424
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1425 1426
{
	struct page *page;
1427
	int nr_pages;
1428

1429
	flags |= cachep->allocflags;
1430 1431
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1432

1433
	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1434
	if (!page) {
1435
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1436
		return NULL;
1437
	}
L
Linus Torvalds 已提交
1438

1439 1440 1441 1442 1443
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1444
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1445
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1446 1447 1448 1449 1450
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1451

1452
	__SetPageSlab(page);
1453 1454
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1455
		SetPageSlabPfmemalloc(page);
1456

1457 1458 1459 1460 1461 1462 1463 1464
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1465

1466
	return page;
L
Linus Torvalds 已提交
1467 1468 1469 1470 1471
}

/*
 * Interface to system's page release.
 */
1472
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1473
{
1474 1475
	int order = cachep->gfporder;
	unsigned long nr_freed = (1 << order);
L
Linus Torvalds 已提交
1476

1477
	kmemcheck_free_shadow(page, order);
P
Pekka Enberg 已提交
1478

1479 1480 1481 1482 1483 1484
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1485

1486
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1487
	__ClearPageSlabPfmemalloc(page);
1488
	__ClearPageSlab(page);
1489 1490
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1491

L
Linus Torvalds 已提交
1492 1493
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1494 1495
	memcg_uncharge_slab(page, order, cachep);
	__free_pages(page, order);
L
Linus Torvalds 已提交
1496 1497 1498 1499
}

static void kmem_rcu_free(struct rcu_head *head)
{
1500 1501
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1502

1503 1504 1505 1506
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1507 1508 1509
}

#if DEBUG
1510 1511 1512 1513 1514 1515 1516 1517
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1518 1519

#ifdef CONFIG_DEBUG_PAGEALLOC
1520
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1521
			    unsigned long caller)
L
Linus Torvalds 已提交
1522
{
1523
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1524

1525
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1526

P
Pekka Enberg 已提交
1527
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1528 1529
		return;

P
Pekka Enberg 已提交
1530 1531 1532 1533
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1534 1535 1536 1537 1538 1539 1540
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1541
				*addr++ = svalue;
L
Linus Torvalds 已提交
1542 1543 1544 1545 1546 1547 1548
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1549
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1550
}
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

L
Linus Torvalds 已提交
1568 1569
#endif

1570
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1571
{
1572
	int size = cachep->object_size;
1573
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1574 1575

	memset(addr, val, size);
P
Pekka Enberg 已提交
1576
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1577 1578 1579 1580 1581
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1582 1583 1584
	unsigned char error = 0;
	int bad_count = 0;

1585
	pr_err("%03x: ", offset);
D
Dave Jones 已提交
1586 1587 1588 1589 1590 1591
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1592 1593
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1594 1595 1596 1597

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1598
			pr_err("Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1599
#ifdef CONFIG_X86
1600
			pr_err("Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1601
#else
1602
			pr_err("Run a memory test tool.\n");
D
Dave Jones 已提交
1603 1604 1605
#endif
		}
	}
L
Linus Torvalds 已提交
1606 1607 1608 1609 1610
}
#endif

#if DEBUG

1611
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1612 1613 1614 1615 1616
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1617 1618 1619
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1620 1621 1622
	}

	if (cachep->flags & SLAB_STORE_USER) {
1623
		pr_err("Last user: [<%p>](%pSR)\n",
J
Joe Perches 已提交
1624 1625
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1626
	}
1627
	realobj = (char *)objp + obj_offset(cachep);
1628
	size = cachep->object_size;
P
Pekka Enberg 已提交
1629
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1630 1631
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1632 1633
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1634 1635 1636 1637
		dump_line(realobj, i, limit);
	}
}

1638
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1639 1640 1641 1642 1643
{
	char *realobj;
	int size, i;
	int lines = 0;

1644 1645 1646
	if (is_debug_pagealloc_cache(cachep))
		return;

1647
	realobj = (char *)objp + obj_offset(cachep);
1648
	size = cachep->object_size;
L
Linus Torvalds 已提交
1649

P
Pekka Enberg 已提交
1650
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1651
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1652
		if (i == size - 1)
L
Linus Torvalds 已提交
1653 1654 1655 1656 1657 1658
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1659 1660 1661
				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
				       print_tainted(), cachep->name,
				       realobj, size);
L
Linus Torvalds 已提交
1662 1663 1664
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1665
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1666
			limit = 16;
P
Pekka Enberg 已提交
1667 1668
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1681
		struct page *page = virt_to_head_page(objp);
1682
		unsigned int objnr;
L
Linus Torvalds 已提交
1683

1684
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1685
		if (objnr) {
1686
			objp = index_to_obj(cachep, page, objnr - 1);
1687
			realobj = (char *)objp + obj_offset(cachep);
1688
			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1689 1690
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1691
		if (objnr + 1 < cachep->num) {
1692
			objp = index_to_obj(cachep, page, objnr + 1);
1693
			realobj = (char *)objp + obj_offset(cachep);
1694
			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1695 1696 1697 1698 1699 1700
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1701
#if DEBUG
1702 1703
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1704 1705
{
	int i;
1706 1707 1708 1709 1710 1711

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1712
	for (i = 0; i < cachep->num; i++) {
1713
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1714 1715 1716

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1717
			slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
1718 1719 1720
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1721
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1722
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1723
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1724 1725
		}
	}
1726
}
L
Linus Torvalds 已提交
1727
#else
1728 1729
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1730 1731
{
}
L
Linus Torvalds 已提交
1732 1733
#endif

1734 1735 1736
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1737
 * @page: page pointer being destroyed
1738
 *
W
Wang Sheng-Hui 已提交
1739 1740 1741
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1742
 */
1743
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1744
{
1745
	void *freelist;
1746

1747 1748
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1749 1750 1751
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1752
		kmem_freepages(cachep, page);
1753 1754

	/*
1755
	 * From now on, we don't use freelist
1756 1757 1758
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1759
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1760 1761
}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1772
/**
1773 1774 1775 1776 1777 1778
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1779 1780 1781 1782 1783
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1784
static size_t calculate_slab_order(struct kmem_cache *cachep,
1785
				size_t size, unsigned long flags)
1786 1787
{
	size_t left_over = 0;
1788
	int gfporder;
1789

1790
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1791 1792 1793
		unsigned int num;
		size_t remainder;

1794
		num = cache_estimate(gfporder, size, flags, &remainder);
1795 1796
		if (!num)
			continue;
1797

1798 1799 1800 1801
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1802
		if (flags & CFLGS_OFF_SLAB) {
1803 1804 1805 1806 1807 1808 1809 1810
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1811
			/*
1812 1813
			 * Needed to avoid possible looping condition
			 * in cache_grow()
1814
			 */
1815 1816
			if (OFF_SLAB(freelist_cache))
				continue;
1817

1818 1819 1820
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1821
		}
1822

1823
		/* Found something acceptable - save it away */
1824
		cachep->num = num;
1825
		cachep->gfporder = gfporder;
1826 1827
		left_over = remainder;

1828 1829 1830 1831 1832 1833 1834 1835
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1836 1837 1838 1839
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1840
		if (gfporder >= slab_max_order)
1841 1842
			break;

1843 1844 1845
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1846
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1847 1848 1849 1850 1851
			break;
	}
	return left_over;
}

1852 1853 1854 1855 1856 1857 1858 1859
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1860
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1873
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1874
{
1875
	if (slab_state >= FULL)
1876
		return enable_cpucache(cachep, gfp);
1877

1878 1879 1880 1881
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1882
	if (slab_state == DOWN) {
1883 1884
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1885
	} else if (slab_state == PARTIAL) {
1886 1887
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1888
	} else {
1889
		int node;
1890

1891 1892 1893 1894 1895
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1896 1897
		}
	}
1898

1899
	cachep->node[numa_mem_id()]->next_reap =
1900 1901
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1902 1903 1904 1905 1906 1907 1908

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1909
	return 0;
1910 1911
}

J
Joonsoo Kim 已提交
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1961 1962 1963 1964 1965 1966 1967 1968
static bool set_off_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	/*
1969 1970
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
2011
/**
2012
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2013
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2014 2015 2016 2017
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2018
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2032
int
2033
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2034
{
2035
	size_t ralign = BYTES_PER_WORD;
2036
	gfp_t gfp;
2037
	int err;
2038
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2048 2049
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2050
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2051 2052 2053 2054 2055
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
2056 2057
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2058 2059 2060
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2061 2062 2063
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2064 2065
	}

D
David Woodhouse 已提交
2066 2067 2068 2069 2070 2071 2072
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2073

2074
	/* 3) caller mandated alignment */
2075 2076
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2077
	}
2078 2079
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2080
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2081
	/*
2082
	 * 4) Store it.
L
Linus Torvalds 已提交
2083
	 */
2084
	cachep->align = ralign;
2085 2086 2087 2088
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
2089

2090 2091 2092 2093 2094
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2095 2096
#if DEBUG

2097 2098 2099 2100
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2101 2102
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2103 2104
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2105 2106
	}
	if (flags & SLAB_STORE_USER) {
2107
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2108 2109
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2110
		 */
D
David Woodhouse 已提交
2111 2112 2113 2114
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2115
	}
2116 2117
#endif

A
Alexander Potapenko 已提交
2118 2119
	kasan_cache_create(cachep, &size, &flags);

2120 2121 2122 2123 2124 2125 2126 2127 2128
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2129 2130 2131 2132 2133 2134 2135
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2136
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2148 2149 2150
	}
#endif

2151 2152 2153 2154 2155
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2156
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2157
		flags |= CFLGS_OFF_SLAB;
2158
		goto done;
2159
	}
L
Linus Torvalds 已提交
2160

2161 2162
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2163

2164
	return -E2BIG;
L
Linus Torvalds 已提交
2165

2166 2167
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2168
	cachep->flags = flags;
2169
	cachep->allocflags = __GFP_COMP;
2170
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2171
		cachep->allocflags |= GFP_DMA;
2172
	cachep->size = size;
2173
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2174

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2188 2189
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2190
	}
L
Linus Torvalds 已提交
2191

2192 2193
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2194
		__kmem_cache_release(cachep);
2195
		return err;
2196
	}
L
Linus Torvalds 已提交
2197

2198
	return 0;
L
Linus Torvalds 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2212 2213 2214 2215 2216
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2217
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2218 2219 2220
{
#ifdef CONFIG_SMP
	check_irq_off();
2221
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2222 2223
#endif
}
2224

2225
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2226 2227 2228
{
#ifdef CONFIG_SMP
	check_irq_off();
2229
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2230 2231 2232
#endif
}

L
Linus Torvalds 已提交
2233 2234 2235
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2236
#define check_mutex_acquired()	do { } while(0)
L
Linus Torvalds 已提交
2237
#define check_spinlock_acquired(x) do { } while(0)
2238
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2239 2240
#endif

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2257

L
Linus Torvalds 已提交
2258 2259
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2260
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2261
	struct array_cache *ac;
2262
	int node = numa_mem_id();
2263
	struct kmem_cache_node *n;
2264
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2265 2266

	check_irq_off();
2267
	ac = cpu_cache_get(cachep);
2268 2269
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2270
	free_block(cachep, ac->entry, ac->avail, node, &list);
2271
	spin_unlock(&n->list_lock);
2272
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2273 2274 2275
	ac->avail = 0;
}

2276
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2277
{
2278
	struct kmem_cache_node *n;
2279
	int node;
2280
	LIST_HEAD(list);
2281

2282
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2283
	check_irq_on();
2284 2285
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2286
			drain_alien_cache(cachep, n->alien);
2287

2288 2289 2290 2291 2292 2293 2294
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
L
Linus Torvalds 已提交
2295 2296
}

2297 2298 2299 2300 2301 2302 2303
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2304
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2305
{
2306 2307
	struct list_head *p;
	int nr_freed;
2308
	struct page *page;
L
Linus Torvalds 已提交
2309

2310
	nr_freed = 0;
2311
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2312

2313 2314 2315 2316
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2317 2318
			goto out;
		}
L
Linus Torvalds 已提交
2319

2320 2321
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2322 2323 2324 2325
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2326 2327
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2328
		slab_destroy(cache, page);
2329
		nr_freed++;
L
Linus Torvalds 已提交
2330
	}
2331 2332
out:
	return nr_freed;
L
Linus Torvalds 已提交
2333 2334
}

2335
int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2336
{
2337 2338
	int ret = 0;
	int node;
2339
	struct kmem_cache_node *n;
2340 2341 2342 2343

	drain_cpu_caches(cachep);

	check_irq_on();
2344
	for_each_kmem_cache_node(cachep, node, n) {
2345
		drain_freelist(cachep, n, INT_MAX);
2346

2347 2348
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2349 2350 2351 2352
	}
	return (ret ? 1 : 0);
}

2353
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2354 2355 2356 2357 2358
{
	return __kmem_cache_shrink(cachep, false);
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2359
{
2360
	int i;
2361
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2362

2363
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2364

2365
	/* NUMA: free the node structures */
2366 2367 2368 2369 2370
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2371
	}
L
Linus Torvalds 已提交
2372 2373
}

2374 2375
/*
 * Get the memory for a slab management obj.
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2387
 */
2388
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2389 2390
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2391
{
2392
	void *freelist;
2393
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2394

2395 2396 2397
	page->s_mem = addr + colour_off;
	page->active = 0;

2398 2399 2400
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2401
		/* Slab management obj is off-slab. */
2402
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2403
					      local_flags, nodeid);
2404
		if (!freelist)
L
Linus Torvalds 已提交
2405 2406
			return NULL;
	} else {
2407 2408 2409
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2410
	}
2411

2412
	return freelist;
L
Linus Torvalds 已提交
2413 2414
}

2415
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2416
{
2417
	return ((freelist_idx_t *)page->freelist)[idx];
2418 2419 2420
}

static inline void set_free_obj(struct page *page,
2421
					unsigned int idx, freelist_idx_t val)
2422
{
2423
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2424 2425
}

2426
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2427
{
2428
#if DEBUG
L
Linus Torvalds 已提交
2429 2430 2431
	int i;

	for (i = 0; i < cachep->num; i++) {
2432
		void *objp = index_to_obj(cachep, page, i);
2433

L
Linus Torvalds 已提交
2434 2435 2436 2437 2438 2439 2440 2441
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2442 2443 2444
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2445
		 */
A
Alexander Potapenko 已提交
2446 2447 2448
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2449
			cachep->ctor(objp + obj_offset(cachep));
A
Alexander Potapenko 已提交
2450 2451 2452
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
L
Linus Torvalds 已提交
2453 2454 2455

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2456
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2457
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2458
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2459
		}
2460 2461 2462 2463 2464
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
2465
	}
L
Linus Torvalds 已提交
2466
#endif
2467 2468 2469 2470 2471 2472
}

static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
A
Alexander Potapenko 已提交
2473
	void *objp;
2474 2475 2476

	cache_init_objs_debug(cachep, page);

2477 2478 2479 2480 2481
	if (OBJFREELIST_SLAB(cachep)) {
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2482 2483
	for (i = 0; i < cachep->num; i++) {
		/* constructor could break poison info */
A
Alexander Potapenko 已提交
2484 2485 2486 2487 2488 2489
		if (DEBUG == 0 && cachep->ctor) {
			objp = index_to_obj(cachep, page, i);
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2490

2491
		set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2492 2493 2494
	}
}

2495
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2496
{
2497 2498
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2499
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2500
		else
2501
			BUG_ON(cachep->allocflags & GFP_DMA);
2502
	}
L
Linus Torvalds 已提交
2503 2504
}

2505
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2506
{
2507
	void *objp;
2508

2509
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2510
	page->active++;
2511

2512 2513 2514 2515 2516
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2517 2518 2519
	return objp;
}

2520 2521
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2522
{
2523
	unsigned int objnr = obj_to_index(cachep, page, objp);
2524
#if DEBUG
J
Joonsoo Kim 已提交
2525
	unsigned int i;
2526 2527

	/* Verify double free bug */
2528
	for (i = page->active; i < cachep->num; i++) {
2529
		if (get_free_obj(page, i) == objnr) {
2530
			pr_err("slab: double free detected in cache '%s', objp %p\n",
J
Joe Perches 已提交
2531
			       cachep->name, objp);
2532 2533
			BUG();
		}
2534 2535
	}
#endif
2536
	page->active--;
2537 2538 2539
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2540
	set_free_obj(page, page->active, objnr);
2541 2542
}

2543 2544 2545
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2546
 * virtual address for kfree, ksize, and slab debugging.
2547
 */
2548
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2549
			   void *freelist)
L
Linus Torvalds 已提交
2550
{
2551
	page->slab_cache = cache;
2552
	page->freelist = freelist;
L
Linus Torvalds 已提交
2553 2554 2555 2556 2557 2558
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2559
static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2560
{
2561
	void *freelist;
P
Pekka Enberg 已提交
2562 2563
	size_t offset;
	gfp_t local_flags;
2564
	int page_node;
2565
	struct kmem_cache_node *n;
2566
	struct page *page;
L
Linus Torvalds 已提交
2567

A
Andrew Morton 已提交
2568 2569 2570
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2571
	 */
2572 2573 2574 2575
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}
C
Christoph Lameter 已提交
2576
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2577 2578

	check_irq_off();
2579
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2590 2591 2592
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2593
	 */
2594
	page = kmem_getpages(cachep, local_flags, nodeid);
2595
	if (!page)
L
Linus Torvalds 已提交
2596 2597
		goto failed;

2598 2599
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

L
Linus Torvalds 已提交
2612
	/* Get slab management. */
2613
	freelist = alloc_slabmgmt(cachep, page, offset,
2614
			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2615
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2616 2617
		goto opps1;

2618
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2619

A
Alexander Potapenko 已提交
2620
	kasan_poison_slab(page);
2621
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2622

2623
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2624 2625
		local_irq_disable();
	check_irq_off();
2626
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2627 2628

	/* Make slab active. */
2629
	list_add_tail(&page->lru, &(n->slabs_free));
L
Linus Torvalds 已提交
2630
	STATS_INC_GROWN(cachep);
2631 2632
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
2633
	return page_node;
A
Andrew Morton 已提交
2634
opps1:
2635
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2636
failed:
2637
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2638
		local_irq_disable();
2639
	return -1;
L
Linus Torvalds 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2652
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
P
Pekka Enberg 已提交
2653 2654
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2655 2656 2657
	}
}

2658 2659
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2660
	unsigned long long redzone1, redzone2;
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2676 2677
	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
	       obj, redzone1, redzone2);
2678 2679
}

2680
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2681
				   unsigned long caller)
L
Linus Torvalds 已提交
2682 2683
{
	unsigned int objnr;
2684
	struct page *page;
L
Linus Torvalds 已提交
2685

2686 2687
	BUG_ON(virt_to_cache(objp) != cachep);

2688
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2689
	kfree_debugcheck(objp);
2690
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2691 2692

	if (cachep->flags & SLAB_RED_ZONE) {
2693
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2694 2695 2696
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2697 2698
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2699
		*dbg_userword(cachep, objp) = (void *)caller;
2700
	}
L
Linus Torvalds 已提交
2701

2702
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2703 2704

	BUG_ON(objnr >= cachep->num);
2705
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2706 2707 2708

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2709
		slab_kernel_map(cachep, objp, 0, caller);
L
Linus Torvalds 已提交
2710 2711 2712 2713 2714 2715 2716 2717 2718
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2734
static inline void fixup_slab_list(struct kmem_cache *cachep,
2735 2736
				struct kmem_cache_node *n, struct page *page,
				void **list)
2737 2738 2739
{
	/* move slabp to correct slabp list: */
	list_del(&page->lru);
2740
	if (page->active == cachep->num) {
2741
		list_add(&page->lru, &n->slabs_full);
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2755 2756 2757
		list_add(&page->lru, &n->slabs_partial);
}

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
					struct page *page, bool pfmemalloc)
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&page->lru);
	if (!page->active)
		list_add_tail(&page->lru, &n->slabs_free);
	else
		list_add_tail(&page->lru, &n->slabs_partial);

	list_for_each_entry(page, &n->slabs_partial, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

	list_for_each_entry(page, &n->slabs_free, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
{
	struct page *page;

	page = list_first_entry_or_null(&n->slabs_partial,
			struct page, lru);
	if (!page) {
		n->free_touched = 1;
		page = list_first_entry_or_null(&n->slabs_free,
				struct page, lru);
	}

2809 2810 2811
	if (sk_memalloc_socks())
		return get_valid_first_slab(n, page, pfmemalloc);

2812 2813 2814
	return page;
}

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2844 2845
{
	int batchcount;
2846
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2847
	struct array_cache *ac;
P
Pekka Enberg 已提交
2848
	int node;
2849
	void *list = NULL;
P
Pekka Enberg 已提交
2850

L
Linus Torvalds 已提交
2851
	check_irq_off();
2852
	node = numa_mem_id();
2853

2854
retry:
2855
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2856 2857
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2858 2859 2860 2861
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2862 2863 2864
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2865
	n = get_node(cachep, node);
2866

2867 2868
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2869

2870
	/* See if we can refill from the shared array */
2871 2872
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2873
		goto alloc_done;
2874
	}
2875

L
Linus Torvalds 已提交
2876
	while (batchcount > 0) {
2877
		struct page *page;
L
Linus Torvalds 已提交
2878
		/* Get slab alloc is to come from. */
2879
		page = get_first_slab(n, false);
2880 2881
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
2882 2883

		check_spinlock_acquired(cachep);
2884 2885 2886 2887 2888 2889

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2890
		BUG_ON(page->active >= cachep->num);
2891

2892
		while (page->active < cachep->num && batchcount--) {
L
Linus Torvalds 已提交
2893 2894 2895 2896
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2897
			ac->entry[ac->avail++] = slab_get_obj(cachep, page);
L
Linus Torvalds 已提交
2898 2899
		}

2900
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
2901 2902
	}

A
Andrew Morton 已提交
2903
must_grow:
2904
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2905
alloc_done:
2906
	spin_unlock(&n->list_lock);
2907
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2908 2909 2910

	if (unlikely(!ac->avail)) {
		int x;
2911 2912 2913 2914 2915 2916 2917 2918 2919

		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

2920
		x = cache_grow(cachep, gfp_exact_node(flags), node);
2921

A
Andrew Morton 已提交
2922
		/* cache_grow can reenable interrupts, then ac could change. */
2923
		ac = cpu_cache_get(cachep);
2924
		node = numa_mem_id();
2925 2926

		/* no objects in sight? abort */
2927
		if (x < 0 && ac->avail == 0)
L
Linus Torvalds 已提交
2928 2929
			return NULL;

A
Andrew Morton 已提交
2930
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2931 2932 2933
			goto retry;
	}
	ac->touched = 1;
2934

2935
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2936 2937
}

A
Andrew Morton 已提交
2938 2939
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2940
{
2941
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
2942 2943 2944 2945 2946 2947
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2948
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2949
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2950
{
P
Pekka Enberg 已提交
2951
	if (!objp)
L
Linus Torvalds 已提交
2952
		return objp;
P
Pekka Enberg 已提交
2953
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2954
		check_poison_obj(cachep, objp);
2955
		slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
2956 2957 2958
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
2959
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2960 2961

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2962 2963
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
2964
			slab_error(cachep, "double free, or memory outside object was overwritten");
2965 2966 2967
			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2968 2969 2970 2971
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2972

2973
	objp += obj_offset(cachep);
2974
	if (cachep->ctor && cachep->flags & SLAB_POISON)
2975
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
2976 2977
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2978
		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
2979
		       objp, (int)ARCH_SLAB_MINALIGN);
2980
	}
L
Linus Torvalds 已提交
2981 2982 2983 2984 2985 2986
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

2987
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2988
{
P
Pekka Enberg 已提交
2989
	void *objp;
L
Linus Torvalds 已提交
2990 2991
	struct array_cache *ac;

2992
	check_irq_off();
2993

2994
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2995 2996
	if (likely(ac->avail)) {
		ac->touched = 1;
2997
		objp = ac->entry[--ac->avail];
2998

2999 3000
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
3001
	}
3002 3003

	STATS_INC_ALLOCMISS(cachep);
3004
	objp = cache_alloc_refill(cachep, flags);
3005 3006 3007 3008 3009 3010 3011
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3012 3013 3014 3015 3016
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3017 3018
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3019 3020 3021
	return objp;
}

3022
#ifdef CONFIG_NUMA
3023
/*
3024
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3025 3026 3027 3028 3029 3030 3031 3032
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3033
	if (in_interrupt() || (flags & __GFP_THISNODE))
3034
		return NULL;
3035
	nid_alloc = nid_here = numa_mem_id();
3036
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3037
		nid_alloc = cpuset_slab_spread_node();
3038
	else if (current->mempolicy)
3039
		nid_alloc = mempolicy_slab_node();
3040
	if (nid_alloc != nid_here)
3041
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3042 3043 3044
	return NULL;
}

3045 3046
/*
 * Fallback function if there was no memory available and no objects on a
3047
 * certain node and fall back is permitted. First we scan all the
3048
 * available node for available objects. If that fails then we
3049 3050 3051
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3052
 */
3053
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3054
{
3055
	struct zonelist *zonelist;
3056
	struct zoneref *z;
3057 3058
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3059
	void *obj = NULL;
3060
	int nid;
3061
	unsigned int cpuset_mems_cookie;
3062 3063 3064 3065

	if (flags & __GFP_THISNODE)
		return NULL;

3066
retry_cpuset:
3067
	cpuset_mems_cookie = read_mems_allowed_begin();
3068
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3069

3070 3071 3072 3073 3074
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3075 3076
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3077

3078
		if (cpuset_zone_allowed(zone, flags) &&
3079 3080
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3081
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3082
					gfp_exact_node(flags), nid);
3083 3084 3085
				if (obj)
					break;
		}
3086 3087
	}

3088
	if (!obj) {
3089 3090 3091 3092 3093 3094
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3095 3096 3097 3098
		nid = cache_grow(cache, flags, numa_mem_id());
		if (nid >= 0) {
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);
3099

3100
			/*
3101 3102
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
3103
			 */
3104 3105
			if (!obj)
				goto retry;
3106
		}
3107
	}
3108

3109
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3110
		goto retry_cpuset;
3111 3112 3113
	return obj;
}

3114 3115
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3116
 */
3117
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3118
				int nodeid)
3119
{
3120
	struct page *page;
3121
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3122
	void *obj;
3123
	void *list = NULL;
P
Pekka Enberg 已提交
3124 3125
	int x;

3126
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3127
	n = get_node(cachep, nodeid);
3128
	BUG_ON(!n);
P
Pekka Enberg 已提交
3129

A
Andrew Morton 已提交
3130
retry:
3131
	check_irq_off();
3132
	spin_lock(&n->list_lock);
3133
	page = get_first_slab(n, false);
3134 3135
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3136 3137 3138 3139 3140 3141 3142

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3143
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3144

3145
	obj = slab_get_obj(cachep, page);
3146
	n->free_objects--;
P
Pekka Enberg 已提交
3147

3148
	fixup_slab_list(cachep, n, page, &list);
3149

3150
	spin_unlock(&n->list_lock);
3151
	fixup_objfreelist_debug(cachep, &list);
P
Pekka Enberg 已提交
3152
	goto done;
3153

A
Andrew Morton 已提交
3154
must_grow:
3155
	spin_unlock(&n->list_lock);
3156 3157
	x = cache_grow(cachep, gfp_exact_node(flags), nodeid);
	if (x >= 0)
3158
		goto retry;
L
Linus Torvalds 已提交
3159

3160
	return fallback_alloc(cachep, flags);
3161

A
Andrew Morton 已提交
3162
done:
P
Pekka Enberg 已提交
3163
	return obj;
3164
}
3165 3166

static __always_inline void *
3167
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3168
		   unsigned long caller)
3169 3170 3171
{
	unsigned long save_flags;
	void *ptr;
3172
	int slab_node = numa_mem_id();
3173

3174
	flags &= gfp_allowed_mask;
3175 3176
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3177 3178
		return NULL;

3179 3180 3181
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3182
	if (nodeid == NUMA_NO_NODE)
3183
		nodeid = slab_node;
3184

3185
	if (unlikely(!get_node(cachep, nodeid))) {
3186 3187 3188 3189 3190
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3191
	if (nodeid == slab_node) {
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3208 3209
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3210

3211
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3212 3213 3214 3215 3216 3217 3218 3219
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3220
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3231 3232
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3248
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3249 3250 3251 3252
{
	unsigned long save_flags;
	void *objp;

3253
	flags &= gfp_allowed_mask;
3254 3255
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3256 3257
		return NULL;

3258 3259 3260 3261 3262 3263 3264
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3265 3266
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3267

3268
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3269 3270
	return objp;
}
3271 3272

/*
3273
 * Caller needs to acquire correct kmem_cache_node's list_lock
3274
 * @list: List of detached free slabs should be freed by caller
3275
 */
3276 3277
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3278 3279
{
	int i;
3280
	struct kmem_cache_node *n = get_node(cachep, node);
3281 3282 3283
	struct page *page;

	n->free_objects += nr_objects;
L
Linus Torvalds 已提交
3284 3285

	for (i = 0; i < nr_objects; i++) {
3286
		void *objp;
3287
		struct page *page;
L
Linus Torvalds 已提交
3288

3289 3290
		objp = objpp[i];

3291 3292
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3293
		check_spinlock_acquired_node(cachep, node);
3294
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3295 3296 3297
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
3298 3299 3300
		if (page->active == 0)
			list_add(&page->lru, &n->slabs_free);
		else {
L
Linus Torvalds 已提交
3301 3302 3303 3304
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3305
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3306 3307
		}
	}
3308 3309 3310 3311 3312 3313 3314 3315

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

		page = list_last_entry(&n->slabs_free, struct page, lru);
		list_del(&page->lru);
		list_add(&page->lru, list);
	}
L
Linus Torvalds 已提交
3316 3317
}

3318
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3319 3320
{
	int batchcount;
3321
	struct kmem_cache_node *n;
3322
	int node = numa_mem_id();
3323
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3324 3325

	batchcount = ac->batchcount;
3326

L
Linus Torvalds 已提交
3327
	check_irq_off();
3328
	n = get_node(cachep, node);
3329 3330 3331
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3332
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3333 3334 3335
		if (max) {
			if (batchcount > max)
				batchcount = max;
3336
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3337
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3338 3339 3340 3341 3342
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3343
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3344
free_done:
L
Linus Torvalds 已提交
3345 3346 3347
#if STATS
	{
		int i = 0;
3348
		struct page *page;
L
Linus Torvalds 已提交
3349

3350
		list_for_each_entry(page, &n->slabs_free, lru) {
3351
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3352 3353 3354 3355 3356 3357

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3358
	spin_unlock(&n->list_lock);
3359
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3360
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3361
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3362 3363 3364
}

/*
A
Andrew Morton 已提交
3365 3366
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3367
 */
3368
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3369
				unsigned long caller)
L
Linus Torvalds 已提交
3370
{
3371
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3372

A
Alexander Potapenko 已提交
3373 3374
	kasan_slab_free(cachep, objp);

L
Linus Torvalds 已提交
3375
	check_irq_off();
3376
	kmemleak_free_recursive(objp, cachep->flags);
3377
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3378

3379
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3380

3381 3382 3383 3384 3385 3386 3387
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3388
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3389 3390
		return;

3391
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3392 3393 3394 3395 3396
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3397

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3418
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3419
{
3420
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3421

3422
	kasan_slab_alloc(cachep, ret, flags);
3423
	trace_kmem_cache_alloc(_RET_IP_, ret,
3424
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3425 3426

	return ret;
L
Linus Torvalds 已提交
3427 3428 3429
}
EXPORT_SYMBOL(kmem_cache_alloc);

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3440
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3441
			  void **p)
3442
{
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3461 3462
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3473
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3474 3475 3476
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3477 3478 3479
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3480
#ifdef CONFIG_TRACING
3481
void *
3482
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3483
{
3484 3485
	void *ret;

3486
	ret = slab_alloc(cachep, flags, _RET_IP_);
3487

3488
	kasan_kmalloc(cachep, ret, size, flags);
3489
	trace_kmalloc(_RET_IP_, ret,
3490
		      size, cachep->size, flags);
3491
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3492
}
3493
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3494 3495
#endif

L
Linus Torvalds 已提交
3496
#ifdef CONFIG_NUMA
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3508 3509
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3510
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3511

3512
	kasan_slab_alloc(cachep, ret, flags);
3513
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3514
				    cachep->object_size, cachep->size,
3515
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3516 3517

	return ret;
3518
}
L
Linus Torvalds 已提交
3519 3520
EXPORT_SYMBOL(kmem_cache_alloc_node);

3521
#ifdef CONFIG_TRACING
3522
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3523
				  gfp_t flags,
3524 3525
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3526
{
3527 3528
	void *ret;

3529
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3530 3531

	kasan_kmalloc(cachep, ret, size, flags);
3532
	trace_kmalloc_node(_RET_IP_, ret,
3533
			   size, cachep->size,
3534 3535
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3536
}
3537
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3538 3539
#endif

3540
static __always_inline void *
3541
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3542
{
3543
	struct kmem_cache *cachep;
A
Alexander Potapenko 已提交
3544
	void *ret;
3545

3546
	cachep = kmalloc_slab(size, flags);
3547 3548
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
A
Alexander Potapenko 已提交
3549
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3550
	kasan_kmalloc(cachep, ret, size, flags);
A
Alexander Potapenko 已提交
3551 3552

	return ret;
3553
}
3554 3555 3556

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3557
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3558
}
3559
EXPORT_SYMBOL(__kmalloc_node);
3560 3561

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3562
		int node, unsigned long caller)
3563
{
3564
	return __do_kmalloc_node(size, flags, node, caller);
3565 3566 3567
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3568 3569

/**
3570
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3571
 * @size: how many bytes of memory are required.
3572
 * @flags: the type of memory to allocate (see kmalloc).
3573
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3574
 */
3575
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3576
					  unsigned long caller)
L
Linus Torvalds 已提交
3577
{
3578
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3579
	void *ret;
L
Linus Torvalds 已提交
3580

3581
	cachep = kmalloc_slab(size, flags);
3582 3583
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3584
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3585

3586
	kasan_kmalloc(cachep, ret, size, flags);
3587
	trace_kmalloc(caller, ret,
3588
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3589 3590

	return ret;
3591 3592 3593 3594
}

void *__kmalloc(size_t size, gfp_t flags)
{
3595
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3596 3597 3598
}
EXPORT_SYMBOL(__kmalloc);

3599
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3600
{
3601
	return __do_kmalloc(size, flags, caller);
3602 3603
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3604

L
Linus Torvalds 已提交
3605 3606 3607 3608 3609 3610 3611 3612
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3613
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3614 3615
{
	unsigned long flags;
3616 3617 3618
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3619 3620

	local_irq_save(flags);
3621
	debug_check_no_locks_freed(objp, cachep->object_size);
3622
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3623
		debug_check_no_obj_freed(objp, cachep->object_size);
3624
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3625
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3626

3627
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3628 3629 3630
}
EXPORT_SYMBOL(kmem_cache_free);

3631 3632 3633 3634 3635 3636 3637 3638 3639
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3640 3641 3642 3643
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3657 3658 3659 3660
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3661 3662
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3663 3664 3665 3666 3667
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3668
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3669 3670
	unsigned long flags;

3671 3672
	trace_kfree(_RET_IP_, objp);

3673
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3674 3675 3676
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3677
	c = virt_to_cache(objp);
3678 3679 3680
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3681
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3682 3683 3684 3685
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3686
/*
3687
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3688
 */
3689
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3690
{
3691
	int ret;
3692
	int node;
3693
	struct kmem_cache_node *n;
3694

3695
	for_each_online_node(node) {
3696 3697
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
3698 3699 3700
			goto fail;

	}
3701

3702
	return 0;
3703

A
Andrew Morton 已提交
3704
fail:
3705
	if (!cachep->list.next) {
3706 3707 3708
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3709 3710
			n = get_node(cachep, node);
			if (n) {
3711 3712 3713
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3714
				cachep->node[node] = NULL;
3715 3716 3717 3718
			}
			node--;
		}
	}
3719
	return -ENOMEM;
3720 3721
}

3722
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3723
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3724
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3725
{
3726 3727
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3728

3729 3730
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3731 3732
		return -ENOMEM;

3733 3734 3735
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
	kick_all_cpus_sync();
3736

L
Linus Torvalds 已提交
3737 3738 3739
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3740
	cachep->shared = shared;
L
Linus Torvalds 已提交
3741

3742
	if (!prev)
3743
		goto setup_node;
3744 3745

	for_each_online_cpu(cpu) {
3746
		LIST_HEAD(list);
3747 3748
		int node;
		struct kmem_cache_node *n;
3749
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3750

3751
		node = cpu_to_mem(cpu);
3752 3753
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3754
		free_block(cachep, ac->entry, ac->avail, node, &list);
3755
		spin_unlock_irq(&n->list_lock);
3756
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3757
	}
3758 3759
	free_percpu(prev);

3760 3761
setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
L
Linus Torvalds 已提交
3762 3763
}

G
Glauber Costa 已提交
3764 3765 3766 3767
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3768
	struct kmem_cache *c;
G
Glauber Costa 已提交
3769 3770 3771 3772 3773 3774 3775 3776 3777

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3778 3779 3780 3781
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3782 3783 3784 3785 3786
	}

	return ret;
}

3787
/* Called with slab_mutex held always */
3788
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3789 3790
{
	int err;
G
Glauber Costa 已提交
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3801

G
Glauber Costa 已提交
3802 3803
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3804 3805
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3806 3807
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3808
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3809 3810 3811 3812
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3813
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3814
		limit = 1;
3815
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3816
		limit = 8;
3817
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3818
		limit = 24;
3819
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3820 3821 3822 3823
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3824 3825
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3826 3827 3828 3829 3830 3831 3832 3833
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3834
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3835 3836 3837
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3838 3839 3840
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3841 3842 3843 3844
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3845 3846 3847
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
3848
	if (err)
3849
		pr_err("enable_cpucache failed for %s, error %d\n",
P
Pekka Enberg 已提交
3850
		       cachep->name, -err);
3851
	return err;
L
Linus Torvalds 已提交
3852 3853
}

3854
/*
3855 3856
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3857
 * if drain_array() is used on the shared array.
3858
 */
3859
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3860
			 struct array_cache *ac, int node)
L
Linus Torvalds 已提交
3861
{
3862
	LIST_HEAD(list);
3863 3864 3865

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
L
Linus Torvalds 已提交
3866

3867 3868
	if (!ac || !ac->avail)
		return;
3869 3870

	if (ac->touched) {
L
Linus Torvalds 已提交
3871
		ac->touched = 0;
3872
		return;
L
Linus Torvalds 已提交
3873
	}
3874 3875 3876 3877 3878 3879

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3880 3881 3882 3883
}

/**
 * cache_reap - Reclaim memory from caches.
3884
 * @w: work descriptor
L
Linus Torvalds 已提交
3885 3886 3887 3888 3889 3890
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3891 3892
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3893
 */
3894
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3895
{
3896
	struct kmem_cache *searchp;
3897
	struct kmem_cache_node *n;
3898
	int node = numa_mem_id();
3899
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
3900

3901
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
3902
		/* Give up. Setup the next iteration. */
3903
		goto out;
L
Linus Torvalds 已提交
3904

3905
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
3906 3907
		check_irq_on();

3908
		/*
3909
		 * We only take the node lock if absolutely necessary and we
3910 3911 3912
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3913
		n = get_node(searchp, node);
3914

3915
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
3916

3917
		drain_array(searchp, n, cpu_cache_get(searchp), node);
L
Linus Torvalds 已提交
3918

3919 3920 3921 3922
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3923
		if (time_after(n->next_reap, jiffies))
3924
			goto next;
L
Linus Torvalds 已提交
3925

3926
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
3927

3928
		drain_array(searchp, n, n->shared, node);
L
Linus Torvalds 已提交
3929

3930 3931
		if (n->free_touched)
			n->free_touched = 0;
3932 3933
		else {
			int freed;
L
Linus Torvalds 已提交
3934

3935
			freed = drain_freelist(searchp, n, (n->free_limit +
3936 3937 3938
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3939
next:
L
Linus Torvalds 已提交
3940 3941 3942
		cond_resched();
	}
	check_irq_on();
3943
	mutex_unlock(&slab_mutex);
3944
	next_reap_node();
3945
out:
A
Andrew Morton 已提交
3946
	/* Set up the next iteration */
3947
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
3948 3949
}

3950
#ifdef CONFIG_SLABINFO
3951
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
3952
{
3953
	struct page *page;
P
Pekka Enberg 已提交
3954 3955 3956 3957
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3958
	const char *name;
L
Linus Torvalds 已提交
3959
	char *error = NULL;
3960
	int node;
3961
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3962 3963 3964

	active_objs = 0;
	num_slabs = 0;
3965
	for_each_kmem_cache_node(cachep, node, n) {
3966

3967
		check_irq_on();
3968
		spin_lock_irq(&n->list_lock);
3969

3970 3971
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
3972 3973 3974 3975
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
3976 3977
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
3978
				error = "slabs_partial accounting error";
3979
			if (!page->active && !error)
3980
				error = "slabs_partial accounting error";
3981
			active_objs += page->active;
3982 3983
			active_slabs++;
		}
3984 3985
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
3986
				error = "slabs_free accounting error";
3987 3988
			num_slabs++;
		}
3989 3990 3991
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
3992

3993
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
3994
	}
P
Pekka Enberg 已提交
3995 3996
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3997
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3998 3999
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4000
	name = cachep->name;
L
Linus Torvalds 已提交
4001
	if (error)
4002
		pr_err("slab: cache %s error: %s\n", name, error);
L
Linus Torvalds 已提交
4003

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4018
#if STATS
4019
	{			/* node stats */
L
Linus Torvalds 已提交
4020 4021 4022 4023 4024 4025 4026
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4027
		unsigned long node_frees = cachep->node_frees;
4028
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4029

J
Joe Perches 已提交
4030
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4031 4032 4033
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4043
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4056
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4057
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4058
{
P
Pekka Enberg 已提交
4059
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4060
	int limit, batchcount, shared, res;
4061
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4062

L
Linus Torvalds 已提交
4063 4064 4065 4066
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4067
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4078
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4079
	res = -EINVAL;
4080
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4081
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4082 4083
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4084
				res = 0;
L
Linus Torvalds 已提交
4085
			} else {
4086
				res = do_tune_cpucache(cachep, limit,
4087 4088
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4089 4090 4091 4092
			}
			break;
		}
	}
4093
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4094 4095 4096 4097
	if (res >= 0)
		res = count;
	return res;
}
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4131 4132
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4133 4134
{
	void *p;
4135 4136
	int i, j;
	unsigned long v;
4137

4138 4139
	if (n[0] == n[1])
		return;
4140
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4151
			continue;
4152

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4163 4164 4165 4166 4167 4168 4169 4170
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4171
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4172

4173
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4174
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4175
		if (modname[0])
4176 4177 4178 4179 4180 4181 4182 4183 4184
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4185
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4186
	struct page *page;
4187
	struct kmem_cache_node *n;
4188
	const char *name;
4189
	unsigned long *x = m->private;
4190 4191 4192 4193 4194 4195 4196 4197
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4209

4210
		for_each_kmem_cache_node(cachep, node, n) {
4211

4212 4213
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4214

4215 4216 4217 4218 4219 4220 4221
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4222 4223

	name = cachep->name;
4224
	if (x[0] == x[1]) {
4225
		/* Increase the buffer size */
4226
		mutex_unlock(&slab_mutex);
4227
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4228 4229
		if (!m->private) {
			/* Too bad, we are really out */
4230
			m->private = x;
4231
			mutex_lock(&slab_mutex);
4232 4233
			return -ENOMEM;
		}
4234 4235
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4236
		mutex_lock(&slab_mutex);
4237 4238 4239 4240
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4241 4242 4243
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4244 4245
		seq_putc(m, '\n');
	}
4246

4247 4248 4249
	return 0;
}

4250
static const struct seq_operations slabstats_op = {
4251
	.start = slab_start,
4252 4253
	.next = slab_next,
	.stop = slab_stop,
4254 4255
	.show = leaks_show,
};
4256 4257 4258

static int slabstats_open(struct inode *inode, struct file *file)
{
4259 4260 4261 4262 4263 4264 4265 4266 4267
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4282
#endif
4283 4284 4285
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4286 4287
#endif

4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4300
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4301
{
A
Alexander Potapenko 已提交
4302 4303
	size_t size;

4304 4305
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4306
		return 0;
L
Linus Torvalds 已提交
4307

A
Alexander Potapenko 已提交
4308 4309 4310 4311
	size = virt_to_cache(objp)->object_size;
	/* We assume that ksize callers could use the whole allocated area,
	 * so we need to unpoison this area.
	 */
4312
	kasan_krealloc(objp, size, GFP_NOWAIT);
A
Alexander Potapenko 已提交
4313 4314

	return size;
L
Linus Torvalds 已提交
4315
}
K
Kirill A. Shutemov 已提交
4316
EXPORT_SYMBOL(ksize);