page_alloc.c 229.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
40 41
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
42
#include <linux/vmstat.h>
43
#include <linux/mempolicy.h>
44
#include <linux/memremap.h>
45
#include <linux/stop_machine.h>
46 47
#include <linux/sort.h>
#include <linux/pfn.h>
48
#include <linux/backing-dev.h>
49
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include <linux/page-isolation.h>
51
#include <linux/page_ext.h>
52
#include <linux/debugobjects.h>
53
#include <linux/kmemleak.h>
54
#include <linux/compaction.h>
55
#include <trace/events/kmem.h>
56
#include <trace/events/oom.h>
57
#include <linux/prefetch.h>
58
#include <linux/mm_inline.h>
59
#include <linux/migrate.h>
60
#include <linux/hugetlb.h>
61
#include <linux/sched/rt.h>
62
#include <linux/sched/mm.h>
63
#include <linux/page_owner.h>
64
#include <linux/kthread.h>
65
#include <linux/memcontrol.h>
66
#include <linux/ftrace.h>
67
#include <linux/lockdep.h>
68
#include <linux/nmi.h>
69
#include <linux/psi.h>
L
Linus Torvalds 已提交
70

71
#include <asm/sections.h>
L
Linus Torvalds 已提交
72
#include <asm/tlbflush.h>
73
#include <asm/div64.h>
L
Linus Torvalds 已提交
74
#include "internal.h"
A
Alexander Duyck 已提交
75
#include "page_reporting.h"
L
Linus Torvalds 已提交
76

77 78
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
79
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
80

81 82 83 84 85
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

86 87
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

88 89 90 91 92 93 94 95 96
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
97
int _node_numa_mem_[MAX_NUMNODES];
98 99
#endif

100 101 102 103
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

104
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
105
volatile unsigned long latent_entropy __latent_entropy;
106 107 108
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
109
/*
110
 * Array of node states.
L
Linus Torvalds 已提交
111
 */
112 113 114 115 116 117 118
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
119 120
#endif
	[N_MEMORY] = { { [0] = 1UL } },
121 122 123 124 125
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

126 127 128
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

129
unsigned long totalram_pages __read_mostly;
130
unsigned long totalreserve_pages __read_mostly;
131
unsigned long totalcma_pages __read_mostly;
132

133
int percpu_pagelist_fraction;
134
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

154 155 156 157 158
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
159 160 161 162
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
163
 */
164 165 166 167

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
168
{
169
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
170 171 172 173
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
174 175
}

176
void pm_restrict_gfp_mask(void)
177
{
178
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
179 180
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
181
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
182
}
183 184 185

bool pm_suspended_storage(void)
{
186
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
187 188 189
		return false;
	return true;
}
190 191
#endif /* CONFIG_PM_SLEEP */

192
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
193
unsigned int pageblock_order __read_mostly;
194 195
#endif

196
static void __free_pages_ok(struct page *page, unsigned int order);
197

L
Linus Torvalds 已提交
198 199 200 201 202 203
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
204
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
205 206 207
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
208
 */
209
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
210
#ifdef CONFIG_ZONE_DMA
211
	[ZONE_DMA] = 256,
212
#endif
213
#ifdef CONFIG_ZONE_DMA32
214
	[ZONE_DMA32] = 256,
215
#endif
216
	[ZONE_NORMAL] = 32,
217
#ifdef CONFIG_HIGHMEM
218
	[ZONE_HIGHMEM] = 0,
219
#endif
220
	[ZONE_MOVABLE] = 0,
221
};
L
Linus Torvalds 已提交
222 223 224

EXPORT_SYMBOL(totalram_pages);

225
static char * const zone_names[MAX_NR_ZONES] = {
226
#ifdef CONFIG_ZONE_DMA
227
	 "DMA",
228
#endif
229
#ifdef CONFIG_ZONE_DMA32
230
	 "DMA32",
231
#endif
232
	 "Normal",
233
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
234
	 "HighMem",
235
#endif
M
Mel Gorman 已提交
236
	 "Movable",
237 238 239
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
240 241
};

242 243 244 245 246 247 248 249 250 251 252 253 254
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

255 256 257 258 259 260
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
261 262 263
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
264 265
};

L
Linus Torvalds 已提交
266
int min_free_kbytes = 1024;
267
int user_min_free_kbytes = -1;
268
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
269

270 271 272
static unsigned long nr_kernel_pages __meminitdata;
static unsigned long nr_all_pages __meminitdata;
static unsigned long dma_reserve __meminitdata;
L
Linus Torvalds 已提交
273

T
Tejun Heo 已提交
274
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
275 276 277
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
static unsigned long required_kernelcore __initdata;
278
static unsigned long required_kernelcore_percent __initdata;
279
static unsigned long required_movablecore __initdata;
280
static unsigned long required_movablecore_percent __initdata;
281 282
static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
283 284 285 286 287

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
288

M
Miklos Szeredi 已提交
289 290
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
291
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
292
EXPORT_SYMBOL(nr_node_ids);
293
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
294 295
#endif

296 297
int page_group_by_mobility_disabled __read_mostly;

298
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
299
static bool deferred_mem_init_enabled __meminitdata;
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
	if (!static_branch_unlikely(&deferred_pages))
		kasan_free_pages(page, order);
}

326
/* Returns true if the struct page for the pfn is uninitialised */
327
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
328
{
329 330 331
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
332 333 334 335 336 337 338 339 340 341 342 343 344
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
345 346 347
	if (!deferred_mem_init_enabled)
		return true;

348
	/* Always populate low zones for address-constrained allocations */
349 350 351
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
	(*nr_initialised)++;
352
	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
353 354 355 356 357 358 359
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
360 361 362 363 364 365 366 367 368 369 370

static int __init setup_deferred_mem_init(char *str)
{
	if (!str)
		deferred_mem_init_enabled = true;

	return 0;
}

early_param("deferred_meminit", setup_deferred_mem_init);

371
#else
372 373
#define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)

374 375 376 377 378 379 380 381 382 383 384 385 386
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
487

488
void set_pageblock_migratetype(struct page *page, int migratetype)
489
{
490 491
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
492 493
		migratetype = MIGRATE_UNMOVABLE;

494 495 496 497
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
498
#ifdef CONFIG_DEBUG_VM
499
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
500
{
501 502 503
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
504
	unsigned long sp, start_pfn;
505

506 507
	do {
		seq = zone_span_seqbegin(zone);
508 509
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
510
		if (!zone_spans_pfn(zone, pfn))
511 512 513
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

514
	if (ret)
515 516 517
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
518

519
	return ret;
520 521 522 523
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
524
	if (!pfn_valid_within(page_to_pfn(page)))
525
		return 0;
L
Linus Torvalds 已提交
526
	if (zone != page_zone(page))
527 528 529 530 531 532 533
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
534
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
535 536
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
537
		return 1;
538 539 540
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
541 542
	return 0;
}
N
Nick Piggin 已提交
543
#else
544
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
545 546 547 548 549
{
	return 0;
}
#endif

550 551
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
552
{
553 554 555 556 557 558 559 560 561 562 563 564 565 566
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
567
			pr_alert(
568
			      "BUG: Bad page state: %lu messages suppressed\n",
569 570 571 572 573 574 575 576
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

577
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
578
		current->comm, page_to_pfn(page));
579 580 581 582 583
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
584
	dump_page_owner(page);
585

586
	print_modules();
L
Linus Torvalds 已提交
587
	dump_stack();
588
out:
589
	/* Leave bad fields for debug, except PageBuddy could make trouble */
590
	page_mapcount_reset(page); /* remove PageBuddy */
591
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
592 593 594 595 596
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
597
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
598
 *
599 600
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
601
 *
602 603
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
604
 *
605
 * The first tail page's ->compound_order holds the order of allocation.
606
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
607
 */
608

609
void free_compound_page(struct page *page)
610
{
611
	mem_cgroup_uncharge(page);
612
	__free_pages_ok(page, compound_order(page));
613 614
}

615
void prep_compound_page(struct page *page, unsigned int order)
616 617 618 619
{
	int i;
	int nr_pages = 1 << order;

620
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
621 622 623 624
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
625
		set_page_count(p, 0);
626
		p->mapping = TAIL_MAPPING;
627
		set_compound_head(p, page);
628
	}
629
	atomic_set(compound_mapcount_ptr(page), -1);
630 631
}

632 633
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
634 635
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
636
EXPORT_SYMBOL(_debug_pagealloc_enabled);
637 638
bool _debug_guardpage_enabled __read_mostly;

639 640 641 642
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
643
	return kstrtobool(buf, &_debug_pagealloc_enabled);
644 645 646
}
early_param("debug_pagealloc", early_debug_pagealloc);

647 648
static bool need_debug_guardpage(void)
{
649 650 651 652
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

653 654 655
	if (!debug_guardpage_minorder())
		return false;

656 657 658 659 660
	return true;
}

static void init_debug_guardpage(void)
{
661 662 663
	if (!debug_pagealloc_enabled())
		return;

664 665 666
	if (!debug_guardpage_minorder())
		return;

667 668 669 670 671 672 673
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
674 675 676 677 678 679

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
680
		pr_err("Bad debug_guardpage_minorder value\n");
681 682 683
		return 0;
	}
	_debug_guardpage_minorder = res;
684
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
685 686
	return 0;
}
687
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
688

689
static inline bool set_page_guard(struct zone *zone, struct page *page,
690
				unsigned int order, int migratetype)
691
{
692 693 694
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
695 696 697 698
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
699 700

	page_ext = lookup_page_ext(page);
701
	if (unlikely(!page_ext))
702
		return false;
703

704 705
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

706 707 708 709
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
710 711

	return true;
712 713
}

714 715
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
716
{
717 718 719 720 721 722
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
723 724 725
	if (unlikely(!page_ext))
		return;

726 727
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

728 729 730
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
731 732
}
#else
733
struct page_ext_operations debug_guardpage_ops;
734 735
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
736 737
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
738 739
#endif

740
static inline void set_page_order(struct page *page, unsigned int order)
741
{
H
Hugh Dickins 已提交
742
	set_page_private(page, order);
743
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
744 745 746 747
}

/*
 * This function checks whether a page is free && is the buddy
748
 * we can coalesce a page and its buddy if
749
 * (a) the buddy is not in a hole (check before calling!) &&
750
 * (b) the buddy is in the buddy system &&
751 752
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
753
 *
754 755
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
756
 *
757
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
758
 */
759
static inline int page_is_buddy(struct page *page, struct page *buddy,
760
							unsigned int order)
L
Linus Torvalds 已提交
761
{
762
	if (page_is_guard(buddy) && page_order(buddy) == order) {
763 764 765
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

766 767
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

768 769 770
		return 1;
	}

771
	if (PageBuddy(buddy) && page_order(buddy) == order) {
772 773 774 775 776 777 778 779
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

780 781
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

782
		return 1;
783
	}
784
	return 0;
L
Linus Torvalds 已提交
785 786
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
/* Used for pages not on another list */
static inline void add_to_free_list(struct page *page, struct zone *zone,
				    unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages not on another list */
static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
					 unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add_tail(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages which are on another list */
static inline void move_to_free_list(struct page *page, struct zone *zone,
				     unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_move(&page->lru, &area->free_list[migratetype]);
}

static inline void del_page_from_free_list(struct page *page, struct zone *zone,
					   unsigned int order)
{
A
Alexander Duyck 已提交
819 820 821 822
	/* clear reported state and update reported page count */
	if (page_reported(page))
		__ClearPageReported(page);

823 824 825 826 827 828
	list_del(&page->lru);
	__ClearPageBuddy(page);
	set_page_private(page, 0);
	zone->free_area[order].nr_free--;
}

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

	return capc &&
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
		capc->cc->zone == zone &&
		capc->cc->direct_compaction ? capc : NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
	 * Do not let lower order allocations polluate a movable pageblock.
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

L
Linus Torvalds 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
893 894
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
895
 * So when we are allocating or freeing one, we can derive the state of the
896 897
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
898
 * If a block is freed, and its buddy is also free, then this
899
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
900
 *
901
 * -- nyc
L
Linus Torvalds 已提交
902 903
 */

N
Nick Piggin 已提交
904
static inline void __free_one_page(struct page *page,
905
		unsigned long pfn,
906
		struct zone *zone, unsigned int order,
A
Alexander Duyck 已提交
907
		int migratetype, bool report)
L
Linus Torvalds 已提交
908
{
909 910
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
911
	struct page *buddy;
912
	unsigned int max_order;
913
	struct capture_control *capc = task_capc(zone);
914 915

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
916

917
	VM_BUG_ON(!zone_is_initialized(zone));
918
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
919

920
	VM_BUG_ON(migratetype == -1);
921
	if (likely(!is_migrate_isolate(migratetype)))
922
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
923

924
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
925
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
926

927
continue_merging:
928
	while (order < max_order - 1) {
929 930 931 932 933
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
934 935
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
936 937 938

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
939
		if (!page_is_buddy(page, buddy, order))
940
			goto done_merging;
941 942 943 944
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
945
		if (page_is_guard(buddy))
946
			clear_page_guard(zone, buddy, order, migratetype);
947
		else
948
			del_page_from_free_list(buddy, zone, order);
949 950 951
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
952 953
		order++;
	}
954 955 956 957 958 959 960 961 962 963 964 965
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

966 967
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
968 969 970 971 972 973 974 975 976 977 978 979
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
980
	set_page_order(page, order);
981 982 983 984 985 986 987 988 989

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
990
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
991
		struct page *higher_page, *higher_buddy;
992 993 994 995
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
996 997
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
998
			add_to_free_list_tail(page, zone, order,
999 1000
					      migratetype);
			return;
1001 1002 1003
		}
	}

1004
	add_to_free_list(page, zone, order, migratetype);
A
Alexander Duyck 已提交
1005 1006 1007 1008

	/* Notify page reporting subsystem of freed page */
	if (report)
		page_reporting_notify_free(order);
L
Linus Torvalds 已提交
1009 1010
}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1033
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
1034
{
1035 1036 1037 1038 1039
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
1040

1041
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1042 1043 1044
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1045
	if (unlikely(page_ref_count(page) != 0))
1046
		bad_reason = "nonzero _refcount";
1047 1048 1049 1050
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
1051 1052 1053 1054
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1055
	bad_page(page, bad_reason, bad_flags);
1056 1057 1058 1059
}

static inline int free_pages_check(struct page *page)
{
1060
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1061 1062 1063 1064
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
1065
	return 1;
L
Linus Torvalds 已提交
1066 1067
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1084
		/* the first tail page: ->mapping may be compound_mapcount() */
1085 1086 1087 1088 1089 1090 1091 1092
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1093
		 * deferred_list.next -- ignore value.
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1118 1119
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1120
{
1121
	int bad = 0;
1122 1123 1124

	VM_BUG_ON_PAGE(PageTail(page), page);

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1136

1137 1138
		if (compound)
			ClearPageDoubleMap(page);
1139 1140 1141 1142 1143 1144 1145
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
G
Gavin Shan 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

			/*
			 * The page age information is stored in page flags
			 * or node's page array. We need to explicitly clear
			 * it in both cases. Otherwise, the stale age will
			 * be provided when it's allocated again. Also, we
			 * maintain age information for each page in the
			 * compound page, So we have to clear them one by one.
			 */
			kidled_set_page_age(page_pgdat(page + i),
					    page_to_pfn(page + i), 0);
1157 1158 1159
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1160
	if (PageMappingFlags(page))
1161
		page->mapping = NULL;
1162
	if (memcg_kmem_enabled() && PageKmemcg(page))
1163
		memcg_kmem_uncharge(page, order);
1164 1165 1166 1167
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1168

1169
	page_cpupid_reset_last(page);
G
Gavin Shan 已提交
1170
	kidled_set_page_age(page_pgdat(page), page_to_pfn(page), 0);
1171 1172
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1173 1174 1175

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1176
					   PAGE_SIZE << order);
1177
		debug_check_no_obj_freed(page_address(page),
1178
					   PAGE_SIZE << order);
1179
	}
1180 1181 1182
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1183
	kasan_free_nondeferred_pages(page, order);
1184 1185 1186 1187

	return true;
}

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1204 1205 1206 1207 1208 1209
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

1210 1211 1212 1213 1214 1215 1216 1217 1218
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1219
/*
1220
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1221
 * Assumes all pages on list are in same zone, and of same order.
1222
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1223 1224 1225 1226 1227 1228 1229
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1230 1231
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1232
{
1233
	int migratetype = 0;
1234
	int batch_free = 0;
1235
	int prefetch_nr = 0;
1236
	bool isolated_pageblocks;
1237 1238
	struct page *page, *tmp;
	LIST_HEAD(head);
1239

1240
	while (count) {
1241 1242 1243
		struct list_head *list;

		/*
1244 1245 1246 1247 1248
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1249 1250
		 */
		do {
1251
			batch_free++;
1252 1253 1254 1255
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1256

1257 1258
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1259
			batch_free = count;
1260

1261
		do {
1262
			page = list_last_entry(list, struct page, lru);
1263
			/* must delete to avoid corrupting pcp list */
1264
			list_del(&page->lru);
1265
			pcp->count--;
1266

1267 1268 1269
			if (bulkfree_pcp_prepare(page))
				continue;

1270
			list_add_tail(&page->lru, &head);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
			if (prefetch_nr++ < pcp->batch)
				prefetch_buddy(page);
1283
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1284
	}
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

A
Alexander Duyck 已提交
1301
		__free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1302 1303
		trace_mm_page_pcpu_drain(page, 0, mt);
	}
1304
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1305 1306
}

1307 1308
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1309
				unsigned int order,
1310
				int migratetype)
L
Linus Torvalds 已提交
1311
{
1312
	spin_lock(&zone->lock);
1313 1314 1315 1316
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
A
Alexander Duyck 已提交
1317
	__free_one_page(page, pfn, zone, order, migratetype, true);
1318
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1319 1320
}

1321
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1322
				unsigned long zone, int nid)
1323
{
1324
	mm_zero_struct_page(page);
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1338
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1339
static void __meminit init_reserved_page(unsigned long pfn)
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1356
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1357 1358 1359 1360 1361 1362 1363
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1364 1365 1366 1367 1368 1369
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1370
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1371 1372 1373 1374
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1375 1376 1377 1378 1379
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1380 1381 1382 1383

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1384 1385 1386
			SetPageReserved(page);
		}
	}
1387 1388
}

1389 1390
static void __free_pages_ok(struct page *page, unsigned int order)
{
1391
	unsigned long flags;
M
Minchan Kim 已提交
1392
	int migratetype;
1393
	unsigned long pfn = page_to_pfn(page);
1394

1395
	if (!free_pages_prepare(page, order, true))
1396 1397
		return;

1398
	migratetype = get_pfnblock_migratetype(page, pfn);
1399 1400
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1401
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1402
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1403 1404
}

1405
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1406
{
1407
	unsigned int nr_pages = 1 << order;
1408
	struct page *p = page;
1409
	unsigned int loop;
1410

1411 1412 1413
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1414 1415
		__ClearPageReserved(p);
		set_page_count(p, 0);
1416
	}
1417 1418
	__ClearPageReserved(p);
	set_page_count(p, 0);
1419

1420
	page_zone(page)->managed_pages += nr_pages;
1421 1422
	set_page_refcounted(page);
	__free_pages(page, order);
1423 1424
}

1425 1426
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1427

1428 1429 1430 1431
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1432
	static DEFINE_SPINLOCK(early_pfn_lock);
1433 1434
	int nid;

1435
	spin_lock(&early_pfn_lock);
1436
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1437
	if (nid < 0)
1438
		nid = first_online_node;
1439 1440 1441
	spin_unlock(&early_pfn_lock);

	return nid;
1442 1443 1444 1445
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1446 1447
/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1448 1449 1450
{
	int nid;

1451
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

#else
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
#endif


1465
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1466 1467 1468 1469
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1470
	return __free_pages_boot_core(page, order);
1471 1472
}

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1502 1503 1504
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1544
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1545 1546
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1547
{
1548 1549
	struct page *page;
	unsigned long i;
1550

1551
	if (!nr_pages)
1552 1553
		return;

1554 1555
	page = pfn_to_page(pfn);

1556
	/* Free a large naturally-aligned chunk if possible */
1557 1558
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1559
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1560
		__free_pages_boot_core(page, pageblock_order);
1561 1562 1563
		return;
	}

1564 1565 1566
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1567
		__free_pages_boot_core(page, 0);
1568
	}
1569 1570
}

1571 1572 1573 1574 1575 1576 1577 1578 1579
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1580

1581
/*
1582 1583 1584 1585 1586 1587 1588 1589
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1590
 */
1591
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1592
{
1593 1594 1595 1596 1597 1598
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1599

1600 1601 1602 1603
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1604
static void __init deferred_free_pages(unsigned long pfn,
1605 1606 1607 1608
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1609

1610
	for (; pfn < end_pfn; pfn++) {
1611
		if (!deferred_pfn_valid(pfn)) {
1612 1613 1614 1615 1616
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
1617
			touch_nmi_watchdog();
1618 1619 1620 1621 1622 1623
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1624 1625
}

1626 1627 1628 1629 1630
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1631
static unsigned long  __init deferred_init_pages(struct zone *zone,
1632 1633
						 unsigned long pfn,
						 unsigned long end_pfn)
1634 1635
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1636
	int nid = zone_to_nid(zone);
1637
	unsigned long nr_pages = 0;
1638
	int zid = zone_idx(zone);
1639 1640
	struct page *page = NULL;

1641
	for (; pfn < end_pfn; pfn++) {
1642
		if (!deferred_pfn_valid(pfn)) {
1643
			page = NULL;
1644
			continue;
1645
		} else if (!page || !(pfn & nr_pgmask)) {
1646
			page = pfn_to_page(pfn);
1647
			touch_nmi_watchdog();
1648 1649
		} else {
			page++;
1650
		}
1651
		__init_single_page(page, pfn, zid, nid);
1652
		nr_pages++;
1653
	}
1654
	return (nr_pages);
1655 1656
}

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

1741 1742 1743 1744 1745
/*
 * Release the pending interrupts for every TICK_PAGE_COUNT pages.
 */
#define TICK_PAGE_COUNT	(32 * 1024)

1746
/* Initialise remaining memory on a node */
1747
static int __init deferred_init_memmap(void *data)
1748
{
1749
	pg_data_t *pgdat = data;
1750
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1751
	unsigned long spfn = 0, epfn = 0, nr_pages = 0, prev_nr_pages = 0;
1752
	unsigned long first_init_pfn, flags;
1753 1754
	unsigned long start = jiffies;
	struct zone *zone;
1755
	int zid;
1756
	u64 i;
1757

1758 1759 1760 1761
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

1762
again:
1763 1764
	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
1765
	if (first_init_pfn == ULONG_MAX) {
1766
		pgdat_resize_unlock(pgdat, &flags);
1767
		pgdat_init_report_one_done();
1768 1769 1770
		return 0;
	}

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1781 1782 1783 1784 1785

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
1786

1787
	/*
1788 1789 1790
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
1791
	 */
1792
	while (spfn < epfn) {
1793
		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
		/*
		 * Release the interrupts for every TICK_PAGE_COUNT pages
		 * (128MB) to give tick timer the chance to update the
		 * system jiffies.
		 */
		if ((nr_pages - prev_nr_pages) > TICK_PAGE_COUNT) {
			prev_nr_pages = nr_pages;
			pgdat->first_deferred_pfn = spfn;
			pgdat_resize_unlock(pgdat, &flags);
			goto again;
		}
	}

1807
zone_empty:
1808
	pgdat->first_deferred_pfn = ULONG_MAX;
1809
	pgdat_resize_unlock(pgdat, &flags);
1810 1811 1812 1813

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1814 1815
	pr_info("node %d initialised, %lu pages in %ums\n",
		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1816 1817

	pgdat_init_report_one_done();
1818 1819
	return 0;
}
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1840
	pg_data_t *pgdat = zone->zone_pgdat;
1841
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1842 1843
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If deferred pages have been initialized while we were waiting for
	 * the lock, return true, as the zone was grown.  The caller will retry
	 * this zone.  We won't return to this function since the caller also
	 * has this static branch.
	 */
	if (!static_branch_unlikely(&deferred_pages)) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

1872 1873 1874 1875
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
1876
		pgdat_resize_unlock(pgdat, &flags);
1877 1878
		/* Retry only once. */
		return first_deferred_pfn != ULONG_MAX;
1879 1880
	}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1891

1892 1893 1894
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
1895

1896
		/* If our quota has been met we can stop here */
1897 1898 1899 1900
		if (nr_pages >= nr_pages_needed)
			break;
	}

1901
	pgdat->first_deferred_pfn = spfn;
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

1919
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1920 1921 1922

void __init page_alloc_init_late(void)
{
1923 1924 1925
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1926 1927
	int nid;

1928 1929
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1930 1931 1932 1933 1934
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1935
	wait_for_completion(&pgdat_init_all_done_comp);
1936

1937 1938 1939 1940 1941 1942 1943 1944
	/*
	 * The number of managed pages has changed due to the initialisation
	 * so the pcpu batch and high limits needs to be updated or the limits
	 * will be artificially small.
	 */
	for_each_populated_zone(zone)
		zone_pcp_update(zone);

1945 1946 1947 1948 1949 1950
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

1951 1952
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1953
#endif
P
Pavel Tatashin 已提交
1954 1955 1956 1957
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1958 1959 1960

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1961 1962
}

1963
#ifdef CONFIG_CMA
1964
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1965 1966 1967 1968 1969 1970 1971 1972
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
1973
	} while (++p, --i);
1974 1975

	set_pageblock_migratetype(page, MIGRATE_CMA);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1990
	adjust_managed_page_count(page, pageblock_nr_pages);
1991 1992
}
#endif
L
Linus Torvalds 已提交
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
2006
 * -- nyc
L
Linus Torvalds 已提交
2007
 */
N
Nick Piggin 已提交
2008
static inline void expand(struct zone *zone, struct page *page,
2009
	int low, int high, int migratetype)
L
Linus Torvalds 已提交
2010 2011 2012 2013 2014 2015
{
	unsigned long size = 1 << high;

	while (high > low) {
		high--;
		size >>= 1;
2016
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2017

2018 2019 2020 2021 2022 2023 2024
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
2025
			continue;
2026

2027
		add_to_free_list(&page[size], zone, high, migratetype);
L
Linus Torvalds 已提交
2028 2029 2030 2031
		set_page_order(&page[size], high);
	}
}

2032
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
2033
{
2034 2035
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
2036

2037
	if (unlikely(atomic_read(&page->_mapcount) != -1))
2038 2039 2040
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
2041
	if (unlikely(page_ref_count(page) != 0))
2042
		bad_reason = "nonzero _count";
2043 2044 2045
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
2046 2047 2048
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
2049
	}
2050 2051 2052 2053
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
2054 2055 2056 2057
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
2072 2073
}

2074
static inline bool free_pages_prezeroed(void)
2075 2076
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2077
		page_poisoning_enabled();
2078 2079
}

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2114 2115 2116 2117 2118 2119 2120 2121 2122
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
Q
Qian Cai 已提交
2123
	kernel_poison_pages(page, 1 << order, 1);
2124 2125 2126
	set_page_owner(page, order, gfp_flags);
}

2127
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2128
							unsigned int alloc_flags)
2129 2130
{
	int i;
2131

2132
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2133

2134
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2135 2136
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
2137 2138 2139 2140

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2141
	/*
2142
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2143 2144 2145 2146
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2147 2148 2149 2150
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2151 2152
}

2153 2154 2155 2156
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2157
static __always_inline
2158
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2159 2160 2161
						int migratetype)
{
	unsigned int current_order;
2162
	struct free_area *area;
2163 2164 2165 2166 2167
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2168
		page = get_page_from_free_area(area, migratetype);
2169 2170
		if (!page)
			continue;
2171 2172
		del_page_from_free_list(page, zone, current_order);
		expand(zone, page, order, current_order, migratetype);
2173
		set_pcppage_migratetype(page, migratetype);
2174 2175 2176 2177 2178 2179 2180
		return page;
	}

	return NULL;
}


2181 2182 2183 2184
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2185
static int fallbacks[MIGRATE_TYPES][4] = {
2186 2187 2188
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2189
#ifdef CONFIG_CMA
2190
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2191
#endif
2192
#ifdef CONFIG_MEMORY_ISOLATION
2193
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2194
#endif
2195 2196
};

2197
#ifdef CONFIG_CMA
2198
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2199 2200 2201 2202 2203 2204 2205 2206 2207
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2208 2209
/*
 * Move the free pages in a range to the free lists of the requested type.
2210
 * Note that start_page and end_pages are not aligned on a pageblock
2211 2212
 * boundary. If alignment is required, use move_freepages_block()
 */
2213
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
2214
			  struct page *start_page, struct page *end_page,
2215
			  int migratetype, int *num_movable)
2216 2217
{
	struct page *page;
2218
	unsigned int order;
2219
	int pages_moved = 0;
2220 2221 2222 2223 2224 2225 2226

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
2227
	 * grouping pages by mobility
2228
	 */
2229 2230 2231
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
2232 2233
#endif

2234 2235 2236
	if (num_movable)
		*num_movable = 0;

2237 2238 2239 2240 2241 2242
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

2243 2244 2245
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

2246
		if (!PageBuddy(page)) {
2247 2248 2249 2250 2251 2252 2253 2254 2255
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

2256 2257 2258 2259 2260
			page++;
			continue;
		}

		order = page_order(page);
2261
		move_to_free_list(page, zone, order, migratetype);
2262
		page += 1 << order;
2263
		pages_moved += 1 << order;
2264 2265
	}

2266
	return pages_moved;
2267 2268
}

2269
int move_freepages_block(struct zone *zone, struct page *page,
2270
				int migratetype, int *num_movable)
2271 2272 2273 2274 2275
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
2276
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2277
	start_page = pfn_to_page(start_pfn);
2278 2279
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2280 2281

	/* Do not cross zone boundaries */
2282
	if (!zone_spans_pfn(zone, start_pfn))
2283
		start_page = page;
2284
	if (!zone_spans_pfn(zone, end_pfn))
2285 2286
		return 0;

2287 2288
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
2289 2290
}

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2302
/*
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2313
 */
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2338 2339 2340 2341
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2342 2343
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2344
					int start_type, bool whole_block)
2345
{
2346
	unsigned int current_order = page_order(page);
2347 2348 2349 2350
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2351

2352 2353 2354 2355
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2356
	if (is_migrate_highatomic(old_block_type))
2357 2358
		goto single_page;

2359 2360 2361
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2362
		goto single_page;
2363 2364
	}

2365 2366 2367 2368
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2393
	/* moving whole block can fail due to zone boundary conditions */
2394
	if (!free_pages)
2395
		goto single_page;
2396

2397 2398 2399 2400 2401
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2402 2403
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2404 2405 2406 2407

	return;

single_page:
2408
	move_to_free_list(page, zone, current_order, start_type);
2409 2410
}

2411 2412 2413 2414 2415 2416 2417 2418
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2429
		if (fallback_mt == MIGRATE_TYPES)
2430 2431
			break;

2432
		if (free_area_empty(area, fallback_mt))
2433
			continue;
2434

2435 2436 2437
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2438 2439 2440 2441 2442
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2443
	}
2444 2445

	return -1;
2446 2447
}

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2474 2475
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2476 2477
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2478
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2490 2491 2492
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2493
 */
2494 2495
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2496 2497 2498 2499 2500 2501 2502
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2503
	bool ret;
2504 2505 2506

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2507 2508 2509 2510 2511 2512
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2513 2514 2515 2516 2517 2518
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2519
			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2520
			if (!page)
2521 2522 2523
				continue;

			/*
2524 2525 2526 2527 2528
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2529
			 */
2530
			if (is_migrate_highatomic_page(page)) {
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2553 2554
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2555 2556 2557 2558
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2559 2560 2561
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2562 2563

	return false;
2564 2565
}

2566 2567 2568 2569 2570
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2571 2572 2573 2574
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2575
 */
2576
static __always_inline bool
2577
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2578
{
2579
	struct free_area *area;
2580
	int current_order;
2581
	struct page *page;
2582 2583
	int fallback_mt;
	bool can_steal;
2584

2585 2586 2587 2588 2589
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2590
	for (current_order = MAX_ORDER - 1; current_order >= order;
2591
				--current_order) {
2592 2593
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2594
				start_migratetype, false, &can_steal);
2595 2596
		if (fallback_mt == -1)
			continue;
2597

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2609

2610 2611
		goto do_steal;
	}
2612

2613
	return false;
2614

2615 2616 2617 2618 2619 2620 2621 2622
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2623 2624
	}

2625 2626 2627 2628 2629 2630 2631
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
2632
	page = get_page_from_free_area(area, fallback_mt);
2633 2634 2635 2636 2637 2638 2639 2640

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2641 2642
}

2643
/*
L
Linus Torvalds 已提交
2644 2645 2646
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2647 2648
static __always_inline struct page *
__rmqueue(struct zone *zone, unsigned int order, int migratetype)
L
Linus Torvalds 已提交
2649 2650 2651
{
	struct page *page;

2652
retry:
2653
	page = __rmqueue_smallest(zone, order, migratetype);
2654
	if (unlikely(!page)) {
2655 2656 2657
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2658 2659
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2660 2661
	}

2662
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2663
	return page;
L
Linus Torvalds 已提交
2664 2665
}

2666
/*
L
Linus Torvalds 已提交
2667 2668 2669 2670
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2671
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2672
			unsigned long count, struct list_head *list,
M
Mel Gorman 已提交
2673
			int migratetype)
L
Linus Torvalds 已提交
2674
{
2675
	int i, alloced = 0;
2676

2677
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2678
	for (i = 0; i < count; ++i) {
2679
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2680
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2681
			break;
2682

2683 2684 2685
		if (unlikely(check_pcp_refill(page)))
			continue;

2686
		/*
2687 2688 2689 2690 2691 2692 2693 2694
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2695
		 */
2696
		list_add_tail(&page->lru, list);
2697
		alloced++;
2698
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2699 2700
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2701
	}
2702 2703 2704 2705 2706 2707 2708

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2709
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2710
	spin_unlock(&zone->lock);
2711
	return alloced;
L
Linus Torvalds 已提交
2712 2713
}

2714
#ifdef CONFIG_NUMA
2715
/*
2716 2717 2718 2719
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2720 2721
 * Note that this function must be called with the thread pinned to
 * a single processor.
2722
 */
2723
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2724 2725
{
	unsigned long flags;
2726
	int to_drain, batch;
2727

2728
	local_irq_save(flags);
2729
	batch = READ_ONCE(pcp->batch);
2730
	to_drain = min(pcp->count, batch);
2731
	if (to_drain > 0)
2732
		free_pcppages_bulk(zone, to_drain, pcp);
2733
	local_irq_restore(flags);
2734 2735 2736
}
#endif

2737
/*
2738
 * Drain pcplists of the indicated processor and zone.
2739 2740 2741 2742 2743
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2744
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2745
{
N
Nick Piggin 已提交
2746
	unsigned long flags;
2747 2748
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2749

2750 2751
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2752

2753
	pcp = &pset->pcp;
2754
	if (pcp->count)
2755 2756 2757
		free_pcppages_bulk(zone, pcp->count, pcp);
	local_irq_restore(flags);
}
2758

2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2772 2773 2774
	}
}

2775 2776
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2777 2778 2779
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2780
 */
2781
void drain_local_pages(struct zone *zone)
2782
{
2783 2784 2785 2786 2787 2788
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2789 2790
}

2791 2792
static void drain_local_pages_wq(struct work_struct *work)
{
2793 2794 2795 2796 2797 2798 2799 2800
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2801
	drain_local_pages(NULL);
2802
	preempt_enable();
2803 2804
}

2805
/*
2806 2807
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2808 2809
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2810
 * Note that this can be extremely slow as the draining happens in a workqueue.
2811
 */
2812
void drain_all_pages(struct zone *zone)
2813
{
2814 2815 2816 2817 2818 2819 2820 2821
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2822 2823 2824 2825 2826 2827 2828
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2839

2840 2841 2842 2843 2844 2845 2846
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2847 2848
		struct per_cpu_pageset *pcp;
		struct zone *z;
2849
		bool has_pcps = false;
2850 2851

		if (zone) {
2852
			pcp = per_cpu_ptr(zone->pageset, cpu);
2853
			if (pcp->pcp.count)
2854
				has_pcps = true;
2855 2856 2857 2858 2859 2860 2861
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2862 2863
			}
		}
2864

2865 2866 2867 2868 2869
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2870

2871 2872 2873
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2874
		queue_work_on(cpu, mm_percpu_wq, work);
2875
	}
2876 2877 2878 2879
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2880 2881
}

2882
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2883

2884 2885 2886 2887 2888
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2889 2890
void mark_free_pages(struct zone *zone)
{
2891
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2892
	unsigned long flags;
2893
	unsigned int order, t;
2894
	struct page *page;
L
Linus Torvalds 已提交
2895

2896
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2897 2898 2899
		return;

	spin_lock_irqsave(&zone->lock, flags);
2900

2901
	max_zone_pfn = zone_end_pfn(zone);
2902 2903
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2904
			page = pfn_to_page(pfn);
2905

2906 2907 2908 2909 2910
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2911 2912 2913
			if (page_zone(page) != zone)
				continue;

2914 2915
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2916
		}
L
Linus Torvalds 已提交
2917

2918
	for_each_migratetype_order(order, t) {
2919 2920
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2921
			unsigned long i;
L
Linus Torvalds 已提交
2922

2923
			pfn = page_to_pfn(page);
2924 2925 2926 2927 2928
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2929
				swsusp_set_page_free(pfn_to_page(pfn + i));
2930
			}
2931
		}
2932
	}
L
Linus Torvalds 已提交
2933 2934
	spin_unlock_irqrestore(&zone->lock, flags);
}
2935
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2936

2937
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2938
{
2939
	int migratetype;
L
Linus Torvalds 已提交
2940

2941
	if (!free_pcp_prepare(page))
2942
		return false;
2943

2944
	migratetype = get_pfnblock_migratetype(page, pfn);
2945
	set_pcppage_migratetype(page, migratetype);
2946 2947 2948
	return true;
}

2949
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2950 2951 2952 2953 2954 2955
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2956
	__count_vm_event(PGFREE);
2957

2958 2959 2960
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2961
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2962 2963 2964 2965
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2966
		if (unlikely(is_migrate_isolate(migratetype))) {
2967
			free_one_page(zone, page, pfn, 0, migratetype);
2968
			return;
2969 2970 2971 2972
		}
		migratetype = MIGRATE_MOVABLE;
	}

2973
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2974
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2975
	pcp->count++;
N
Nick Piggin 已提交
2976
	if (pcp->count >= pcp->high) {
2977
		unsigned long batch = READ_ONCE(pcp->batch);
2978
		free_pcppages_bulk(zone, batch, pcp);
N
Nick Piggin 已提交
2979
	}
2980
}
2981

2982 2983 2984
/*
 * Free a 0-order page
 */
2985
void free_unref_page(struct page *page)
2986 2987 2988 2989
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2990
	if (!free_unref_page_prepare(page, pfn))
2991 2992 2993
		return;

	local_irq_save(flags);
2994
	free_unref_page_commit(page, pfn);
2995
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2996 2997
}

2998 2999 3000
/*
 * Free a list of 0-order pages
 */
3001
void free_unref_page_list(struct list_head *list)
3002 3003
{
	struct page *page, *next;
3004
	unsigned long flags, pfn;
3005
	int batch_count = 0;
3006 3007 3008 3009

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
3010
		if (!free_unref_page_prepare(page, pfn))
3011 3012 3013
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
3014

3015
	local_irq_save(flags);
3016
	list_for_each_entry_safe(page, next, list, lru) {
3017 3018 3019
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
3020 3021
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
3032
	}
3033
	local_irq_restore(flags);
3034 3035
}

N
Nick Piggin 已提交
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3048 3049
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3050

3051
	for (i = 1; i < (1 << order); i++)
3052
		set_page_refcounted(page + i);
3053
	split_page_owner(page, order);
N
Nick Piggin 已提交
3054
}
K
K. Y. Srinivasan 已提交
3055
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3056

3057
int __isolate_free_page(struct page *page, unsigned int order)
3058 3059 3060
{
	unsigned long watermark;
	struct zone *zone;
3061
	int mt;
3062 3063 3064 3065

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3066
	mt = get_pageblock_migratetype(page);
3067

3068
	if (!is_migrate_isolate(mt)) {
3069 3070 3071 3072 3073 3074
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3075
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3076
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3077 3078
			return 0;

3079
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3080
	}
3081 3082

	/* Remove page from free list */
3083

3084
	del_page_from_free_list(page, zone, order);
3085

3086 3087 3088 3089
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3090 3091
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3092 3093
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3094
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3095
			    && !is_migrate_highatomic(mt))
3096 3097 3098
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3099 3100
	}

3101

3102
	return 1UL << order;
3103 3104
}

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
/**
 * __putback_isolated_page - Return a now-isolated page back where we got it
 * @page: Page that was isolated
 * @order: Order of the isolated page
 *
 * This function is meant to return a page pulled from the free lists via
 * __isolate_free_page back to the free lists they were pulled from.
 */
void __putback_isolated_page(struct page *page, unsigned int order, int mt)
{
	struct zone *zone = page_zone(page);

	/* zone lock should be held when this function is called */
	lockdep_assert_held(&zone->lock);

	/* Return isolated page to tail of freelist. */
A
Alexander Duyck 已提交
3121
	__free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3122 3123
}

3124 3125 3126 3127 3128
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
3129
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3130 3131
{
#ifdef CONFIG_NUMA
3132
	enum numa_stat_item local_stat = NUMA_LOCAL;
3133

3134 3135 3136 3137
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3138
	if (zone_to_nid(z) != numa_node_id())
3139 3140
		local_stat = NUMA_OTHER;

3141
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3142
		__inc_numa_state(z, NUMA_HIT);
3143
	else {
3144 3145
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3146
	}
3147
	__inc_numa_state(z, local_stat);
3148 3149 3150
#endif
}

3151 3152
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
M
Mel Gorman 已提交
3153
			struct per_cpu_pages *pcp,
3154 3155 3156 3157 3158 3159 3160 3161
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
M
Mel Gorman 已提交
3162
					migratetype);
3163 3164 3165 3166
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3167
		page = list_first_entry(list, struct page, lru);
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3183
	unsigned long flags;
3184

3185
	local_irq_save(flags);
3186 3187
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
M
Mel Gorman 已提交
3188
	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
3189 3190 3191 3192
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
3193
	local_irq_restore(flags);
3194 3195 3196
	return page;
}

L
Linus Torvalds 已提交
3197
/*
3198
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3199
 */
3200
static inline
3201
struct page *rmqueue(struct zone *preferred_zone,
3202
			struct zone *zone, unsigned int order,
3203 3204
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3205 3206
{
	unsigned long flags;
3207
	struct page *page;
L
Linus Torvalds 已提交
3208

3209
	if (likely(order == 0)) {
3210 3211 3212 3213
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
3214

3215 3216 3217 3218 3219 3220
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3221

3222 3223 3224 3225 3226 3227 3228
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3229
		if (!page)
3230 3231 3232 3233 3234 3235 3236
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
3237

3238
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
3239
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
3240
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3241

3242 3243
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3244
	return page;
N
Nick Piggin 已提交
3245 3246 3247 3248

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
3249 3250
}

3251 3252
#ifdef CONFIG_FAIL_PAGE_ALLOC

3253
static struct {
3254 3255
	struct fault_attr attr;

3256
	bool ignore_gfp_highmem;
3257
	bool ignore_gfp_reclaim;
3258
	u32 min_order;
3259 3260
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3261
	.ignore_gfp_reclaim = true,
3262
	.ignore_gfp_highmem = true,
3263
	.min_order = 1,
3264 3265 3266 3267 3268 3269 3270 3271
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3272
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3273
{
3274
	if (order < fail_page_alloc.min_order)
3275
		return false;
3276
	if (gfp_mask & __GFP_NOFAIL)
3277
		return false;
3278
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3279
		return false;
3280 3281
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3282
		return false;
3283 3284 3285 3286 3287 3288 3289 3290

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3291
	umode_t mode = S_IFREG | 0600;
3292 3293
	struct dentry *dir;

3294 3295 3296 3297
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
3298

3299
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3300
				&fail_page_alloc.ignore_gfp_reclaim))
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
3311
	debugfs_remove_recursive(dir);
3312

3313
	return -ENOMEM;
3314 3315 3316 3317 3318 3319 3320 3321
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3322
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3323
{
3324
	return false;
3325 3326 3327 3328
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
3329
/*
3330 3331 3332 3333
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3334
 */
3335 3336 3337
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3338
{
3339
	long min = mark;
L
Linus Torvalds 已提交
3340
	int o;
3341
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3342

3343 3344 3345 3346 3347 3348 3349 3350
	/* apply negative memory.wmark_min_adj */
	if ((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) {
		int min_adj = memcg_get_wmark_min_adj(current);

		if (min_adj < 0)
			min -= mark * (-min_adj) / 100;
	}

3351
	/* free_pages may go negative - that's OK */
3352
	free_pages -= (1 << order) - 1;
3353

R
Rohit Seth 已提交
3354
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3355
		min -= min / 2;
3356 3357 3358 3359 3360 3361

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3362
	if (likely(!alloc_harder)) {
3363
		free_pages -= z->nr_reserved_highatomic;
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3377 3378 3379 3380 3381 3382
	/*
	 * Only happens due to memory.wmark_min_adj.
	 * Guarantee safe min after memory.wmark_min_adj?
	 */
	if (min < mark / 4)
		min = mark / 4;
3383

3384 3385 3386 3387 3388 3389
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

3390 3391 3392 3393 3394 3395
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3396
		return false;
L
Linus Torvalds 已提交
3397

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3411
			if (!free_area_empty(area, mt))
3412 3413 3414 3415
				return true;
		}

#ifdef CONFIG_CMA
3416
		if ((alloc_flags & ALLOC_CMA) &&
3417
		    !free_area_empty(area, MIGRATE_CMA)) {
3418
			return true;
3419
		}
3420
#endif
3421 3422 3423
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3424
	}
3425
	return false;
3426 3427
}

3428
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3429
		      int classzone_idx, unsigned int alloc_flags)
3430 3431 3432 3433 3434
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3435 3436 3437 3438
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3439 3440 3441 3442 3443 3444 3445
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
3446 3447 3448 3449 3450 3451 3452 3453

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
3454
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3455 3456 3457 3458 3459 3460
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3461
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3462
			unsigned long mark, int classzone_idx)
3463 3464 3465 3466 3467 3468
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3469
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3470
								free_pages);
L
Linus Torvalds 已提交
3471 3472
}

3473
#ifdef CONFIG_NUMA
3474 3475
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3476
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3477
				RECLAIM_DISTANCE;
3478
}
3479
#else	/* CONFIG_NUMA */
3480 3481 3482 3483
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3484 3485
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3486
/*
3487
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3488 3489 3490
 * a page.
 */
static struct page *
3491 3492
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3493
{
3494
	struct zoneref *z = ac->preferred_zoneref;
3495
	struct zone *zone;
3496 3497
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3498
	/*
3499
	 * Scan zonelist, looking for a zone with enough free.
3500
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3501
	 */
3502
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3503
								ac->nodemask) {
3504
		struct page *page;
3505 3506
		unsigned long mark;

3507 3508
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3509
			!__cpuset_zone_allowed(zone, gfp_mask))
3510
				continue;
3511 3512
		/*
		 * When allocating a page cache page for writing, we
3513 3514
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3515
		 * proportional share of globally allowed dirty pages.
3516
		 * The dirty limits take into account the node's
3517 3518 3519 3520 3521
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3522
		 * exceed the per-node dirty limit in the slowpath
3523
		 * (spread_dirty_pages unset) before going into reclaim,
3524
		 * which is important when on a NUMA setup the allowed
3525
		 * nodes are together not big enough to reach the
3526
		 * global limit.  The proper fix for these situations
3527
		 * will require awareness of nodes in the
3528 3529
		 * dirty-throttling and the flusher threads.
		 */
3530 3531 3532 3533 3534 3535 3536 3537 3538
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3539

3540
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3541
		if (!zone_watermark_fast(zone, order, mark,
3542
				       ac_classzone_idx(ac), alloc_flags)) {
3543 3544
			int ret;

3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3555 3556 3557 3558 3559
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3560
			if (node_reclaim_mode == 0 ||
3561
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3562 3563
				continue;

3564
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3565
			switch (ret) {
3566
			case NODE_RECLAIM_NOSCAN:
3567
				/* did not scan */
3568
				continue;
3569
			case NODE_RECLAIM_FULL:
3570
				/* scanned but unreclaimable */
3571
				continue;
3572 3573
			default:
				/* did we reclaim enough */
3574
				if (zone_watermark_ok(zone, order, mark,
3575
						ac_classzone_idx(ac), alloc_flags))
3576 3577 3578
					goto try_this_zone;

				continue;
3579
			}
R
Rohit Seth 已提交
3580 3581
		}

3582
try_this_zone:
3583
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3584
				gfp_mask, alloc_flags, ac->migratetype);
3585
		if (page) {
3586
			prep_new_page(page, order, gfp_mask, alloc_flags);
3587 3588 3589 3590 3591 3592 3593 3594

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3595
			return page;
3596 3597 3598 3599 3600 3601 3602 3603
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
3604
		}
3605
	}
3606

3607
	return NULL;
M
Martin Hicks 已提交
3608 3609
}

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3624
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3625 3626
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3627
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3628

3629
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3630 3631 3632 3633 3634 3635 3636 3637
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3638
		if (tsk_is_oom_victim(current) ||
3639 3640
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3641
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3642 3643
		filter &= ~SHOW_MEM_FILTER_NODES;

3644
	show_mem(filter, nodemask);
3645 3646
}

3647
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3648 3649 3650 3651 3652 3653
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3654
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3655 3656
		return;

3657 3658 3659
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
M
Michal Hocko 已提交
3660 3661 3662
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3663
	va_end(args);
J
Joe Perches 已提交
3664

3665
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3666

3667
	dump_stack();
3668
	warn_alloc_show_mem(gfp_mask, nodemask);
3669 3670
}

3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3691 3692
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3693
	const struct alloc_context *ac, unsigned long *did_some_progress)
3694
{
3695 3696 3697
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3698
		.memcg = NULL,
3699 3700 3701
		.gfp_mask = gfp_mask,
		.order = order,
	};
3702 3703
	struct page *page;

3704 3705 3706
	*did_some_progress = 0;

	/*
3707 3708
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3709
	 */
3710
	if (!mutex_trylock(&oom_lock)) {
3711
		*did_some_progress = 1;
3712
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3713 3714
		return NULL;
	}
3715

3716 3717 3718
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3719 3720 3721
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3722
	 */
3723 3724 3725
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3726
	if (page)
3727 3728
		goto out;

3729 3730 3731 3732 3733 3734
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3735 3736 3737 3738 3739 3740 3741 3742
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3761

3762
	/* Exhausted what can be done so it's blame time */
3763
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3764
		*did_some_progress = 1;
3765

3766 3767 3768 3769 3770 3771
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3772 3773
					ALLOC_NO_WATERMARKS, ac);
	}
3774
out:
3775
	mutex_unlock(&oom_lock);
3776 3777 3778
	return page;
}

3779 3780 3781 3782 3783 3784
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3785 3786 3787 3788
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3789
		unsigned int alloc_flags, const struct alloc_context *ac,
3790
		enum compact_priority prio, enum compact_result *compact_result)
3791
{
3792
	struct page *page = NULL;
3793
	unsigned long pflags;
3794
	unsigned int noreclaim_flag;
3795
	u64 start;
3796 3797

	if (!order)
3798 3799
		return NULL;

3800
	psi_memstall_enter(&pflags);
3801
	memcg_lat_stat_start(&start);
3802
	noreclaim_flag = memalloc_noreclaim_save();
3803

3804
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3805
									prio, &page);
3806

3807
	memalloc_noreclaim_restore(noreclaim_flag);
3808
	memcg_lat_stat_end(MEM_LAT_DIRECT_COMPACT, start);
3809
	psi_memstall_leave(&pflags);
3810

3811 3812 3813 3814 3815
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3816

3817 3818 3819 3820 3821 3822 3823
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3824

3825 3826
	if (page) {
		struct zone *zone = page_zone(page);
3827

3828 3829 3830 3831 3832
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3833

3834 3835 3836 3837 3838
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3839

3840
	cond_resched();
3841 3842 3843

	return NULL;
}
3844

3845 3846 3847 3848
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3849
		     int *compaction_retries)
3850 3851
{
	int max_retries = MAX_COMPACT_RETRIES;
3852
	int min_priority;
3853 3854 3855
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3856 3857 3858 3859

	if (!order)
		return false;

3860 3861 3862
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3863 3864 3865 3866 3867
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3868 3869
	if (compaction_failed(compact_result))
		goto check_priority;
3870 3871 3872 3873 3874 3875 3876

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3877 3878 3879 3880
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3881 3882

	/*
3883
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3884 3885 3886 3887 3888 3889 3890 3891
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3892 3893 3894 3895
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3896

3897 3898 3899 3900 3901
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3902 3903
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3904

3905
	if (*compact_priority > min_priority) {
3906 3907
		(*compact_priority)--;
		*compaction_retries = 0;
3908
		ret = true;
3909
	}
3910 3911 3912
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3913
}
3914 3915 3916
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3917
		unsigned int alloc_flags, const struct alloc_context *ac,
3918
		enum compact_priority prio, enum compact_result *compact_result)
3919
{
3920
	*compact_result = COMPACT_SKIPPED;
3921 3922
	return NULL;
}
3923 3924

static inline bool
3925 3926
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3927
		     enum compact_priority *compact_priority,
3928
		     int *compaction_retries)
3929
{
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3948 3949
	return false;
}
3950
#endif /* CONFIG_COMPACTION */
3951

3952
#ifdef CONFIG_LOCKDEP
3953
static struct lockdep_map __fs_reclaim_map =
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3965
	if (current->flags & PF_MEMALLOC)
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

3988 3989 3990
void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3991
		__fs_reclaim_acquire();
3992 3993 3994 3995 3996 3997
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
3998
		__fs_reclaim_release();
3999 4000 4001 4002
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

4003 4004
/* Perform direct synchronous page reclaim */
static int
4005 4006
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
4007 4008
{
	struct reclaim_state reclaim_state;
4009
	int progress;
4010
	unsigned int noreclaim_flag;
4011
	unsigned long pflags;
4012
	u64 start;
4013 4014 4015 4016 4017

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4018
	psi_memstall_enter(&pflags);
4019
	memcg_lat_stat_start(&start);
4020
	fs_reclaim_acquire(gfp_mask);
4021
	noreclaim_flag = memalloc_noreclaim_save();
4022
	reclaim_state.reclaimed_slab = 0;
4023
	current->reclaim_state = &reclaim_state;
4024

4025 4026
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4027

4028
	current->reclaim_state = NULL;
4029
	memalloc_noreclaim_restore(noreclaim_flag);
4030
	fs_reclaim_release(gfp_mask);
4031
	memcg_lat_stat_end(MEM_LAT_GLOBAL_DIRECT_RECLAIM, start);
4032
	psi_memstall_leave(&pflags);
4033 4034 4035

	cond_resched();

4036 4037 4038 4039 4040 4041
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4042
		unsigned int alloc_flags, const struct alloc_context *ac,
4043
		unsigned long *did_some_progress)
4044 4045 4046 4047
{
	struct page *page = NULL;
	bool drained = false;

4048
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4049 4050
	if (unlikely(!(*did_some_progress)))
		return NULL;
4051

4052
retry:
4053
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4054 4055 4056

	/*
	 * If an allocation failed after direct reclaim, it could be because
4057 4058
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
4059 4060
	 */
	if (!page && !drained) {
4061
		unreserve_highatomic_pageblock(ac, false);
4062
		drain_all_pages(NULL);
4063 4064 4065 4066
		drained = true;
		goto retry;
	}

4067 4068 4069
	return page;
}

4070 4071
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4072 4073 4074
{
	struct zoneref *z;
	struct zone *zone;
4075
	pg_data_t *last_pgdat = NULL;
4076
	enum zone_type high_zoneidx = ac->high_zoneidx;
4077

4078 4079
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
					ac->nodemask) {
4080
		if (last_pgdat != zone->zone_pgdat)
4081
			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4082 4083
		last_pgdat = zone->zone_pgdat;
	}
4084 4085
}

4086
static inline unsigned int
4087 4088
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4089
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4090

4091
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4092
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4093

4094 4095 4096 4097
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4098
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4099
	 */
4100
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
4101

4102
	if (gfp_mask & __GFP_ATOMIC) {
4103
		/*
4104 4105
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4106
		 */
4107
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4108
			alloc_flags |= ALLOC_HARDER;
4109
		/*
4110
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4111
		 * comment for __cpuset_node_allowed().
4112
		 */
4113
		alloc_flags &= ~ALLOC_CPUSET;
4114
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4115 4116
		alloc_flags |= ALLOC_HARDER;

4117 4118 4119 4120
#ifdef CONFIG_CMA
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
4121 4122 4123
	return alloc_flags;
}

4124
static bool oom_reserves_allowed(struct task_struct *tsk)
4125
{
4126 4127 4128 4129 4130 4131 4132 4133
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4134 4135
		return false;

4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4147
	if (gfp_mask & __GFP_MEMALLOC)
4148
		return ALLOC_NO_WATERMARKS;
4149
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4150 4151 4152 4153 4154 4155 4156
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4157

4158 4159 4160 4161 4162 4163
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4164 4165
}

M
Michal Hocko 已提交
4166 4167 4168
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4169 4170 4171 4172
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4173 4174 4175 4176 4177 4178
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4179
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4180 4181 4182 4183
{
	struct zone *zone;
	struct zoneref *z;

4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4194 4195 4196 4197
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4198 4199
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4200
		return unreserve_highatomic_pageblock(ac, true);
4201
	}
M
Michal Hocko 已提交
4202

4203 4204 4205 4206 4207
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4208 4209 4210 4211
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
4212
		unsigned long reclaimable;
4213 4214
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4215

4216 4217
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4218 4219

		/*
4220 4221
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4222
		 */
4223 4224 4225 4226 4227
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4228 4229 4230 4231 4232 4233 4234
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4235
				unsigned long write_pending;
4236

4237 4238
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4239

4240
				if (2 * write_pending > reclaimable) {
4241 4242 4243 4244
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4245

4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
4260 4261 4262 4263 4264 4265 4266
			return true;
		}
	}

	return false;
}

4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4300 4301
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4302
						struct alloc_context *ac)
4303
{
4304
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4305
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4306
	struct page *page = NULL;
4307
	unsigned int alloc_flags;
4308
	unsigned long did_some_progress;
4309
	enum compact_priority compact_priority;
4310
	enum compact_result compact_result;
4311 4312 4313
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4314
	int reserve_flags;
L
Linus Torvalds 已提交
4315

4316 4317 4318 4319 4320 4321 4322 4323
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4324 4325 4326 4327 4328
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4329 4330 4331 4332 4333 4334 4335 4336

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4348
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4349
		wake_all_kswapds(order, gfp_mask, ac);
4350 4351 4352 4353 4354 4355 4356 4357 4358

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4359 4360
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4361 4362 4363 4364 4365 4366
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4367
	 */
4368 4369 4370 4371
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4372 4373
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4374
						INIT_COMPACT_PRIORITY,
4375 4376 4377 4378
						&compact_result);
		if (page)
			goto got_pg;

4379 4380 4381 4382
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4383
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4396 4397
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4398
			 * using async compaction.
4399
			 */
4400
			compact_priority = INIT_COMPACT_PRIORITY;
4401 4402
		}
	}
4403

4404
retry:
4405
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4406
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4407
		wake_all_kswapds(order, gfp_mask, ac);
4408

4409 4410 4411
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4412

4413
	/*
4414 4415 4416
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
4417
	 */
4418
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4419
		ac->nodemask = NULL;
4420 4421 4422 4423
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4424
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4425
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4426 4427
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4428

4429
	/* Caller is not willing to reclaim, we can't balance anything */
4430
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4431 4432
		goto nopage;

4433 4434
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4435 4436
		goto nopage;

4437 4438 4439 4440 4441 4442 4443
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4444
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4445
					compact_priority, &compact_result);
4446 4447
	if (page)
		goto got_pg;
4448

4449 4450
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4451
		goto nopage;
4452

M
Michal Hocko 已提交
4453 4454
	/*
	 * Do not retry costly high order allocations unless they are
4455
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4456
	 */
4457
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4458
		goto nopage;
M
Michal Hocko 已提交
4459 4460

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4461
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4462 4463
		goto retry;

4464 4465 4466 4467 4468 4469 4470
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4471
			should_compact_retry(ac, order, alloc_flags,
4472
				compact_result, &compact_priority,
4473
				&compaction_retries))
4474 4475
		goto retry;

4476 4477 4478

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4479 4480
		goto retry_cpuset;

4481 4482 4483 4484 4485
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4486
	/* Avoid allocations with no watermarks from looping endlessly */
4487 4488
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4489
	     (gfp_mask & __GFP_NOMEMALLOC)))
4490 4491
		goto nopage;

4492
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4493 4494
	if (did_some_progress) {
		no_progress_loops = 0;
4495
		goto retry;
M
Michal Hocko 已提交
4496
	}
4497

L
Linus Torvalds 已提交
4498
nopage:
4499 4500
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4501 4502
		goto retry_cpuset;

4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4540 4541 4542 4543
		cond_resched();
		goto retry;
	}
fail:
4544
	warn_alloc(gfp_mask, ac->nodemask,
4545
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4546
got_pg:
4547 4548 4549 4550

	if (ac->migratetype == MIGRATE_MOVABLE)
		memcg_check_wmark_min_adj(current, ac);

4551
	return page;
L
Linus Torvalds 已提交
4552
}
4553

4554
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4555
		int preferred_nid, nodemask_t *nodemask,
4556 4557
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4558
{
4559
	ac->high_zoneidx = gfp_zone(gfp_mask);
4560
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4561 4562
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4563

4564
	if (cpusets_enabled()) {
4565 4566 4567
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4568 4569
		else
			*alloc_flags |= ALLOC_CPUSET;
4570 4571
	}

4572 4573
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4574

4575
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4576 4577

	if (should_fail_alloc_page(gfp_mask, order))
4578
		return false;
4579

4580 4581 4582
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

4583 4584
	return true;
}
4585

4586
/* Determine whether to spread dirty pages and what the first usable zone */
4587
static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4588
{
4589
	/* Dirty zone balancing only done in the fast path */
4590
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4591

4592 4593 4594 4595 4596
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4597 4598 4599 4600 4601 4602 4603 4604
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4605 4606
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4607 4608 4609
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4610
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4611 4612
	struct alloc_context ac = { };

4613 4614 4615 4616 4617 4618 4619 4620 4621
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
		return NULL;
	}

4622
	gfp_mask &= gfp_allowed_mask;
4623
	alloc_mask = gfp_mask;
4624
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4625 4626
		return NULL;

4627
	finalise_ac(gfp_mask, &ac);
4628

4629
	/* First allocation attempt */
4630
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4631 4632
	if (likely(page))
		goto out;
4633

4634
	/*
4635 4636 4637 4638
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4639
	 */
4640
	alloc_mask = current_gfp_context(gfp_mask);
4641
	ac.spread_dirty_pages = false;
4642

4643 4644 4645 4646
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4647
	if (unlikely(ac.nodemask != nodemask))
4648
		ac.nodemask = nodemask;
4649

4650
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4651

4652
out:
4653 4654 4655 4656
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4657 4658
	}

4659 4660
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4661
	return page;
L
Linus Torvalds 已提交
4662
}
4663
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4664 4665

/*
4666 4667 4668
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
4669
 */
H
Harvey Harrison 已提交
4670
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4671
{
4672 4673
	struct page *page;

4674
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
4675 4676 4677 4678 4679 4680
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4681
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4682
{
4683
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4684 4685 4686
}
EXPORT_SYMBOL(get_zeroed_page);

4687
static inline void free_the_page(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4688
{
4689 4690 4691 4692
	if (order == 0)		/* Via pcp? */
		free_unref_page(page);
	else
		__free_pages_ok(page, order);
L
Linus Torvalds 已提交
4693 4694
}

4695 4696 4697 4698 4699
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
}
L
Linus Torvalds 已提交
4700 4701
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4702
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4703 4704
{
	if (addr != 0) {
N
Nick Piggin 已提交
4705
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4706 4707 4708 4709 4710 4711
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4723 4724
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4744
void __page_frag_cache_drain(struct page *page, unsigned int count)
4745 4746 4747
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

4748 4749
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
4750
}
4751
EXPORT_SYMBOL(__page_frag_cache_drain);
4752

4753 4754
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4755 4756 4757 4758 4759 4760 4761
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4762
		page = __page_frag_cache_refill(nc, gfp_mask);
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4773
		page_ref_add(page, size);
4774 4775

		/* reset page count bias and offset to start of new frag */
4776
		nc->pfmemalloc = page_is_pfmemalloc(page);
4777
		nc->pagecnt_bias = size + 1;
4778 4779 4780 4781 4782 4783 4784
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4785
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4786 4787 4788 4789 4790 4791 4792
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4793
		set_page_count(page, size + 1);
4794 4795

		/* reset page count bias and offset to start of new frag */
4796
		nc->pagecnt_bias = size + 1;
4797 4798 4799 4800 4801 4802 4803 4804
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4805
EXPORT_SYMBOL(page_frag_alloc);
4806 4807 4808 4809

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4810
void page_frag_free(void *addr)
4811 4812 4813
{
	struct page *page = virt_to_head_page(addr);

4814 4815
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
4816
}
4817
EXPORT_SYMBOL(page_frag_free);
4818

4819 4820
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4854
	return make_alloc_exact(addr, order, size);
4855 4856 4857
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4858 4859 4860
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4861
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4862 4863 4864 4865 4866 4867
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4868
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4869
{
4870
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4871 4872 4873 4874 4875 4876
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4896 4897 4898 4899 4900 4901 4902
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4903 4904
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4905
 */
4906
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4907
{
4908
	struct zoneref *z;
4909 4910
	struct zone *zone;

4911
	/* Just pick one node, since fallback list is circular */
4912
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4913

4914
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4915

4916
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4917
		unsigned long size = zone->managed_pages;
4918
		unsigned long high = high_wmark_pages(zone);
4919 4920
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4921 4922 4923 4924 4925
	}

	return sum;
}

4926 4927 4928 4929 4930
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4931
 */
4932
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4933
{
A
Al Viro 已提交
4934
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4935
}
4936
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4937

4938 4939 4940 4941 4942
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4943
 */
4944
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4945
{
M
Mel Gorman 已提交
4946
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4947
}
4948 4949

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4950
{
4951
	if (IS_ENABLED(CONFIG_NUMA))
4952
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4953 4954
}

4955 4956 4957 4958 4959 4960 4961 4962 4963 4964
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4965
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4966 4967

	for_each_zone(zone)
4968
		wmark_low += low_wmark_pages(zone);
4969 4970 4971 4972 4973

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4974
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
4989 4990 4991
	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
			 wmark_low);
4992

4993 4994 4995 4996 4997 4998 4999
	/*
	 * Part of the kernel memory, which can be released under memory
	 * pressure.
	 */
	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
		PAGE_SHIFT;

5000 5001 5002 5003 5004 5005
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
5006 5007 5008
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
5009
	val->sharedram = global_node_page_state(NR_SHMEM);
5010
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5022 5023
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5024 5025
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5026 5027
	pg_data_t *pgdat = NODE_DATA(nid);

5028 5029 5030
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
5031
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5032
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5033
#ifdef CONFIG_HIGHMEM
5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5044
#else
5045 5046
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5047
#endif
L
Linus Torvalds 已提交
5048 5049 5050 5051
	val->mem_unit = PAGE_SIZE;
}
#endif

5052
/*
5053 5054
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5055
 */
5056
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5057 5058
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5059
		return false;
5060

5061 5062 5063 5064 5065 5066 5067 5068 5069
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5070 5071
}

L
Linus Torvalds 已提交
5072 5073
#define K(x) ((x) << (PAGE_SHIFT-10))

5074 5075 5076 5077 5078
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5079 5080
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5081 5082 5083
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5084
#ifdef CONFIG_MEMORY_ISOLATION
5085
		[MIGRATE_ISOLATE]	= 'I',
5086
#endif
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5098
	printk(KERN_CONT "(%s) ", tmp);
5099 5100
}

L
Linus Torvalds 已提交
5101 5102 5103 5104
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5105 5106 5107 5108
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5109
 */
5110
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5111
{
5112
	unsigned long free_pcp = 0;
5113
	int cpu;
L
Linus Torvalds 已提交
5114
	struct zone *zone;
M
Mel Gorman 已提交
5115
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5116

5117
	for_each_populated_zone(zone) {
5118
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5119
			continue;
5120

5121 5122
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
5123 5124
	}

K
KOSAKI Motohiro 已提交
5125 5126
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5127 5128
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5129
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5130
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5131 5132 5133 5134 5135 5136 5137
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5138 5139 5140
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
5141 5142
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5143
		global_node_page_state(NR_FILE_MAPPED),
5144
		global_node_page_state(NR_SHMEM),
5145 5146 5147
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5148
		free_pcp,
5149
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5150

M
Mel Gorman 已提交
5151
	for_each_online_pgdat(pgdat) {
5152
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5153 5154
			continue;

M
Mel Gorman 已提交
5155 5156 5157 5158 5159 5160 5161 5162
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5163
			" mapped:%lukB"
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5184
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5185 5186
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5187
			K(node_page_state(pgdat, NR_SHMEM)),
5188 5189 5190 5191 5192 5193 5194 5195
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5196 5197
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5198 5199
	}

5200
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5201 5202
		int i;

5203
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5204
			continue;
5205 5206 5207 5208 5209

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
5210
		show_node(zone);
5211 5212
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5213 5214 5215 5216
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
5217 5218 5219 5220 5221
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5222
			" writepending:%lukB"
L
Linus Torvalds 已提交
5223
			" present:%lukB"
5224
			" managed:%lukB"
5225
			" mlocked:%lukB"
5226
			" kernel_stack:%lukB"
5227 5228
			" pagetables:%lukB"
			" bounce:%lukB"
5229 5230
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5231
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5232 5233
			"\n",
			zone->name,
5234
			K(zone_page_state(zone, NR_FREE_PAGES)),
5235 5236 5237
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
5238 5239 5240 5241 5242
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5243
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
5244
			K(zone->present_pages),
5245
			K(zone->managed_pages),
5246
			K(zone_page_state(zone, NR_MLOCK)),
5247
			zone_page_state(zone, NR_KERNEL_STACK_KB),
5248 5249
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
5250 5251
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
5252
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
5253 5254
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
5255 5256
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5257 5258
	}

5259
	for_each_populated_zone(zone) {
5260 5261
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
5262
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
5263

5264
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5265
			continue;
L
Linus Torvalds 已提交
5266
		show_node(zone);
5267
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
5268 5269 5270

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
5271 5272 5273 5274
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
5275
			total += nr[order] << order;
5276 5277 5278

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
5279
				if (!free_area_empty(area, type))
5280 5281
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
5282 5283
		}
		spin_unlock_irqrestore(&zone->lock, flags);
5284
		for (order = 0; order < MAX_ORDER; order++) {
5285 5286
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
5287 5288 5289
			if (nr[order])
				show_migration_types(types[order]);
		}
5290
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
5291 5292
	}

5293 5294
	hugetlb_show_meminfo();

5295
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5296

L
Linus Torvalds 已提交
5297 5298 5299
	show_swap_cache_info();
}

5300 5301 5302 5303 5304 5305
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
5306 5307
/*
 * Builds allocation fallback zone lists.
5308 5309
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
5310
 */
5311
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
5312
{
5313
	struct zone *zone;
5314
	enum zone_type zone_type = MAX_NR_ZONES;
5315
	int nr_zones = 0;
5316 5317

	do {
5318
		zone_type--;
5319
		zone = pgdat->node_zones + zone_type;
5320
		if (managed_zone(zone)) {
5321
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5322
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
5323
		}
5324
	} while (zone_type);
5325

5326
	return nr_zones;
L
Linus Torvalds 已提交
5327 5328 5329
}

#ifdef CONFIG_NUMA
5330 5331 5332

static int __parse_numa_zonelist_order(char *s)
{
5333 5334 5335 5336 5337 5338 5339 5340
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5341 5342 5343 5344 5345 5346 5347
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
5348 5349 5350
	if (!s)
		return 0;

5351
	return __parse_numa_zonelist_order(s);
5352 5353 5354
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

5355 5356
char numa_zonelist_order[] = "Node";

5357 5358 5359
/*
 * sysctl handler for numa_zonelist_order
 */
5360
int numa_zonelist_order_handler(struct ctl_table *table, int write,
5361
		void __user *buffer, size_t *length,
5362 5363
		loff_t *ppos)
{
5364
	char *str;
5365 5366
	int ret;

5367 5368 5369 5370 5371
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
5372

5373 5374
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
5375
	return ret;
5376 5377 5378
}


5379
#define MAX_NODE_LOAD (nr_online_nodes)
5380 5381
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
5382
/**
5383
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5396
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5397
{
5398
	int n, val;
L
Linus Torvalds 已提交
5399
	int min_val = INT_MAX;
D
David Rientjes 已提交
5400
	int best_node = NUMA_NO_NODE;
5401
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5402

5403 5404 5405 5406 5407
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5408

5409
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5410 5411 5412 5413 5414 5415 5416 5417

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5418 5419 5420
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5421
		/* Give preference to headless and unused nodes */
5422 5423
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5442 5443 5444 5445 5446 5447

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5448 5449
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5450
{
5451 5452 5453 5454 5455 5456 5457 5458 5459
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5460

5461 5462 5463 5464 5465
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5466 5467
}

5468 5469 5470 5471 5472
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5473 5474
	struct zoneref *zonerefs;
	int nr_zones;
5475

5476 5477 5478 5479 5480
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5481 5482
}

5483 5484 5485 5486 5487 5488 5489 5490 5491
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5492 5493
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5494
	nodemask_t used_mask;
5495
	int local_node, prev_node;
L
Linus Torvalds 已提交
5496 5497 5498

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5499
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5500 5501
	prev_node = local_node;
	nodes_clear(used_mask);
5502 5503

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5504 5505 5506 5507 5508 5509
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5510 5511
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5512 5513
			node_load[node] = load;

5514
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5515 5516 5517
		prev_node = node;
		load--;
	}
5518

5519
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5520
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5521 5522
}

5523 5524 5525 5526 5527 5528 5529 5530 5531
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5532
	struct zoneref *z;
5533

5534
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5535
				   gfp_zone(GFP_KERNEL),
5536
				   NULL);
5537
	return zone_to_nid(z->zone);
5538 5539
}
#endif
5540

5541 5542
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5543 5544
#else	/* CONFIG_NUMA */

5545
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5546
{
5547
	int node, local_node;
5548 5549
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5550 5551 5552

	local_node = pgdat->node_id;

5553 5554 5555
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5556

5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5568 5569
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5570
	}
5571 5572 5573
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5574 5575
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5576 5577
	}

5578 5579
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5580 5581 5582 5583
}

#endif	/* CONFIG_NUMA */

5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5601
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5602

5603
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5604
{
5605
	int nid;
5606
	int __maybe_unused cpu;
5607
	pg_data_t *self = data;
5608 5609 5610
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5611

5612 5613 5614
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5615

5616 5617 5618 5619
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5620 5621
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5622 5623 5624
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5625

5626 5627
			build_zonelists(pgdat);
		}
5628

5629 5630 5631 5632 5633 5634 5635 5636 5637
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5638
		for_each_online_cpu(cpu)
5639
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5640
#endif
5641
	}
5642 5643

	spin_unlock(&lock);
5644 5645
}

5646 5647 5648
static noinline void __init
build_all_zonelists_init(void)
{
5649 5650
	int cpu;

5651
	__build_all_zonelists(NULL);
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5669 5670 5671 5672
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5673 5674
/*
 * unless system_state == SYSTEM_BOOTING.
5675
 *
5676
 * __ref due to call of __init annotated helper build_all_zonelists_init
5677
 * [protected by SYSTEM_BOOTING].
5678
 */
5679
void __ref build_all_zonelists(pg_data_t *pgdat)
5680 5681
{
	if (system_state == SYSTEM_BOOTING) {
5682
		build_all_zonelists_init();
5683
	} else {
5684
		__build_all_zonelists(pgdat);
5685 5686
		/* cpuset refresh routine should be here */
	}
5687
	vm_total_pages = nr_free_pagecache_pages();
5688 5689 5690 5691 5692 5693 5694
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5695
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5696 5697 5698 5699
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5700
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5701 5702 5703
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5704
#ifdef CONFIG_NUMA
5705
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5706
#endif
L
Linus Torvalds 已提交
5707 5708 5709 5710 5711 5712 5713
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5714
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5715 5716
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5717
{
A
Andy Whitcroft 已提交
5718
	unsigned long end_pfn = start_pfn + size;
5719
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5720
	unsigned long pfn;
5721
	unsigned long nr_initialised = 0;
5722
	struct page *page;
5723 5724 5725
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5726

5727 5728 5729
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5730 5731 5732 5733 5734 5735 5736
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5737
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5738
		/*
5739 5740
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5741
		 */
5742 5743 5744
		if (context != MEMMAP_EARLY)
			goto not_early;

5745
		if (!early_pfn_valid(pfn))
5746 5747 5748 5749 5750
			continue;
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5751 5752

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5770
			}
D
Dave Hansen 已提交
5771
		}
5772
#endif
5773

5774
not_early:
5775 5776 5777 5778 5779
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
		if (context == MEMMAP_HOTPLUG)
			SetPageReserved(page);

5780 5781 5782 5783 5784
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5785
		 * kernel allocations are made.
5786 5787 5788 5789 5790
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
5791 5792 5793
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
5794 5795 5796
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5797
			cond_resched();
5798
		}
L
Linus Torvalds 已提交
5799 5800 5801
	}
}

5802
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5803
{
5804
	unsigned int order, t;
5805 5806
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5807 5808 5809 5810 5811 5812
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
5813
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
L
Linus Torvalds 已提交
5814 5815
#endif

5816
static int zone_batchsize(struct zone *zone)
5817
{
5818
#ifdef CONFIG_MMU
5819 5820 5821 5822
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5823
	 * size of the zone.
5824
	 */
5825
	batch = zone->managed_pages / 1024;
5826 5827 5828
	/* But no more than a meg. */
	if (batch * PAGE_SIZE > 1024 * 1024)
		batch = (1024 * 1024) / PAGE_SIZE;
5829 5830 5831 5832 5833
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5834 5835 5836
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5837
	 *
5838 5839 5840 5841
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5842
	 */
5843
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5844

5845
	return batch;
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5863 5864
}

5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5892
/* a companion to pageset_set_high() */
5893 5894
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5895
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5896 5897
}

5898
static void pageset_init(struct per_cpu_pageset *p)
5899 5900
{
	struct per_cpu_pages *pcp;
5901
	int migratetype;
5902

5903 5904
	memset(p, 0, sizeof(*p));

5905
	pcp = &p->pcp;
5906
	pcp->count = 0;
5907 5908
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5909 5910
}

5911 5912 5913 5914 5915 5916
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5917
/*
5918
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5919 5920
 * to the value high for the pageset p.
 */
5921
static void pageset_set_high(struct per_cpu_pageset *p,
5922 5923
				unsigned long high)
{
5924 5925 5926
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5927

5928
	pageset_update(&p->pcp, high, batch);
5929 5930
}

5931 5932
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5933 5934
{
	if (percpu_pagelist_fraction)
5935
		pageset_set_high(pcp,
5936 5937 5938 5939 5940 5941
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5942 5943 5944 5945 5946 5947 5948 5949
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5950
void __meminit setup_zone_pageset(struct zone *zone)
5951 5952 5953
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5954 5955
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5956 5957
}

5958
/*
5959 5960
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5961
 */
5962
void __init setup_per_cpu_pageset(void)
5963
{
5964
	struct pglist_data *pgdat;
5965
	struct zone *zone;
5966

5967 5968
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5969 5970 5971 5972

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5973 5974
}

5975
static __meminit void zone_pcp_init(struct zone *zone)
5976
{
5977 5978 5979 5980 5981 5982
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5983

5984
	if (populated_zone(zone))
5985 5986 5987
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5988 5989
}

5990
void __meminit init_currently_empty_zone(struct zone *zone,
5991
					unsigned long zone_start_pfn,
5992
					unsigned long size)
5993 5994
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5995
	int zone_idx = zone_idx(zone) + 1;
5996

5997 5998
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
5999 6000 6001

	zone->zone_start_pfn = zone_start_pfn;

6002 6003 6004 6005 6006 6007
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

6008
	zone_init_free_lists(zone);
6009
	zone->initialized = 1;
6010 6011
}

T
Tejun Heo 已提交
6012
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6013
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6014

6015 6016 6017
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
6018 6019
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
6020
{
6021
	unsigned long start_pfn, end_pfn;
6022
	int nid;
6023

6024 6025
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
6026

6027 6028
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
6029 6030 6031
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
6032 6033 6034
	}

	return nid;
6035 6036 6037 6038
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
6039
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6040
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6041
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6042
 *
6043 6044 6045
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
6046
 */
6047
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6048
{
6049 6050
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6051

6052 6053 6054
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
6055

6056
		if (start_pfn < end_pfn)
6057 6058 6059
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
6060 6061 6062
	}
}

6063 6064
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6065
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6066
 *
6067 6068
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
6069 6070 6071
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
6072 6073
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
6074

6075 6076
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
6077 6078 6079 6080
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
6081 6082 6083
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6084 6085
 *
 * It returns the start and end page frame of a node based on information
6086
 * provided by memblock_set_node(). If called for a node
6087
 * with no available memory, a warning is printed and the start and end
6088
 * PFNs will be 0.
6089
 */
6090
void __meminit get_pfn_range_for_nid(unsigned int nid,
6091 6092
			unsigned long *start_pfn, unsigned long *end_pfn)
{
6093
	unsigned long this_start_pfn, this_end_pfn;
6094
	int i;
6095

6096 6097 6098
	*start_pfn = -1UL;
	*end_pfn = 0;

6099 6100 6101
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
6102 6103
	}

6104
	if (*start_pfn == -1UL)
6105 6106 6107
		*start_pfn = 0;
}

M
Mel Gorman 已提交
6108 6109 6110 6111 6112
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
6113
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
6131
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
6132 6133 6134 6135 6136 6137 6138
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
6139
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

6154 6155 6156 6157 6158 6159
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
6160 6161 6162 6163 6164 6165
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

6166 6167 6168 6169
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
6170
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
6171
					unsigned long zone_type,
6172 6173
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6174 6175
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6176 6177
					unsigned long *ignored)
{
6178 6179
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6180
	/* When hotadd a new node from cpu_up(), the node should be empty */
6181 6182 6183
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6184
	/* Get the start and end of the zone */
6185 6186
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
6187 6188
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
6189
				zone_start_pfn, zone_end_pfn);
6190 6191

	/* Check that this node has pages within the zone's required range */
6192
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6193 6194 6195
		return 0;

	/* Move the zone boundaries inside the node if necessary */
6196 6197
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6198 6199

	/* Return the spanned pages */
6200
	return *zone_end_pfn - *zone_start_pfn;
6201 6202 6203 6204
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6205
 * then all holes in the requested range will be accounted for.
6206
 */
6207
unsigned long __meminit __absent_pages_in_range(int nid,
6208 6209 6210
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
6211 6212 6213
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
6214

6215 6216 6217 6218
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
6219
	}
6220
	return nr_absent;
6221 6222 6223 6224 6225 6226 6227
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
6228
 * It returns the number of pages frames in memory holes within a range.
6229 6230 6231 6232 6233 6234 6235 6236
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
6237
static unsigned long __meminit zone_absent_pages_in_node(int nid,
6238
					unsigned long zone_type,
6239 6240
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6241 6242
					unsigned long *ignored)
{
6243 6244
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6245
	unsigned long zone_start_pfn, zone_end_pfn;
6246
	unsigned long nr_absent;
6247

6248
	/* When hotadd a new node from cpu_up(), the node should be empty */
6249 6250 6251
	if (!node_start_pfn && !node_end_pfn)
		return 0;

6252 6253
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6254

M
Mel Gorman 已提交
6255 6256 6257
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
6258 6259 6260 6261 6262 6263 6264
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
6282 6283 6284 6285
		}
	}

	return nr_absent;
6286
}
6287

T
Tejun Heo 已提交
6288
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
6289
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6290
					unsigned long zone_type,
6291 6292
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
6293 6294
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
6295 6296
					unsigned long *zones_size)
{
6297 6298 6299 6300 6301 6302 6303 6304
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

6305 6306 6307
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
6308
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6309
						unsigned long zone_type,
6310 6311
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
6312 6313 6314 6315 6316 6317 6318
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
6319

T
Tejun Heo 已提交
6320
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6321

6322
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6323 6324 6325 6326
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
6327
{
6328
	unsigned long realtotalpages = 0, totalpages = 0;
6329 6330
	enum zone_type i;

6331 6332
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
6333
		unsigned long zone_start_pfn, zone_end_pfn;
6334
		unsigned long size, real_size;
6335

6336 6337 6338
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
6339 6340
						  &zone_start_pfn,
						  &zone_end_pfn,
6341 6342
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6343 6344
						  node_start_pfn, node_end_pfn,
						  zholes_size);
6345 6346 6347 6348
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
6349 6350 6351 6352 6353 6354 6355 6356
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
6357 6358 6359 6360 6361
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

6362 6363 6364
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
6365 6366
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6367 6368 6369
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
6370
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6371 6372 6373
{
	unsigned long usemapsize;

6374
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6375 6376
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
6377 6378 6379 6380 6381 6382
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

P
Pavel Tatashin 已提交
6383
static void __ref setup_usemap(struct pglist_data *pgdat,
6384 6385 6386
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6387
{
6388
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6389
	zone->pageblock_flags = NULL;
6390
	if (usemapsize)
6391 6392 6393
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
6394 6395
}
#else
6396 6397
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6398 6399
#endif /* CONFIG_SPARSEMEM */

6400
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6401

6402
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6403
void __init set_pageblock_order(void)
6404
{
6405 6406
	unsigned int order;

6407 6408 6409 6410
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6411 6412 6413 6414 6415
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6416 6417
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6418 6419
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6420 6421 6422 6423 6424
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6425 6426
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6427 6428 6429
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6430
 */
6431
void __init set_pageblock_order(void)
6432 6433
{
}
6434 6435 6436

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6437
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
6438
						unsigned long present_pages)
6439 6440 6441 6442 6443 6444 6445 6446
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6447
	 * populated regions may not be naturally aligned on page boundary.
6448 6449 6450 6451 6452 6453 6454 6455 6456
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

6457 6458 6459
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
6460 6461 6462 6463 6464
	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;

	spin_lock_init(&ds_queue->split_queue_lock);
	INIT_LIST_HEAD(&ds_queue->split_queue);
	ds_queue->split_queue_len = 0;
6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

6479
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6480
{
6481
	pgdat_resize_init(pgdat);
6482 6483 6484 6485

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
6486
	init_waitqueue_head(&pgdat->kswapd_wait);
6487
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6488

6489
	pgdat_page_ext_init(pgdat);
6490
	spin_lock_init(&pgdat->lru_lock);
6491
	lruvec_init(node_lruvec(pgdat));
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
	zone->managed_pages = remaining_pages;
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
6538

6539
	pgdat_init_internals(pgdat);
6540 6541
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6542 6543
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6544
		unsigned long size, freesize, memmap_pages;
6545
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6546

6547
		size = zone->spanned_pages;
6548
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
6549

6550
		/*
6551
		 * Adjust freesize so that it accounts for how much memory
6552 6553 6554
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6555
		memmap_pages = calc_memmap_size(size, freesize);
6556 6557 6558 6559 6560 6561 6562 6563
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6564
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6565 6566
					zone_names[j], memmap_pages, freesize);
		}
6567

6568
		/* Account for reserved pages */
6569 6570
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6571
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6572
					zone_names[0], dma_reserve);
6573 6574
		}

6575
		if (!is_highmem_idx(j))
6576
			nr_kernel_pages += freesize;
6577 6578 6579
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6580
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6581

6582 6583 6584 6585 6586
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
6587
		zone_init_internals(zone, j, nid, freesize);
6588

6589
		if (!size)
L
Linus Torvalds 已提交
6590 6591
			continue;

6592
		set_pageblock_order();
6593 6594
		setup_usemap(pgdat, zone, zone_start_pfn, size);
		init_currently_empty_zone(zone, zone_start_pfn, size);
6595
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6596 6597 6598
	}
}

6599
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6600
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6601
{
6602
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6603 6604
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6605 6606 6607 6608
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6609 6610
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6611 6612
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6613
		unsigned long size, end;
A
Andy Whitcroft 已提交
6614 6615
		struct page *map;

6616 6617 6618 6619 6620
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6621
		end = pgdat_end_pfn(pgdat);
6622 6623
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6624
		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
L
Laura Abbott 已提交
6625
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6626
	}
6627 6628 6629
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6630
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6631 6632 6633
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6634
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6635
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6636
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6637
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6638
			mem_map -= offset;
T
Tejun Heo 已提交
6639
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6640
	}
L
Linus Torvalds 已提交
6641 6642
#endif
}
6643 6644 6645
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6646

6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
						pgdat->node_spanned_pages);
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

6662
void __init free_area_init_node(int nid, unsigned long *zones_size,
P
Pavel Tatashin 已提交
6663 6664
				   unsigned long node_start_pfn,
				   unsigned long *zholes_size)
L
Linus Torvalds 已提交
6665
{
6666
	pg_data_t *pgdat = NODE_DATA(nid);
6667 6668
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6669

6670
	/* pg_data_t should be reset to zero when it's allocated */
6671
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6672

L
Linus Torvalds 已提交
6673 6674
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6675
	pgdat->per_cpu_nodestats = NULL;
6676 6677
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6678
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6679 6680
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6681 6682
#else
	start_pfn = node_start_pfn;
6683 6684 6685
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6686 6687

	alloc_node_mem_map(pgdat);
6688
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
6689

6690
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6691 6692
}

6693
#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716

/*
 * Zero all valid struct pages in range [spfn, epfn), return number of struct
 * pages zeroed
 */
static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		mm_zero_struct_page(pfn_to_page(pfn));
		pgcnt++;
	}

	return pgcnt;
}

6717 6718 6719 6720 6721 6722
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
6723 6724 6725 6726 6727
 *
 * This function also addresses a similar issue where struct pages are left
 * uninitialized because the physical address range is not covered by
 * memblock.memory or memblock.reserved. That could happen when memblock
 * layout is manually configured via memmap=.
6728
 */
6729
void __init zero_resv_unavail(void)
6730 6731 6732
{
	phys_addr_t start, end;
	u64 i, pgcnt;
6733
	phys_addr_t next = 0;
6734 6735

	/*
6736
	 * Loop through unavailable ranges not covered by memblock.memory.
6737 6738
	 */
	pgcnt = 0;
6739 6740
	for_each_mem_range(i, &memblock.memory, NULL,
			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6741 6742
		if (next < start)
			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6743 6744
		next = end;
	}
6745
	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6746

6747 6748 6749 6750 6751
	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 */
	if (pgcnt)
6752
		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6753
}
6754
#endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6755

T
Tejun Heo 已提交
6756
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6757 6758 6759 6760 6761

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6762
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6763
{
6764
	unsigned int highest;
M
Miklos Szeredi 已提交
6765

6766
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6767 6768 6769 6770
	nr_node_ids = highest + 1;
}
#endif

6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6793
	unsigned long start, end, mask;
6794
	int last_nid = -1;
6795
	int i, nid;
6796

6797
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6821
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6822
static unsigned long __init find_min_pfn_for_node(int nid)
6823
{
6824
	unsigned long min_pfn = ULONG_MAX;
6825 6826
	unsigned long start_pfn;
	int i;
6827

6828 6829
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6830

6831
	if (min_pfn == ULONG_MAX) {
6832
		pr_warn("Could not find start_pfn for node %d\n", nid);
6833 6834 6835 6836
		return 0;
	}

	return min_pfn;
6837 6838 6839 6840 6841 6842
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6843
 * memblock_set_node().
6844 6845 6846 6847 6848 6849
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6850 6851 6852
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6853
 * Populate N_MEMORY for calculating usable_nodes.
6854
 */
A
Adrian Bunk 已提交
6855
static unsigned long __init early_calculate_totalpages(void)
6856 6857
{
	unsigned long totalpages = 0;
6858 6859 6860 6861 6862
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6863

6864 6865
		totalpages += pages;
		if (pages)
6866
			node_set_state(nid, N_MEMORY);
6867
	}
6868
	return totalpages;
6869 6870
}

M
Mel Gorman 已提交
6871 6872 6873 6874 6875 6876
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6877
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6878 6879 6880 6881
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6882
	/* save the state before borrow the nodemask */
6883
	nodemask_t saved_node_state = node_states[N_MEMORY];
6884
	unsigned long totalpages = early_calculate_totalpages();
6885
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6886
	struct memblock_region *r;
6887 6888 6889 6890 6891 6892 6893 6894 6895

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6896 6897
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6898 6899
				continue;

E
Emil Medve 已提交
6900
			nid = r->nid;
6901

E
Emil Medve 已提交
6902
			usable_startpfn = PFN_DOWN(r->base);
6903 6904 6905 6906 6907 6908 6909
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6910

6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6941
	/*
6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6969
		required_movablecore = min(totalpages, required_movablecore);
6970 6971 6972 6973 6974
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6975 6976 6977 6978 6979
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6980
		goto out;
M
Mel Gorman 已提交
6981 6982 6983 6984 6985 6986 6987

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6988
	for_each_node_state(nid, N_MEMORY) {
6989 6990
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7007
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7008 7009
			unsigned long size_pages;

7010
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7053
			 * satisfied
M
Mel Gorman 已提交
7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7067
	 * satisfied
M
Mel Gorman 已提交
7068 7069 7070 7071 7072
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7073
out2:
M
Mel Gorman 已提交
7074 7075 7076 7077
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7078

7079
out:
7080
	/* restore the node_state */
7081
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7082 7083
}

7084 7085
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7086 7087 7088
{
	enum zone_type zone_type;

7089 7090 7091 7092
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7093
		struct zone *zone = &pgdat->node_zones[zone_type];
7094
		if (populated_zone(zone)) {
7095 7096 7097 7098
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
7099 7100
			break;
		}
7101 7102 7103
	}
}

7104 7105
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
7106
 * @max_zone_pfn: an array of max PFNs for each zone
7107 7108
 *
 * This will call free_area_init_node() for each active node in the system.
7109
 * Using the page ranges provided by memblock_set_node(), the size of each
7110 7111 7112 7113 7114 7115 7116 7117 7118
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
7119 7120
	unsigned long start_pfn, end_pfn;
	int i, nid;
7121

7122 7123 7124 7125 7126
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7127 7128 7129 7130

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
7131 7132
		if (i == ZONE_MOVABLE)
			continue;
7133 7134 7135 7136 7137 7138

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
7139
	}
M
Mel Gorman 已提交
7140 7141 7142

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7143
	find_zone_movable_pfns_for_nodes();
7144 7145

	/* Print out the zone ranges */
7146
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7147 7148 7149
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7150
		pr_info("  %-8s ", zone_names[i]);
7151 7152
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7153
			pr_cont("empty\n");
7154
		else
7155 7156 7157 7158
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7159
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7160 7161 7162
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7163
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7164 7165
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7166 7167
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7168
	}
7169

7170
	/* Print out the early node map */
7171
	pr_info("Early memory node ranges\n");
7172
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7173 7174 7175
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7176 7177

	/* Initialise every node */
7178
	mminit_verify_pageflags_layout();
7179
	setup_nr_node_ids();
7180
	zero_resv_unavail();
7181 7182
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
7183
		free_area_init_node(nid, NULL,
7184
				find_min_pfn_for_node(nid), NULL);
7185 7186 7187

		/* Any memory on that node */
		if (pgdat->node_present_pages)
7188 7189
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
7190 7191
	}
}
M
Mel Gorman 已提交
7192

7193 7194
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
7195 7196
{
	unsigned long long coremem;
7197 7198
	char *endptr;

M
Mel Gorman 已提交
7199 7200 7201
	if (!p)
		return -EINVAL;

7202 7203 7204 7205 7206
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
7207

7208 7209 7210 7211 7212
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
7213

7214 7215 7216
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
7217 7218
	return 0;
}
M
Mel Gorman 已提交
7219

7220 7221 7222 7223 7224 7225
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
7226 7227 7228 7229 7230 7231
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

7232 7233
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
7234 7235 7236 7237 7238 7239 7240 7241
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
7242 7243
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
7244 7245
}

M
Mel Gorman 已提交
7246
early_param("kernelcore", cmdline_parse_kernelcore);
7247
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
7248

T
Tejun Heo 已提交
7249
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7250

7251 7252 7253 7254 7255
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
7256 7257 7258 7259
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
7260 7261
	spin_unlock(&managed_page_count_lock);
}
7262
EXPORT_SYMBOL(adjust_managed_page_count);
7263

7264
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7265
{
7266 7267
	void *pos;
	unsigned long pages = 0;
7268

7269 7270 7271
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
7283
		if ((unsigned int)poison <= 0xFF)
7284 7285 7286
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
7287 7288 7289
	}

	if (pages && s)
7290 7291
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
7292 7293 7294

	return pages;
}
7295
EXPORT_SYMBOL(free_reserved_area);
7296

7297 7298 7299 7300 7301
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
7302
	page_zone(page)->managed_pages++;
7303 7304 7305 7306
	totalhigh_pages++;
}
#endif

7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
7329 7330 7331 7332
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
7333 7334 7335 7336 7337 7338 7339 7340 7341 7342

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
7343
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7344
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7345
		", %luK highmem"
7346
#endif
J
Joe Perches 已提交
7347 7348 7349 7350 7351 7352 7353
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
7354
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
7355
		totalhigh_pages << (PAGE_SHIFT - 10),
7356
#endif
J
Joe Perches 已提交
7357
		str ? ", " : "", str ? str : "");
7358 7359
}

7360
/**
7361 7362
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
7363
 *
7364
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7365 7366
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
7367 7368 7369
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
7370 7371 7372 7373 7374 7375
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
7376 7377
void __init free_area_init(unsigned long *zones_size)
{
7378
	zero_resv_unavail();
7379
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
7380 7381 7382
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

7383
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
7384 7385
{

7386 7387
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
7388

7389 7390 7391 7392 7393 7394 7395
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
7396

7397 7398 7399 7400 7401 7402 7403 7404 7405
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
7406 7407 7408 7409
}

void __init page_alloc_init(void)
{
7410 7411 7412 7413 7414 7415
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
7416 7417
}

7418
/*
7419
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7420 7421 7422 7423 7424 7425
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
7426
	enum zone_type i, j;
7427 7428

	for_each_online_pgdat(pgdat) {
7429 7430 7431

		pgdat->totalreserve_pages = 0;

7432 7433
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
7434
			long max = 0;
7435 7436 7437 7438 7439 7440 7441

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

7442 7443
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
7444

7445 7446
			if (max > zone->managed_pages)
				max = zone->managed_pages;
7447

7448
			pgdat->totalreserve_pages += max;
7449

7450 7451 7452 7453 7454 7455
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
7456 7457
/*
 * setup_per_zone_lowmem_reserve - called whenever
7458
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
7459 7460 7461 7462 7463 7464
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
7465
	enum zone_type j, idx;
L
Linus Torvalds 已提交
7466

7467
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
7468 7469
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
7470
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
7471 7472 7473

			zone->lowmem_reserve[j] = 0;

7474 7475
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
7476 7477
				struct zone *lower_zone;

7478
				idx--;
L
Linus Torvalds 已提交
7479
				lower_zone = pgdat->node_zones + idx;
7480 7481 7482 7483 7484 7485 7486 7487

				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
					sysctl_lowmem_reserve_ratio[idx] = 0;
					lower_zone->lowmem_reserve[j] = 0;
				} else {
					lower_zone->lowmem_reserve[j] =
						managed_pages / sysctl_lowmem_reserve_ratio[idx];
				}
7488
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
7489 7490 7491
			}
		}
	}
7492 7493 7494

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7495 7496
}

7497
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7498 7499 7500 7501 7502 7503 7504 7505 7506
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7507
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
7508 7509 7510
	}

	for_each_zone(zone) {
7511 7512
		u64 tmp;

7513
		spin_lock_irqsave(&zone->lock, flags);
7514
		tmp = (u64)pages_min * zone->managed_pages;
7515
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7516 7517
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7518 7519 7520 7521
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7522
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7523
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7524
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7525
			 */
7526
			unsigned long min_pages;
L
Linus Torvalds 已提交
7527

7528
			min_pages = zone->managed_pages / 1024;
7529
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7530
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7531
		} else {
N
Nick Piggin 已提交
7532 7533
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7534 7535
			 * proportionate to the zone's size.
			 */
7536
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7537 7538
		}

7539 7540 7541 7542 7543 7544 7545 7546 7547
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

7548 7549
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7550

7551
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7552
	}
7553 7554 7555

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7556 7557
}

7558 7559 7560 7561 7562 7563 7564 7565 7566
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7567 7568 7569
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7570
	__setup_per_zone_wmarks();
7571
	spin_unlock(&lock);
7572 7573
}

L
Linus Torvalds 已提交
7574 7575 7576 7577 7578 7579 7580
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7581
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7598
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7599 7600
{
	unsigned long lowmem_kbytes;
7601
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7602 7603

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7616
	setup_per_zone_wmarks();
7617
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7618
	setup_per_zone_lowmem_reserve();
7619 7620 7621 7622 7623 7624

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7625 7626
	return 0;
}
7627
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7628 7629

/*
7630
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7631 7632 7633
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7634
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7635
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7636
{
7637 7638 7639 7640 7641 7642
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7643 7644
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7645
		setup_per_zone_wmarks();
7646
	}
L
Linus Torvalds 已提交
7647 7648 7649
	return 0;
}

7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7665
#ifdef CONFIG_NUMA
7666
static void setup_min_unmapped_ratio(void)
7667
{
7668
	pg_data_t *pgdat;
7669 7670
	struct zone *zone;

7671
	for_each_online_pgdat(pgdat)
7672
		pgdat->min_unmapped_pages = 0;
7673

7674
	for_each_zone(zone)
7675
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7676 7677
				sysctl_min_unmapped_ratio) / 100;
}
7678

7679 7680

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7681
	void __user *buffer, size_t *length, loff_t *ppos)
7682 7683 7684
{
	int rc;

7685
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7686 7687 7688
	if (rc)
		return rc;

7689 7690 7691 7692 7693 7694 7695 7696 7697 7698
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7699 7700 7701
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7702
	for_each_zone(zone)
7703
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7704
				sysctl_min_slab_ratio) / 100;
7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7718 7719
	return 0;
}
7720 7721
#endif

L
Linus Torvalds 已提交
7722 7723 7724 7725 7726 7727
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7728
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7729 7730
 * if in function of the boot time zone sizes.
 */
7731
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7732
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7733
{
7734
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7735 7736 7737 7738
	setup_per_zone_lowmem_reserve();
	return 0;
}

7739 7740
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7741 7742
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7743
 */
7744
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7745
	void __user *buffer, size_t *length, loff_t *ppos)
7746 7747
{
	struct zone *zone;
7748
	int old_percpu_pagelist_fraction;
7749 7750
	int ret;

7751 7752 7753
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7754
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7769

7770
	for_each_populated_zone(zone) {
7771 7772
		unsigned int cpu;

7773
		for_each_possible_cpu(cpu)
7774 7775
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7776
	}
7777
out:
7778
	mutex_unlock(&pcp_batch_high_lock);
7779
	return ret;
7780 7781
}

7782
#ifdef CONFIG_NUMA
7783
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7834 7835
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7836
{
7837
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7838 7839
	unsigned long log2qty, size;
	void *table = NULL;
7840
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7841 7842 7843 7844

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7845
		numentries = nr_kernel_pages;
7846
		numentries -= arch_reserved_kernel_pages();
7847 7848 7849 7850

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7851

P
Pavel Tatashin 已提交
7852 7853 7854 7855 7856 7857 7858 7859 7860 7861
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7862 7863 7864 7865 7866
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7867 7868

		/* Make sure we've got at least a 0-order allocation.. */
7869 7870 7871 7872 7873 7874 7875 7876
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7877
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7878
	}
7879
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7880 7881 7882 7883 7884 7885

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7886
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7887

7888 7889
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7890 7891 7892
	if (numentries > max)
		numentries = max;

7893
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7894

7895
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7896 7897
	do {
		size = bucketsize << log2qty;
7898 7899 7900 7901 7902 7903
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
				table = memblock_virt_alloc_nopanic(size, 0);
			else
				table = memblock_virt_alloc_raw(size, 0);
		} else if (hashdist) {
7904
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7905
		} else {
7906 7907
			/*
			 * If bucketsize is not a power-of-two, we may free
7908 7909
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7910
			 */
7911
			if (get_order(size) < MAX_ORDER) {
7912 7913
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7914
			}
L
Linus Torvalds 已提交
7915 7916 7917 7918 7919 7920
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7921 7922
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7923 7924 7925 7926 7927 7928 7929 7930

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7931

K
KAMEZAWA Hiroyuki 已提交
7932
/*
7933 7934 7935
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7936
 * PageLRU check without isolation or lru_lock could race so that
7937 7938 7939
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7940
 */
7941
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7942
			 int migratetype,
7943
			 bool skip_hwpoisoned_pages)
7944 7945
{
	unsigned long pfn, iter, found;
7946

7947
	/*
7948 7949 7950 7951 7952
	 * TODO we could make this much more efficient by not checking every
	 * page in the range if we know all of them are in MOVABLE_ZONE and
	 * that the movable zone guarantees that pages are migratable but
	 * the later is not the case right now unfortunatelly. E.g. movablecore
	 * can still lead to having bootmem allocations in zone_movable.
7953 7954
	 */

7955 7956 7957 7958 7959 7960 7961 7962 7963
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7964 7965 7966 7967
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7968
		if (!pfn_valid_within(check))
7969
			continue;
7970

7971
		page = pfn_to_page(check);
7972

7973
		if (PageReserved(page))
7974
			goto unmovable;
7975

7976 7977 7978 7979 7980 7981 7982 7983
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

7984 7985 7986 7987 7988 7989
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
7990 7991
			struct page *head = compound_head(page);
			unsigned int skip_pages;
7992

7993
			if (!hugepage_migration_supported(page_hstate(head)))
7994 7995
				goto unmovable;

7996 7997
			skip_pages = (1 << compound_order(head)) - (page - head);
			iter += skip_pages - 1;
7998 7999 8000
			continue;
		}

8001 8002 8003 8004
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8005
		 * because their page->_refcount is zero at all time.
8006
		 */
8007
		if (!page_ref_count(page)) {
8008 8009 8010 8011
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
8012

8013 8014 8015 8016 8017 8018 8019
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

8020 8021 8022
		if (__PageMovable(page))
			continue;

8023 8024 8025
		if (!PageLRU(page))
			found++;
		/*
8026 8027 8028
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8029 8030 8031 8032 8033 8034 8035 8036 8037 8038
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
8039
			goto unmovable;
8040
	}
8041
	return false;
8042 8043 8044
unmovable:
	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
	return true;
8045 8046
}

8047
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
8062 8063
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8064 8065
{
	/* This function is based on compact_zone() from compaction.c. */
8066
	unsigned long nr_reclaimed;
8067 8068 8069 8070
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

8071
	migrate_prep();
8072

8073
	while (pfn < end || !list_empty(&cc->migratepages)) {
8074 8075 8076 8077 8078
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8079 8080
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8081
			pfn = isolate_migratepages_range(cc, pfn, end);
8082 8083 8084 8085 8086 8087 8088 8089 8090 8091
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

8092 8093 8094
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8095

8096
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8097
				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8098
	}
8099 8100 8101 8102 8103
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8104 8105 8106 8107 8108 8109
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
8110 8111 8112 8113
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8114
 * @gfp_mask:	GFP mask to use during compaction
8115 8116
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8117
 * aligned.  The PFN range must belong to a single zone.
8118
 *
8119 8120 8121
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8122 8123 8124 8125 8126
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
8127
int alloc_contig_range(unsigned long start, unsigned long end,
8128
		       unsigned migratetype, gfp_t gfp_mask)
8129 8130
{
	unsigned long outer_start, outer_end;
8131 8132
	unsigned int order;
	int ret = 0;
8133

8134 8135 8136 8137
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
8138
		.mode = MIGRATE_SYNC,
8139
		.ignore_skip_hint = true,
8140
		.no_set_skip_hint = true,
8141
		.gfp_mask = current_gfp_context(gfp_mask),
8142 8143 8144
	};
	INIT_LIST_HEAD(&cc.migratepages);

8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
8170 8171
				       pfn_max_align_up(end), migratetype,
				       false);
8172
	if (ret)
8173
		return ret;
8174

8175 8176
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
8177 8178 8179 8180 8181 8182 8183
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
8184
	 */
8185
	ret = __alloc_contig_migrate_range(&cc, start, end);
8186
	if (ret && ret != -EBUSY)
8187
		goto done;
8188
	ret =0;
8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
8208
	drain_all_pages(cc.zone);
8209 8210 8211 8212 8213

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
8214 8215
			outer_start = start;
			break;
8216 8217 8218 8219
		}
		outer_start &= ~0UL << order;
	}

8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

8233
	/* Make sure the range is really isolated. */
8234
	if (test_pages_isolated(outer_start, end, false)) {
8235
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8236
			__func__, outer_start, end);
8237 8238 8239 8240
		ret = -EBUSY;
		goto done;
	}

8241
	/* Grab isolated pages from freelists. */
8242
	outer_end = isolate_freepages_range(&cc, outer_start, end);
8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
8256
				pfn_max_align_up(end), migratetype);
8257 8258 8259 8260 8261
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
8262 8263 8264 8265 8266 8267 8268 8269 8270
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
8271 8272 8273
}
#endif

8274 8275 8276 8277
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
8278 8279
void __meminit zone_pcp_update(struct zone *zone)
{
8280
	unsigned cpu;
8281
	mutex_lock(&pcp_batch_high_lock);
8282
	for_each_possible_cpu(cpu)
8283 8284
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
8285
	mutex_unlock(&pcp_batch_high_lock);
8286 8287
}

8288 8289 8290
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
8291 8292
	int cpu;
	struct per_cpu_pageset *pset;
8293 8294 8295 8296

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
8297 8298 8299 8300
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
8301 8302 8303 8304 8305 8306
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

8307
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
8308
/*
8309 8310
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
8311 8312 8313 8314 8315 8316
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
8317
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
8318 8319 8320 8321 8322 8323 8324 8325
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
8326
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8327 8328 8329 8330 8331 8332 8333 8334 8335
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
8336 8337 8338 8339 8340 8341 8342 8343 8344 8345
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
8346 8347 8348 8349
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
8350 8351
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
8352
#endif
8353
		del_page_from_free_list(page, zone, order);
K
KAMEZAWA Hiroyuki 已提交
8354 8355 8356 8357 8358 8359 8360
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
8361 8362 8363 8364 8365 8366

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
8367
	unsigned int order;
8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409

#ifdef CONFIG_MEMORY_FAILURE
/*
 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
 * test is performed under the zone lock to prevent a race against page
 * allocation.
 */
bool set_hwpoison_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
	bool hwpoisoned = false;

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order) {
			if (!TestSetPageHWPoison(page))
				hwpoisoned = true;
			break;
		}
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return hwpoisoned;
}
#endif