slab.c 110.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
30
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
54
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
55 56 57 58
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
59
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
60 61 62 63 64 65 66 67 68 69 70 71
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
72
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
73 74 75 76 77 78
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
79 80 81 82 83 84 85 86 87
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
88 89 90 91
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
100 101 102 103 104 105 106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
117
#include	<linux/kmemcheck.h>
118
#include	<linux/memory.h>
119
#include	<linux/prefetch.h>
120
#include	<linux/sched/task_stack.h>
L
Linus Torvalds 已提交
121

122 123
#include	<net/sock.h>

L
Linus Torvalds 已提交
124 125 126 127
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

128 129
#include <trace/events/kmem.h>

130 131
#include	"internal.h"

132 133
#include	"slab.h"

L
Linus Torvalds 已提交
134
/*
135
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
156
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
157 158 159 160 161

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

162 163 164 165 166 167 168 169 170
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

171
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172

L
Linus Torvalds 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
190
	void *entry[];	/*
A
Andrew Morton 已提交
191 192 193 194
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
195 196
};

J
Joonsoo Kim 已提交
197 198 199 200 201
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

202 203 204
/*
 * Need this for bootstrapping a per node allocator.
 */
205
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
206
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
207
#define	CACHE_CACHE 0
208
#define	SIZE_NODE (MAX_NUMNODES)
209

210
static int drain_freelist(struct kmem_cache *cache,
211
			struct kmem_cache_node *n, int tofree);
212
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
213 214
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
215
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
216
static void cache_reap(struct work_struct *unused);
217

218 219 220 221 222
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
223 224
static int slab_early_init = 1;

225
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
226

227
static void kmem_cache_node_init(struct kmem_cache_node *parent)
228 229 230 231
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
232
	parent->total_slabs = 0;
233
	parent->free_slabs = 0;
234 235
	parent->shared = NULL;
	parent->alien = NULL;
236
	parent->colour_next = 0;
237 238 239 240 241
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
242 243 244
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
245
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
246 247
	} while (0)

A
Andrew Morton 已提交
248 249
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
250 251 252 253
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
254

255
#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
L
Linus Torvalds 已提交
256
#define CFLGS_OFF_SLAB		(0x80000000UL)
257
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
L
Linus Torvalds 已提交
258 259 260
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
261 262 263
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
264
 *
A
Adrian Bunk 已提交
265
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
266 267
 * which could lock up otherwise freeable slabs.
 */
268 269
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
270 271 272 273 274 275

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
276
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
277 278 279 280 281
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
282 283
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
284
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
285
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
286 287 288 289 290
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
291 292 293 294 295 296 297 298 299
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
300
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
301 302 303
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
304
#define	STATS_INC_NODEFREES(x)	do { } while (0)
305
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
306
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
307 308 309 310 311 312 313 314
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
315 316
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
317
 * 0		: objp
318
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
319 320
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
321
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
322
 * 		redzone word.
323
 * cachep->obj_offset: The real object.
324 325
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
326
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
327
 */
328
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
329
{
330
	return cachep->obj_offset;
L
Linus Torvalds 已提交
331 332
}

333
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
334 335
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
336 337
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
338 339
}

340
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
341 342 343
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
344
		return (unsigned long long *)(objp + cachep->size -
345
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
346
					      REDZONE_ALIGN);
347
	return (unsigned long long *) (objp + cachep->size -
348
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
349 350
}

351
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
352 353
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
354
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
355 356 357 358
}

#else

359
#define obj_offset(x)			0
360 361
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
362 363 364 365
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

366 367
#ifdef CONFIG_DEBUG_SLAB_LEAK

368
static inline bool is_store_user_clean(struct kmem_cache *cachep)
369
{
370 371
	return atomic_read(&cachep->store_user_clean) == 1;
}
372

373 374 375 376
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
377

378 379 380 381
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
382 383 384
}

#else
385
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
386 387 388

#endif

L
Linus Torvalds 已提交
389
/*
390 391
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
392
 */
393 394 395
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
396
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
397

398 399
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
400
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
401
	return page->slab_cache;
402 403
}

404
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
405 406
				 unsigned int idx)
{
407
	return page->s_mem + cache->size * idx;
408 409
}

410
/*
411 412 413
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
414 415 416
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
417
					const struct page *page, void *obj)
418
{
419
	u32 offset = (obj - page->s_mem);
420
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
421 422
}

423
#define BOOT_CPUCACHE_ENTRIES	1
L
Linus Torvalds 已提交
424
/* internal cache of cache description objs */
425
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
426 427 428
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
429
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
430
	.name = "kmem_cache",
L
Linus Torvalds 已提交
431 432
};

433
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
434

435
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
436
{
437
	return this_cpu_ptr(cachep->cpu_cache);
L
Linus Torvalds 已提交
438 439
}

A
Andrew Morton 已提交
440 441 442
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
443 444
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
		unsigned long flags, size_t *left_over)
445
{
446
	unsigned int num;
447
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
448

449 450 451 452 453 454
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
455 456 457 458 459
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
460 461 462 463 464 465
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
466
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
467
		num = slab_size / buffer_size;
468
		*left_over = slab_size % buffer_size;
469
	} else {
470
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
471 472
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
473
	}
474 475

	return num;
L
Linus Torvalds 已提交
476 477
}

478
#if DEBUG
479
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
480

A
Andrew Morton 已提交
481 482
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
483
{
484
	pr_err("slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
485
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
486
	dump_stack();
487
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
488
}
489
#endif
L
Linus Torvalds 已提交
490

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

507 508 509 510 511 512 513 514 515 516 517
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

518 519 520 521 522 523 524
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
525
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
526 527 528

static void init_reap_node(int cpu)
{
529 530
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
531 532 533 534
}

static void next_reap_node(void)
{
535
	int node = __this_cpu_read(slab_reap_node);
536

537
	node = next_node_in(node, node_online_map);
538
	__this_cpu_write(slab_reap_node, node);
539 540 541 542 543 544 545
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
546 547 548 549 550 551 552
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
553
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
554
{
555
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
556

557
	if (reap_work->work.func == NULL) {
558
		init_reap_node(cpu);
559
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
560 561
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
562 563 564
	}
}

565
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
566
{
567 568
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
569
	 * However, when such objects are allocated or transferred to another
570 571 572 573
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
574 575 576 577 578 579
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
580
	}
581 582 583 584 585
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
586
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
587 588 589 590 591
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
592 593
}

594 595
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
596
{
597 598 599
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
600

601 602
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
603

604 605 606
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
607

608
	slabs_destroy(cachep, &list);
609 610
}

611 612 613 614 615 616 617 618 619 620
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
621
	int nr = min3(from->avail, max, to->limit - to->avail);
622 623 624 625 626 627 628 629 630 631 632 633

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

634 635 636
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
637
#define reap_alien(cachep, n) do { } while (0)
638

J
Joonsoo Kim 已提交
639 640
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
641
{
642
	return NULL;
643 644
}

J
Joonsoo Kim 已提交
645
static inline void free_alien_cache(struct alien_cache **ac_ptr)
646 647 648 649 650 651 652 653 654 655 656 657 658 659
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

660
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
661 662 663 664 665
		 gfp_t flags, int nodeid)
{
	return NULL;
}

D
David Rientjes 已提交
666 667
static inline gfp_t gfp_exact_node(gfp_t flags)
{
668
	return flags & ~__GFP_NOFAIL;
D
David Rientjes 已提交
669 670
}

671 672
#else	/* CONFIG_NUMA */

673
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
674
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
675

J
Joonsoo Kim 已提交
676 677 678
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
679
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
680 681 682 683
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
684
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
685 686 687 688
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
689
{
J
Joonsoo Kim 已提交
690
	struct alien_cache **alc_ptr;
691
	size_t memsize = sizeof(void *) * nr_node_ids;
692 693 694 695
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
709 710
		}
	}
J
Joonsoo Kim 已提交
711
	return alc_ptr;
712 713
}

J
Joonsoo Kim 已提交
714
static void free_alien_cache(struct alien_cache **alc_ptr)
715 716 717
{
	int i;

J
Joonsoo Kim 已提交
718
	if (!alc_ptr)
719 720
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
721 722
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
723 724
}

725
static void __drain_alien_cache(struct kmem_cache *cachep,
726 727
				struct array_cache *ac, int node,
				struct list_head *list)
728
{
729
	struct kmem_cache_node *n = get_node(cachep, node);
730 731

	if (ac->avail) {
732
		spin_lock(&n->list_lock);
733 734 735 736 737
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
738 739
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
740

741
		free_block(cachep, ac->entry, ac->avail, node, list);
742
		ac->avail = 0;
743
		spin_unlock(&n->list_lock);
744 745 746
	}
}

747 748 749
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
750
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
751
{
752
	int node = __this_cpu_read(slab_reap_node);
753

754
	if (n->alien) {
J
Joonsoo Kim 已提交
755 756 757 758 759
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
760
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
761 762 763
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
764
				spin_unlock_irq(&alc->lock);
765
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
766
			}
767 768 769 770
		}
	}
}

A
Andrew Morton 已提交
771
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
772
				struct alien_cache **alien)
773
{
P
Pekka Enberg 已提交
774
	int i = 0;
J
Joonsoo Kim 已提交
775
	struct alien_cache *alc;
776 777 778 779
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
780 781
		alc = alien[i];
		if (alc) {
782 783
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
784
			ac = &alc->ac;
785
			spin_lock_irqsave(&alc->lock, flags);
786
			__drain_alien_cache(cachep, ac, i, &list);
787
			spin_unlock_irqrestore(&alc->lock, flags);
788
			slabs_destroy(cachep, &list);
789 790 791
		}
	}
}
792

793 794
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
795
{
796
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
797 798
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
799
	LIST_HEAD(list);
P
Pekka Enberg 已提交
800

801
	n = get_node(cachep, node);
802
	STATS_INC_NODEFREES(cachep);
803 804
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
J
Joonsoo Kim 已提交
805
		ac = &alien->ac;
806
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
807
		if (unlikely(ac->avail == ac->limit)) {
808
			STATS_INC_ACOVERFLOW(cachep);
809
			__drain_alien_cache(cachep, ac, page_node, &list);
810
		}
811
		ac->entry[ac->avail++] = objp;
812
		spin_unlock(&alien->lock);
813
		slabs_destroy(cachep, &list);
814
	} else {
815
		n = get_node(cachep, page_node);
816
		spin_lock(&n->list_lock);
817
		free_block(cachep, &objp, 1, page_node, &list);
818
		spin_unlock(&n->list_lock);
819
		slabs_destroy(cachep, &list);
820 821 822
	}
	return 1;
}
823 824 825 826 827 828 829 830 831 832 833 834 835 836

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
D
David Rientjes 已提交
837 838

/*
839 840
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
D
David Rientjes 已提交
841 842 843
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
844
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
D
David Rientjes 已提交
845
}
846 847
#endif

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

888
#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
889
/*
890
 * Allocates and initializes node for a node on each slab cache, used for
891
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
892
 * will be allocated off-node since memory is not yet online for the new node.
893
 * When hotplugging memory or a cpu, existing node are not replaced if
894 895
 * already in use.
 *
896
 * Must hold slab_mutex.
897
 */
898
static int init_cache_node_node(int node)
899
{
900
	int ret;
901 902
	struct kmem_cache *cachep;

903
	list_for_each_entry(cachep, &slab_caches, list) {
904 905 906
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
907
	}
908

909 910
	return 0;
}
911
#endif
912

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

962 963 964 965 966 967
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
	 * freed after synchronize_sched().
	 */
968
	if (old_shared && force_change)
969 970
		synchronize_sched();

971 972 973 974 975 976 977 978
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

979 980
#ifdef CONFIG_SMP

981
static void cpuup_canceled(long cpu)
982 983
{
	struct kmem_cache *cachep;
984
	struct kmem_cache_node *n = NULL;
985
	int node = cpu_to_mem(cpu);
986
	const struct cpumask *mask = cpumask_of_node(node);
987

988
	list_for_each_entry(cachep, &slab_caches, list) {
989 990
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
991
		struct alien_cache **alien;
992
		LIST_HEAD(list);
993

994
		n = get_node(cachep, node);
995
		if (!n)
996
			continue;
997

998
		spin_lock_irq(&n->list_lock);
999

1000 1001
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1002 1003 1004 1005

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1006
			free_block(cachep, nc->entry, nc->avail, node, &list);
1007 1008
			nc->avail = 0;
		}
1009

1010
		if (!cpumask_empty(mask)) {
1011
			spin_unlock_irq(&n->list_lock);
1012
			goto free_slab;
1013 1014
		}

1015
		shared = n->shared;
1016 1017
		if (shared) {
			free_block(cachep, shared->entry,
1018
				   shared->avail, node, &list);
1019
			n->shared = NULL;
1020 1021
		}

1022 1023
		alien = n->alien;
		n->alien = NULL;
1024

1025
		spin_unlock_irq(&n->list_lock);
1026 1027 1028 1029 1030 1031

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1032 1033

free_slab:
1034
		slabs_destroy(cachep, &list);
1035 1036 1037 1038 1039 1040
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1041
	list_for_each_entry(cachep, &slab_caches, list) {
1042
		n = get_node(cachep, node);
1043
		if (!n)
1044
			continue;
1045
		drain_freelist(cachep, n, INT_MAX);
1046 1047 1048
	}
}

1049
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1050
{
1051
	struct kmem_cache *cachep;
1052
	int node = cpu_to_mem(cpu);
1053
	int err;
L
Linus Torvalds 已提交
1054

1055 1056 1057 1058
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1059
	 * kmem_cache_node and not this cpu's kmem_cache_node
1060
	 */
1061
	err = init_cache_node_node(node);
1062 1063
	if (err < 0)
		goto bad;
1064 1065 1066 1067 1068

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1069
	list_for_each_entry(cachep, &slab_caches, list) {
1070 1071 1072
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1073
	}
1074

1075 1076
	return 0;
bad:
1077
	cpuup_canceled(cpu);
1078 1079 1080
	return -ENOMEM;
}

1081
int slab_prepare_cpu(unsigned int cpu)
1082
{
1083
	int err;
1084

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	mutex_lock(&slab_mutex);
	err = cpuup_prepare(cpu);
	mutex_unlock(&slab_mutex);
	return err;
}

/*
 * This is called for a failed online attempt and for a successful
 * offline.
 *
 * Even if all the cpus of a node are down, we don't free the
 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
 * a kmalloc allocation from another cpu for memory from the node of
 * the cpu going down.  The list3 structure is usually allocated from
 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
 */
int slab_dead_cpu(unsigned int cpu)
{
	mutex_lock(&slab_mutex);
	cpuup_canceled(cpu);
	mutex_unlock(&slab_mutex);
	return 0;
}
1108
#endif
1109 1110 1111 1112 1113

static int slab_online_cpu(unsigned int cpu)
{
	start_cpu_timer(cpu);
	return 0;
L
Linus Torvalds 已提交
1114 1115
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
static int slab_offline_cpu(unsigned int cpu)
{
	/*
	 * Shutdown cache reaper. Note that the slab_mutex is held so
	 * that if cache_reap() is invoked it cannot do anything
	 * expensive but will only modify reap_work and reschedule the
	 * timer.
	 */
	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
	/* Now the cache_reaper is guaranteed to be not running. */
	per_cpu(slab_reap_work, cpu).work.func = NULL;
	return 0;
}
L
Linus Torvalds 已提交
1129

1130 1131 1132 1133 1134 1135
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1136
 * Must hold slab_mutex.
1137
 */
1138
static int __meminit drain_cache_node_node(int node)
1139 1140 1141 1142
{
	struct kmem_cache *cachep;
	int ret = 0;

1143
	list_for_each_entry(cachep, &slab_caches, list) {
1144
		struct kmem_cache_node *n;
1145

1146
		n = get_node(cachep, node);
1147
		if (!n)
1148 1149
			continue;

1150
		drain_freelist(cachep, n, INT_MAX);
1151

1152 1153
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1174
		mutex_lock(&slab_mutex);
1175
		ret = init_cache_node_node(nid);
1176
		mutex_unlock(&slab_mutex);
1177 1178
		break;
	case MEM_GOING_OFFLINE:
1179
		mutex_lock(&slab_mutex);
1180
		ret = drain_cache_node_node(nid);
1181
		mutex_unlock(&slab_mutex);
1182 1183 1184 1185 1186 1187 1188 1189
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1190
	return notifier_from_errno(ret);
1191 1192 1193
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1194
/*
1195
 * swap the static kmem_cache_node with kmalloced memory
1196
 */
1197
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1198
				int nodeid)
1199
{
1200
	struct kmem_cache_node *ptr;
1201

1202
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1203 1204
	BUG_ON(!ptr);

1205
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1206 1207 1208 1209 1210
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1211
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1212
	cachep->node[nodeid] = ptr;
1213 1214
}

1215
/*
1216 1217
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1218
 */
1219
static void __init set_up_node(struct kmem_cache *cachep, int index)
1220 1221 1222 1223
{
	int node;

	for_each_online_node(node) {
1224
		cachep->node[node] = &init_kmem_cache_node[index + node];
1225
		cachep->node[node]->next_reap = jiffies +
1226 1227
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1228 1229 1230
	}
}

A
Andrew Morton 已提交
1231 1232 1233
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1234 1235 1236
 */
void __init kmem_cache_init(void)
{
1237 1238
	int i;

1239 1240
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1241 1242
	kmem_cache = &kmem_cache_boot;

1243
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1244 1245
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1246
	for (i = 0; i < NUM_INIT_LISTS; i++)
1247
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1248

L
Linus Torvalds 已提交
1249 1250
	/*
	 * Fragmentation resistance on low memory - only use bigger
1251 1252
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1253
	 */
1254
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1255
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1256 1257 1258

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1259 1260 1261
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1262
	 *    Initially an __init data area is used for the head array and the
1263
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1264
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1265
	 * 2) Create the first kmalloc cache.
1266
	 *    The struct kmem_cache for the new cache is allocated normally.
1267 1268 1269
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1270
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1271
	 *    kmalloc cache with kmalloc allocated arrays.
1272
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1273 1274
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1275 1276
	 */

1277
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1278

E
Eric Dumazet 已提交
1279
	/*
1280
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1281
	 */
1282
	create_boot_cache(kmem_cache, "kmem_cache",
1283
		offsetof(struct kmem_cache, node) +
1284
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1285 1286
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1287
	slab_state = PARTIAL;
L
Linus Torvalds 已提交
1288

A
Andrew Morton 已提交
1289
	/*
1290 1291
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1292
	 */
1293 1294
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
				kmalloc_info[INDEX_NODE].name,
1295
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1296
	slab_state = PARTIAL_NODE;
1297
	setup_kmalloc_cache_index_table();
1298

1299 1300
	slab_early_init = 0;

1301
	/* 5) Replace the bootstrap kmem_cache_node */
1302
	{
P
Pekka Enberg 已提交
1303 1304
		int nid;

1305
		for_each_online_node(nid) {
1306
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1307

1308
			init_list(kmalloc_caches[INDEX_NODE],
1309
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1310 1311
		}
	}
L
Linus Torvalds 已提交
1312

1313
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1314 1315 1316 1317 1318 1319
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1320
	slab_state = UP;
P
Peter Zijlstra 已提交
1321

1322
	/* 6) resize the head arrays to their final sizes */
1323 1324
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1325 1326
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1327
	mutex_unlock(&slab_mutex);
1328

1329 1330 1331
	/* Done! */
	slab_state = FULL;

1332 1333 1334
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1335
	 * node.
1336 1337 1338 1339
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1340 1341 1342
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1343 1344 1345 1346 1347
	 */
}

static int __init cpucache_init(void)
{
1348
	int ret;
L
Linus Torvalds 已提交
1349

A
Andrew Morton 已提交
1350 1351
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1352
	 */
1353 1354 1355
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
				slab_online_cpu, slab_offline_cpu);
	WARN_ON(ret < 0);
1356 1357

	/* Done! */
1358
	slab_state = FULL;
L
Linus Torvalds 已提交
1359 1360 1361 1362
	return 0;
}
__initcall(cpucache_init);

1363 1364 1365
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1366
#if DEBUG
1367
	struct kmem_cache_node *n;
1368 1369
	unsigned long flags;
	int node;
1370 1371 1372 1373 1374
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1375

1376 1377 1378
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1379
		cachep->name, cachep->size, cachep->gfporder);
1380

1381
	for_each_kmem_cache_node(cachep, node, n) {
1382
		unsigned long total_slabs, free_slabs, free_objs;
1383

1384
		spin_lock_irqsave(&n->list_lock, flags);
1385 1386 1387
		total_slabs = n->total_slabs;
		free_slabs = n->free_slabs;
		free_objs = n->free_objects;
1388
		spin_unlock_irqrestore(&n->list_lock, flags);
1389

1390 1391 1392 1393
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
			node, total_slabs - free_slabs, total_slabs,
			(total_slabs * cachep->num) - free_objs,
			total_slabs * cachep->num);
1394
	}
1395
#endif
1396 1397
}

L
Linus Torvalds 已提交
1398
/*
W
Wang Sheng-Hui 已提交
1399 1400
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
L
Linus Torvalds 已提交
1401 1402 1403 1404 1405
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1406 1407
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1408 1409
{
	struct page *page;
1410
	int nr_pages;
1411

1412
	flags |= cachep->allocflags;
1413

1414
	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1415
	if (!page) {
1416
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1417
		return NULL;
1418
	}
L
Linus Torvalds 已提交
1419

1420 1421 1422 1423 1424
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1425
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1426
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1427
		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1428
	else
1429
		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1430

1431
	__SetPageSlab(page);
1432 1433
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1434
		SetPageSlabPfmemalloc(page);
1435

1436 1437 1438 1439 1440 1441 1442 1443
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1444

1445
	return page;
L
Linus Torvalds 已提交
1446 1447 1448 1449 1450
}

/*
 * Interface to system's page release.
 */
1451
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1452
{
1453 1454
	int order = cachep->gfporder;
	unsigned long nr_freed = (1 << order);
L
Linus Torvalds 已提交
1455

1456
	kmemcheck_free_shadow(page, order);
P
Pekka Enberg 已提交
1457

1458
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1459
		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1460
	else
1461
		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
J
Joonsoo Kim 已提交
1462

1463
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1464
	__ClearPageSlabPfmemalloc(page);
1465
	__ClearPageSlab(page);
1466 1467
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1468

L
Linus Torvalds 已提交
1469 1470
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1471 1472
	memcg_uncharge_slab(page, order, cachep);
	__free_pages(page, order);
L
Linus Torvalds 已提交
1473 1474 1475 1476
}

static void kmem_rcu_free(struct rcu_head *head)
{
1477 1478
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1479

1480 1481 1482 1483
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1484 1485 1486
}

#if DEBUG
1487 1488 1489 1490 1491 1492 1493 1494
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
L
Linus Torvalds 已提交
1495 1496

#ifdef CONFIG_DEBUG_PAGEALLOC
1497
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1498
			    unsigned long caller)
L
Linus Torvalds 已提交
1499
{
1500
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1501

1502
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1503

P
Pekka Enberg 已提交
1504
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1505 1506
		return;

P
Pekka Enberg 已提交
1507 1508 1509 1510
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1511 1512 1513 1514 1515 1516 1517
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1518
				*addr++ = svalue;
L
Linus Torvalds 已提交
1519 1520 1521 1522 1523 1524 1525
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1526
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1527
}
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

L
Linus Torvalds 已提交
1545 1546
#endif

1547
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1548
{
1549
	int size = cachep->object_size;
1550
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1551 1552

	memset(addr, val, size);
P
Pekka Enberg 已提交
1553
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1554 1555 1556 1557 1558
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1559 1560 1561
	unsigned char error = 0;
	int bad_count = 0;

1562
	pr_err("%03x: ", offset);
D
Dave Jones 已提交
1563 1564 1565 1566 1567 1568
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1569 1570
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1571 1572 1573 1574

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1575
			pr_err("Single bit error detected. Probably bad RAM.\n");
D
Dave Jones 已提交
1576
#ifdef CONFIG_X86
1577
			pr_err("Run memtest86+ or a similar memory test tool.\n");
D
Dave Jones 已提交
1578
#else
1579
			pr_err("Run a memory test tool.\n");
D
Dave Jones 已提交
1580 1581 1582
#endif
		}
	}
L
Linus Torvalds 已提交
1583 1584 1585 1586 1587
}
#endif

#if DEBUG

1588
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1589 1590 1591 1592 1593
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1594 1595 1596
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1597 1598 1599
	}

	if (cachep->flags & SLAB_STORE_USER) {
1600
		pr_err("Last user: [<%p>](%pSR)\n",
J
Joe Perches 已提交
1601 1602
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1603
	}
1604
	realobj = (char *)objp + obj_offset(cachep);
1605
	size = cachep->object_size;
P
Pekka Enberg 已提交
1606
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1607 1608
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1609 1610
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1611 1612 1613 1614
		dump_line(realobj, i, limit);
	}
}

1615
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1616 1617 1618 1619 1620
{
	char *realobj;
	int size, i;
	int lines = 0;

1621 1622 1623
	if (is_debug_pagealloc_cache(cachep))
		return;

1624
	realobj = (char *)objp + obj_offset(cachep);
1625
	size = cachep->object_size;
L
Linus Torvalds 已提交
1626

P
Pekka Enberg 已提交
1627
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1628
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1629
		if (i == size - 1)
L
Linus Torvalds 已提交
1630 1631 1632 1633 1634 1635
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1636 1637 1638
				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
				       print_tainted(), cachep->name,
				       realobj, size);
L
Linus Torvalds 已提交
1639 1640 1641
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1642
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1643
			limit = 16;
P
Pekka Enberg 已提交
1644 1645
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1658
		struct page *page = virt_to_head_page(objp);
1659
		unsigned int objnr;
L
Linus Torvalds 已提交
1660

1661
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1662
		if (objnr) {
1663
			objp = index_to_obj(cachep, page, objnr - 1);
1664
			realobj = (char *)objp + obj_offset(cachep);
1665
			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1666 1667
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1668
		if (objnr + 1 < cachep->num) {
1669
			objp = index_to_obj(cachep, page, objnr + 1);
1670
			realobj = (char *)objp + obj_offset(cachep);
1671
			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
L
Linus Torvalds 已提交
1672 1673 1674 1675 1676 1677
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1678
#if DEBUG
1679 1680
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1681 1682
{
	int i;
1683 1684 1685 1686 1687 1688

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

L
Linus Torvalds 已提交
1689
	for (i = 0; i < cachep->num; i++) {
1690
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1691 1692 1693

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1694
			slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
1695 1696 1697
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1698
				slab_error(cachep, "start of a freed object was overwritten");
L
Linus Torvalds 已提交
1699
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
1700
				slab_error(cachep, "end of a freed object was overwritten");
L
Linus Torvalds 已提交
1701 1702
		}
	}
1703
}
L
Linus Torvalds 已提交
1704
#else
1705 1706
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1707 1708
{
}
L
Linus Torvalds 已提交
1709 1710
#endif

1711 1712 1713
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1714
 * @page: page pointer being destroyed
1715
 *
W
Wang Sheng-Hui 已提交
1716 1717 1718
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1719
 */
1720
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1721
{
1722
	void *freelist;
1723

1724 1725
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1726
	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1727 1728
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1729
		kmem_freepages(cachep, page);
1730 1731

	/*
1732
	 * From now on, we don't use freelist
1733 1734 1735
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1736
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1737 1738
}

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1749
/**
1750 1751 1752 1753 1754 1755
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1756 1757 1758 1759 1760
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1761
static size_t calculate_slab_order(struct kmem_cache *cachep,
1762
				size_t size, unsigned long flags)
1763 1764
{
	size_t left_over = 0;
1765
	int gfporder;
1766

1767
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1768 1769 1770
		unsigned int num;
		size_t remainder;

1771
		num = cache_estimate(gfporder, size, flags, &remainder);
1772 1773
		if (!num)
			continue;
1774

1775 1776 1777 1778
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1779
		if (flags & CFLGS_OFF_SLAB) {
1780 1781 1782 1783 1784 1785 1786 1787
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1788
			/*
1789
			 * Needed to avoid possible looping condition
1790
			 * in cache_grow_begin()
1791
			 */
1792 1793
			if (OFF_SLAB(freelist_cache))
				continue;
1794

1795 1796 1797
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1798
		}
1799

1800
		/* Found something acceptable - save it away */
1801
		cachep->num = num;
1802
		cachep->gfporder = gfporder;
1803 1804
		left_over = remainder;

1805 1806 1807 1808 1809 1810 1811 1812
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1813 1814 1815 1816
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1817
		if (gfporder >= slab_max_order)
1818 1819
			break;

1820 1821 1822
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1823
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1824 1825 1826 1827 1828
			break;
	}
	return left_over;
}

1829 1830 1831 1832 1833 1834 1835 1836
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1837
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1850
static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1851
{
1852
	if (slab_state >= FULL)
1853
		return enable_cpucache(cachep, gfp);
1854

1855 1856 1857 1858
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1859
	if (slab_state == DOWN) {
1860 1861
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1862
	} else if (slab_state == PARTIAL) {
1863 1864
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1865
	} else {
1866
		int node;
1867

1868 1869 1870 1871 1872
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1873 1874
		}
	}
1875

1876
	cachep->node[numa_mem_id()]->next_reap =
1877 1878
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1879 1880 1881 1882 1883 1884 1885

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1886
	return 0;
1887 1888
}

J
Joonsoo Kim 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1915 1916 1917 1918 1919 1920 1921
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

1922
	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1938 1939 1940 1941 1942 1943 1944 1945
static bool set_off_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	/*
1946 1947
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

L
Linus Torvalds 已提交
1988
/**
1989
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
1990
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
1991 1992 1993 1994
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
1995
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2009
int
2010
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2011
{
2012
	size_t ralign = BYTES_PER_WORD;
2013
	gfp_t gfp;
2014
	int err;
2015
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2025 2026
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2027
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2028
	if (!(flags & SLAB_TYPESAFE_BY_RCU))
L
Linus Torvalds 已提交
2029 2030 2031 2032
		flags |= SLAB_POISON;
#endif
#endif

A
Andrew Morton 已提交
2033 2034
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2035 2036 2037
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
2038
	size = ALIGN(size, BYTES_PER_WORD);
L
Linus Torvalds 已提交
2039

D
David Woodhouse 已提交
2040 2041 2042 2043
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
2044
		size = ALIGN(size, REDZONE_ALIGN);
D
David Woodhouse 已提交
2045
	}
2046

2047
	/* 3) caller mandated alignment */
2048 2049
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2050
	}
2051 2052
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2053
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2054
	/*
2055
	 * 4) Store it.
L
Linus Torvalds 已提交
2056
	 */
2057
	cachep->align = ralign;
2058 2059 2060 2061
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
L
Linus Torvalds 已提交
2062

2063 2064 2065 2066 2067
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2068 2069
#if DEBUG

2070 2071 2072 2073
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2074 2075
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2076 2077
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2078 2079
	}
	if (flags & SLAB_STORE_USER) {
2080
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2081 2082
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2083
		 */
D
David Woodhouse 已提交
2084 2085 2086 2087
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2088
	}
2089 2090
#endif

A
Alexander Potapenko 已提交
2091 2092
	kasan_cache_create(cachep, &size, &flags);

2093 2094 2095 2096 2097 2098 2099 2100 2101
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2102 2103 2104 2105 2106 2107 2108
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2109
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
L
Linus Torvalds 已提交
2121 2122 2123
	}
#endif

2124 2125 2126 2127 2128
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2129
	if (set_off_slab_cache(cachep, size, flags)) {
L
Linus Torvalds 已提交
2130
		flags |= CFLGS_OFF_SLAB;
2131
		goto done;
2132
	}
L
Linus Torvalds 已提交
2133

2134 2135
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
L
Linus Torvalds 已提交
2136

2137
	return -E2BIG;
L
Linus Torvalds 已提交
2138

2139 2140
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
L
Linus Torvalds 已提交
2141
	cachep->flags = flags;
2142
	cachep->allocflags = __GFP_COMP;
Y
Yang Shi 已提交
2143
	if (flags & SLAB_CACHE_DMA)
2144
		cachep->allocflags |= GFP_DMA;
2145 2146
	if (flags & SLAB_RECLAIM_ACCOUNT)
		cachep->allocflags |= __GFP_RECLAIMABLE;
2147
	cachep->size = size;
2148
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2149

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2163 2164
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2165
	}
L
Linus Torvalds 已提交
2166

2167 2168
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2169
		__kmem_cache_release(cachep);
2170
		return err;
2171
	}
L
Linus Torvalds 已提交
2172

2173
	return 0;
L
Linus Torvalds 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2187 2188 2189 2190 2191
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2192
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2193 2194 2195
{
#ifdef CONFIG_SMP
	check_irq_off();
2196
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2197 2198
#endif
}
2199

2200
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2201 2202 2203
{
#ifdef CONFIG_SMP
	check_irq_off();
2204
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2205 2206 2207
#endif
}

L
Linus Torvalds 已提交
2208 2209 2210
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2211
#define check_mutex_acquired()	do { } while(0)
L
Linus Torvalds 已提交
2212
#define check_spinlock_acquired(x) do { } while(0)
2213
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2214 2215
#endif

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2232

L
Linus Torvalds 已提交
2233 2234
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2235
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2236
	struct array_cache *ac;
2237
	int node = numa_mem_id();
2238
	struct kmem_cache_node *n;
2239
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2240 2241

	check_irq_off();
2242
	ac = cpu_cache_get(cachep);
2243 2244
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2245
	free_block(cachep, ac->entry, ac->avail, node, &list);
2246
	spin_unlock(&n->list_lock);
2247
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2248 2249 2250
	ac->avail = 0;
}

2251
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2252
{
2253
	struct kmem_cache_node *n;
2254
	int node;
2255
	LIST_HEAD(list);
2256

2257
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2258
	check_irq_on();
2259 2260
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2261
			drain_alien_cache(cachep, n->alien);
2262

2263 2264 2265 2266 2267 2268 2269
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
L
Linus Torvalds 已提交
2270 2271
}

2272 2273 2274 2275 2276 2277 2278
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2279
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2280
{
2281 2282
	struct list_head *p;
	int nr_freed;
2283
	struct page *page;
L
Linus Torvalds 已提交
2284

2285
	nr_freed = 0;
2286
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2287

2288 2289 2290 2291
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2292 2293
			goto out;
		}
L
Linus Torvalds 已提交
2294

2295 2296
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2297
		n->free_slabs--;
2298
		n->total_slabs--;
2299 2300 2301 2302
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2303 2304
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2305
		slab_destroy(cache, page);
2306
		nr_freed++;
L
Linus Torvalds 已提交
2307
	}
2308 2309
out:
	return nr_freed;
L
Linus Torvalds 已提交
2310 2311
}

2312
int __kmem_cache_shrink(struct kmem_cache *cachep)
2313
{
2314 2315
	int ret = 0;
	int node;
2316
	struct kmem_cache_node *n;
2317 2318 2319 2320

	drain_cpu_caches(cachep);

	check_irq_on();
2321
	for_each_kmem_cache_node(cachep, node, n) {
2322
		drain_freelist(cachep, n, INT_MAX);
2323

2324 2325
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2326 2327 2328 2329
	}
	return (ret ? 1 : 0);
}

2330 2331 2332 2333 2334 2335 2336
#ifdef CONFIG_MEMCG
void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
{
	__kmem_cache_shrink(cachep);
}
#endif

2337
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2338
{
2339
	return __kmem_cache_shrink(cachep);
2340 2341 2342
}

void __kmem_cache_release(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2343
{
2344
	int i;
2345
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2346

T
Thomas Garnier 已提交
2347 2348
	cache_random_seq_destroy(cachep);

2349
	free_percpu(cachep->cpu_cache);
L
Linus Torvalds 已提交
2350

2351
	/* NUMA: free the node structures */
2352 2353 2354 2355 2356
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2357
	}
L
Linus Torvalds 已提交
2358 2359
}

2360 2361
/*
 * Get the memory for a slab management obj.
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2373
 */
2374
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2375 2376
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2377
{
2378
	void *freelist;
2379
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2380

2381 2382 2383
	page->s_mem = addr + colour_off;
	page->active = 0;

2384 2385 2386
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2387
		/* Slab management obj is off-slab. */
2388
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2389
					      local_flags, nodeid);
2390
		if (!freelist)
L
Linus Torvalds 已提交
2391 2392
			return NULL;
	} else {
2393 2394 2395
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
L
Linus Torvalds 已提交
2396
	}
2397

2398
	return freelist;
L
Linus Torvalds 已提交
2399 2400
}

2401
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2402
{
2403
	return ((freelist_idx_t *)page->freelist)[idx];
2404 2405 2406
}

static inline void set_free_obj(struct page *page,
2407
					unsigned int idx, freelist_idx_t val)
2408
{
2409
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2410 2411
}

2412
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
2413
{
2414
#if DEBUG
L
Linus Torvalds 已提交
2415 2416 2417
	int i;

	for (i = 0; i < cachep->num; i++) {
2418
		void *objp = index_to_obj(cachep, page, i);
2419

L
Linus Torvalds 已提交
2420 2421 2422 2423 2424 2425 2426 2427
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2428 2429 2430
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2431
		 */
A
Alexander Potapenko 已提交
2432 2433 2434
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2435
			cachep->ctor(objp + obj_offset(cachep));
A
Alexander Potapenko 已提交
2436 2437 2438
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
L
Linus Torvalds 已提交
2439 2440 2441

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2442
				slab_error(cachep, "constructor overwrote the end of an object");
L
Linus Torvalds 已提交
2443
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
J
Joe Perches 已提交
2444
				slab_error(cachep, "constructor overwrote the start of an object");
L
Linus Torvalds 已提交
2445
		}
2446 2447 2448 2449 2450
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
2451
	}
L
Linus Torvalds 已提交
2452
#endif
2453 2454
}

T
Thomas Garnier 已提交
2455 2456 2457 2458 2459
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Hold information during a freelist initialization */
union freelist_init_state {
	struct {
		unsigned int pos;
2460
		unsigned int *list;
T
Thomas Garnier 已提交
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
		unsigned int count;
	};
	struct rnd_state rnd_state;
};

/*
 * Initialize the state based on the randomization methode available.
 * return true if the pre-computed list is available, false otherwize.
 */
static bool freelist_state_initialize(union freelist_init_state *state,
				struct kmem_cache *cachep,
				unsigned int count)
{
	bool ret;
	unsigned int rand;

	/* Use best entropy available to define a random shift */
2478
	rand = get_random_int();
T
Thomas Garnier 已提交
2479 2480 2481 2482 2483 2484 2485 2486

	/* Use a random state if the pre-computed list is not available */
	if (!cachep->random_seq) {
		prandom_seed_state(&state->rnd_state, rand);
		ret = false;
	} else {
		state->list = cachep->random_seq;
		state->count = count;
2487
		state->pos = rand % count;
T
Thomas Garnier 已提交
2488 2489 2490 2491 2492 2493 2494 2495
		ret = true;
	}
	return ret;
}

/* Get the next entry on the list and randomize it using a random shift */
static freelist_idx_t next_random_slot(union freelist_init_state *state)
{
2496 2497 2498
	if (state->pos >= state->count)
		state->pos = 0;
	return state->list[state->pos++];
T
Thomas Garnier 已提交
2499 2500
}

2501 2502 2503 2504 2505 2506 2507
/* Swap two freelist entries */
static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
{
	swap(((freelist_idx_t *)page->freelist)[a],
		((freelist_idx_t *)page->freelist)[b]);
}

T
Thomas Garnier 已提交
2508 2509 2510 2511 2512 2513
/*
 * Shuffle the freelist initialization state based on pre-computed lists.
 * return true if the list was successfully shuffled, false otherwise.
 */
static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
{
2514
	unsigned int objfreelist = 0, i, rand, count = cachep->num;
T
Thomas Garnier 已提交
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
	union freelist_init_state state;
	bool precomputed;

	if (count < 2)
		return false;

	precomputed = freelist_state_initialize(&state, cachep, count);

	/* Take a random entry as the objfreelist */
	if (OBJFREELIST_SLAB(cachep)) {
		if (!precomputed)
			objfreelist = count - 1;
		else
			objfreelist = next_random_slot(&state);
		page->freelist = index_to_obj(cachep, page, objfreelist) +
						obj_offset(cachep);
		count--;
	}

	/*
	 * On early boot, generate the list dynamically.
	 * Later use a pre-computed list for speed.
	 */
	if (!precomputed) {
2539 2540 2541 2542 2543 2544 2545 2546 2547
		for (i = 0; i < count; i++)
			set_free_obj(page, i, i);

		/* Fisher-Yates shuffle */
		for (i = count - 1; i > 0; i--) {
			rand = prandom_u32_state(&state.rnd_state);
			rand %= (i + 1);
			swap_free_obj(page, i, rand);
		}
T
Thomas Garnier 已提交
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
	} else {
		for (i = 0; i < count; i++)
			set_free_obj(page, i, next_random_slot(&state));
	}

	if (OBJFREELIST_SLAB(cachep))
		set_free_obj(page, cachep->num - 1, objfreelist);

	return true;
}
#else
static inline bool shuffle_freelist(struct kmem_cache *cachep,
				struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

2566 2567 2568 2569
static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
A
Alexander Potapenko 已提交
2570
	void *objp;
T
Thomas Garnier 已提交
2571
	bool shuffled;
2572 2573 2574

	cache_init_objs_debug(cachep, page);

T
Thomas Garnier 已提交
2575 2576 2577 2578
	/* Try to randomize the freelist if enabled */
	shuffled = shuffle_freelist(cachep, page);

	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2579 2580 2581 2582
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2583
	for (i = 0; i < cachep->num; i++) {
2584 2585 2586
		objp = index_to_obj(cachep, page, i);
		kasan_init_slab_obj(cachep, objp);

2587
		/* constructor could break poison info */
A
Alexander Potapenko 已提交
2588 2589 2590 2591 2592
		if (DEBUG == 0 && cachep->ctor) {
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2593

T
Thomas Garnier 已提交
2594 2595
		if (!shuffled)
			set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2596 2597 2598
	}
}

2599
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2600
{
2601
	void *objp;
2602

2603
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2604
	page->active++;
2605

2606 2607 2608 2609 2610
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2611 2612 2613
	return objp;
}

2614 2615
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2616
{
2617
	unsigned int objnr = obj_to_index(cachep, page, objp);
2618
#if DEBUG
J
Joonsoo Kim 已提交
2619
	unsigned int i;
2620 2621

	/* Verify double free bug */
2622
	for (i = page->active; i < cachep->num; i++) {
2623
		if (get_free_obj(page, i) == objnr) {
2624
			pr_err("slab: double free detected in cache '%s', objp %p\n",
J
Joe Perches 已提交
2625
			       cachep->name, objp);
2626 2627
			BUG();
		}
2628 2629
	}
#endif
2630
	page->active--;
2631 2632 2633
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2634
	set_free_obj(page, page->active, objnr);
2635 2636
}

2637 2638 2639
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2640
 * virtual address for kfree, ksize, and slab debugging.
2641
 */
2642
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2643
			   void *freelist)
L
Linus Torvalds 已提交
2644
{
2645
	page->slab_cache = cache;
2646
	page->freelist = freelist;
L
Linus Torvalds 已提交
2647 2648 2649 2650 2651 2652
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2653 2654
static struct page *cache_grow_begin(struct kmem_cache *cachep,
				gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2655
{
2656
	void *freelist;
P
Pekka Enberg 已提交
2657 2658
	size_t offset;
	gfp_t local_flags;
2659
	int page_node;
2660
	struct kmem_cache_node *n;
2661
	struct page *page;
L
Linus Torvalds 已提交
2662

A
Andrew Morton 已提交
2663 2664 2665
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2666
	 */
2667
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2668
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2669 2670 2671 2672
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
		dump_stack();
2673
	}
C
Christoph Lameter 已提交
2674
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2675 2676

	check_irq_off();
2677
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2678 2679
		local_irq_enable();

A
Andrew Morton 已提交
2680 2681 2682
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2683
	 */
2684
	page = kmem_getpages(cachep, local_flags, nodeid);
2685
	if (!page)
L
Linus Torvalds 已提交
2686 2687
		goto failed;

2688 2689
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

L
Linus Torvalds 已提交
2702
	/* Get slab management. */
2703
	freelist = alloc_slabmgmt(cachep, page, offset,
2704
			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2705
	if (OFF_SLAB(cachep) && !freelist)
L
Linus Torvalds 已提交
2706 2707
		goto opps1;

2708
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2709

A
Alexander Potapenko 已提交
2710
	kasan_poison_slab(page);
2711
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2712

2713
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2714 2715
		local_irq_disable();

2716 2717
	return page;

A
Andrew Morton 已提交
2718
opps1:
2719
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2720
failed:
2721
	if (gfpflags_allow_blocking(local_flags))
L
Linus Torvalds 已提交
2722
		local_irq_disable();
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
	return NULL;
}

static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
{
	struct kmem_cache_node *n;
	void *list = NULL;

	check_irq_off();

	if (!page)
		return;

	INIT_LIST_HEAD(&page->lru);
	n = get_node(cachep, page_to_nid(page));

	spin_lock(&n->list_lock);
2740
	n->total_slabs++;
2741
	if (!page->active) {
2742
		list_add_tail(&page->lru, &(n->slabs_free));
2743
		n->free_slabs++;
2744
	} else
2745
		fixup_slab_list(cachep, n, page, &list);
2746

2747 2748 2749 2750 2751
	STATS_INC_GROWN(cachep);
	n->free_objects += cachep->num - page->active;
	spin_unlock(&n->list_lock);

	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2764
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
P
Pekka Enberg 已提交
2765 2766
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2767 2768 2769
	}
}

2770 2771
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2772
	unsigned long long redzone1, redzone2;
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2788 2789
	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
	       obj, redzone1, redzone2);
2790 2791
}

2792
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2793
				   unsigned long caller)
L
Linus Torvalds 已提交
2794 2795
{
	unsigned int objnr;
2796
	struct page *page;
L
Linus Torvalds 已提交
2797

2798 2799
	BUG_ON(virt_to_cache(objp) != cachep);

2800
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2801
	kfree_debugcheck(objp);
2802
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2803 2804

	if (cachep->flags & SLAB_RED_ZONE) {
2805
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2806 2807 2808
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2809 2810
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2811
		*dbg_userword(cachep, objp) = (void *)caller;
2812
	}
L
Linus Torvalds 已提交
2813

2814
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2815 2816

	BUG_ON(objnr >= cachep->num);
2817
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2818 2819 2820

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2821
		slab_kernel_map(cachep, objp, 0, caller);
L
Linus Torvalds 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2846
static inline void fixup_slab_list(struct kmem_cache *cachep,
2847 2848
				struct kmem_cache_node *n, struct page *page,
				void **list)
2849 2850 2851
{
	/* move slabp to correct slabp list: */
	list_del(&page->lru);
2852
	if (page->active == cachep->num) {
2853
		list_add(&page->lru, &n->slabs_full);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2867 2868 2869
		list_add(&page->lru, &n->slabs_partial);
}

2870 2871
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2872
					struct page *page, bool pfmemalloc)
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&page->lru);
2891
	if (!page->active) {
2892
		list_add_tail(&page->lru, &n->slabs_free);
2893
		n->free_slabs++;
2894
	} else
2895 2896 2897 2898 2899 2900 2901
		list_add_tail(&page->lru, &n->slabs_partial);

	list_for_each_entry(page, &n->slabs_partial, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

2902
	n->free_touched = 1;
2903
	list_for_each_entry(page, &n->slabs_free, lru) {
2904
		if (!PageSlabPfmemalloc(page)) {
2905
			n->free_slabs--;
2906
			return page;
2907
		}
2908 2909 2910 2911 2912 2913
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2914 2915 2916
{
	struct page *page;

2917
	assert_spin_locked(&n->list_lock);
2918
	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2919 2920
	if (!page) {
		n->free_touched = 1;
2921 2922
		page = list_first_entry_or_null(&n->slabs_free, struct page,
						lru);
2923
		if (page)
2924
			n->free_slabs--;
2925 2926
	}

2927
	if (sk_memalloc_socks())
2928
		page = get_valid_first_slab(n, page, pfmemalloc);
2929

2930 2931 2932
	return page;
}

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
/*
 * Slab list should be fixed up by fixup_slab_list() for existing slab
 * or cache_grow_end() for new slab
 */
static __always_inline int alloc_block(struct kmem_cache *cachep,
		struct array_cache *ac, struct page *page, int batchcount)
{
	/*
	 * There must be at least one object available for
	 * allocation.
	 */
	BUG_ON(page->active >= cachep->num);

	while (page->active < cachep->num && batchcount--) {
		STATS_INC_ALLOCED(cachep);
		STATS_INC_ACTIVE(cachep);
		STATS_SET_HIGH(cachep);

		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
	}

	return batchcount;
}

2985
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2986 2987
{
	int batchcount;
2988
	struct kmem_cache_node *n;
2989
	struct array_cache *ac, *shared;
P
Pekka Enberg 已提交
2990
	int node;
2991
	void *list = NULL;
2992
	struct page *page;
P
Pekka Enberg 已提交
2993

L
Linus Torvalds 已提交
2994
	check_irq_off();
2995
	node = numa_mem_id();
2996

2997
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2998 2999
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3000 3001 3002 3003
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3004 3005 3006
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
3007
	n = get_node(cachep, node);
3008

3009
	BUG_ON(ac->avail > 0 || !n);
3010 3011 3012 3013
	shared = READ_ONCE(n->shared);
	if (!n->free_objects && (!shared || !shared->avail))
		goto direct_grow;

3014
	spin_lock(&n->list_lock);
3015
	shared = READ_ONCE(n->shared);
L
Linus Torvalds 已提交
3016

3017
	/* See if we can refill from the shared array */
3018 3019
	if (shared && transfer_objects(ac, shared, batchcount)) {
		shared->touched = 1;
3020
		goto alloc_done;
3021
	}
3022

L
Linus Torvalds 已提交
3023 3024
	while (batchcount > 0) {
		/* Get slab alloc is to come from. */
3025
		page = get_first_slab(n, false);
3026 3027
		if (!page)
			goto must_grow;
L
Linus Torvalds 已提交
3028 3029

		check_spinlock_acquired(cachep);
3030

3031
		batchcount = alloc_block(cachep, ac, page, batchcount);
3032
		fixup_slab_list(cachep, n, page, &list);
L
Linus Torvalds 已提交
3033 3034
	}

A
Andrew Morton 已提交
3035
must_grow:
3036
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
3037
alloc_done:
3038
	spin_unlock(&n->list_lock);
3039
	fixup_objfreelist_debug(cachep, &list);
L
Linus Torvalds 已提交
3040

3041
direct_grow:
L
Linus Torvalds 已提交
3042
	if (unlikely(!ac->avail)) {
3043 3044 3045 3046 3047 3048 3049 3050
		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

3051
		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3052

3053 3054 3055 3056
		/*
		 * cache_grow_begin() can reenable interrupts,
		 * then ac could change.
		 */
3057
		ac = cpu_cache_get(cachep);
3058 3059 3060
		if (!ac->avail && page)
			alloc_block(cachep, ac, page, batchcount);
		cache_grow_end(cachep, page);
3061

3062
		if (!ac->avail)
L
Linus Torvalds 已提交
3063 3064 3065
			return NULL;
	}
	ac->touched = 1;
3066

3067
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3068 3069
}

A
Andrew Morton 已提交
3070 3071
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3072
{
3073
	might_sleep_if(gfpflags_allow_blocking(flags));
L
Linus Torvalds 已提交
3074 3075 3076
}

#if DEBUG
A
Andrew Morton 已提交
3077
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3078
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3079
{
P
Pekka Enberg 已提交
3080
	if (!objp)
L
Linus Torvalds 已提交
3081
		return objp;
P
Pekka Enberg 已提交
3082
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3083
		check_poison_obj(cachep, objp);
3084
		slab_kernel_map(cachep, objp, 1, 0);
L
Linus Torvalds 已提交
3085 3086 3087
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3088
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3089 3090

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3091 3092
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
J
Joe Perches 已提交
3093
			slab_error(cachep, "double free, or memory outside object was overwritten");
3094 3095 3096
			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3097 3098 3099 3100
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3101

3102
	objp += obj_offset(cachep);
3103
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3104
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3105 3106
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3107
		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3108
		       objp, (int)ARCH_SLAB_MINALIGN);
3109
	}
L
Linus Torvalds 已提交
3110 3111 3112 3113 3114 3115
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3116
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3117
{
P
Pekka Enberg 已提交
3118
	void *objp;
L
Linus Torvalds 已提交
3119 3120
	struct array_cache *ac;

3121
	check_irq_off();
3122

3123
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3124 3125
	if (likely(ac->avail)) {
		ac->touched = 1;
3126
		objp = ac->entry[--ac->avail];
3127

3128 3129
		STATS_INC_ALLOCHIT(cachep);
		goto out;
L
Linus Torvalds 已提交
3130
	}
3131 3132

	STATS_INC_ALLOCMISS(cachep);
3133
	objp = cache_alloc_refill(cachep, flags);
3134 3135 3136 3137 3138 3139 3140
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3141 3142 3143 3144 3145
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3146 3147
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3148 3149 3150
	return objp;
}

3151
#ifdef CONFIG_NUMA
3152
/*
3153
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3154 3155 3156 3157 3158 3159 3160 3161
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3162
	if (in_interrupt() || (flags & __GFP_THISNODE))
3163
		return NULL;
3164
	nid_alloc = nid_here = numa_mem_id();
3165
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3166
		nid_alloc = cpuset_slab_spread_node();
3167
	else if (current->mempolicy)
3168
		nid_alloc = mempolicy_slab_node();
3169
	if (nid_alloc != nid_here)
3170
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3171 3172 3173
	return NULL;
}

3174 3175
/*
 * Fallback function if there was no memory available and no objects on a
3176
 * certain node and fall back is permitted. First we scan all the
3177
 * available node for available objects. If that fails then we
3178 3179 3180
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3181
 */
3182
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3183
{
3184
	struct zonelist *zonelist;
3185
	struct zoneref *z;
3186 3187
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3188
	void *obj = NULL;
3189
	struct page *page;
3190
	int nid;
3191
	unsigned int cpuset_mems_cookie;
3192 3193 3194 3195

	if (flags & __GFP_THISNODE)
		return NULL;

3196
retry_cpuset:
3197
	cpuset_mems_cookie = read_mems_allowed_begin();
3198
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3199

3200 3201 3202 3203 3204
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3205 3206
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3207

3208
		if (cpuset_zone_allowed(zone, flags) &&
3209 3210
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3211
				obj = ____cache_alloc_node(cache,
D
David Rientjes 已提交
3212
					gfp_exact_node(flags), nid);
3213 3214 3215
				if (obj)
					break;
		}
3216 3217
	}

3218
	if (!obj) {
3219 3220 3221 3222 3223 3224
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3225 3226 3227 3228
		page = cache_grow_begin(cache, flags, numa_mem_id());
		cache_grow_end(cache, page);
		if (page) {
			nid = page_to_nid(page);
3229 3230
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);
3231

3232
			/*
3233 3234
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
3235
			 */
3236 3237
			if (!obj)
				goto retry;
3238
		}
3239
	}
3240

3241
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3242
		goto retry_cpuset;
3243 3244 3245
	return obj;
}

3246 3247
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3248
 */
3249
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3250
				int nodeid)
3251
{
3252
	struct page *page;
3253
	struct kmem_cache_node *n;
3254
	void *obj = NULL;
3255
	void *list = NULL;
P
Pekka Enberg 已提交
3256

3257
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3258
	n = get_node(cachep, nodeid);
3259
	BUG_ON(!n);
P
Pekka Enberg 已提交
3260

3261
	check_irq_off();
3262
	spin_lock(&n->list_lock);
3263
	page = get_first_slab(n, false);
3264 3265
	if (!page)
		goto must_grow;
P
Pekka Enberg 已提交
3266 3267 3268 3269 3270 3271 3272

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3273
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3274

3275
	obj = slab_get_obj(cachep, page);
3276
	n->free_objects--;
P
Pekka Enberg 已提交
3277

3278
	fixup_slab_list(cachep, n, page, &list);
3279

3280
	spin_unlock(&n->list_lock);
3281
	fixup_objfreelist_debug(cachep, &list);
3282
	return obj;
3283

A
Andrew Morton 已提交
3284
must_grow:
3285
	spin_unlock(&n->list_lock);
3286
	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3287 3288 3289 3290
	if (page) {
		/* This slab isn't counted yet so don't update free_objects */
		obj = slab_get_obj(cachep, page);
	}
3291
	cache_grow_end(cachep, page);
L
Linus Torvalds 已提交
3292

3293
	return obj ? obj : fallback_alloc(cachep, flags);
3294
}
3295 3296

static __always_inline void *
3297
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3298
		   unsigned long caller)
3299 3300 3301
{
	unsigned long save_flags;
	void *ptr;
3302
	int slab_node = numa_mem_id();
3303

3304
	flags &= gfp_allowed_mask;
3305 3306
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3307 3308
		return NULL;

3309 3310 3311
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3312
	if (nodeid == NUMA_NO_NODE)
3313
		nodeid = slab_node;
3314

3315
	if (unlikely(!get_node(cachep, nodeid))) {
3316 3317 3318 3319 3320
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3321
	if (nodeid == slab_node) {
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3338 3339
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3340

3341
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3342 3343 3344 3345 3346 3347 3348 3349
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3350
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3361 3362
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3378
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3379 3380 3381 3382
{
	unsigned long save_flags;
	void *objp;

3383
	flags &= gfp_allowed_mask;
3384 3385
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3386 3387
		return NULL;

3388 3389 3390 3391 3392 3393 3394
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3395 3396
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3397

3398
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3399 3400
	return objp;
}
3401 3402

/*
3403
 * Caller needs to acquire correct kmem_cache_node's list_lock
3404
 * @list: List of detached free slabs should be freed by caller
3405
 */
3406 3407
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3408 3409
{
	int i;
3410
	struct kmem_cache_node *n = get_node(cachep, node);
3411 3412 3413
	struct page *page;

	n->free_objects += nr_objects;
L
Linus Torvalds 已提交
3414 3415

	for (i = 0; i < nr_objects; i++) {
3416
		void *objp;
3417
		struct page *page;
L
Linus Torvalds 已提交
3418

3419 3420
		objp = objpp[i];

3421 3422
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3423
		check_spinlock_acquired_node(cachep, node);
3424
		slab_put_obj(cachep, page, objp);
L
Linus Torvalds 已提交
3425 3426 3427
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
3428
		if (page->active == 0) {
3429
			list_add(&page->lru, &n->slabs_free);
3430 3431
			n->free_slabs++;
		} else {
L
Linus Torvalds 已提交
3432 3433 3434 3435
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3436
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3437 3438
		}
	}
3439 3440 3441 3442 3443

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

		page = list_last_entry(&n->slabs_free, struct page, lru);
3444
		list_move(&page->lru, list);
3445
		n->free_slabs--;
3446
		n->total_slabs--;
3447
	}
L
Linus Torvalds 已提交
3448 3449
}

3450
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3451 3452
{
	int batchcount;
3453
	struct kmem_cache_node *n;
3454
	int node = numa_mem_id();
3455
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3456 3457

	batchcount = ac->batchcount;
3458

L
Linus Torvalds 已提交
3459
	check_irq_off();
3460
	n = get_node(cachep, node);
3461 3462 3463
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3464
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3465 3466 3467
		if (max) {
			if (batchcount > max)
				batchcount = max;
3468
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3469
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3470 3471 3472 3473 3474
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3475
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3476
free_done:
L
Linus Torvalds 已提交
3477 3478 3479
#if STATS
	{
		int i = 0;
3480
		struct page *page;
L
Linus Torvalds 已提交
3481

3482
		list_for_each_entry(page, &n->slabs_free, lru) {
3483
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3484 3485 3486 3487 3488 3489

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3490
	spin_unlock(&n->list_lock);
3491
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3492
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3493
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3494 3495 3496
}

/*
A
Andrew Morton 已提交
3497 3498
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3499
 */
3500
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3501
				unsigned long caller)
L
Linus Torvalds 已提交
3502
{
3503 3504 3505 3506 3507 3508
	/* Put the object into the quarantine, don't touch it for now. */
	if (kasan_slab_free(cachep, objp))
		return;

	___cache_free(cachep, objp, caller);
}
L
Linus Torvalds 已提交
3509

3510 3511 3512 3513
void ___cache_free(struct kmem_cache *cachep, void *objp,
		unsigned long caller)
{
	struct array_cache *ac = cpu_cache_get(cachep);
A
Alexander Potapenko 已提交
3514

L
Linus Torvalds 已提交
3515
	check_irq_off();
3516
	kmemleak_free_recursive(objp, cachep->flags);
3517
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3518

3519
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3520

3521 3522 3523 3524 3525 3526 3527
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3528
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3529 3530
		return;

3531
	if (ac->avail < ac->limit) {
L
Linus Torvalds 已提交
3532 3533 3534 3535 3536
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3537

3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3558
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3559
{
3560
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3561

3562
	kasan_slab_alloc(cachep, ret, flags);
3563
	trace_kmem_cache_alloc(_RET_IP_, ret,
3564
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3565 3566

	return ret;
L
Linus Torvalds 已提交
3567 3568 3569
}
EXPORT_SYMBOL(kmem_cache_alloc);

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3580
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3581
			  void **p)
3582
{
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3601 3602
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3613
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3614 3615 3616
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3617 3618 3619
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3620
#ifdef CONFIG_TRACING
3621
void *
3622
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3623
{
3624 3625
	void *ret;

3626
	ret = slab_alloc(cachep, flags, _RET_IP_);
3627

3628
	kasan_kmalloc(cachep, ret, size, flags);
3629
	trace_kmalloc(_RET_IP_, ret,
3630
		      size, cachep->size, flags);
3631
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3632
}
3633
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3634 3635
#endif

L
Linus Torvalds 已提交
3636
#ifdef CONFIG_NUMA
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3648 3649
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3650
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3651

3652
	kasan_slab_alloc(cachep, ret, flags);
3653
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3654
				    cachep->object_size, cachep->size,
3655
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3656 3657

	return ret;
3658
}
L
Linus Torvalds 已提交
3659 3660
EXPORT_SYMBOL(kmem_cache_alloc_node);

3661
#ifdef CONFIG_TRACING
3662
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3663
				  gfp_t flags,
3664 3665
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3666
{
3667 3668
	void *ret;

3669
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3670 3671

	kasan_kmalloc(cachep, ret, size, flags);
3672
	trace_kmalloc_node(_RET_IP_, ret,
3673
			   size, cachep->size,
3674 3675
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3676
}
3677
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3678 3679
#endif

3680
static __always_inline void *
3681
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3682
{
3683
	struct kmem_cache *cachep;
A
Alexander Potapenko 已提交
3684
	void *ret;
3685

3686
	cachep = kmalloc_slab(size, flags);
3687 3688
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
A
Alexander Potapenko 已提交
3689
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3690
	kasan_kmalloc(cachep, ret, size, flags);
A
Alexander Potapenko 已提交
3691 3692

	return ret;
3693
}
3694 3695 3696

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3697
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3698
}
3699
EXPORT_SYMBOL(__kmalloc_node);
3700 3701

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3702
		int node, unsigned long caller)
3703
{
3704
	return __do_kmalloc_node(size, flags, node, caller);
3705 3706 3707
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3708 3709

/**
3710
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3711
 * @size: how many bytes of memory are required.
3712
 * @flags: the type of memory to allocate (see kmalloc).
3713
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3714
 */
3715
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3716
					  unsigned long caller)
L
Linus Torvalds 已提交
3717
{
3718
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3719
	void *ret;
L
Linus Torvalds 已提交
3720

3721
	cachep = kmalloc_slab(size, flags);
3722 3723
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3724
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3725

3726
	kasan_kmalloc(cachep, ret, size, flags);
3727
	trace_kmalloc(caller, ret,
3728
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3729 3730

	return ret;
3731 3732 3733 3734
}

void *__kmalloc(size_t size, gfp_t flags)
{
3735
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3736 3737 3738
}
EXPORT_SYMBOL(__kmalloc);

3739
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3740
{
3741
	return __do_kmalloc(size, flags, caller);
3742 3743
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3744

L
Linus Torvalds 已提交
3745 3746 3747 3748 3749 3750 3751 3752
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3753
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3754 3755
{
	unsigned long flags;
3756 3757 3758
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3759 3760

	local_irq_save(flags);
3761
	debug_check_no_locks_freed(objp, cachep->object_size);
3762
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3763
		debug_check_no_obj_freed(objp, cachep->object_size);
3764
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3765
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3766

3767
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3768 3769 3770
}
EXPORT_SYMBOL(kmem_cache_free);

3771 3772 3773 3774 3775 3776 3777 3778 3779
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3780 3781 3782 3783
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

L
Linus Torvalds 已提交
3797 3798 3799 3800
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3801 3802
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3803 3804 3805 3806 3807
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3808
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3809 3810
	unsigned long flags;

3811 3812
	trace_kfree(_RET_IP_, objp);

3813
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3814 3815 3816
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3817
	c = virt_to_cache(objp);
3818 3819 3820
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3821
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3822 3823 3824 3825
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3826
/*
3827
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3828
 */
3829
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3830
{
3831
	int ret;
3832
	int node;
3833
	struct kmem_cache_node *n;
3834

3835
	for_each_online_node(node) {
3836 3837
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
3838 3839 3840
			goto fail;

	}
3841

3842
	return 0;
3843

A
Andrew Morton 已提交
3844
fail:
3845
	if (!cachep->list.next) {
3846 3847 3848
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3849 3850
			n = get_node(cachep, node);
			if (n) {
3851 3852 3853
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3854
				cachep->node[node] = NULL;
3855 3856 3857 3858
			}
			node--;
		}
	}
3859
	return -ENOMEM;
3860 3861
}

3862
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3863
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3864
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3865
{
3866 3867
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
L
Linus Torvalds 已提交
3868

3869 3870
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3871 3872
		return -ENOMEM;

3873 3874
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
3875 3876 3877 3878 3879 3880
	/*
	 * Without a previous cpu_cache there's no need to synchronize remote
	 * cpus, so skip the IPIs.
	 */
	if (prev)
		kick_all_cpus_sync();
3881

L
Linus Torvalds 已提交
3882 3883 3884
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3885
	cachep->shared = shared;
L
Linus Torvalds 已提交
3886

3887
	if (!prev)
3888
		goto setup_node;
3889 3890

	for_each_online_cpu(cpu) {
3891
		LIST_HEAD(list);
3892 3893
		int node;
		struct kmem_cache_node *n;
3894
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3895

3896
		node = cpu_to_mem(cpu);
3897 3898
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3899
		free_block(cachep, ac->entry, ac->avail, node, &list);
3900
		spin_unlock_irq(&n->list_lock);
3901
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3902
	}
3903 3904
	free_percpu(prev);

3905 3906
setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
L
Linus Torvalds 已提交
3907 3908
}

G
Glauber Costa 已提交
3909 3910 3911 3912
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3913
	struct kmem_cache *c;
G
Glauber Costa 已提交
3914 3915 3916 3917 3918 3919 3920 3921 3922

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3923 3924 3925 3926
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
G
Glauber Costa 已提交
3927 3928 3929 3930 3931
	}

	return ret;
}

3932
/* Called with slab_mutex held always */
3933
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3934 3935
{
	int err;
G
Glauber Costa 已提交
3936 3937 3938 3939
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

3940
	err = cache_random_seq_create(cachep, cachep->num, gfp);
T
Thomas Garnier 已提交
3941 3942 3943
	if (err)
		goto end;

G
Glauber Costa 已提交
3944 3945 3946 3947 3948 3949
	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3950

G
Glauber Costa 已提交
3951 3952
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3953 3954
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3955 3956
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3957
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3958 3959 3960 3961
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3962
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3963
		limit = 1;
3964
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3965
		limit = 8;
3966
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3967
		limit = 24;
3968
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3969 3970 3971 3972
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3973 3974
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3975 3976 3977 3978 3979 3980 3981 3982
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3983
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3984 3985 3986
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3987 3988 3989
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3990 3991 3992 3993
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3994 3995 3996
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
T
Thomas Garnier 已提交
3997
end:
L
Linus Torvalds 已提交
3998
	if (err)
3999
		pr_err("enable_cpucache failed for %s, error %d\n",
P
Pekka Enberg 已提交
4000
		       cachep->name, -err);
4001
	return err;
L
Linus Torvalds 已提交
4002 4003
}

4004
/*
4005 4006
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
4007
 * if drain_array() is used on the shared array.
4008
 */
4009
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4010
			 struct array_cache *ac, int node)
L
Linus Torvalds 已提交
4011
{
4012
	LIST_HEAD(list);
4013 4014 4015

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
L
Linus Torvalds 已提交
4016

4017 4018
	if (!ac || !ac->avail)
		return;
4019 4020

	if (ac->touched) {
L
Linus Torvalds 已提交
4021
		ac->touched = 0;
4022
		return;
L
Linus Torvalds 已提交
4023
	}
4024 4025 4026 4027 4028 4029

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
4030 4031 4032 4033
}

/**
 * cache_reap - Reclaim memory from caches.
4034
 * @w: work descriptor
L
Linus Torvalds 已提交
4035 4036 4037 4038 4039 4040
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4041 4042
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4043
 */
4044
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4045
{
4046
	struct kmem_cache *searchp;
4047
	struct kmem_cache_node *n;
4048
	int node = numa_mem_id();
4049
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4050

4051
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4052
		/* Give up. Setup the next iteration. */
4053
		goto out;
L
Linus Torvalds 已提交
4054

4055
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4056 4057
		check_irq_on();

4058
		/*
4059
		 * We only take the node lock if absolutely necessary and we
4060 4061 4062
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4063
		n = get_node(searchp, node);
4064

4065
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4066

4067
		drain_array(searchp, n, cpu_cache_get(searchp), node);
L
Linus Torvalds 已提交
4068

4069 4070 4071 4072
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4073
		if (time_after(n->next_reap, jiffies))
4074
			goto next;
L
Linus Torvalds 已提交
4075

4076
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4077

4078
		drain_array(searchp, n, n->shared, node);
L
Linus Torvalds 已提交
4079

4080 4081
		if (n->free_touched)
			n->free_touched = 0;
4082 4083
		else {
			int freed;
L
Linus Torvalds 已提交
4084

4085
			freed = drain_freelist(searchp, n, (n->free_limit +
4086 4087 4088
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4089
next:
L
Linus Torvalds 已提交
4090 4091 4092
		cond_resched();
	}
	check_irq_on();
4093
	mutex_unlock(&slab_mutex);
4094
	next_reap_node();
4095
out:
A
Andrew Morton 已提交
4096
	/* Set up the next iteration */
4097
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4098 4099
}

4100
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4101
{
4102
	unsigned long active_objs, num_objs, active_slabs;
4103 4104
	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
	unsigned long free_slabs = 0;
4105
	int node;
4106
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4107

4108
	for_each_kmem_cache_node(cachep, node, n) {
4109
		check_irq_on();
4110
		spin_lock_irq(&n->list_lock);
4111

4112 4113
		total_slabs += n->total_slabs;
		free_slabs += n->free_slabs;
4114
		free_objs += n->free_objects;
4115

4116 4117
		if (n->shared)
			shared_avail += n->shared->avail;
4118

4119
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4120
	}
4121 4122
	num_objs = total_slabs * cachep->num;
	active_slabs = total_slabs - free_slabs;
4123
	active_objs = num_objs - free_objs;
L
Linus Torvalds 已提交
4124

4125 4126 4127
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
4128
	sinfo->num_slabs = total_slabs;
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4139
#if STATS
4140
	{			/* node stats */
L
Linus Torvalds 已提交
4141 4142 4143 4144 4145 4146 4147
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4148
		unsigned long node_frees = cachep->node_frees;
4149
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4150

J
Joe Perches 已提交
4151
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
J
Joe Perches 已提交
4152 4153 4154
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4155 4156 4157 4158 4159 4160 4161 4162 4163
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4164
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4177
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4178
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4179
{
P
Pekka Enberg 已提交
4180
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4181
	int limit, batchcount, shared, res;
4182
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4183

L
Linus Torvalds 已提交
4184 4185 4186 4187
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4188
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4199
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4200
	res = -EINVAL;
4201
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4202
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4203 4204
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4205
				res = 0;
L
Linus Torvalds 已提交
4206
			} else {
4207
				res = do_tune_cpucache(cachep, limit,
4208 4209
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4210 4211 4212 4213
			}
			break;
		}
	}
4214
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4215 4216 4217 4218
	if (res >= 0)
		res = count;
	return res;
}
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4252 4253
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4254 4255
{
	void *p;
4256 4257
	int i, j;
	unsigned long v;
4258

4259 4260
	if (n[0] == n[1])
		return;
4261
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4272
			continue;
4273

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4284 4285 4286 4287 4288 4289 4290 4291
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4292
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4293

4294
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4295
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4296
		if (modname[0])
4297 4298 4299 4300 4301 4302 4303 4304 4305
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4306
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4307
	struct page *page;
4308
	struct kmem_cache_node *n;
4309
	const char *name;
4310
	unsigned long *x = m->private;
4311 4312 4313 4314 4315 4316 4317 4318
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4330

4331
		for_each_kmem_cache_node(cachep, node, n) {
4332

4333 4334
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4335

4336 4337 4338 4339 4340 4341 4342
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4343 4344

	name = cachep->name;
4345
	if (x[0] == x[1]) {
4346
		/* Increase the buffer size */
4347
		mutex_unlock(&slab_mutex);
4348
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4349 4350
		if (!m->private) {
			/* Too bad, we are really out */
4351
			m->private = x;
4352
			mutex_lock(&slab_mutex);
4353 4354
			return -ENOMEM;
		}
4355 4356
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4357
		mutex_lock(&slab_mutex);
4358 4359 4360 4361
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4362 4363 4364
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4365 4366
		seq_putc(m, '\n');
	}
4367

4368 4369 4370
	return 0;
}

4371
static const struct seq_operations slabstats_op = {
4372
	.start = slab_start,
4373 4374
	.next = slab_next,
	.stop = slab_stop,
4375 4376
	.show = leaks_show,
};
4377 4378 4379

static int slabstats_open(struct inode *inode, struct file *file)
{
4380 4381 4382 4383 4384 4385 4386 4387 4388
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4403
#endif
4404 4405 4406
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4407

K
Kees Cook 已提交
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
#ifdef CONFIG_HARDENED_USERCOPY
/*
 * Rejects objects that are incorrectly sized.
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
const char *__check_heap_object(const void *ptr, unsigned long n,
				struct page *page)
{
	struct kmem_cache *cachep;
	unsigned int objnr;
	unsigned long offset;

	/* Find and validate object. */
	cachep = page->slab_cache;
	objnr = obj_to_index(cachep, page, (void *)ptr);
	BUG_ON(objnr >= cachep->num);

	/* Find offset within object. */
	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);

	/* Allow address range falling entirely within object size. */
	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
		return NULL;

	return cachep->name;
}
#endif /* CONFIG_HARDENED_USERCOPY */

4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4450
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4451
{
A
Alexander Potapenko 已提交
4452 4453
	size_t size;

4454 4455
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4456
		return 0;
L
Linus Torvalds 已提交
4457

A
Alexander Potapenko 已提交
4458 4459 4460 4461
	size = virt_to_cache(objp)->object_size;
	/* We assume that ksize callers could use the whole allocated area,
	 * so we need to unpoison this area.
	 */
4462
	kasan_unpoison_shadow(objp, size);
A
Alexander Potapenko 已提交
4463 4464

	return size;
L
Linus Torvalds 已提交
4465
}
K
Kirill A. Shutemov 已提交
4466
EXPORT_SYMBOL(ksize);