slab.c 110.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
119
#include	<linux/sched/task_stack.h>
L
Linus Torvalds 已提交
120

121 122
#include	<net/sock.h>

L
Linus Torvalds 已提交
123 124 125 126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127 128
#include <trace/events/kmem.h>

129 130
#include	"internal.h"

131 132
#include	"slab.h"

L
Linus Torvalds 已提交
133
/*
134
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
155
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
156 157 158 159 160

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

161 162 163 164 165 166 167 168 169
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

170
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171

L
Linus Torvalds 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
189
	void *entry[];	/*
A
Andrew Morton 已提交
190 191 192 193
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
194 195
};

J
Joonsoo Kim 已提交
196 197 198 199 200
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

201 202 203
/*
 * Need this for bootstrapping a per node allocator.
 */
204
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206
#define	CACHE_CACHE 0
207
#define	SIZE_NODE (MAX_NUMNODES)
208

209
static int drain_freelist(struct kmem_cache *cache,
210
			struct kmem_cache_node *n, int tofree);
211
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 213
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215
static void cache_reap(struct work_struct *unused);
216

217 218 219 220 221
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
222 223
static int slab_early_init = 1;

224
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
225

226
static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 228 229 230
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
231
	parent->total_slabs = 0;
232
	parent->free_slabs = 0;
233 234
	parent->shared = NULL;
	parent->alien = NULL;
235
	parent->colour_next = 0;
236 237 238 239 240
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
241 242 243
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
244
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 246
	} while (0)

A
Andrew Morton 已提交
247 248
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
249 250 251 252
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
253

254
#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
L
Linus Torvalds 已提交
255
#define CFLGS_OFF_SLAB		(0x80000000UL)
256
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
257 258 259
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
260 261 262
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
263
 *
A
Adrian Bunk 已提交
264
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
265 266
 * which could lock up otherwise freeable slabs.
 */
267 268
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
269 270 271 272 273 274

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
275
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
276 277 278 279 280
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
281 282
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
285 286 287 288 289
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
290 291 292 293 294 295 296 297 298
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
299
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
300 301 302
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303
#define	STATS_INC_NODEFREES(x)	do { } while (0)
304
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
305
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
306 307 308 309 310 311 312 313
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
314 315
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
316
 * 0		: objp
317
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
318 319
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
320
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
321
 * 		redzone word.
322
 * cachep->obj_offset: The real object.
323 324
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
325
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
326
 */
327
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
328
{
329
	return cachep->obj_offset;
L
Linus Torvalds 已提交
330 331
}

332
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
333 334
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 336
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
337 338
}

339
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
340 341 342
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
343
		return (unsigned long long *)(objp + cachep->size -
344
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
345
					      REDZONE_ALIGN);
346
	return (unsigned long long *) (objp + cachep->size -
347
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
348 349
}

350
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
351 352
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
354 355 356 357
}

#else

358
#define obj_offset(x)			0
359 360
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
361 362 363 364
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

365 366
#ifdef CONFIG_DEBUG_SLAB_LEAK

367
static inline bool is_store_user_clean(struct kmem_cache *cachep)
368
{
369 370
	return atomic_read(&cachep->store_user_clean) == 1;
}
371

372 373 374 375
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
376

377 378 379 380
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
381 382 383
}

#else
384
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385 386 387

#endif

L
Linus Torvalds 已提交
388
/*
389 390
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
391
 */
392 393 394
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
395
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
396

397 398
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
399
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
400
	return page->slab_cache;
401 402
}

403
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 405
				 unsigned int idx)
{
406
	return page->s_mem + cache->size * idx;
407 408
}

409
/*
410 411 412
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
413 414 415
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416
					const struct page *page, void *obj)
417
{
418
	u32 offset = (obj - page->s_mem);
419
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 421
}

422
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
423
/* internal cache of cache description objs */
424
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
425 426 427
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
428
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
429
	.name = "kmem_cache",
L
Linus Torvalds 已提交
430 431
};

432
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
433

434
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
435
{
436
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
437 438
}

A
Andrew Morton 已提交
439 440 441
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
442 443
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
		unsigned long flags, size_t *left_over)
444
{
445
	unsigned int num;
446
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
447

448 449 450 451 452 453
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
454 455 456 457 458
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
459 460 461 462 463 464
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
465
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466
		num = slab_size / buffer_size;
467
		*left_over = slab_size % buffer_size;
468
	} else {
469
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 471
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
472
	}
473 474

	return num;
L
Linus Torvalds 已提交
475 476
}

477
#if DEBUG
478
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
479

A
Andrew Morton 已提交
480 481
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
482
{
483
	pr_err("slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
484
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
485
	dump_stack();
486
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
487
}
488
#endif
L
Linus Torvalds 已提交
489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

506 507 508 509 510 511 512 513 514 515 516
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

517 518 519 520 521 522 523
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
524
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525 526 527

static void init_reap_node(int cpu)
{
528 529
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
530 531 532 533
}

static void next_reap_node(void)
{
534
	int node = __this_cpu_read(slab_reap_node);
535

536
	node = next_node_in(node, node_online_map);
537
	__this_cpu_write(slab_reap_node, node);
538 539 540 541 542 543 544
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
545 546 547 548 549 550 551
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
552
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
553
{
554
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
555

556
	if (reap_work->work.func == NULL) {
557
		init_reap_node(cpu);
558
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 560
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
561 562 563
	}
}

564
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
565
{
566 567
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
568
	 * However, when such objects are allocated or transferred to another
569 570 571 572
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
573 574 575 576 577 578
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
579
	}
580 581 582 583 584
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
585
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
586 587 588 589 590
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
591 592
}

593 594
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
595
{
596 597 598
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
599

600 601
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
602

603 604 605
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
606

607
	slabs_destroy(cachep, &list);
608 609
}

610 611 612 613 614 615 616 617 618 619
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
620
	int nr = min3(from->avail, max, to->limit - to->avail);
621 622 623 624 625 626 627 628 629 630 631 632

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

633 634 635
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
636
#define reap_alien(cachep, n) do { } while (0)
637

J
Joonsoo Kim 已提交
638 639
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
640
{
641
	return NULL;
642 643
}

J
Joonsoo Kim 已提交
644
static inline void free_alien_cache(struct alien_cache **ac_ptr)
645 646 647 648 649 650 651 652 653 654 655 656 657 658
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

659
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 661 662 663 664
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
665 666
static inline gfp_t gfp_exact_node(gfp_t flags)
{
667
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
668 669
}

670 671
#else	/* CONFIG_NUMA */

672
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674

J
Joonsoo Kim 已提交
675 676 677
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
678
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
679 680 681 682
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
683
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
684 685 686 687
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
688
{
J
Joonsoo Kim 已提交
689
	struct alien_cache **alc_ptr;
690
	size_t memsize = sizeof(void *) * nr_node_ids;
691 692 693 694
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
708 709
		}
	}
J
Joonsoo Kim 已提交
710
	return alc_ptr;
711 712
}

J
Joonsoo Kim 已提交
713
static void free_alien_cache(struct alien_cache **alc_ptr)
714 715 716
{
	int i;

J
Joonsoo Kim 已提交
717
	if (!alc_ptr)
718 719
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
720 721
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
722 723
}

724
static void __drain_alien_cache(struct kmem_cache *cachep,
725 726
				struct array_cache *ac, int node,
				struct list_head *list)
727
{
728
	struct kmem_cache_node *n = get_node(cachep, node);
729 730

	if (ac->avail) {
731
		spin_lock(&n->list_lock);
732 733 734 735 736
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
737 738
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
739

740
		free_block(cachep, ac->entry, ac->avail, node, list);
741
		ac->avail = 0;
742
		spin_unlock(&n->list_lock);
743 744 745
	}
}

746 747 748
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
749
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
750
{
751
	int node = __this_cpu_read(slab_reap_node);
752

753
	if (n->alien) {
J
Joonsoo Kim 已提交
754 755 756 757 758
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
759
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
760 761 762
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
763
				spin_unlock_irq(&alc->lock);
764
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
765
			}
766 767 768 769
		}
	}
}

A
Andrew Morton 已提交
770
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
771
				struct alien_cache **alien)
772
{
P
Pekka Enberg 已提交
773
	int i = 0;
J
Joonsoo Kim 已提交
774
	struct alien_cache *alc;
775 776 777 778
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
779 780
		alc = alien[i];
		if (alc) {
781 782
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
783
			ac = &alc->ac;
784
			spin_lock_irqsave(&alc->lock, flags);
785
			__drain_alien_cache(cachep, ac, i, &list);
786
			spin_unlock_irqrestore(&alc->lock, flags);
787
			slabs_destroy(cachep, &list);
788 789 790
		}
	}
}
791

792 793
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
794
{
795
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
796 797
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
798
	LIST_HEAD(list);
P
Pekka Enberg 已提交
799

800
	n = get_node(cachep, node);
801
	STATS_INC_NODEFREES(cachep);
802 803
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
804
		ac = &alien->ac;
805
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
806
		if (unlikely(ac->avail == ac->limit)) {
807
			STATS_INC_ACOVERFLOW(cachep);
808
			__drain_alien_cache(cachep, ac, page_node, &list);
809
		}
810
		ac->entry[ac->avail++] = objp;
811
		spin_unlock(&alien->lock);
812
		slabs_destroy(cachep, &list);
813
	} else {
814
		n = get_node(cachep, page_node);
815
		spin_lock(&n->list_lock);
816
		free_block(cachep, &objp, 1, page_node, &list);
817
		spin_unlock(&n->list_lock);
818
		slabs_destroy(cachep, &list);
819 820 821
	}
	return 1;
}
822 823 824 825 826 827 828 829 830 831 832 833 834 835

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
836 837

/*
838 839
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
840 841 842
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
843
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
844
}
845 846
#endif

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

887
#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
888
/*
889
 * Allocates and initializes node for a node on each slab cache, used for
890
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
891
 * will be allocated off-node since memory is not yet online for the new node.
892
 * When hotplugging memory or a cpu, existing node are not replaced if
893 894
 * already in use.
 *
895
 * Must hold slab_mutex.
896
 */
897
static int init_cache_node_node(int node)
898
{
899
	int ret;
900 901
	struct kmem_cache *cachep;

902
	list_for_each_entry(cachep, &slab_caches, list) {
903 904 905
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
906
	}
907

908 909
	return 0;
}
910
#endif
911

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

961 962 963 964 965 966
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
	 * freed after synchronize_sched().
	 */
967
	if (old_shared && force_change)
968 969
		synchronize_sched();

970 971 972 973 974 975 976 977
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

978 979
#ifdef CONFIG_SMP

980
static void cpuup_canceled(long cpu)
981 982
{
	struct kmem_cache *cachep;
983
	struct kmem_cache_node *n = NULL;
984
	int node = cpu_to_mem(cpu);
985
	const struct cpumask *mask = cpumask_of_node(node);
986

987
	list_for_each_entry(cachep, &slab_caches, list) {
988 989
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
990
		struct alien_cache **alien;
991
		LIST_HEAD(list);
992

993
		n = get_node(cachep, node);
994
		if (!n)
995
			continue;
996

997
		spin_lock_irq(&n->list_lock);
998

999 1000
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1001 1002 1003 1004

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1005
			free_block(cachep, nc->entry, nc->avail, node, &list);
1006 1007
			nc->avail = 0;
		}
1008

1009
		if (!cpumask_empty(mask)) {
1010
			spin_unlock_irq(&n->list_lock);
1011
			goto free_slab;
1012 1013
		}

1014
		shared = n->shared;
1015 1016
		if (shared) {
			free_block(cachep, shared->entry,
1017
				   shared->avail, node, &list);
1018
			n->shared = NULL;
1019 1020
		}

1021 1022
		alien = n->alien;
		n->alien = NULL;
1023

1024
		spin_unlock_irq(&n->list_lock);
1025 1026 1027 1028 1029 1030

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1031 1032

free_slab:
1033
		slabs_destroy(cachep, &list);
1034 1035 1036 1037 1038 1039
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1040
	list_for_each_entry(cachep, &slab_caches, list) {
1041
		n = get_node(cachep, node);
1042
		if (!n)
1043
			continue;
1044
		drain_freelist(cachep, n, INT_MAX);
1045 1046 1047
	}
}

1048
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1049
{
1050
	struct kmem_cache *cachep;
1051
	int node = cpu_to_mem(cpu);
1052
	int err;
L
Linus Torvalds 已提交
1053

1054 1055 1056 1057
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1058
	 * kmem_cache_node and not this cpu's kmem_cache_node
1059
	 */
1060
	err = init_cache_node_node(node);
1061 1062
	if (err < 0)
		goto bad;
1063 1064 1065 1066 1067

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1068
	list_for_each_entry(cachep, &slab_caches, list) {
1069 1070 1071
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1072
	}
1073

1074 1075
	return 0;
bad:
1076
	cpuup_canceled(cpu);
1077 1078 1079
	return -ENOMEM;
}

1080
int slab_prepare_cpu(unsigned int cpu)
1081
{
1082
	int err;
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	mutex_lock(&slab_mutex);
	err = cpuup_prepare(cpu);
	mutex_unlock(&slab_mutex);
	return err;
}

/*
 * This is called for a failed online attempt and for a successful
 * offline.
 *
 * Even if all the cpus of a node are down, we don't free the
 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
 * a kmalloc allocation from another cpu for memory from the node of
 * the cpu going down.  The list3 structure is usually allocated from
 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
 */
int slab_dead_cpu(unsigned int cpu)
{
	mutex_lock(&slab_mutex);
	cpuup_canceled(cpu);
	mutex_unlock(&slab_mutex);
	return 0;
}
1107
#endif
1108 1109 1110 1111 1112

static int slab_online_cpu(unsigned int cpu)
{
	start_cpu_timer(cpu);
	return 0;
L
Linus Torvalds 已提交
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
static int slab_offline_cpu(unsigned int cpu)
{
	/*
	 * Shutdown cache reaper. Note that the slab_mutex is held so
	 * that if cache_reap() is invoked it cannot do anything
	 * expensive but will only modify reap_work and reschedule the
	 * timer.
	 */
	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
	/* Now the cache_reaper is guaranteed to be not running. */
	per_cpu(slab_reap_work, cpu).work.func = NULL;
	return 0;
}
L
Linus Torvalds 已提交
1128

1129 1130 1131 1132 1133 1134
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1135
 * Must hold slab_mutex.
1136
 */
1137
static int __meminit drain_cache_node_node(int node)
1138 1139 1140 1141
{
	struct kmem_cache *cachep;
	int ret = 0;

1142
	list_for_each_entry(cachep, &slab_caches, list) {
1143
		struct kmem_cache_node *n;
1144

1145
		n = get_node(cachep, node);
1146
		if (!n)
1147 1148
			continue;

1149
		drain_freelist(cachep, n, INT_MAX);
1150

1151 1152
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1173
		mutex_lock(&slab_mutex);
1174
		ret = init_cache_node_node(nid);
1175
		mutex_unlock(&slab_mutex);
1176 1177
		break;
	case MEM_GOING_OFFLINE:
1178
		mutex_lock(&slab_mutex);
1179
		ret = drain_cache_node_node(nid);
1180
		mutex_unlock(&slab_mutex);
1181 1182 1183 1184 1185 1186 1187 1188
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1189
	return notifier_from_errno(ret);
1190 1191 1192
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1193
/*
1194
 * swap the static kmem_cache_node with kmalloced memory
1195
 */
1196
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197
				int nodeid)
1198
{
1199
	struct kmem_cache_node *ptr;
1200

1201
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202 1203
	BUG_ON(!ptr);

1204
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205 1206 1207 1208 1209
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1210
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211
	cachep->node[nodeid] = ptr;
1212 1213
}

1214
/*
1215 1216
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1217
 */
1218
static void __init set_up_node(struct kmem_cache *cachep, int index)
1219 1220 1221 1222
{
	int node;

	for_each_online_node(node) {
1223
		cachep->node[node] = &init_kmem_cache_node[index + node];
1224
		cachep->node[node]->next_reap = jiffies +
1225 1226
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227 1228 1229
	}
}

A
Andrew Morton 已提交
1230 1231 1232
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1233 1234 1235
 */
void __init kmem_cache_init(void)
{
1236 1237
	int i;

1238 1239
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1240 1241
	kmem_cache = &kmem_cache_boot;

1242
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1243 1244
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1245
	for (i = 0; i < NUM_INIT_LISTS; i++)
1246
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1247

L
Linus Torvalds 已提交
1248 1249
	/*
	 * Fragmentation resistance on low memory - only use bigger
1250 1251
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1252
	 */
1253
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1254
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1255 1256 1257

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1258 1259 1260
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1261
	 *    Initially an __init data area is used for the head array and the
1262
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1263
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1264
	 * 2) Create the first kmalloc cache.
1265
	 *    The struct kmem_cache for the new cache is allocated normally.
1266 1267 1268
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1269
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1270
	 *    kmalloc cache with kmalloc allocated arrays.
1271
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1272 1273
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1274 1275
	 */

1276
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1277

E
Eric Dumazet 已提交
1278
	/*
1279
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1280
	 */
1281
	create_boot_cache(kmem_cache, "kmem_cache",
1282
		offsetof(struct kmem_cache, node) +
1283
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1284 1285
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1286
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1287

A
Andrew Morton 已提交
1288
	/*
1289 1290
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1291
	 */
1292 1293
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
				kmalloc_info[INDEX_NODE].name,
1294
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1295
	slab_state = PARTIAL_NODE;
1296
	setup_kmalloc_cache_index_table();
1297

1298 1299
	slab_early_init = 0;

1300
	/* 5) Replace the bootstrap kmem_cache_node */
1301
	{
P
Pekka Enberg 已提交
1302 1303
		int nid;

1304
		for_each_online_node(nid) {
1305
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1306

1307
			init_list(kmalloc_caches[INDEX_NODE],
1308
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1309 1310
		}
	}
L
Linus Torvalds 已提交
1311

1312
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1313 1314 1315 1316 1317 1318
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1319
	slab_state = UP;
P
Peter Zijlstra 已提交
1320

1321
	/* 6) resize the head arrays to their final sizes */
1322 1323
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1324 1325
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1326
	mutex_unlock(&slab_mutex);
1327

1328 1329 1330
	/* Done! */
	slab_state = FULL;

1331 1332 1333
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1334
	 * node.
1335 1336 1337 1338
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1339 1340 1341
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1342 1343 1344 1345 1346
	 */
}

static int __init cpucache_init(void)
{
1347
	int ret;
L
Linus Torvalds 已提交
1348

A
Andrew Morton 已提交
1349 1350
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1351
	 */
1352 1353 1354
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
				slab_online_cpu, slab_offline_cpu);
	WARN_ON(ret < 0);
1355 1356

	/* Done! */
1357
	slab_state = FULL;
L
Linus Torvalds 已提交
1358 1359 1360 1361
	return 0;
}
__initcall(cpucache_init);

1362 1363 1364
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1365
#if DEBUG
1366
	struct kmem_cache_node *n;
1367 1368
	unsigned long flags;
	int node;
1369 1370 1371 1372 1373
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1374

1375 1376 1377
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1378
		cachep->name, cachep->size, cachep->gfporder);
1379

1380
	for_each_kmem_cache_node(cachep, node, n) {
1381
		unsigned long total_slabs, free_slabs, free_objs;
1382

1383
		spin_lock_irqsave(&n->list_lock, flags);
1384 1385 1386
		total_slabs = n->total_slabs;
		free_slabs = n->free_slabs;
		free_objs = n->free_objects;
1387
		spin_unlock_irqrestore(&n->list_lock, flags);
1388

1389 1390 1391 1392
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
			node, total_slabs - free_slabs, total_slabs,
			(total_slabs * cachep->num) - free_objs,
			total_slabs * cachep->num);
1393
	}
1394
#endif
1395 1396
}

L
Linus Torvalds 已提交
1397
/*
W
Wang Sheng-Hui 已提交
1398 1399
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1400 1401 1402 1403 1404
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1405 1406
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1407 1408
{
	struct page *page;
1409
	int nr_pages;
1410

1411
	flags |= cachep->allocflags;
1412 1413
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1414

1415
	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1416
	if (!page) {
1417
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1418
		return NULL;
1419
	}
L
Linus Torvalds 已提交
1420

1421 1422 1423 1424 1425
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1426
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1427
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1428 1429 1430 1431 1432
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1433

1434
	__SetPageSlab(page);
1435 1436
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1437
		SetPageSlabPfmemalloc(page);
1438

1439 1440 1441 1442 1443 1444 1445 1446
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1447

1448
	return page;
L
Linus Torvalds 已提交
1449 1450 1451 1452 1453
}

/*
 * Interface to system's page release.
 */
1454
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1455
{
1456 1457
	int order = cachep->gfporder;
	unsigned long nr_freed = (1 << order);
L
Linus Torvalds 已提交
1458

1459
	kmemcheck_free_shadow(page, order);
P
Pekka Enberg 已提交
1460

1461 1462 1463 1464 1465 1466
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1467

1468
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1469
	__ClearPageSlabPfmemalloc(page);
1470
	__ClearPageSlab(page);
1471 1472
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1473

L
Linus Torvalds 已提交
1474 1475
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1476 1477
	memcg_uncharge_slab(page, order, cachep);
	__free_pages(page, order);
L
Linus Torvalds 已提交
1478 1479 1480 1481
}

static void kmem_rcu_free(struct rcu_head *head)
{
1482 1483
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1484

1485 1486 1487 1488
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1489 1490 1491
}

#if DEBUG
1492 1493 1494 1495 1496 1497 1498 1499
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1500 1501

#ifdef CONFIG_DEBUG_PAGEALLOC
1502
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1503
			    unsigned long caller)
L
Linus Torvalds 已提交
1504
{
1505
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1506

1507
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1508

P
Pekka Enberg 已提交
1509
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1510 1511
		return;

P
Pekka Enberg 已提交
1512 1513 1514 1515
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1516 1517 1518 1519 1520 1521 1522
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1523
				*addr++ = svalue;
L
Linus Torvalds 已提交
1524 1525 1526 1527 1528 1529 1530
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1531
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1532
}
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

L
Linus Torvalds 已提交
1550 1551
#endif

1552
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1553
{
1554
	int size = cachep->object_size;
1555
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1556 1557

	memset(addr, val, size);
P
Pekka Enberg 已提交
1558
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1559 1560 1561 1562 1563
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1564 1565 1566
	unsigned char error = 0;
	int bad_count = 0;

1567
	pr_err("%03x: ", offset);
D
Dave Jones 已提交
1568 1569 1570 1571 1572 1573
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1574 1575
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1576 1577 1578 1579

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1580
			pr_err("Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1581
#ifdef CONFIG_X86
1582
			pr_err("Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1583
#else
1584
			pr_err("Run a memory test tool.\n");
D
Dave Jones 已提交
1585 1586 1587
#endif
		}
	}
L
Linus Torvalds 已提交
1588 1589 1590 1591 1592
}
#endif

#if DEBUG

1593
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1594 1595 1596 1597 1598
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1599 1600 1601
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1602 1603 1604
	}

	if (cachep->flags & SLAB_STORE_USER) {
1605
		pr_err("Last user: [<%p>](%pSR)\n",
J
Joe Perches 已提交
1606 1607
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1608
	}
1609
	realobj = (char *)objp + obj_offset(cachep);
1610
	size = cachep->object_size;
P
Pekka Enberg 已提交
1611
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1612 1613
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1614 1615
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1616 1617 1618 1619
		dump_line(realobj, i, limit);
	}
}

1620
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1621 1622 1623 1624 1625
{
	char *realobj;
	int size, i;
	int lines = 0;

1626 1627 1628
	if (is_debug_pagealloc_cache(cachep))
		return;

1629
	realobj = (char *)objp + obj_offset(cachep);
1630
	size = cachep->object_size;
L
Linus Torvalds 已提交
1631

P
Pekka Enberg 已提交
1632
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1633
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1634
		if (i == size - 1)
L
Linus Torvalds 已提交
1635 1636 1637 1638 1639 1640
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1641 1642 1643
				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
				       print_tainted(), cachep->name,
				       realobj, size);
L
Linus Torvalds 已提交
1644 1645 1646
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1647
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1648
			limit = 16;
P
Pekka Enberg 已提交
1649 1650
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1663
		struct page *page = virt_to_head_page(objp);
1664
		unsigned int objnr;
L
Linus Torvalds 已提交
1665

1666
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1667
		if (objnr) {
1668
			objp = index_to_obj(cachep, page, objnr - 1);
1669
			realobj = (char *)objp + obj_offset(cachep);
1670
			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1671 1672
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1673
		if (objnr + 1 < cachep->num) {
1674
			objp = index_to_obj(cachep, page, objnr + 1);
1675
			realobj = (char *)objp + obj_offset(cachep);
1676
			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1677 1678 1679 1680 1681 1682
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1683
#if DEBUG
1684 1685
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1686 1687
{
	int i;
1688 1689 1690 1691 1692 1693

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1694
	for (i = 0; i < cachep->num; i++) {
1695
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1696 1697 1698

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1699
			slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
1700 1701 1702
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1703
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1704
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1705
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1706 1707
		}
	}
1708
}
L
Linus Torvalds 已提交
1709
#else
1710 1711
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1712 1713
{
}
L
Linus Torvalds 已提交
1714 1715
#endif

1716 1717 1718
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1719
 * @page: page pointer being destroyed
1720
 *
W
Wang Sheng-Hui 已提交
1721 1722 1723
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1724
 */
1725
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1726
{
1727
	void *freelist;
1728

1729 1730
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1731 1732 1733
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1734
		kmem_freepages(cachep, page);
1735 1736

	/*
1737
	 * From now on, we don't use freelist
1738 1739 1740
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1741
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1742 1743
}

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1754
/**
1755 1756 1757 1758 1759 1760
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1761 1762 1763 1764 1765
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1766
static size_t calculate_slab_order(struct kmem_cache *cachep,
1767
				size_t size, unsigned long flags)
1768 1769
{
	size_t left_over = 0;
1770
	int gfporder;
1771

1772
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1773 1774 1775
		unsigned int num;
		size_t remainder;

1776
		num = cache_estimate(gfporder, size, flags, &remainder);
1777 1778
		if (!num)
			continue;
1779

1780 1781 1782 1783
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1784
		if (flags & CFLGS_OFF_SLAB) {
1785 1786 1787 1788 1789 1790 1791 1792
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1793
			/*
1794
			 * Needed to avoid possible looping condition
1795
			 * in cache_grow_begin()
1796
			 */
1797 1798
			if (OFF_SLAB(freelist_cache))
				continue;
1799

1800 1801 1802
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1803
		}
1804

1805
		/* Found something acceptable - save it away */
1806
		cachep->num = num;
1807
		cachep->gfporder = gfporder;
1808 1809
		left_over = remainder;

1810 1811 1812 1813 1814 1815 1816 1817
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1818 1819 1820 1821
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1822
		if (gfporder >= slab_max_order)
1823 1824
			break;

1825 1826 1827
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1828
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1829 1830 1831 1832 1833
			break;
	}
	return left_over;
}

1834 1835 1836 1837 1838 1839 1840 1841
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1842
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1855
static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1856
{
1857
	if (slab_state >= FULL)
1858
		return enable_cpucache(cachep, gfp);
1859

1860 1861 1862 1863
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1864
	if (slab_state == DOWN) {
1865 1866
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1867
	} else if (slab_state == PARTIAL) {
1868 1869
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1870
	} else {
1871
		int node;
1872

1873 1874 1875 1876 1877
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1878 1879
		}
	}
1880

1881
	cachep->node[numa_mem_id()]->next_reap =
1882 1883
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1884 1885 1886 1887 1888 1889 1890

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1891
	return 0;
1892 1893
}

J
Joonsoo Kim 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1943 1944 1945 1946 1947 1948 1949 1950
static bool set_off_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	/*
1951 1952
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
1993
/**
1994
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
1995
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
1996 1997 1998 1999
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2000
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2014
int
2015
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2016
{
2017
	size_t ralign = BYTES_PER_WORD;
2018
	gfp_t gfp;
2019
	int err;
2020
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2030 2031
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2032
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2033 2034 2035 2036 2037
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
2038 2039
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2040 2041 2042
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2043 2044 2045
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2046 2047
	}

D
David Woodhouse 已提交
2048 2049 2050 2051 2052 2053 2054
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2055

2056
	/* 3) caller mandated alignment */
2057 2058
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2059
	}
2060 2061
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2062
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2063
	/*
2064
	 * 4) Store it.
L
Linus Torvalds 已提交
2065
	 */
2066
	cachep->align = ralign;
2067 2068 2069 2070
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
2071

2072 2073 2074 2075 2076
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2077 2078
#if DEBUG

2079 2080 2081 2082
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2083 2084
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2085 2086
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2087 2088
	}
	if (flags & SLAB_STORE_USER) {
2089
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2090 2091
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2092
		 */
D
David Woodhouse 已提交
2093 2094 2095 2096
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2097
	}
2098 2099
#endif

A
Alexander Potapenko 已提交
2100 2101
	kasan_cache_create(cachep, &size, &flags);

2102 2103 2104 2105 2106 2107 2108 2109 2110
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2111 2112 2113 2114 2115 2116 2117
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2118
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2130 2131 2132
	}
#endif

2133 2134 2135 2136 2137
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2138
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2139
		flags |= CFLGS_OFF_SLAB;
2140
		goto done;
2141
	}
L
Linus Torvalds 已提交
2142

2143 2144
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2145

2146
	return -E2BIG;
L
Linus Torvalds 已提交
2147

2148 2149
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2150
	cachep->flags = flags;
2151
	cachep->allocflags = __GFP_COMP;
Y
Yang Shi 已提交
2152
	if (flags & SLAB_CACHE_DMA)
2153
		cachep->allocflags |= GFP_DMA;
2154
	cachep->size = size;
2155
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2156

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2170 2171
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2172
	}
L
Linus Torvalds 已提交
2173

2174 2175
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2176
		__kmem_cache_release(cachep);
2177
		return err;
2178
	}
L
Linus Torvalds 已提交
2179

2180
	return 0;
L
Linus Torvalds 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2194 2195 2196 2197 2198
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2199
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2200 2201 2202
{
#ifdef CONFIG_SMP
	check_irq_off();
2203
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2204 2205
#endif
}
2206

2207
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2208 2209 2210
{
#ifdef CONFIG_SMP
	check_irq_off();
2211
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2212 2213 2214
#endif
}

L
Linus Torvalds 已提交
2215 2216 2217
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2218
#define check_mutex_acquired()	do { } while(0)
L
Linus Torvalds 已提交
2219
#define check_spinlock_acquired(x) do { } while(0)
2220
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2221 2222
#endif

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2239

L
Linus Torvalds 已提交
2240 2241
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2242
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2243
	struct array_cache *ac;
2244
	int node = numa_mem_id();
2245
	struct kmem_cache_node *n;
2246
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2247 2248

	check_irq_off();
2249
	ac = cpu_cache_get(cachep);
2250 2251
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2252
	free_block(cachep, ac->entry, ac->avail, node, &list);
2253
	spin_unlock(&n->list_lock);
2254
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2255 2256 2257
	ac->avail = 0;
}

2258
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2259
{
2260
	struct kmem_cache_node *n;
2261
	int node;
2262
	LIST_HEAD(list);
2263

2264
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2265
	check_irq_on();
2266 2267
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2268
			drain_alien_cache(cachep, n->alien);
2269

2270 2271 2272 2273 2274 2275 2276
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
L
Linus Torvalds 已提交
2277 2278
}

2279 2280 2281 2282 2283 2284 2285
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2286
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2287
{
2288 2289
	struct list_head *p;
	int nr_freed;
2290
	struct page *page;
L
Linus Torvalds 已提交
2291

2292
	nr_freed = 0;
2293
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2294

2295 2296 2297 2298
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2299 2300
			goto out;
		}
L
Linus Torvalds 已提交
2301

2302 2303
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2304
		n->free_slabs--;
2305
		n->total_slabs--;
2306 2307 2308 2309
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2310 2311
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2312
		slab_destroy(cache, page);
2313
		nr_freed++;
L
Linus Torvalds 已提交
2314
	}
2315 2316
out:
	return nr_freed;
L
Linus Torvalds 已提交
2317 2318
}

2319
int __kmem_cache_shrink(struct kmem_cache *cachep)
2320
{
2321 2322
	int ret = 0;
	int node;
2323
	struct kmem_cache_node *n;
2324 2325 2326 2327

	drain_cpu_caches(cachep);

	check_irq_on();
2328
	for_each_kmem_cache_node(cachep, node, n) {
2329
		drain_freelist(cachep, n, INT_MAX);
2330

2331 2332
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2333 2334 2335 2336
	}
	return (ret ? 1 : 0);
}

2337 2338 2339 2340 2341 2342 2343
#ifdef CONFIG_MEMCG
void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
{
	__kmem_cache_shrink(cachep);
}
#endif

2344
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2345
{
2346
	return __kmem_cache_shrink(cachep);
2347 2348 2349
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2350
{
2351
	int i;
2352
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2353

T
Thomas Garnier 已提交
2354 2355
	cache_random_seq_destroy(cachep);

2356
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2357

2358
	/* NUMA: free the node structures */
2359 2360 2361 2362 2363
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2364
	}
L
Linus Torvalds 已提交
2365 2366
}

2367 2368
/*
 * Get the memory for a slab management obj.
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2380
 */
2381
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2382 2383
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2384
{
2385
	void *freelist;
2386
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2387

2388 2389 2390
	page->s_mem = addr + colour_off;
	page->active = 0;

2391 2392 2393
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2394
		/* Slab management obj is off-slab. */
2395
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2396
					      local_flags, nodeid);
2397
		if (!freelist)
L
Linus Torvalds 已提交
2398 2399
			return NULL;
	} else {
2400 2401 2402
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2403
	}
2404

2405
	return freelist;
L
Linus Torvalds 已提交
2406 2407
}

2408
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2409
{
2410
	return ((freelist_idx_t *)page->freelist)[idx];
2411 2412 2413
}

static inline void set_free_obj(struct page *page,
2414
					unsigned int idx, freelist_idx_t val)
2415
{
2416
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2417 2418
}

2419
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2420
{
2421
#if DEBUG
L
Linus Torvalds 已提交
2422 2423 2424
	int i;

	for (i = 0; i < cachep->num; i++) {
2425
		void *objp = index_to_obj(cachep, page, i);
2426

L
Linus Torvalds 已提交
2427 2428 2429 2430 2431 2432 2433 2434
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2435 2436 2437
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2438
		 */
A
Alexander Potapenko 已提交
2439 2440 2441
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2442
			cachep->ctor(objp + obj_offset(cachep));
A
Alexander Potapenko 已提交
2443 2444 2445
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
L
Linus Torvalds 已提交
2446 2447 2448

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2449
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2450
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2451
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2452
		}
2453 2454 2455 2456 2457
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
2458
	}
L
Linus Torvalds 已提交
2459
#endif
2460 2461
}

T
Thomas Garnier 已提交
2462 2463 2464 2465 2466
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Hold information during a freelist initialization */
union freelist_init_state {
	struct {
		unsigned int pos;
2467
		unsigned int *list;
T
Thomas Garnier 已提交
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
		unsigned int count;
	};
	struct rnd_state rnd_state;
};

/*
 * Initialize the state based on the randomization methode available.
 * return true if the pre-computed list is available, false otherwize.
 */
static bool freelist_state_initialize(union freelist_init_state *state,
				struct kmem_cache *cachep,
				unsigned int count)
{
	bool ret;
	unsigned int rand;

	/* Use best entropy available to define a random shift */
2485
	rand = get_random_int();
T
Thomas Garnier 已提交
2486 2487 2488 2489 2490 2491 2492 2493

	/* Use a random state if the pre-computed list is not available */
	if (!cachep->random_seq) {
		prandom_seed_state(&state->rnd_state, rand);
		ret = false;
	} else {
		state->list = cachep->random_seq;
		state->count = count;
2494
		state->pos = rand % count;
T
Thomas Garnier 已提交
2495 2496 2497 2498 2499 2500 2501 2502
		ret = true;
	}
	return ret;
}

/* Get the next entry on the list and randomize it using a random shift */
static freelist_idx_t next_random_slot(union freelist_init_state *state)
{
2503 2504 2505
	if (state->pos >= state->count)
		state->pos = 0;
	return state->list[state->pos++];
T
Thomas Garnier 已提交
2506 2507
}

2508 2509 2510 2511 2512 2513 2514
/* Swap two freelist entries */
static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
{
	swap(((freelist_idx_t *)page->freelist)[a],
		((freelist_idx_t *)page->freelist)[b]);
}

T
Thomas Garnier 已提交
2515 2516 2517 2518 2519 2520
/*
 * Shuffle the freelist initialization state based on pre-computed lists.
 * return true if the list was successfully shuffled, false otherwise.
 */
static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
{
2521
	unsigned int objfreelist = 0, i, rand, count = cachep->num;
T
Thomas Garnier 已提交
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
	union freelist_init_state state;
	bool precomputed;

	if (count < 2)
		return false;

	precomputed = freelist_state_initialize(&state, cachep, count);

	/* Take a random entry as the objfreelist */
	if (OBJFREELIST_SLAB(cachep)) {
		if (!precomputed)
			objfreelist = count - 1;
		else
			objfreelist = next_random_slot(&state);
		page->freelist = index_to_obj(cachep, page, objfreelist) +
						obj_offset(cachep);
		count--;
	}

	/*
	 * On early boot, generate the list dynamically.
	 * Later use a pre-computed list for speed.
	 */
	if (!precomputed) {
2546 2547 2548 2549 2550 2551 2552 2553 2554
		for (i = 0; i < count; i++)
			set_free_obj(page, i, i);

		/* Fisher-Yates shuffle */
		for (i = count - 1; i > 0; i--) {
			rand = prandom_u32_state(&state.rnd_state);
			rand %= (i + 1);
			swap_free_obj(page, i, rand);
		}
T
Thomas Garnier 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
	} else {
		for (i = 0; i < count; i++)
			set_free_obj(page, i, next_random_slot(&state));
	}

	if (OBJFREELIST_SLAB(cachep))
		set_free_obj(page, cachep->num - 1, objfreelist);

	return true;
}
#else
static inline bool shuffle_freelist(struct kmem_cache *cachep,
				struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

2573 2574 2575 2576
static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
A
Alexander Potapenko 已提交
2577
	void *objp;
T
Thomas Garnier 已提交
2578
	bool shuffled;
2579 2580 2581

	cache_init_objs_debug(cachep, page);

T
Thomas Garnier 已提交
2582 2583 2584 2585
	/* Try to randomize the freelist if enabled */
	shuffled = shuffle_freelist(cachep, page);

	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2586 2587 2588 2589
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2590
	for (i = 0; i < cachep->num; i++) {
2591 2592 2593
		objp = index_to_obj(cachep, page, i);
		kasan_init_slab_obj(cachep, objp);

2594
		/* constructor could break poison info */
A
Alexander Potapenko 已提交
2595 2596 2597 2598 2599
		if (DEBUG == 0 && cachep->ctor) {
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2600

T
Thomas Garnier 已提交
2601 2602
		if (!shuffled)
			set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2603 2604 2605
	}
}

2606
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2607
{
2608
	void *objp;
2609

2610
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2611
	page->active++;
2612

2613 2614 2615 2616 2617
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2618 2619 2620
	return objp;
}

2621 2622
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2623
{
2624
	unsigned int objnr = obj_to_index(cachep, page, objp);
2625
#if DEBUG
J
Joonsoo Kim 已提交
2626
	unsigned int i;
2627 2628

	/* Verify double free bug */
2629
	for (i = page->active; i < cachep->num; i++) {
2630
		if (get_free_obj(page, i) == objnr) {
2631
			pr_err("slab: double free detected in cache '%s', objp %p\n",
J
Joe Perches 已提交
2632
			       cachep->name, objp);
2633 2634
			BUG();
		}
2635 2636
	}
#endif
2637
	page->active--;
2638 2639 2640
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2641
	set_free_obj(page, page->active, objnr);
2642 2643
}

2644 2645 2646
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2647
 * virtual address for kfree, ksize, and slab debugging.
2648
 */
2649
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2650
			   void *freelist)
L
Linus Torvalds 已提交
2651
{
2652
	page->slab_cache = cache;
2653
	page->freelist = freelist;
L
Linus Torvalds 已提交
2654 2655 2656 2657 2658 2659
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2660 2661
static struct page *cache_grow_begin(struct kmem_cache *cachep,
				gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2662
{
2663
	void *freelist;
P
Pekka Enberg 已提交
2664 2665
	size_t offset;
	gfp_t local_flags;
2666
	int page_node;
2667
	struct kmem_cache_node *n;
2668
	struct page *page;
L
Linus Torvalds 已提交
2669

A
Andrew Morton 已提交
2670 2671 2672
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2673
	 */
2674
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2675
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2676 2677 2678 2679
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
		dump_stack();
2680
	}
C
Christoph Lameter 已提交
2681
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2682 2683

	check_irq_off();
2684
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2685 2686
		local_irq_enable();

A
Andrew Morton 已提交
2687 2688 2689
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2690
	 */
2691
	page = kmem_getpages(cachep, local_flags, nodeid);
2692
	if (!page)
L
Linus Torvalds 已提交
2693 2694
		goto failed;

2695 2696
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

L
Linus Torvalds 已提交
2709
	/* Get slab management. */
2710
	freelist = alloc_slabmgmt(cachep, page, offset,
2711
			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2712
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2713 2714
		goto opps1;

2715
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2716

A
Alexander Potapenko 已提交
2717
	kasan_poison_slab(page);
2718
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2719

2720
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2721 2722
		local_irq_disable();

2723 2724
	return page;

A
Andrew Morton 已提交
2725
opps1:
2726
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2727
failed:
2728
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2729
		local_irq_disable();
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
	return NULL;
}

static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
{
	struct kmem_cache_node *n;
	void *list = NULL;

	check_irq_off();

	if (!page)
		return;

	INIT_LIST_HEAD(&page->lru);
	n = get_node(cachep, page_to_nid(page));

	spin_lock(&n->list_lock);
2747
	n->total_slabs++;
2748
	if (!page->active) {
2749
		list_add_tail(&page->lru, &(n->slabs_free));
2750
		n->free_slabs++;
2751
	} else
2752
		fixup_slab_list(cachep, n, page, &list);
2753

2754 2755 2756 2757 2758
	STATS_INC_GROWN(cachep);
	n->free_objects += cachep->num - page->active;
	spin_unlock(&n->list_lock);

	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2771
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
P
Pekka Enberg 已提交
2772 2773
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2774 2775 2776
	}
}

2777 2778
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2779
	unsigned long long redzone1, redzone2;
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2795 2796
	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
	       obj, redzone1, redzone2);
2797 2798
}

2799
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2800
				   unsigned long caller)
L
Linus Torvalds 已提交
2801 2802
{
	unsigned int objnr;
2803
	struct page *page;
L
Linus Torvalds 已提交
2804

2805 2806
	BUG_ON(virt_to_cache(objp) != cachep);

2807
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2808
	kfree_debugcheck(objp);
2809
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2810 2811

	if (cachep->flags & SLAB_RED_ZONE) {
2812
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2813 2814 2815
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2816 2817
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2818
		*dbg_userword(cachep, objp) = (void *)caller;
2819
	}
L
Linus Torvalds 已提交
2820

2821
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2822 2823

	BUG_ON(objnr >= cachep->num);
2824
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2825 2826 2827

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2828
		slab_kernel_map(cachep, objp, 0, caller);
L
Linus Torvalds 已提交
2829 2830 2831 2832 2833 2834 2835 2836 2837
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2853
static inline void fixup_slab_list(struct kmem_cache *cachep,
2854 2855
				struct kmem_cache_node *n, struct page *page,
				void **list)
2856 2857 2858
{
	/* move slabp to correct slabp list: */
	list_del(&page->lru);
2859
	if (page->active == cachep->num) {
2860
		list_add(&page->lru, &n->slabs_full);
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2874 2875 2876
		list_add(&page->lru, &n->slabs_partial);
}

2877 2878
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2879
					struct page *page, bool pfmemalloc)
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&page->lru);
2898
	if (!page->active) {
2899
		list_add_tail(&page->lru, &n->slabs_free);
2900
		n->free_slabs++;
2901
	} else
2902 2903 2904 2905 2906 2907 2908
		list_add_tail(&page->lru, &n->slabs_partial);

	list_for_each_entry(page, &n->slabs_partial, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

2909
	n->free_touched = 1;
2910
	list_for_each_entry(page, &n->slabs_free, lru) {
2911
		if (!PageSlabPfmemalloc(page)) {
2912
			n->free_slabs--;
2913
			return page;
2914
		}
2915 2916 2917 2918 2919 2920
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2921 2922 2923
{
	struct page *page;

2924
	assert_spin_locked(&n->list_lock);
2925
	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2926 2927
	if (!page) {
		n->free_touched = 1;
2928 2929
		page = list_first_entry_or_null(&n->slabs_free, struct page,
						lru);
2930
		if (page)
2931
			n->free_slabs--;
2932 2933
	}

2934
	if (sk_memalloc_socks())
2935
		page = get_valid_first_slab(n, page, pfmemalloc);
2936

2937 2938 2939
	return page;
}

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
/*
 * Slab list should be fixed up by fixup_slab_list() for existing slab
 * or cache_grow_end() for new slab
 */
static __always_inline int alloc_block(struct kmem_cache *cachep,
		struct array_cache *ac, struct page *page, int batchcount)
{
	/*
	 * There must be at least one object available for
	 * allocation.
	 */
	BUG_ON(page->active >= cachep->num);

	while (page->active < cachep->num && batchcount--) {
		STATS_INC_ALLOCED(cachep);
		STATS_INC_ACTIVE(cachep);
		STATS_SET_HIGH(cachep);

		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
	}

	return batchcount;
}

2992
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2993 2994
{
	int batchcount;
2995
	struct kmem_cache_node *n;
2996
	struct array_cache *ac, *shared;
P
Pekka Enberg 已提交
2997
	int node;
2998
	void *list = NULL;
2999
	struct page *page;
P
Pekka Enberg 已提交
3000

L
Linus Torvalds 已提交
3001
	check_irq_off();
3002
	node = numa_mem_id();
3003

3004
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3005 3006
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3007 3008 3009 3010
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3011 3012 3013
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
3014
	n = get_node(cachep, node);
3015

3016
	BUG_ON(ac->avail > 0 || !n);
3017 3018 3019 3020
	shared = READ_ONCE(n->shared);
	if (!n->free_objects && (!shared || !shared->avail))
		goto direct_grow;

3021
	spin_lock(&n->list_lock);
3022
	shared = READ_ONCE(n->shared);
L
Linus Torvalds 已提交
3023

3024
	/* See if we can refill from the shared array */
3025 3026
	if (shared && transfer_objects(ac, shared, batchcount)) {
		shared->touched = 1;
3027
		goto alloc_done;
3028
	}
3029

L
Linus Torvalds 已提交
3030 3031
	while (batchcount > 0) {
		/* Get slab alloc is to come from. */
3032
		page = get_first_slab(n, false);
3033 3034
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
3035 3036

		check_spinlock_acquired(cachep);
3037

3038
		batchcount = alloc_block(cachep, ac, page, batchcount);
3039
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
3040 3041
	}

A
Andrew Morton 已提交
3042
must_grow:
3043
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
3044
alloc_done:
3045
	spin_unlock(&n->list_lock);
3046
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
3047

3048
direct_grow:
L
Linus Torvalds 已提交
3049
	if (unlikely(!ac->avail)) {
3050 3051 3052 3053 3054 3055 3056 3057
		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

3058
		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3059

3060 3061 3062 3063
		/*
		 * cache_grow_begin() can reenable interrupts,
		 * then ac could change.
		 */
3064
		ac = cpu_cache_get(cachep);
3065 3066 3067
		if (!ac->avail && page)
			alloc_block(cachep, ac, page, batchcount);
		cache_grow_end(cachep, page);
3068

3069
		if (!ac->avail)
L
Linus Torvalds 已提交
3070 3071 3072
			return NULL;
	}
	ac->touched = 1;
3073

3074
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3075 3076
}

A
Andrew Morton 已提交
3077 3078
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3079
{
3080
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
3081 3082 3083
}

#if DEBUG
A
Andrew Morton 已提交
3084
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3085
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3086
{
P
Pekka Enberg 已提交
3087
	if (!objp)
L
Linus Torvalds 已提交
3088
		return objp;
P
Pekka Enberg 已提交
3089
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3090
		check_poison_obj(cachep, objp);
3091
		slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
3092 3093 3094
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3095
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3096 3097

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3098 3099
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
3100
			slab_error(cachep, "double free, or memory outside object was overwritten");
3101 3102 3103
			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3104 3105 3106 3107
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3108

3109
	objp += obj_offset(cachep);
3110
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3111
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3112 3113
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3114
		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3115
		       objp, (int)ARCH_SLAB_MINALIGN);
3116
	}
L
Linus Torvalds 已提交
3117 3118 3119 3120 3121 3122
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3123
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3124
{
P
Pekka Enberg 已提交
3125
	void *objp;
L
Linus Torvalds 已提交
3126 3127
	struct array_cache *ac;

3128
	check_irq_off();
3129

3130
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3131 3132
	if (likely(ac->avail)) {
		ac->touched = 1;
3133
		objp = ac->entry[--ac->avail];
3134

3135 3136
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
3137
	}
3138 3139

	STATS_INC_ALLOCMISS(cachep);
3140
	objp = cache_alloc_refill(cachep, flags);
3141 3142 3143 3144 3145 3146 3147
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3148 3149 3150 3151 3152
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3153 3154
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3155 3156 3157
	return objp;
}

3158
#ifdef CONFIG_NUMA
3159
/*
3160
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3161 3162 3163 3164 3165 3166 3167 3168
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3169
	if (in_interrupt() || (flags & __GFP_THISNODE))
3170
		return NULL;
3171
	nid_alloc = nid_here = numa_mem_id();
3172
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3173
		nid_alloc = cpuset_slab_spread_node();
3174
	else if (current->mempolicy)
3175
		nid_alloc = mempolicy_slab_node();
3176
	if (nid_alloc != nid_here)
3177
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3178 3179 3180
	return NULL;
}

3181 3182
/*
 * Fallback function if there was no memory available and no objects on a
3183
 * certain node and fall back is permitted. First we scan all the
3184
 * available node for available objects. If that fails then we
3185 3186 3187
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3188
 */
3189
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3190
{
3191
	struct zonelist *zonelist;
3192
	struct zoneref *z;
3193 3194
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3195
	void *obj = NULL;
3196
	struct page *page;
3197
	int nid;
3198
	unsigned int cpuset_mems_cookie;
3199 3200 3201 3202

	if (flags & __GFP_THISNODE)
		return NULL;

3203
retry_cpuset:
3204
	cpuset_mems_cookie = read_mems_allowed_begin();
3205
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3206

3207 3208 3209 3210 3211
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3212 3213
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3214

3215
		if (cpuset_zone_allowed(zone, flags) &&
3216 3217
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3218
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3219
					gfp_exact_node(flags), nid);
3220 3221 3222
				if (obj)
					break;
		}
3223 3224
	}

3225
	if (!obj) {
3226 3227 3228 3229 3230 3231
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3232 3233 3234 3235
		page = cache_grow_begin(cache, flags, numa_mem_id());
		cache_grow_end(cache, page);
		if (page) {
			nid = page_to_nid(page);
3236 3237
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);
3238

3239
			/*
3240 3241
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
3242
			 */
3243 3244
			if (!obj)
				goto retry;
3245
		}
3246
	}
3247

3248
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3249
		goto retry_cpuset;
3250 3251 3252
	return obj;
}

3253 3254
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3255
 */
3256
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3257
				int nodeid)
3258
{
3259
	struct page *page;
3260
	struct kmem_cache_node *n;
3261
	void *obj = NULL;
3262
	void *list = NULL;
P
Pekka Enberg 已提交
3263

3264
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3265
	n = get_node(cachep, nodeid);
3266
	BUG_ON(!n);
P
Pekka Enberg 已提交
3267

3268
	check_irq_off();
3269
	spin_lock(&n->list_lock);
3270
	page = get_first_slab(n, false);
3271 3272
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3273 3274 3275 3276 3277 3278 3279

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3280
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3281

3282
	obj = slab_get_obj(cachep, page);
3283
	n->free_objects--;
P
Pekka Enberg 已提交
3284

3285
	fixup_slab_list(cachep, n, page, &list);
3286

3287
	spin_unlock(&n->list_lock);
3288
	fixup_objfreelist_debug(cachep, &list);
3289
	return obj;
3290

A
Andrew Morton 已提交
3291
must_grow:
3292
	spin_unlock(&n->list_lock);
3293
	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3294 3295 3296 3297
	if (page) {
		/* This slab isn't counted yet so don't update free_objects */
		obj = slab_get_obj(cachep, page);
	}
3298
	cache_grow_end(cachep, page);
L
Linus Torvalds 已提交
3299

3300
	return obj ? obj : fallback_alloc(cachep, flags);
3301
}
3302 3303

static __always_inline void *
3304
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3305
		   unsigned long caller)
3306 3307 3308
{
	unsigned long save_flags;
	void *ptr;
3309
	int slab_node = numa_mem_id();
3310

3311
	flags &= gfp_allowed_mask;
3312 3313
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3314 3315
		return NULL;

3316 3317 3318
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3319
	if (nodeid == NUMA_NO_NODE)
3320
		nodeid = slab_node;
3321

3322
	if (unlikely(!get_node(cachep, nodeid))) {
3323 3324 3325 3326 3327
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3328
	if (nodeid == slab_node) {
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3345 3346
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3347

3348
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3349 3350 3351 3352 3353 3354 3355 3356
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3357
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3368 3369
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3385
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3386 3387 3388 3389
{
	unsigned long save_flags;
	void *objp;

3390
	flags &= gfp_allowed_mask;
3391 3392
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3393 3394
		return NULL;

3395 3396 3397 3398 3399 3400 3401
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3402 3403
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3404

3405
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3406 3407
	return objp;
}
3408 3409

/*
3410
 * Caller needs to acquire correct kmem_cache_node's list_lock
3411
 * @list: List of detached free slabs should be freed by caller
3412
 */
3413 3414
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3415 3416
{
	int i;
3417
	struct kmem_cache_node *n = get_node(cachep, node);
3418 3419 3420
	struct page *page;

	n->free_objects += nr_objects;
L
Linus Torvalds 已提交
3421 3422

	for (i = 0; i < nr_objects; i++) {
3423
		void *objp;
3424
		struct page *page;
L
Linus Torvalds 已提交
3425

3426 3427
		objp = objpp[i];

3428 3429
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3430
		check_spinlock_acquired_node(cachep, node);
3431
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3432 3433 3434
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
3435
		if (page->active == 0) {
3436
			list_add(&page->lru, &n->slabs_free);
3437 3438
			n->free_slabs++;
		} else {
L
Linus Torvalds 已提交
3439 3440 3441 3442
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3443
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3444 3445
		}
	}
3446 3447 3448 3449 3450

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

		page = list_last_entry(&n->slabs_free, struct page, lru);
3451
		list_move(&page->lru, list);
3452
		n->free_slabs--;
3453
		n->total_slabs--;
3454
	}
L
Linus Torvalds 已提交
3455 3456
}

3457
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3458 3459
{
	int batchcount;
3460
	struct kmem_cache_node *n;
3461
	int node = numa_mem_id();
3462
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3463 3464

	batchcount = ac->batchcount;
3465

L
Linus Torvalds 已提交
3466
	check_irq_off();
3467
	n = get_node(cachep, node);
3468 3469 3470
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3471
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3472 3473 3474
		if (max) {
			if (batchcount > max)
				batchcount = max;
3475
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3476
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3477 3478 3479 3480 3481
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3482
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3483
free_done:
L
Linus Torvalds 已提交
3484 3485 3486
#if STATS
	{
		int i = 0;
3487
		struct page *page;
L
Linus Torvalds 已提交
3488

3489
		list_for_each_entry(page, &n->slabs_free, lru) {
3490
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3491 3492 3493 3494 3495 3496

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3497
	spin_unlock(&n->list_lock);
3498
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3499
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3500
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3501 3502 3503
}

/*
A
Andrew Morton 已提交
3504 3505
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3506
 */
3507
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3508
				unsigned long caller)
L
Linus Torvalds 已提交
3509
{
3510 3511 3512 3513 3514 3515
	/* Put the object into the quarantine, don't touch it for now. */
	if (kasan_slab_free(cachep, objp))
		return;

	___cache_free(cachep, objp, caller);
}
L
Linus Torvalds 已提交
3516

3517 3518 3519 3520
void ___cache_free(struct kmem_cache *cachep, void *objp,
		unsigned long caller)
{
	struct array_cache *ac = cpu_cache_get(cachep);
A
Alexander Potapenko 已提交
3521

L
Linus Torvalds 已提交
3522
	check_irq_off();
3523
	kmemleak_free_recursive(objp, cachep->flags);
3524
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3525

3526
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3527

3528 3529 3530 3531 3532 3533 3534
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3535
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3536 3537
		return;

3538
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3539 3540 3541 3542 3543
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3544

3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3565
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3566
{
3567
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3568

3569
	kasan_slab_alloc(cachep, ret, flags);
3570
	trace_kmem_cache_alloc(_RET_IP_, ret,
3571
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3572 3573

	return ret;
L
Linus Torvalds 已提交
3574 3575 3576
}
EXPORT_SYMBOL(kmem_cache_alloc);

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3587
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3588
			  void **p)
3589
{
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3608 3609
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3620
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3621 3622 3623
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3624 3625 3626
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3627
#ifdef CONFIG_TRACING
3628
void *
3629
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3630
{
3631 3632
	void *ret;

3633
	ret = slab_alloc(cachep, flags, _RET_IP_);
3634

3635
	kasan_kmalloc(cachep, ret, size, flags);
3636
	trace_kmalloc(_RET_IP_, ret,
3637
		      size, cachep->size, flags);
3638
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3639
}
3640
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3641 3642
#endif

L
Linus Torvalds 已提交
3643
#ifdef CONFIG_NUMA
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3655 3656
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3657
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3658

3659
	kasan_slab_alloc(cachep, ret, flags);
3660
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3661
				    cachep->object_size, cachep->size,
3662
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3663 3664

	return ret;
3665
}
L
Linus Torvalds 已提交
3666 3667
EXPORT_SYMBOL(kmem_cache_alloc_node);

3668
#ifdef CONFIG_TRACING
3669
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3670
				  gfp_t flags,
3671 3672
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3673
{
3674 3675
	void *ret;

3676
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3677 3678

	kasan_kmalloc(cachep, ret, size, flags);
3679
	trace_kmalloc_node(_RET_IP_, ret,
3680
			   size, cachep->size,
3681 3682
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3683
}
3684
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3685 3686
#endif

3687
static __always_inline void *
3688
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3689
{
3690
	struct kmem_cache *cachep;
A
Alexander Potapenko 已提交
3691
	void *ret;
3692

3693
	cachep = kmalloc_slab(size, flags);
3694 3695
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
A
Alexander Potapenko 已提交
3696
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3697
	kasan_kmalloc(cachep, ret, size, flags);
A
Alexander Potapenko 已提交
3698 3699

	return ret;
3700
}
3701 3702 3703

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3704
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3705
}
3706
EXPORT_SYMBOL(__kmalloc_node);
3707 3708

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3709
		int node, unsigned long caller)
3710
{
3711
	return __do_kmalloc_node(size, flags, node, caller);
3712 3713 3714
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3715 3716

/**
3717
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3718
 * @size: how many bytes of memory are required.
3719
 * @flags: the type of memory to allocate (see kmalloc).
3720
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3721
 */
3722
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3723
					  unsigned long caller)
L
Linus Torvalds 已提交
3724
{
3725
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3726
	void *ret;
L
Linus Torvalds 已提交
3727

3728
	cachep = kmalloc_slab(size, flags);
3729 3730
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3731
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3732

3733
	kasan_kmalloc(cachep, ret, size, flags);
3734
	trace_kmalloc(caller, ret,
3735
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3736 3737

	return ret;
3738 3739 3740 3741
}

void *__kmalloc(size_t size, gfp_t flags)
{
3742
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3743 3744 3745
}
EXPORT_SYMBOL(__kmalloc);

3746
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3747
{
3748
	return __do_kmalloc(size, flags, caller);
3749 3750
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3751

L
Linus Torvalds 已提交
3752 3753 3754 3755 3756 3757 3758 3759
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3760
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3761 3762
{
	unsigned long flags;
3763 3764 3765
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3766 3767

	local_irq_save(flags);
3768
	debug_check_no_locks_freed(objp, cachep->object_size);
3769
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3770
		debug_check_no_obj_freed(objp, cachep->object_size);
3771
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3772
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3773

3774
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3775 3776 3777
}
EXPORT_SYMBOL(kmem_cache_free);

3778 3779 3780 3781 3782 3783 3784 3785 3786
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3787 3788 3789 3790
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3804 3805 3806 3807
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3808 3809
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3810 3811 3812 3813 3814
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3815
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3816 3817
	unsigned long flags;

3818 3819
	trace_kfree(_RET_IP_, objp);

3820
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3821 3822 3823
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3824
	c = virt_to_cache(objp);
3825 3826 3827
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3828
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3829 3830 3831 3832
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3833
/*
3834
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3835
 */
3836
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3837
{
3838
	int ret;
3839
	int node;
3840
	struct kmem_cache_node *n;
3841

3842
	for_each_online_node(node) {
3843 3844
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
3845 3846 3847
			goto fail;

	}
3848

3849
	return 0;
3850

A
Andrew Morton 已提交
3851
fail:
3852
	if (!cachep->list.next) {
3853 3854 3855
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3856 3857
			n = get_node(cachep, node);
			if (n) {
3858 3859 3860
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3861
				cachep->node[node] = NULL;
3862 3863 3864 3865
			}
			node--;
		}
	}
3866
	return -ENOMEM;
3867 3868
}

3869
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3870
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3871
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3872
{
3873 3874
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3875

3876 3877
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3878 3879
		return -ENOMEM;

3880 3881 3882
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
	kick_all_cpus_sync();
3883

L
Linus Torvalds 已提交
3884 3885 3886
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3887
	cachep->shared = shared;
L
Linus Torvalds 已提交
3888

3889
	if (!prev)
3890
		goto setup_node;
3891 3892

	for_each_online_cpu(cpu) {
3893
		LIST_HEAD(list);
3894 3895
		int node;
		struct kmem_cache_node *n;
3896
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3897

3898
		node = cpu_to_mem(cpu);
3899 3900
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3901
		free_block(cachep, ac->entry, ac->avail, node, &list);
3902
		spin_unlock_irq(&n->list_lock);
3903
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3904
	}
3905 3906
	free_percpu(prev);

3907 3908
setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
L
Linus Torvalds 已提交
3909 3910
}

G
Glauber Costa 已提交
3911 3912 3913 3914
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3915
	struct kmem_cache *c;
G
Glauber Costa 已提交
3916 3917 3918 3919 3920 3921 3922 3923 3924

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3925 3926 3927 3928
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3929 3930 3931 3932 3933
	}

	return ret;
}

3934
/* Called with slab_mutex held always */
3935
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3936 3937
{
	int err;
G
Glauber Costa 已提交
3938 3939 3940 3941
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

3942
	err = cache_random_seq_create(cachep, cachep->num, gfp);
T
Thomas Garnier 已提交
3943 3944 3945
	if (err)
		goto end;

G
Glauber Costa 已提交
3946 3947 3948 3949 3950 3951
	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3952

G
Glauber Costa 已提交
3953 3954
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3955 3956
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3957 3958
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3959
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3960 3961 3962 3963
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3964
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3965
		limit = 1;
3966
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3967
		limit = 8;
3968
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3969
		limit = 24;
3970
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3971 3972 3973 3974
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3975 3976
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3977 3978 3979 3980 3981 3982 3983 3984
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3985
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3986 3987 3988
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3989 3990 3991
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3992 3993 3994 3995
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3996 3997 3998
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
T
Thomas Garnier 已提交
3999
end:
L
Linus Torvalds 已提交
4000
	if (err)
4001
		pr_err("enable_cpucache failed for %s, error %d\n",
P
Pekka Enberg 已提交
4002
		       cachep->name, -err);
4003
	return err;
L
Linus Torvalds 已提交
4004 4005
}

4006
/*
4007 4008
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
4009
 * if drain_array() is used on the shared array.
4010
 */
4011
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4012
			 struct array_cache *ac, int node)
L
Linus Torvalds 已提交
4013
{
4014
	LIST_HEAD(list);
4015 4016 4017

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
L
Linus Torvalds 已提交
4018

4019 4020
	if (!ac || !ac->avail)
		return;
4021 4022

	if (ac->touched) {
L
Linus Torvalds 已提交
4023
		ac->touched = 0;
4024
		return;
L
Linus Torvalds 已提交
4025
	}
4026 4027 4028 4029 4030 4031

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
4032 4033 4034 4035
}

/**
 * cache_reap - Reclaim memory from caches.
4036
 * @w: work descriptor
L
Linus Torvalds 已提交
4037 4038 4039 4040 4041 4042
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4043 4044
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4045
 */
4046
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4047
{
4048
	struct kmem_cache *searchp;
4049
	struct kmem_cache_node *n;
4050
	int node = numa_mem_id();
4051
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4052

4053
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4054
		/* Give up. Setup the next iteration. */
4055
		goto out;
L
Linus Torvalds 已提交
4056

4057
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4058 4059
		check_irq_on();

4060
		/*
4061
		 * We only take the node lock if absolutely necessary and we
4062 4063 4064
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4065
		n = get_node(searchp, node);
4066

4067
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4068

4069
		drain_array(searchp, n, cpu_cache_get(searchp), node);
L
Linus Torvalds 已提交
4070

4071 4072 4073 4074
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4075
		if (time_after(n->next_reap, jiffies))
4076
			goto next;
L
Linus Torvalds 已提交
4077

4078
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4079

4080
		drain_array(searchp, n, n->shared, node);
L
Linus Torvalds 已提交
4081

4082 4083
		if (n->free_touched)
			n->free_touched = 0;
4084 4085
		else {
			int freed;
L
Linus Torvalds 已提交
4086

4087
			freed = drain_freelist(searchp, n, (n->free_limit +
4088 4089 4090
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4091
next:
L
Linus Torvalds 已提交
4092 4093 4094
		cond_resched();
	}
	check_irq_on();
4095
	mutex_unlock(&slab_mutex);
4096
	next_reap_node();
4097
out:
A
Andrew Morton 已提交
4098
	/* Set up the next iteration */
4099
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4100 4101
}

4102
#ifdef CONFIG_SLABINFO
4103
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4104
{
4105
	unsigned long active_objs, num_objs, active_slabs;
4106 4107
	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
	unsigned long free_slabs = 0;
4108
	int node;
4109
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4110

4111
	for_each_kmem_cache_node(cachep, node, n) {
4112
		check_irq_on();
4113
		spin_lock_irq(&n->list_lock);
4114

4115 4116
		total_slabs += n->total_slabs;
		free_slabs += n->free_slabs;
4117
		free_objs += n->free_objects;
4118

4119 4120
		if (n->shared)
			shared_avail += n->shared->avail;
4121

4122
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4123
	}
4124 4125
	num_objs = total_slabs * cachep->num;
	active_slabs = total_slabs - free_slabs;
4126
	active_objs = num_objs - free_objs;
L
Linus Torvalds 已提交
4127

4128 4129 4130
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
4131
	sinfo->num_slabs = total_slabs;
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4142
#if STATS
4143
	{			/* node stats */
L
Linus Torvalds 已提交
4144 4145 4146 4147 4148 4149 4150
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4151
		unsigned long node_frees = cachep->node_frees;
4152
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4153

J
Joe Perches 已提交
4154
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4155 4156 4157
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4158 4159 4160 4161 4162 4163 4164 4165 4166
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4167
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4180
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4181
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4182
{
P
Pekka Enberg 已提交
4183
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4184
	int limit, batchcount, shared, res;
4185
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4186

L
Linus Torvalds 已提交
4187 4188 4189 4190
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4191
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4202
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4203
	res = -EINVAL;
4204
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4205
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4206 4207
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4208
				res = 0;
L
Linus Torvalds 已提交
4209
			} else {
4210
				res = do_tune_cpucache(cachep, limit,
4211 4212
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4213 4214 4215 4216
			}
			break;
		}
	}
4217
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4218 4219 4220 4221
	if (res >= 0)
		res = count;
	return res;
}
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4255 4256
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4257 4258
{
	void *p;
4259 4260
	int i, j;
	unsigned long v;
4261

4262 4263
	if (n[0] == n[1])
		return;
4264
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4275
			continue;
4276

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4287 4288 4289 4290 4291 4292 4293 4294
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4295
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4296

4297
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4298
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4299
		if (modname[0])
4300 4301 4302 4303 4304 4305 4306 4307 4308
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4309
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4310
	struct page *page;
4311
	struct kmem_cache_node *n;
4312
	const char *name;
4313
	unsigned long *x = m->private;
4314 4315 4316 4317 4318 4319 4320 4321
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4333

4334
		for_each_kmem_cache_node(cachep, node, n) {
4335

4336 4337
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4338

4339 4340 4341 4342 4343 4344 4345
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4346 4347

	name = cachep->name;
4348
	if (x[0] == x[1]) {
4349
		/* Increase the buffer size */
4350
		mutex_unlock(&slab_mutex);
4351
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4352 4353
		if (!m->private) {
			/* Too bad, we are really out */
4354
			m->private = x;
4355
			mutex_lock(&slab_mutex);
4356 4357
			return -ENOMEM;
		}
4358 4359
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4360
		mutex_lock(&slab_mutex);
4361 4362 4363 4364
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4365 4366 4367
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4368 4369
		seq_putc(m, '\n');
	}
4370

4371 4372 4373
	return 0;
}

4374
static const struct seq_operations slabstats_op = {
4375
	.start = slab_start,
4376 4377
	.next = slab_next,
	.stop = slab_stop,
4378 4379
	.show = leaks_show,
};
4380 4381 4382

static int slabstats_open(struct inode *inode, struct file *file)
{
4383 4384 4385 4386 4387 4388 4389 4390 4391
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4406
#endif
4407 4408 4409
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4410 4411
#endif

K
Kees Cook 已提交
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
#ifdef CONFIG_HARDENED_USERCOPY
/*
 * Rejects objects that are incorrectly sized.
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
const char *__check_heap_object(const void *ptr, unsigned long n,
				struct page *page)
{
	struct kmem_cache *cachep;
	unsigned int objnr;
	unsigned long offset;

	/* Find and validate object. */
	cachep = page->slab_cache;
	objnr = obj_to_index(cachep, page, (void *)ptr);
	BUG_ON(objnr >= cachep->num);

	/* Find offset within object. */
	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);

	/* Allow address range falling entirely within object size. */
	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
		return NULL;

	return cachep->name;
}
#endif /* CONFIG_HARDENED_USERCOPY */

4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4454
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4455
{
A
Alexander Potapenko 已提交
4456 4457
	size_t size;

4458 4459
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4460
		return 0;
L
Linus Torvalds 已提交
4461

A
Alexander Potapenko 已提交
4462 4463 4464 4465
	size = virt_to_cache(objp)->object_size;
	/* We assume that ksize callers could use the whole allocated area,
	 * so we need to unpoison this area.
	 */
4466
	kasan_unpoison_shadow(objp, size);
A
Alexander Potapenko 已提交
4467 4468

	return size;
L
Linus Torvalds 已提交
4469
}
K
Kirill A. Shutemov 已提交
4470
EXPORT_SYMBOL(ksize);