blk-mq.c 57.7 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

45
	for (i = 0; i < hctx->ctx_map.size; i++)
46
		if (hctx->ctx_map.map[i].word)
47 48 49 50 51
			return true;

	return false;
}

52 53 54 55 56 57 58 59 60
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

61 62 63 64 65 66
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
67 68 69 70 71 72 73 74 75 76 77 78
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 80
}

81
void blk_mq_freeze_queue_start(struct request_queue *q)
82
{
83
	int freeze_depth;
84

85 86
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
87
		percpu_ref_kill(&q->q_usage_counter);
88
		blk_mq_run_hw_queues(q, false);
89
	}
90
}
91
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 93 94

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
95
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 97
}

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111 112 113
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
146 147 148 149 150 151 152

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
153 154
}

155 156 157 158 159 160
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

161
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 163
			       struct request *rq, int op,
			       unsigned int op_flags)
164
{
165
	if (blk_queue_io_stat(q))
166
		op_flags |= REQ_IO_STAT;
167

168 169 170
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
171
	rq->mq_ctx = ctx;
172
	req_set_op_attrs(rq, op, op_flags);
173 174 175 176 177 178
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
179
	rq->start_time = jiffies;
180 181
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
182
	set_start_time_ns(rq);
183 184 185 186 187 188 189 190 191 192
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

193 194
	rq->cmd = rq->__cmd;

195 196 197 198 199 200
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
201 202
	rq->timeout = 0;

203 204 205 206
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

207
	ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
208 209
}

210
static struct request *
211
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
212 213 214 215
{
	struct request *rq;
	unsigned int tag;

216
	tag = blk_mq_get_tag(data);
217
	if (tag != BLK_MQ_TAG_FAIL) {
218
		rq = data->hctx->tags->rqs[tag];
219

220
		if (blk_mq_tag_busy(data->hctx)) {
221
			rq->cmd_flags = REQ_MQ_INFLIGHT;
222
			atomic_inc(&data->hctx->nr_active);
223 224 225
		}

		rq->tag = tag;
226
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
227 228 229 230 231 232
		return rq;
	}

	return NULL;
}

233 234
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
235
{
236 237
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
238
	struct request *rq;
239
	struct blk_mq_alloc_data alloc_data;
240
	int ret;
241

242
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
243 244
	if (ret)
		return ERR_PTR(ret);
245

246 247
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
248
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
249

250
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
251
	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
252 253 254 255 256
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
257
		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
258
		rq =  __blk_mq_alloc_request(&alloc_data, rw, 0);
259
		ctx = alloc_data.ctx;
260 261
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
262
	if (!rq) {
263
		blk_queue_exit(q);
264
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
265
	}
266 267
	return rq;
}
268
EXPORT_SYMBOL(blk_mq_alloc_request);
269

M
Ming Lin 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

	hctx = q->queue_hw_ctx[hctx_idx];
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
	if (!rq) {
		blk_queue_exit(q);
		return ERR_PTR(-EWOULDBLOCK);
	}

	return rq;
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

309 310 311 312 313 314
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

315 316
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
317
	rq->cmd_flags = 0;
318

319
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
320
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
321
	blk_queue_exit(q);
322 323
}

324
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
325 326 327 328 329
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
330 331 332 333 334 335 336 337 338 339 340

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
341
}
J
Jens Axboe 已提交
342
EXPORT_SYMBOL_GPL(blk_mq_free_request);
343

344
inline void __blk_mq_end_request(struct request *rq, int error)
345
{
M
Ming Lei 已提交
346 347
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
348
	if (rq->end_io) {
349
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
350 351 352
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
353
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
354
	}
355
}
356
EXPORT_SYMBOL(__blk_mq_end_request);
357

358
void blk_mq_end_request(struct request *rq, int error)
359 360 361
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
362
	__blk_mq_end_request(rq, error);
363
}
364
EXPORT_SYMBOL(blk_mq_end_request);
365

366
static void __blk_mq_complete_request_remote(void *data)
367
{
368
	struct request *rq = data;
369

370
	rq->q->softirq_done_fn(rq);
371 372
}

373
static void blk_mq_ipi_complete_request(struct request *rq)
374 375
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
376
	bool shared = false;
377 378
	int cpu;

C
Christoph Hellwig 已提交
379
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
380 381 382
		rq->q->softirq_done_fn(rq);
		return;
	}
383 384

	cpu = get_cpu();
C
Christoph Hellwig 已提交
385 386 387 388
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
389
		rq->csd.func = __blk_mq_complete_request_remote;
390 391
		rq->csd.info = rq;
		rq->csd.flags = 0;
392
		smp_call_function_single_async(ctx->cpu, &rq->csd);
393
	} else {
394
		rq->q->softirq_done_fn(rq);
395
	}
396 397
	put_cpu();
}
398

399
static void __blk_mq_complete_request(struct request *rq)
400 401 402 403
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
404
		blk_mq_end_request(rq, rq->errors);
405 406 407 408
	else
		blk_mq_ipi_complete_request(rq);
}

409 410 411 412 413 414 415 416
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
417
void blk_mq_complete_request(struct request *rq, int error)
418
{
419 420 421
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
422
		return;
423 424
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
425
		__blk_mq_complete_request(rq);
426
	}
427 428
}
EXPORT_SYMBOL(blk_mq_complete_request);
429

430 431 432 433 434 435
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

436
void blk_mq_start_request(struct request *rq)
437 438 439 440 441
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
442
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
443 444
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
445

446
	blk_add_timer(rq);
447

448 449 450 451 452 453
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

454 455 456 457 458 459
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
460 461 462 463
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
464 465 466 467 468 469 470 471 472

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
473
}
474
EXPORT_SYMBOL(blk_mq_start_request);
475

476
static void __blk_mq_requeue_request(struct request *rq)
477 478 479 480
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
481

482 483 484 485
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
486 487
}

488 489 490 491 492
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
493
	blk_mq_add_to_requeue_list(rq, true);
494 495 496
}
EXPORT_SYMBOL(blk_mq_requeue_request);

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

524 525 526 527 528
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

553 554 555 556 557 558
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

559 560 561 562 563 564
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

585 586
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
587 588 589 590
	if (tag < tags->nr_tags)
		return tags->rqs[tag];

	return NULL;
591 592 593
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

594
struct blk_mq_timeout_data {
595 596
	unsigned long next;
	unsigned int next_set;
597 598
};

599
void blk_mq_rq_timed_out(struct request *req, bool reserved)
600
{
601 602
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
603 604 605 606 607 608 609 610 611 612

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
613 614
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
615

616
	if (ops->timeout)
617
		ret = ops->timeout(req, reserved);
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
633
}
634

635 636 637 638
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
639

640 641 642 643 644
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
645 646 647 648
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
649
		return;
650
	}
651

652 653
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
654
			blk_mq_rq_timed_out(rq, reserved);
655 656 657 658
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
659 660
}

661
static void blk_mq_timeout_work(struct work_struct *work)
662
{
663 664
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
665 666 667 668 669
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
670

671 672 673
	if (blk_queue_enter(q, true))
		return;

674
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
675

676 677 678
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
679
	} else {
680 681
		struct blk_mq_hw_ctx *hctx;

682 683 684 685 686
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
687
	}
688
	blk_queue_exit(q);
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

730 731 732 733 734 735 736 737 738
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

739
	for (i = 0; i < hctx->ctx_map.size; i++) {
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

764 765 766 767 768 769 770 771 772 773 774
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
775 776
	LIST_HEAD(driver_list);
	struct list_head *dptr;
777
	int queued;
778

779
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
780

781
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
782 783 784 785 786 787 788
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
789
	flush_busy_ctxs(hctx, &rq_list);
790 791 792 793 794 795 796 797 798 799 800 801

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

802 803 804 805 806 807
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

808 809 810
	/*
	 * Now process all the entries, sending them to the driver.
	 */
811
	queued = 0;
812
	while (!list_empty(&rq_list)) {
813
		struct blk_mq_queue_data bd;
814 815 816 817 818
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

819 820 821 822 823
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
824 825 826 827 828 829
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
830
			__blk_mq_requeue_request(rq);
831 832 833 834
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
835
			rq->errors = -EIO;
836
			blk_mq_end_request(rq, rq->errors);
837 838 839 840 841
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
842 843 844 845 846 847 848

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
864 865 866 867 868 869 870 871 872 873
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
874 875 876
	}
}

877 878 879 880 881 882 883 884
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
885 886
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
887 888

	if (--hctx->next_cpu_batch <= 0) {
889
		int cpu = hctx->next_cpu, next_cpu;
890 891 892 893 894 895 896

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
897 898

		return cpu;
899 900
	}

901
	return hctx->next_cpu;
902 903
}

904 905
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
906 907
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
908 909
		return;

910
	if (!async) {
911 912
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
913
			__blk_mq_run_hw_queue(hctx);
914
			put_cpu();
915 916
			return;
		}
917

918
		put_cpu();
919
	}
920

921 922
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
923 924
}

925
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
926 927 928 929 930 931 932
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
933
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
934 935
			continue;

936
		blk_mq_run_hw_queue(hctx, async);
937 938
	}
}
939
EXPORT_SYMBOL(blk_mq_run_hw_queues);
940 941 942

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
943 944
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
945 946 947 948
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

949 950 951 952 953 954 955 956 957 958
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

959 960 961
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
962

963
	blk_mq_run_hw_queue(hctx, false);
964 965 966
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

967 968 969 970 971 972 973 974 975 976
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

977
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
978 979 980 981 982 983 984 985 986
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
987
		blk_mq_run_hw_queue(hctx, async);
988 989 990 991
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

992
static void blk_mq_run_work_fn(struct work_struct *work)
993 994 995
{
	struct blk_mq_hw_ctx *hctx;

996
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
997

998 999 1000
	__blk_mq_run_hw_queue(hctx);
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1013 1014
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1015

1016 1017
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1018 1019 1020
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1021 1022 1023 1024
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct blk_mq_ctx *ctx,
					    struct request *rq,
					    bool at_head)
1025
{
1026 1027
	trace_block_rq_insert(hctx->queue, rq);

1028 1029 1030 1031
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1032
}
1033

1034 1035 1036 1037 1038 1039
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
1040 1041 1042
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1043 1044
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
1045
{
1046
	struct request_queue *q = rq->q;
1047
	struct blk_mq_hw_ctx *hctx;
1048 1049 1050 1051 1052
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
1053 1054 1055

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1056 1057 1058
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1059 1060 1061

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1062 1063

	blk_mq_put_ctx(current_ctx);
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1095
		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1096
	}
1097
	blk_mq_hctx_mark_pending(hctx, ctx);
1098 1099 1100
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1101
	blk_mq_put_ctx(current_ctx);
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1164

1165
	blk_account_io_start(rq, 1);
1166 1167
}

1168 1169 1170 1171 1172 1173
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1174 1175 1176
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1177
{
1178
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1179 1180 1181 1182 1183 1184 1185
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1186 1187
		struct request_queue *q = hctx->queue;

1188 1189 1190 1191 1192
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1193

1194 1195 1196
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1197
	}
1198
}
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1212 1213
	int op = bio_data_dir(bio);
	int op_flags = 0;
1214
	struct blk_mq_alloc_data alloc_data;
1215

1216
	blk_queue_enter_live(q);
1217 1218 1219
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1220
	if (rw_is_sync(bio_op(bio), bio->bi_rw))
1221
		op_flags |= REQ_SYNC;
1222

1223
	trace_block_getrq(q, bio, op);
1224
	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1225
	rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1226
	if (unlikely(!rq)) {
1227
		__blk_mq_run_hw_queue(hctx);
1228
		blk_mq_put_ctx(ctx);
1229
		trace_block_sleeprq(q, bio, op);
1230 1231

		ctx = blk_mq_get_ctx(q);
1232
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1233
		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1234
		rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1235 1236
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1237 1238 1239
	}

	hctx->queued++;
1240 1241 1242 1243 1244
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1245
static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1256
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1257 1258 1259 1260 1261 1262 1263

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1264 1265
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1266
		return 0;
1267
	}
1268

1269 1270 1271 1272 1273 1274 1275
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
		return 0;
1276
	}
1277 1278

	return -1;
1279 1280
}

1281 1282 1283 1284 1285
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1286
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1287
{
1288
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_rw);
1289
	const int is_flush_fua = bio->bi_rw & (REQ_PREFLUSH | REQ_FUA);
1290 1291
	struct blk_map_ctx data;
	struct request *rq;
1292 1293
	unsigned int request_count = 0;
	struct blk_plug *plug;
1294
	struct request *same_queue_rq = NULL;
1295
	blk_qc_t cookie;
1296 1297 1298 1299

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1300
		bio_io_error(bio);
1301
		return BLK_QC_T_NONE;
1302 1303
	}

1304 1305
	blk_queue_split(q, &bio, q->bio_split);

1306 1307 1308
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count,
					   &same_queue_rq))
1309
			return BLK_QC_T_NONE;
1310 1311
	} else
		request_count = blk_plug_queued_count(q);
1312

1313 1314
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1315
		return BLK_QC_T_NONE;
1316

1317
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1318 1319 1320 1321 1322 1323 1324

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1325
	plug = current->plug;
1326 1327 1328 1329 1330
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1331 1332 1333
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1334 1335 1336 1337

		blk_mq_bio_to_request(rq, bio);

		/*
1338
		 * We do limited pluging. If the bio can be merged, do that.
1339 1340
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1341
		 */
1342
		if (plug) {
1343 1344
			/*
			 * The plug list might get flushed before this. If that
1345 1346 1347
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1348 1349
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1350
				list_del_init(&old_rq->queuelist);
1351
			}
1352 1353 1354 1355 1356
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1357 1358 1359
			goto done;
		if (!blk_mq_direct_issue_request(old_rq, &cookie))
			goto done;
1360
		blk_mq_insert_request(old_rq, false, true, true);
1361
		goto done;
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1375 1376
done:
	return cookie;
1377 1378 1379 1380 1381 1382
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1383
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1384
{
1385
	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_rw);
1386
	const int is_flush_fua = bio->bi_rw & (REQ_PREFLUSH | REQ_FUA);
1387 1388
	struct blk_plug *plug;
	unsigned int request_count = 0;
1389 1390
	struct blk_map_ctx data;
	struct request *rq;
1391
	blk_qc_t cookie;
1392 1393 1394 1395

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1396
		bio_io_error(bio);
1397
		return BLK_QC_T_NONE;
1398 1399
	}

1400 1401
	blk_queue_split(q, &bio, q->bio_split);

1402
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1403
	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1404
		return BLK_QC_T_NONE;
1405 1406

	rq = blk_mq_map_request(q, bio, &data);
1407
	if (unlikely(!rq))
1408
		return BLK_QC_T_NONE;
1409

1410
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1423 1424 1425
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1426
		if (!request_count)
1427
			trace_block_plug(q);
1428 1429 1430 1431

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1432 1433
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1434
		}
1435

1436
		list_add_tail(&rq->queuelist, &plug->mq_list);
1437
		return cookie;
1438 1439
	}

1440 1441 1442 1443 1444 1445 1446 1447 1448
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1449 1450
	}

1451
	blk_mq_put_ctx(data.ctx);
1452
	return cookie;
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1464 1465
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1466
{
1467
	struct page *page;
1468

1469
	if (tags->rqs && set->ops->exit_request) {
1470
		int i;
1471

1472 1473
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1474
				continue;
1475 1476
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1477
			tags->rqs[i] = NULL;
1478
		}
1479 1480
	}

1481 1482
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1483
		list_del_init(&page->lru);
1484 1485 1486 1487 1488
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1489 1490 1491
		__free_pages(page, page->private);
	}

1492
	kfree(tags->rqs);
1493

1494
	blk_mq_free_tags(tags);
1495 1496 1497 1498
}

static size_t order_to_size(unsigned int order)
{
1499
	return (size_t)PAGE_SIZE << order;
1500 1501
}

1502 1503
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1504
{
1505
	struct blk_mq_tags *tags;
1506 1507 1508
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1509
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1510 1511
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1512 1513
	if (!tags)
		return NULL;
1514

1515 1516
	INIT_LIST_HEAD(&tags->page_list);

1517 1518 1519
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1520 1521 1522 1523
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1524 1525 1526 1527 1528

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1529
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1530
				cache_line_size());
1531
	left = rq_size * set->queue_depth;
1532

1533
	for (i = 0; i < set->queue_depth; ) {
1534 1535 1536 1537 1538
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1539
		while (this_order && left < order_to_size(this_order - 1))
1540 1541 1542
			this_order--;

		do {
1543
			page = alloc_pages_node(set->numa_node,
1544
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1545
				this_order);
1546 1547 1548 1549 1550 1551 1552 1553 1554
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1555
			goto fail;
1556 1557

		page->private = this_order;
1558
		list_add_tail(&page->lru, &tags->page_list);
1559 1560

		p = page_address(page);
1561 1562 1563 1564 1565
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1566
		entries_per_page = order_to_size(this_order) / rq_size;
1567
		to_do = min(entries_per_page, set->queue_depth - i);
1568 1569
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1570 1571 1572 1573
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1574 1575
						set->numa_node)) {
					tags->rqs[i] = NULL;
1576
					goto fail;
1577
				}
1578 1579
			}

1580 1581 1582 1583
			p += rq_size;
			i++;
		}
	}
1584
	return tags;
1585

1586 1587 1588
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1589 1590
}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1666 1667 1668 1669 1670

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1671 1672 1673 1674

	return NOTIFY_OK;
}

1675
/* hctx->ctxs will be freed in queue's release handler */
1676 1677 1678 1679
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1680 1681
	unsigned flush_start_tag = set->queue_depth;

1682 1683
	blk_mq_tag_idle(hctx);

1684 1685 1686 1687 1688
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1689 1690 1691 1692
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1693
	blk_free_flush_queue(hctx->fq);
1694 1695 1696
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1697 1698 1699 1700 1701 1702 1703 1704 1705
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1706
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1716
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1717 1718 1719
		free_cpumask_var(hctx->cpumask);
}

1720 1721 1722
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1723
{
1724
	int node;
1725
	unsigned flush_start_tag = set->queue_depth;
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1737
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1738 1739 1740 1741 1742 1743

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1744 1745

	/*
1746 1747
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1748
	 */
1749 1750 1751 1752
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1753

1754 1755
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1756

1757
	hctx->nr_ctx = 0;
1758

1759 1760 1761
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1762

1763 1764 1765
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1766

1767 1768 1769 1770 1771
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1772

1773
	return 0;
1774

1775 1776 1777 1778 1779
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1780 1781 1782 1783 1784 1785
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1786

1787 1788
	return -1;
}
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1809 1810
		hctx = q->mq_ops->map_queue(q, i);

1811 1812 1813 1814 1815
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1816
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1817 1818 1819
	}
}

1820 1821
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1822 1823 1824 1825
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1826
	struct blk_mq_tag_set *set = q->tag_set;
1827

1828 1829 1830 1831 1832
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1833
	queue_for_each_hw_ctx(q, hctx, i) {
1834
		cpumask_clear(hctx->cpumask);
1835 1836 1837 1838 1839 1840
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1841
	for_each_possible_cpu(i) {
1842
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1843
		if (!cpumask_test_cpu(i, online_mask))
1844 1845
			continue;

1846
		ctx = per_cpu_ptr(q->queue_ctx, i);
1847
		hctx = q->mq_ops->map_queue(q, i);
K
Keith Busch 已提交
1848

1849
		cpumask_set_cpu(i, hctx->cpumask);
1850 1851 1852
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1853

1854 1855
	mutex_unlock(&q->sysfs_lock);

1856
	queue_for_each_hw_ctx(q, hctx, i) {
1857 1858
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1859
		/*
1860 1861
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1862 1863 1864 1865 1866 1867
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1868
			hctx->tags = NULL;
1869 1870 1871
			continue;
		}

M
Ming Lei 已提交
1872 1873 1874 1875 1876 1877
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1878
		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1879 1880 1881 1882 1883
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1884
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1885

1886 1887 1888
		/*
		 * Initialize batch roundrobin counts
		 */
1889 1890 1891
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1892 1893
}

1894
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1895 1896 1897 1898
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1910 1911 1912

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1913
		queue_set_hctx_shared(q, shared);
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1924 1925 1926 1927 1928 1929
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1930 1931 1932 1933 1934 1935 1936 1937 1938
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1939 1940 1941 1942 1943 1944 1945 1946 1947

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1948
	list_add_tail(&q->tag_set_list, &set->tag_list);
1949

1950 1951 1952
	mutex_unlock(&set->tag_list_lock);
}

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1965 1966 1967 1968
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1969
		kfree(hctx);
1970
	}
1971

1972 1973 1974
	kfree(q->mq_map);
	q->mq_map = NULL;

1975 1976 1977 1978 1979 1980
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1981
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
1997 1998
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
1999
{
K
Keith Busch 已提交
2000 2001
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2002

K
Keith Busch 已提交
2003
	blk_mq_sysfs_unregister(q);
2004
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2005
		int node;
2006

K
Keith Busch 已提交
2007 2008 2009 2010
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2011 2012
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2013
		if (!hctxs[i])
K
Keith Busch 已提交
2014
			break;
2015

2016
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2017 2018 2019 2020 2021
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2022

2023
		atomic_set(&hctxs[i]->nr_active, 0);
2024
		hctxs[i]->numa_node = node;
2025
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2026 2027 2028 2029 2030 2031 2032 2033

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2034
	}
K
Keith Busch 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2059 2060 2061
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2062 2063
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2064
		goto err_exit;
K
Keith Busch 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

	q->mq_map = blk_mq_make_queue_map(set);
	if (!q->mq_map)
		goto err_map;

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2078

2079
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2080
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2081 2082 2083

	q->nr_queues = nr_cpu_ids;

2084
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2085

2086 2087 2088
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2089 2090
	q->sg_reserved_size = INT_MAX;

2091 2092 2093 2094
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2095 2096 2097 2098 2099
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2100 2101 2102 2103 2104
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2105 2106
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2107

2108
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2109

2110
	get_online_cpus();
2111 2112
	mutex_lock(&all_q_mutex);

2113
	list_add_tail(&q->all_q_node, &all_q_list);
2114
	blk_mq_add_queue_tag_set(set, q);
2115
	blk_mq_map_swqueue(q, cpu_online_mask);
2116

2117
	mutex_unlock(&all_q_mutex);
2118
	put_online_cpus();
2119

2120
	return q;
2121

2122
err_hctxs:
K
Keith Busch 已提交
2123
	kfree(q->mq_map);
2124
err_map:
K
Keith Busch 已提交
2125
	kfree(q->queue_hw_ctx);
2126
err_percpu:
K
Keith Busch 已提交
2127
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2128 2129
err_exit:
	q->mq_ops = NULL;
2130 2131
	return ERR_PTR(-ENOMEM);
}
2132
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2133 2134 2135

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2136
	struct blk_mq_tag_set	*set = q->tag_set;
2137

2138 2139 2140 2141
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2142 2143
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2144 2145
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2146 2147 2148
}

/* Basically redo blk_mq_init_queue with queue frozen */
2149 2150
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2151
{
2152
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2153

2154 2155
	blk_mq_sysfs_unregister(q);

2156
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2157 2158 2159 2160 2161 2162 2163

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2164
	blk_mq_map_swqueue(q, online_mask);
2165

2166
	blk_mq_sysfs_register(q);
2167 2168
}

2169 2170
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2171 2172
{
	struct request_queue *q;
2173 2174 2175 2176 2177 2178 2179
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2180 2181

	/*
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2197
	 */
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2208
		return NOTIFY_OK;
2209
	}
2210 2211

	mutex_lock(&all_q_mutex);
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2222
	list_for_each_entry(q, &all_q_list, all_q_node) {
2223 2224
		blk_mq_freeze_queue_wait(q);

2225 2226 2227 2228 2229 2230 2231
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2232
	list_for_each_entry(q, &all_q_list, all_q_node)
2233
		blk_mq_queue_reinit(q, &online_new);
2234 2235 2236 2237

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2238 2239 2240 2241
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2296 2297 2298 2299 2300 2301
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2302 2303 2304 2305 2306 2307
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2308 2309
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2310 2311
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2312 2313
	if (!set->nr_hw_queues)
		return -EINVAL;
2314
	if (!set->queue_depth)
2315 2316 2317 2318
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2319
	if (!set->ops->queue_rq || !set->ops->map_queue)
2320 2321
		return -EINVAL;

2322 2323 2324 2325 2326
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2327

2328 2329 2330 2331 2332 2333 2334 2335 2336
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2337 2338 2339 2340 2341
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2342

K
Keith Busch 已提交
2343
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2344 2345
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2346
		return -ENOMEM;
2347

2348 2349
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2350

2351 2352 2353
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2354
	return 0;
2355
enomem:
2356 2357
	kfree(set->tags);
	set->tags = NULL;
2358 2359 2360 2361 2362 2363 2364 2365
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2366
	for (i = 0; i < nr_cpu_ids; i++) {
2367
		if (set->tags[i])
2368 2369 2370
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2371
	kfree(set->tags);
2372
	set->tags = NULL;
2373 2374 2375
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2387 2388
		if (!hctx->tags)
			continue;
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2439 2440 2441 2442
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2443
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2444 2445 2446 2447

	return 0;
}
subsys_initcall(blk_mq_init);