futex.c 109.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
12 13 14 15
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
16 17 18 19
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
20 21 22
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
23 24 25 26
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
27 28 29 30 31 32 33
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 */
34
#include <linux/compat.h>
L
Linus Torvalds 已提交
35 36 37
#include <linux/jhash.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
38
#include <linux/hugetlb.h>
C
Colin Cross 已提交
39
#include <linux/freezer.h>
M
Mike Rapoport 已提交
40
#include <linux/memblock.h>
41
#include <linux/fault-inject.h>
42
#include <linux/time_namespace.h>
43

44
#include <asm/futex.h>
L
Linus Torvalds 已提交
45

46
#include "locking/rtmutex_common.h"
47

48
/*
49 50 51 52
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
53 54 55 56
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
57 58 59
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
60 61
 *
 * The waker side modifies the user space value of the futex and calls
62 63 64
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
65
 *
66 67 68 69 70
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
92 93 94 95 96
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
97 98 99
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
100
 *
101
 *   waiters++; (a)
102 103 104 105 106 107 108 109 110 111
 *   smp_mb(); (A) <-- paired with -.
 *                                  |
 *   lock(hash_bucket(futex));      |
 *                                  |
 *   uval = *futex;                 |
 *                                  |        *futex = newval;
 *                                  |        sys_futex(WAKE, futex);
 *                                  |          futex_wake(futex);
 *                                  |
 *                                  `--------> smp_mb(); (B)
112
 *   if (uval == val)
113
 *     queue();
114
 *     unlock(hash_bucket(futex));
115 116
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
117 118
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
119
 *
120 121
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
122
 * to futex and the waiters read (see hb_waiters_pending()).
123 124 125 126 127 128 129 130 131 132 133 134
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
135 136 137 138 139 140 141 142 143 144 145
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
146 147
 */

148 149 150 151
#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
#define futex_cmpxchg_enabled 1
#else
static int  __read_mostly futex_cmpxchg_enabled;
152
#endif
153

154 155 156 157
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
158 159 160 161 162 163 164 165 166
#ifdef CONFIG_MMU
# define FLAGS_SHARED		0x01
#else
/*
 * NOMMU does not have per process address space. Let the compiler optimize
 * code away.
 */
# define FLAGS_SHARED		0x00
#endif
167 168 169
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
186
	refcount_t refcount;
187 188

	union futex_key key;
189
} __randomize_layout;
190

191 192
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
193
 * @list:		priority-sorted list of tasks waiting on this futex
194 195 196 197 198 199 200 201
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
202
 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
L
Linus Torvalds 已提交
203 204 205
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
206
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
207
 * The order of wakeup is always to make the first condition true, then
208 209 210 211
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
212 213
 */
struct futex_q {
P
Pierre Peiffer 已提交
214
	struct plist_node list;
L
Linus Torvalds 已提交
215

216
	struct task_struct *task;
L
Linus Torvalds 已提交
217 218
	spinlock_t *lock_ptr;
	union futex_key key;
219
	struct futex_pi_state *pi_state;
220
	struct rt_mutex_waiter *rt_waiter;
221
	union futex_key *requeue_pi_key;
222
	u32 bitset;
223
} __randomize_layout;
L
Linus Torvalds 已提交
224

225 226 227 228 229 230
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
231
/*
D
Darren Hart 已提交
232 233 234
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
235 236
 */
struct futex_hash_bucket {
237
	atomic_t waiters;
P
Pierre Peiffer 已提交
238 239
	spinlock_t lock;
	struct plist_head chain;
240
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
241

242 243 244 245 246 247 248 249 250 251 252
/*
 * The base of the bucket array and its size are always used together
 * (after initialization only in hash_futex()), so ensure that they
 * reside in the same cacheline.
 */
static struct {
	struct futex_hash_bucket *queues;
	unsigned long            hashsize;
} __futex_data __read_mostly __aligned(2*sizeof(long));
#define futex_queues   (__futex_data.queues)
#define futex_hashsize (__futex_data.hashsize)
253

L
Linus Torvalds 已提交
254

255 256 257 258 259 260 261 262
/*
 * Fault injections for futexes.
 */
#ifdef CONFIG_FAIL_FUTEX

static struct {
	struct fault_attr attr;

263
	bool ignore_private;
264 265
} fail_futex = {
	.attr = FAULT_ATTR_INITIALIZER,
266
	.ignore_private = false,
267 268 269 270 271 272 273 274
};

static int __init setup_fail_futex(char *str)
{
	return setup_fault_attr(&fail_futex.attr, str);
}
__setup("fail_futex=", setup_fail_futex);

275
static bool should_fail_futex(bool fshared)
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
{
	if (fail_futex.ignore_private && !fshared)
		return false;

	return should_fail(&fail_futex.attr, 1);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_futex_debugfs(void)
{
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;

	dir = fault_create_debugfs_attr("fail_futex", NULL,
					&fail_futex.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);

295 296
	debugfs_create_bool("ignore-private", mode, dir,
			    &fail_futex.ignore_private);
297 298 299 300 301 302 303 304 305 306 307 308 309 310
	return 0;
}

late_initcall(fail_futex_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else
static inline bool should_fail_futex(bool fshared)
{
	return false;
}
#endif /* CONFIG_FAIL_FUTEX */

311 312 313 314 315 316
#ifdef CONFIG_COMPAT
static void compat_exit_robust_list(struct task_struct *curr);
#else
static inline void compat_exit_robust_list(struct task_struct *curr) { }
#endif

317 318 319 320
/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
321 322
{
#ifdef CONFIG_SMP
323
	atomic_inc(&hb->waiters);
324
	/*
325
	 * Full barrier (A), see the ordering comment above.
326
	 */
327
	smp_mb__after_atomic();
328 329 330 331 332 333 334 335 336 337 338 339 340
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}
341

342 343 344
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
345 346 347 348
	/*
	 * Full barrier (B), see the ordering comment above.
	 */
	smp_mb();
349
	return atomic_read(&hb->waiters);
350
#else
351
	return 1;
352 353 354
#endif
}

355 356 357 358 359 360
/**
 * hash_futex - Return the hash bucket in the global hash
 * @key:	Pointer to the futex key for which the hash is calculated
 *
 * We hash on the keys returned from get_futex_key (see below) and return the
 * corresponding hash bucket in the global hash.
L
Linus Torvalds 已提交
361 362 363
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
T
Thomas Gleixner 已提交
364
	u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
L
Linus Torvalds 已提交
365
			  key->both.offset);
T
Thomas Gleixner 已提交
366

367
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
368 369
}

370 371 372 373 374 375

/**
 * match_futex - Check whether two futex keys are equal
 * @key1:	Pointer to key1
 * @key2:	Pointer to key2
 *
L
Linus Torvalds 已提交
376 377 378 379
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
380 381
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
382 383 384 385
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

386 387 388 389 390
enum futex_access {
	FUTEX_READ,
	FUTEX_WRITE
};

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/**
 * futex_setup_timer - set up the sleeping hrtimer.
 * @time:	ptr to the given timeout value
 * @timeout:	the hrtimer_sleeper structure to be set up
 * @flags:	futex flags
 * @range_ns:	optional range in ns
 *
 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
 *	   value given
 */
static inline struct hrtimer_sleeper *
futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
		  int flags, u64 range_ns)
{
	if (!time)
		return NULL;

408 409 410
	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
411 412 413 414 415 416 417 418 419
	/*
	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
	 * effectively the same as calling hrtimer_set_expires().
	 */
	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);

	return timeout;
}

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
/*
 * Generate a machine wide unique identifier for this inode.
 *
 * This relies on u64 not wrapping in the life-time of the machine; which with
 * 1ns resolution means almost 585 years.
 *
 * This further relies on the fact that a well formed program will not unmap
 * the file while it has a (shared) futex waiting on it. This mapping will have
 * a file reference which pins the mount and inode.
 *
 * If for some reason an inode gets evicted and read back in again, it will get
 * a new sequence number and will _NOT_ match, even though it is the exact same
 * file.
 *
 * It is important that match_futex() will never have a false-positive, esp.
 * for PI futexes that can mess up the state. The above argues that false-negatives
 * are only possible for malformed programs.
 */
static u64 get_inode_sequence_number(struct inode *inode)
{
	static atomic64_t i_seq;
	u64 old;

	/* Does the inode already have a sequence number? */
	old = atomic64_read(&inode->i_sequence);
	if (likely(old))
		return old;

	for (;;) {
		u64 new = atomic64_add_return(1, &i_seq);
		if (WARN_ON_ONCE(!new))
			continue;

		old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
		if (old)
			return old;
		return new;
	}
}

E
Eric Dumazet 已提交
460
/**
461 462
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
463
 * @fshared:	false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
464
 * @key:	address where result is stored.
465 466
 * @rw:		mapping needs to be read/write (values: FUTEX_READ,
 *              FUTEX_WRITE)
E
Eric Dumazet 已提交
467
 *
468 469
 * Return: a negative error code or 0
 *
470
 * The key words are stored in @key on success.
L
Linus Torvalds 已提交
471
 *
472
 * For shared mappings (when @fshared), the key is:
473
 *
474
 *   ( inode->i_sequence, page->index, offset_within_page )
475
 *
476 477 478
 * [ also see get_inode_sequence_number() ]
 *
 * For private mappings (or when !@fshared), the key is:
479
 *
480 481 482 483
 *   ( current->mm, address, 0 )
 *
 * This allows (cross process, where applicable) identification of the futex
 * without keeping the page pinned for the duration of the FUTEX_WAIT.
L
Linus Torvalds 已提交
484
 *
D
Darren Hart 已提交
485
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
486
 */
487 488
static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
			 enum futex_access rw)
L
Linus Torvalds 已提交
489
{
490
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
491
	struct mm_struct *mm = current->mm;
492
	struct page *page, *tail;
493
	struct address_space *mapping;
494
	int err, ro = 0;
L
Linus Torvalds 已提交
495 496 497 498

	/*
	 * The futex address must be "naturally" aligned.
	 */
499
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
500
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
501
		return -EINVAL;
502
	address -= key->both.offset;
L
Linus Torvalds 已提交
503

504
	if (unlikely(!access_ok(uaddr, sizeof(u32))))
505 506
		return -EFAULT;

507 508 509
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

E
Eric Dumazet 已提交
510 511 512 513 514 515 516 517 518 519 520 521
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
		return 0;
	}
L
Linus Torvalds 已提交
522

523
again:
524
	/* Ignore any VERIFY_READ mapping (futex common case) */
525
	if (unlikely(should_fail_futex(true)))
526 527
		return -EFAULT;

528
	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
529 530 531 532
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
533
	if (err == -EFAULT && rw == FUTEX_READ) {
534 535 536
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
537 538
	if (err < 0)
		return err;
539 540
	else
		err = 0;
541

542 543 544 545 546 547 548 549 550 551
	/*
	 * The treatment of mapping from this point on is critical. The page
	 * lock protects many things but in this context the page lock
	 * stabilizes mapping, prevents inode freeing in the shared
	 * file-backed region case and guards against movement to swap cache.
	 *
	 * Strictly speaking the page lock is not needed in all cases being
	 * considered here and page lock forces unnecessarily serialization
	 * From this point on, mapping will be re-verified if necessary and
	 * page lock will be acquired only if it is unavoidable
552 553 554 555 556 557 558
	 *
	 * Mapping checks require the head page for any compound page so the
	 * head page and mapping is looked up now. For anonymous pages, it
	 * does not matter if the page splits in the future as the key is
	 * based on the address. For filesystem-backed pages, the tail is
	 * required as the index of the page determines the key. For
	 * base pages, there is no tail page and tail == page.
559
	 */
560
	tail = page;
561 562 563
	page = compound_head(page);
	mapping = READ_ONCE(page->mapping);

564
	/*
565
	 * If page->mapping is NULL, then it cannot be a PageAnon
566 567 568 569 570 571 572 573 574 575 576
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
577
	 * an unlikely race, but we do need to retry for page->mapping.
578
	 */
579 580 581 582 583 584 585 586 587 588
	if (unlikely(!mapping)) {
		int shmem_swizzled;

		/*
		 * Page lock is required to identify which special case above
		 * applies. If this is really a shmem page then the page lock
		 * will prevent unexpected transitions.
		 */
		lock_page(page);
		shmem_swizzled = PageSwapCache(page) || page->mapping;
589 590
		unlock_page(page);
		put_page(page);
591

592 593
		if (shmem_swizzled)
			goto again;
594

595
		return -EFAULT;
596
	}
L
Linus Torvalds 已提交
597 598 599 600

	/*
	 * Private mappings are handled in a simple way.
	 *
601 602 603
	 * If the futex key is stored on an anonymous page, then the associated
	 * object is the mm which is implicitly pinned by the calling process.
	 *
L
Linus Torvalds 已提交
604 605
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
606
	 * the object not the particular process.
L
Linus Torvalds 已提交
607
	 */
608
	if (PageAnon(page)) {
609 610 611 612
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
613
		if (unlikely(should_fail_futex(true)) || ro) {
614 615 616 617
			err = -EFAULT;
			goto out;
		}

618
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
619
		key->private.mm = mm;
620
		key->private.address = address;
621

622
	} else {
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
		struct inode *inode;

		/*
		 * The associated futex object in this case is the inode and
		 * the page->mapping must be traversed. Ordinarily this should
		 * be stabilised under page lock but it's not strictly
		 * necessary in this case as we just want to pin the inode, not
		 * update the radix tree or anything like that.
		 *
		 * The RCU read lock is taken as the inode is finally freed
		 * under RCU. If the mapping still matches expectations then the
		 * mapping->host can be safely accessed as being a valid inode.
		 */
		rcu_read_lock();

		if (READ_ONCE(page->mapping) != mapping) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		inode = READ_ONCE(mapping->host);
		if (!inode) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

653
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
654
		key->shared.i_seq = get_inode_sequence_number(inode);
655
		key->shared.pgoff = basepage_index(tail);
656
		rcu_read_unlock();
L
Linus Torvalds 已提交
657 658
	}

659
out:
660
	put_page(page);
661
	return err;
L
Linus Torvalds 已提交
662 663
}

664 665
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
666 667 668 669 670
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
671
 * We have no generic implementation of a non-destructive write to the
672 673 674 675 676 677
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
678 679 680
	struct mm_struct *mm = current->mm;
	int ret;

681
	mmap_read_lock(mm);
682
	ret = fixup_user_fault(mm, (unsigned long)uaddr,
683
			       FAULT_FLAG_WRITE, NULL);
684
	mmap_read_unlock(mm);
685

686 687 688
	return ret < 0 ? ret : 0;
}

689 690
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
691 692
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

708 709
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
710
{
711
	int ret;
T
Thomas Gleixner 已提交
712 713

	pagefault_disable();
714
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
715 716
	pagefault_enable();

717
	return ret;
T
Thomas Gleixner 已提交
718 719 720
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
721 722 723
{
	int ret;

724
	pagefault_disable();
725
	ret = __get_user(*dest, from);
726
	pagefault_enable();
L
Linus Torvalds 已提交
727 728 729 730

	return ret ? -EFAULT : 0;
}

731 732 733 734 735 736 737 738 739 740 741

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

742
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
743 744 745 746 747 748 749

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
750
	refcount_set(&pi_state->refcount, 1);
751
	pi_state->key = FUTEX_KEY_INIT;
752 753 754 755 756 757

	current->pi_state_cache = pi_state;

	return 0;
}

P
Peter Zijlstra 已提交
758
static struct futex_pi_state *alloc_pi_state(void)
759 760 761 762 763 764 765 766 767
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

P
Peter Zijlstra 已提交
768 769
static void get_pi_state(struct futex_pi_state *pi_state)
{
770
	WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
P
Peter Zijlstra 已提交
771 772
}

773
/*
774 775
 * Drops a reference to the pi_state object and frees or caches it
 * when the last reference is gone.
776
 */
777
static void put_pi_state(struct futex_pi_state *pi_state)
778
{
779 780 781
	if (!pi_state)
		return;

782
	if (!refcount_dec_and_test(&pi_state->refcount))
783 784 785 786 787 788 789
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
790
		struct task_struct *owner;
791
		unsigned long flags;
792

793
		raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
794 795 796 797 798 799 800
		owner = pi_state->owner;
		if (owner) {
			raw_spin_lock(&owner->pi_lock);
			list_del_init(&pi_state->list);
			raw_spin_unlock(&owner->pi_lock);
		}
		rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
801
		raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
802 803
	}

804
	if (current->pi_state_cache) {
805
		kfree(pi_state);
806
	} else {
807 808 809 810 811 812
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
813
		refcount_set(&pi_state->refcount, 1);
814 815 816 817
		current->pi_state_cache = pi_state;
	}
}

818 819
#ifdef CONFIG_FUTEX_PI

820 821 822 823 824
/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
825
static void exit_pi_state_list(struct task_struct *curr)
826 827 828
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
829
	struct futex_hash_bucket *hb;
830
	union futex_key key = FUTEX_KEY_INIT;
831

832 833
	if (!futex_cmpxchg_enabled)
		return;
834 835 836
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
837
	 * versus waiters unqueueing themselves:
838
	 */
839
	raw_spin_lock_irq(&curr->pi_lock);
840 841 842 843
	while (!list_empty(head)) {
		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
844
		hb = hash_futex(&key);
845 846 847 848 849 850 851 852 853 854 855

		/*
		 * We can race against put_pi_state() removing itself from the
		 * list (a waiter going away). put_pi_state() will first
		 * decrement the reference count and then modify the list, so
		 * its possible to see the list entry but fail this reference
		 * acquire.
		 *
		 * In that case; drop the locks to let put_pi_state() make
		 * progress and retry the loop.
		 */
856
		if (!refcount_inc_not_zero(&pi_state->refcount)) {
857 858 859 860 861
			raw_spin_unlock_irq(&curr->pi_lock);
			cpu_relax();
			raw_spin_lock_irq(&curr->pi_lock);
			continue;
		}
862
		raw_spin_unlock_irq(&curr->pi_lock);
863 864

		spin_lock(&hb->lock);
865 866
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
		raw_spin_lock(&curr->pi_lock);
867 868 869 870
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
871
		if (head->next != next) {
872
			/* retain curr->pi_lock for the loop invariant */
873
			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
874
			spin_unlock(&hb->lock);
875
			put_pi_state(pi_state);
876 877 878 879
			continue;
		}

		WARN_ON(pi_state->owner != curr);
880 881
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
882 883
		pi_state->owner = NULL;

884
		raw_spin_unlock(&curr->pi_lock);
885
		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
886 887
		spin_unlock(&hb->lock);

888 889 890
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);

891
		raw_spin_lock_irq(&curr->pi_lock);
892
	}
893
	raw_spin_unlock_irq(&curr->pi_lock);
894
}
895 896
#else
static inline void exit_pi_state_list(struct task_struct *curr) { }
897 898
#endif

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
921
 *	came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync.
P
Peter Zijlstra 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
 *
 *
 * Serialization and lifetime rules:
 *
 * hb->lock:
 *
 *	hb -> futex_q, relation
 *	futex_q -> pi_state, relation
 *
 *	(cannot be raw because hb can contain arbitrary amount
 *	 of futex_q's)
 *
 * pi_mutex->wait_lock:
 *
 *	{uval, pi_state}
 *
 *	(and pi_mutex 'obviously')
 *
 * p->pi_lock:
 *
 *	p->pi_state_list -> pi_state->list, relation
 *
 * pi_state->refcount:
 *
 *	pi_state lifetime
 *
 *
 * Lock order:
 *
 *   hb->lock
 *     pi_mutex->wait_lock
 *       p->pi_lock
 *
980
 */
981 982 983 984 985 986

/*
 * Validate that the existing waiter has a pi_state and sanity check
 * the pi_state against the user space value. If correct, attach to
 * it.
 */
P
Peter Zijlstra 已提交
987 988
static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
			      struct futex_pi_state *pi_state,
989
			      struct futex_pi_state **ps)
990
{
991
	pid_t pid = uval & FUTEX_TID_MASK;
992 993
	u32 uval2;
	int ret;
994

995 996 997 998 999
	/*
	 * Userspace might have messed up non-PI and PI futexes [3]
	 */
	if (unlikely(!pi_state))
		return -EINVAL;
1000

P
Peter Zijlstra 已提交
1001 1002 1003 1004 1005 1006
	/*
	 * We get here with hb->lock held, and having found a
	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
	 * which in turn means that futex_lock_pi() still has a reference on
	 * our pi_state.
1007 1008 1009 1010 1011
	 *
	 * The waiter holding a reference on @pi_state also protects against
	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
	 * free pi_state before we can take a reference ourselves.
P
Peter Zijlstra 已提交
1012
	 */
1013
	WARN_ON(!refcount_read(&pi_state->refcount));
1014

P
Peter Zijlstra 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	/*
	 * Now that we have a pi_state, we can acquire wait_lock
	 * and do the state validation.
	 */
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	/*
	 * Since {uval, pi_state} is serialized by wait_lock, and our current
	 * uval was read without holding it, it can have changed. Verify it
	 * still is what we expect it to be, otherwise retry the entire
	 * operation.
	 */
	if (get_futex_value_locked(&uval2, uaddr))
		goto out_efault;

	if (uval != uval2)
		goto out_eagain;

1033 1034 1035 1036
	/*
	 * Handle the owner died case:
	 */
	if (uval & FUTEX_OWNER_DIED) {
1037
		/*
1038 1039 1040
		 * exit_pi_state_list sets owner to NULL and wakes the
		 * topmost waiter. The task which acquires the
		 * pi_state->rt_mutex will fixup owner.
1041
		 */
1042
		if (!pi_state->owner) {
1043
			/*
1044 1045
			 * No pi state owner, but the user space TID
			 * is not 0. Inconsistent state. [5]
1046
			 */
1047
			if (pid)
P
Peter Zijlstra 已提交
1048
				goto out_einval;
1049
			/*
1050
			 * Take a ref on the state and return success. [4]
1051
			 */
P
Peter Zijlstra 已提交
1052
			goto out_attach;
1053
		}
1054 1055

		/*
1056 1057 1058 1059 1060 1061 1062 1063
		 * If TID is 0, then either the dying owner has not
		 * yet executed exit_pi_state_list() or some waiter
		 * acquired the rtmutex in the pi state, but did not
		 * yet fixup the TID in user space.
		 *
		 * Take a ref on the state and return success. [6]
		 */
		if (!pid)
P
Peter Zijlstra 已提交
1064
			goto out_attach;
1065 1066 1067 1068
	} else {
		/*
		 * If the owner died bit is not set, then the pi_state
		 * must have an owner. [7]
1069
		 */
1070
		if (!pi_state->owner)
P
Peter Zijlstra 已提交
1071
			goto out_einval;
1072 1073
	}

1074 1075 1076 1077 1078 1079
	/*
	 * Bail out if user space manipulated the futex value. If pi
	 * state exists then the owner TID must be the same as the
	 * user space TID. [9/10]
	 */
	if (pid != task_pid_vnr(pi_state->owner))
P
Peter Zijlstra 已提交
1080 1081 1082
		goto out_einval;

out_attach:
P
Peter Zijlstra 已提交
1083
	get_pi_state(pi_state);
P
Peter Zijlstra 已提交
1084
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1085 1086
	*ps = pi_state;
	return 0;
P
Peter Zijlstra 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

out_einval:
	ret = -EINVAL;
	goto out_error;

out_eagain:
	ret = -EAGAIN;
	goto out_error;

out_efault:
	ret = -EFAULT;
	goto out_error;

out_error:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
1103 1104
}

T
Thomas Gleixner 已提交
1105 1106
/**
 * wait_for_owner_exiting - Block until the owner has exited
1107
 * @ret: owner's current futex lock status
T
Thomas Gleixner 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
 * @exiting:	Pointer to the exiting task
 *
 * Caller must hold a refcount on @exiting.
 */
static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
{
	if (ret != -EBUSY) {
		WARN_ON_ONCE(exiting);
		return;
	}

	if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
		return;

	mutex_lock(&exiting->futex_exit_mutex);
	/*
	 * No point in doing state checking here. If the waiter got here
	 * while the task was in exec()->exec_futex_release() then it can
	 * have any FUTEX_STATE_* value when the waiter has acquired the
	 * mutex. OK, if running, EXITING or DEAD if it reached exit()
	 * already. Highly unlikely and not a problem. Just one more round
	 * through the futex maze.
	 */
	mutex_unlock(&exiting->futex_exit_mutex);

	put_task_struct(exiting);
}

T
Thomas Gleixner 已提交
1136 1137 1138 1139 1140 1141
static int handle_exit_race(u32 __user *uaddr, u32 uval,
			    struct task_struct *tsk)
{
	u32 uval2;

	/*
1142 1143
	 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
	 * caller that the alleged owner is busy.
T
Thomas Gleixner 已提交
1144
	 */
1145
	if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1146
		return -EBUSY;
T
Thomas Gleixner 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

	/*
	 * Reread the user space value to handle the following situation:
	 *
	 * CPU0				CPU1
	 *
	 * sys_exit()			sys_futex()
	 *  do_exit()			 futex_lock_pi()
	 *                                futex_lock_pi_atomic()
	 *   exit_signals(tsk)		    No waiters:
	 *    tsk->flags |= PF_EXITING;	    *uaddr == 0x00000PID
	 *  mm_release(tsk)		    Set waiter bit
	 *   exit_robust_list(tsk) {	    *uaddr = 0x80000PID;
	 *      Set owner died		    attach_to_pi_owner() {
	 *    *uaddr = 0xC0000000;	     tsk = get_task(PID);
	 *   }				     if (!tsk->flags & PF_EXITING) {
	 *  ...				       attach();
1164 1165 1166
	 *  tsk->futex_state =               } else {
	 *	FUTEX_STATE_DEAD;              if (tsk->futex_state !=
	 *					  FUTEX_STATE_DEAD)
T
Thomas Gleixner 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	 *				         return -EAGAIN;
	 *				       return -ESRCH; <--- FAIL
	 *				     }
	 *
	 * Returning ESRCH unconditionally is wrong here because the
	 * user space value has been changed by the exiting task.
	 *
	 * The same logic applies to the case where the exiting task is
	 * already gone.
	 */
	if (get_futex_value_locked(&uval2, uaddr))
		return -EFAULT;

	/* If the user space value has changed, try again. */
	if (uval2 != uval)
		return -EAGAIN;

	/*
	 * The exiting task did not have a robust list, the robust list was
	 * corrupted or the user space value in *uaddr is simply bogus.
	 * Give up and tell user space.
	 */
	return -ESRCH;
}

1192 1193 1194 1195
/*
 * Lookup the task for the TID provided from user space and attach to
 * it after doing proper sanity checks.
 */
T
Thomas Gleixner 已提交
1196
static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
T
Thomas Gleixner 已提交
1197 1198
			      struct futex_pi_state **ps,
			      struct task_struct **exiting)
1199 1200
{
	pid_t pid = uval & FUTEX_TID_MASK;
1201 1202
	struct futex_pi_state *pi_state;
	struct task_struct *p;
1203

1204
	/*
1205
	 * We are the first waiter - try to look up the real owner and attach
1206
	 * the new pi_state to it, but bail out when TID = 0 [1]
T
Thomas Gleixner 已提交
1207 1208 1209
	 *
	 * The !pid check is paranoid. None of the call sites should end up
	 * with pid == 0, but better safe than sorry. Let the caller retry
1210
	 */
1211
	if (!pid)
T
Thomas Gleixner 已提交
1212
		return -EAGAIN;
1213
	p = find_get_task_by_vpid(pid);
1214
	if (!p)
T
Thomas Gleixner 已提交
1215
		return handle_exit_race(uaddr, uval, NULL);
1216

1217
	if (unlikely(p->flags & PF_KTHREAD)) {
1218 1219 1220 1221
		put_task_struct(p);
		return -EPERM;
	}

1222
	/*
1223 1224 1225
	 * We need to look at the task state to figure out, whether the
	 * task is exiting. To protect against the change of the task state
	 * in futex_exit_release(), we do this protected by p->pi_lock:
1226
	 */
1227
	raw_spin_lock_irq(&p->pi_lock);
1228
	if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1229
		/*
1230 1231 1232
		 * The task is on the way out. When the futex state is
		 * FUTEX_STATE_DEAD, we know that the task has finished
		 * the cleanup:
1233
		 */
T
Thomas Gleixner 已提交
1234
		int ret = handle_exit_race(uaddr, uval, p);
1235

1236
		raw_spin_unlock_irq(&p->pi_lock);
T
Thomas Gleixner 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
		/*
		 * If the owner task is between FUTEX_STATE_EXITING and
		 * FUTEX_STATE_DEAD then store the task pointer and keep
		 * the reference on the task struct. The calling code will
		 * drop all locks, wait for the task to reach
		 * FUTEX_STATE_DEAD and then drop the refcount. This is
		 * required to prevent a live lock when the current task
		 * preempted the exiting task between the two states.
		 */
		if (ret == -EBUSY)
			*exiting = p;
		else
			put_task_struct(p);
1250 1251
		return ret;
	}
1252

1253 1254
	/*
	 * No existing pi state. First waiter. [2]
P
Peter Zijlstra 已提交
1255 1256 1257
	 *
	 * This creates pi_state, we have hb->lock held, this means nothing can
	 * observe this state, wait_lock is irrelevant.
1258
	 */
1259 1260 1261
	pi_state = alloc_pi_state();

	/*
1262
	 * Initialize the pi_mutex in locked state and make @p
1263 1264 1265 1266 1267
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
1268
	pi_state->key = *key;
1269

1270
	WARN_ON(!list_empty(&pi_state->list));
1271
	list_add(&pi_state->list, &p->pi_state_list);
1272 1273 1274 1275
	/*
	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
	 * because there is no concurrency as the object is not published yet.
	 */
1276
	pi_state->owner = p;
1277
	raw_spin_unlock_irq(&p->pi_lock);
1278 1279 1280

	put_task_struct(p);

P
Pierre Peiffer 已提交
1281
	*ps = pi_state;
1282 1283 1284 1285

	return 0;
}

P
Peter Zijlstra 已提交
1286 1287
static int lookup_pi_state(u32 __user *uaddr, u32 uval,
			   struct futex_hash_bucket *hb,
T
Thomas Gleixner 已提交
1288 1289
			   union futex_key *key, struct futex_pi_state **ps,
			   struct task_struct **exiting)
1290
{
1291
	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1292 1293 1294 1295 1296

	/*
	 * If there is a waiter on that futex, validate it and
	 * attach to the pi_state when the validation succeeds.
	 */
1297
	if (top_waiter)
P
Peter Zijlstra 已提交
1298
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1299 1300 1301 1302 1303

	/*
	 * We are the first waiter - try to look up the owner based on
	 * @uval and attach to it.
	 */
T
Thomas Gleixner 已提交
1304
	return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1305 1306
}

1307 1308
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
1309
	int err;
1310
	u32 curval;
1311

1312 1313 1314
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1315 1316 1317
	err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
	if (unlikely(err))
		return err;
1318

P
Peter Zijlstra 已提交
1319
	/* If user space value changed, let the caller retry */
1320 1321 1322
	return curval != uval ? -EAGAIN : 0;
}

1323
/**
1324
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1325 1326 1327 1328 1329 1330 1331
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
T
Thomas Gleixner 已提交
1332 1333
 * @exiting:		Pointer to store the task pointer of the owner task
 *			which is in the middle of exiting
1334
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1335
 *
1336
 * Return:
1337 1338 1339
 *  -  0 - ready to wait;
 *  -  1 - acquired the lock;
 *  - <0 - error
1340 1341
 *
 * The hb->lock and futex_key refs shall be held by the caller.
T
Thomas Gleixner 已提交
1342 1343 1344 1345
 *
 * @exiting is only set when the return value is -EBUSY. If so, this holds
 * a refcount on the exiting task on return and the caller needs to drop it
 * after waiting for the exit to complete.
1346 1347 1348 1349
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
T
Thomas Gleixner 已提交
1350 1351 1352
				struct task_struct *task,
				struct task_struct **exiting,
				int set_waiters)
1353
{
1354
	u32 uval, newval, vpid = task_pid_vnr(task);
1355
	struct futex_q *top_waiter;
1356
	int ret;
1357 1358

	/*
1359 1360
	 * Read the user space value first so we can validate a few
	 * things before proceeding further.
1361
	 */
1362
	if (get_futex_value_locked(&uval, uaddr))
1363 1364
		return -EFAULT;

1365 1366 1367
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1368 1369 1370
	/*
	 * Detect deadlocks.
	 */
1371
	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1372 1373
		return -EDEADLK;

1374 1375 1376
	if ((unlikely(should_fail_futex(true))))
		return -EDEADLK;

1377
	/*
1378 1379
	 * Lookup existing state first. If it exists, try to attach to
	 * its pi_state.
1380
	 */
1381 1382
	top_waiter = futex_top_waiter(hb, key);
	if (top_waiter)
P
Peter Zijlstra 已提交
1383
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1384 1385

	/*
1386 1387 1388 1389
	 * No waiter and user TID is 0. We are here because the
	 * waiters or the owner died bit is set or called from
	 * requeue_cmp_pi or for whatever reason something took the
	 * syscall.
1390
	 */
1391
	if (!(uval & FUTEX_TID_MASK)) {
1392
		/*
1393 1394
		 * We take over the futex. No other waiters and the user space
		 * TID is 0. We preserve the owner died bit.
1395
		 */
1396 1397
		newval = uval & FUTEX_OWNER_DIED;
		newval |= vpid;
1398

1399 1400 1401 1402 1403 1404 1405 1406
		/* The futex requeue_pi code can enforce the waiters bit */
		if (set_waiters)
			newval |= FUTEX_WAITERS;

		ret = lock_pi_update_atomic(uaddr, uval, newval);
		/* If the take over worked, return 1 */
		return ret < 0 ? ret : 1;
	}
1407 1408

	/*
1409 1410 1411
	 * First waiter. Set the waiters bit before attaching ourself to
	 * the owner. If owner tries to unlock, it will be forced into
	 * the kernel and blocked on hb->lock.
1412
	 */
1413 1414 1415 1416
	newval = uval | FUTEX_WAITERS;
	ret = lock_pi_update_atomic(uaddr, uval, newval);
	if (ret)
		return ret;
1417
	/*
1418 1419 1420
	 * If the update of the user space value succeeded, we try to
	 * attach to the owner. If that fails, no harm done, we only
	 * set the FUTEX_WAITERS bit in the user space variable.
1421
	 */
T
Thomas Gleixner 已提交
1422
	return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1423 1424
}

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

1435
	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1436
		return;
1437
	lockdep_assert_held(q->lock_ptr);
1438 1439 1440

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
1441
	hb_waiters_dec(hb);
1442 1443
}

L
Linus Torvalds 已提交
1444 1445
/*
 * The hash bucket lock must be held when this is called.
1446 1447 1448
 * Afterwards, the futex_q must not be accessed. Callers
 * must ensure to later call wake_up_q() for the actual
 * wakeups to occur.
L
Linus Torvalds 已提交
1449
 */
1450
static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
L
Linus Torvalds 已提交
1451
{
T
Thomas Gleixner 已提交
1452 1453
	struct task_struct *p = q->task;

1454 1455 1456
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

1457
	get_task_struct(p);
1458
	__unqueue_futex(q);
L
Linus Torvalds 已提交
1459
	/*
1460 1461 1462 1463 1464
	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
	 * is written, without taking any locks. This is possible in the event
	 * of a spurious wakeup, for example. A memory barrier is required here
	 * to prevent the following store to lock_ptr from getting ahead of the
	 * plist_del in __unqueue_futex().
L
Linus Torvalds 已提交
1465
	 */
1466
	smp_store_release(&q->lock_ptr, NULL);
1467 1468 1469

	/*
	 * Queue the task for later wakeup for after we've released
1470
	 * the hb->lock.
1471
	 */
1472
	wake_q_add_safe(wake_q, p);
L
Linus Torvalds 已提交
1473 1474
}

1475 1476 1477 1478
/*
 * Caller must hold a reference on @pi_state.
 */
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1479
{
1480
	u32 curval, newval;
1481
	struct task_struct *new_owner;
P
Peter Zijlstra 已提交
1482
	bool postunlock = false;
1483
	DEFINE_WAKE_Q(wake_q);
1484
	int ret = 0;
1485 1486

	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1487
	if (WARN_ON_ONCE(!new_owner)) {
1488
		/*
1489
		 * As per the comment in futex_unlock_pi() this should not happen.
1490 1491 1492 1493 1494 1495 1496 1497
		 *
		 * When this happens, give up our locks and try again, giving
		 * the futex_lock_pi() instance time to complete, either by
		 * waiting on the rtmutex or removing itself from the futex
		 * queue.
		 */
		ret = -EAGAIN;
		goto out_unlock;
1498
	}
1499 1500

	/*
1501 1502 1503
	 * We pass it to the next owner. The WAITERS bit is always kept
	 * enabled while there is PI state around. We cleanup the owner
	 * died bit, because we are the owner.
1504
	 */
1505
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1506

1507
	if (unlikely(should_fail_futex(true))) {
1508
		ret = -EFAULT;
1509 1510
		goto out_unlock;
	}
1511

1512 1513
	ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
	if (!ret && (curval != uval)) {
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
		/*
		 * If a unconditional UNLOCK_PI operation (user space did not
		 * try the TID->0 transition) raced with a waiter setting the
		 * FUTEX_WAITERS flag between get_user() and locking the hash
		 * bucket lock, retry the operation.
		 */
		if ((FUTEX_TID_MASK & curval) == uval)
			ret = -EAGAIN;
		else
			ret = -EINVAL;
	}
P
Peter Zijlstra 已提交
1525

1526 1527
	if (ret)
		goto out_unlock;
1528

1529 1530 1531 1532 1533
	/*
	 * This is a point of no return; once we modify the uval there is no
	 * going back and subsequent operations must not fail.
	 */

1534
	raw_spin_lock(&pi_state->owner->pi_lock);
1535 1536
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1537
	raw_spin_unlock(&pi_state->owner->pi_lock);
1538

1539
	raw_spin_lock(&new_owner->pi_lock);
1540
	WARN_ON(!list_empty(&pi_state->list));
1541 1542
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1543
	raw_spin_unlock(&new_owner->pi_lock);
1544

P
Peter Zijlstra 已提交
1545
	postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1546

1547
out_unlock:
1548 1549
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

P
Peter Zijlstra 已提交
1550 1551
	if (postunlock)
		rt_mutex_postunlock(&wake_q);
1552

1553
	return ret;
1554 1555
}

I
Ingo Molnar 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1572 1573 1574
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1575
	spin_unlock(&hb1->lock);
1576 1577
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1578 1579
}

L
Linus Torvalds 已提交
1580
/*
D
Darren Hart 已提交
1581
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1582
 */
1583 1584
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1585
{
1586
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1587
	struct futex_q *this, *next;
1588
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1589
	int ret;
1590
	DEFINE_WAKE_Q(wake_q);
L
Linus Torvalds 已提交
1591

1592 1593 1594
	if (!bitset)
		return -EINVAL;

1595
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
L
Linus Torvalds 已提交
1596
	if (unlikely(ret != 0))
A
André Almeida 已提交
1597
		return ret;
L
Linus Torvalds 已提交
1598

1599
	hb = hash_futex(&key);
1600 1601 1602

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
A
André Almeida 已提交
1603
		return ret;
1604

1605
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1606

J
Jason Low 已提交
1607
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1608
		if (match_futex (&this->key, &key)) {
1609
			if (this->pi_state || this->rt_waiter) {
1610 1611 1612
				ret = -EINVAL;
				break;
			}
1613 1614 1615 1616 1617

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

1618
			mark_wake_futex(&wake_q, this);
L
Linus Torvalds 已提交
1619 1620 1621 1622 1623
			if (++ret >= nr_wake)
				break;
		}
	}

1624
	spin_unlock(&hb->lock);
1625
	wake_up_q(&wake_q);
L
Linus Torvalds 已提交
1626 1627 1628
	return ret;
}

1629 1630 1631 1632
static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
{
	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
1633 1634
	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1635 1636 1637
	int oldval, ret;

	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
		if (oparg < 0 || oparg > 31) {
			char comm[sizeof(current->comm)];
			/*
			 * kill this print and return -EINVAL when userspace
			 * is sane again
			 */
			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
					get_task_comm(comm, current), oparg);
			oparg &= 31;
		}
1648 1649 1650
		oparg = 1 << oparg;
	}

1651
	pagefault_disable();
1652
	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1653
	pagefault_enable();
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	if (ret)
		return ret;

	switch (cmp) {
	case FUTEX_OP_CMP_EQ:
		return oldval == cmparg;
	case FUTEX_OP_CMP_NE:
		return oldval != cmparg;
	case FUTEX_OP_CMP_LT:
		return oldval < cmparg;
	case FUTEX_OP_CMP_GE:
		return oldval >= cmparg;
	case FUTEX_OP_CMP_LE:
		return oldval <= cmparg;
	case FUTEX_OP_CMP_GT:
		return oldval > cmparg;
	default:
		return -ENOSYS;
	}
}

1675 1676 1677 1678
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1679
static int
1680
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1681
	      int nr_wake, int nr_wake2, int op)
1682
{
1683
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1684
	struct futex_hash_bucket *hb1, *hb2;
1685
	struct futex_q *this, *next;
D
Darren Hart 已提交
1686
	int ret, op_ret;
1687
	DEFINE_WAKE_Q(wake_q);
1688

D
Darren Hart 已提交
1689
retry:
1690
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1691
	if (unlikely(ret != 0))
A
André Almeida 已提交
1692
		return ret;
1693
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1694
	if (unlikely(ret != 0))
A
André Almeida 已提交
1695
		return ret;
1696

1697 1698
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1699

D
Darren Hart 已提交
1700
retry_private:
T
Thomas Gleixner 已提交
1701
	double_lock_hb(hb1, hb2);
1702
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1703
	if (unlikely(op_ret < 0)) {
D
Darren Hart 已提交
1704
		double_unlock_hb(hb1, hb2);
1705

1706 1707 1708 1709 1710 1711
		if (!IS_ENABLED(CONFIG_MMU) ||
		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
			/*
			 * we don't get EFAULT from MMU faults if we don't have
			 * an MMU, but we might get them from range checking
			 */
1712
			ret = op_ret;
A
André Almeida 已提交
1713
			return ret;
1714 1715
		}

1716 1717 1718
		if (op_ret == -EFAULT) {
			ret = fault_in_user_writeable(uaddr2);
			if (ret)
A
André Almeida 已提交
1719
				return ret;
1720
		}
1721

1722 1723
		if (!(flags & FLAGS_SHARED)) {
			cond_resched();
D
Darren Hart 已提交
1724
			goto retry_private;
1725
		}
D
Darren Hart 已提交
1726

1727
		cond_resched();
D
Darren Hart 已提交
1728
		goto retry;
1729 1730
	}

J
Jason Low 已提交
1731
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1732
		if (match_futex (&this->key, &key1)) {
1733 1734 1735 1736
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1737
			mark_wake_futex(&wake_q, this);
1738 1739 1740 1741 1742 1743 1744
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1745
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1746
			if (match_futex (&this->key, &key2)) {
1747 1748 1749 1750
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1751
				mark_wake_futex(&wake_q, this);
1752 1753 1754 1755 1756 1757 1758
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1759
out_unlock:
D
Darren Hart 已提交
1760
	double_unlock_hb(hb1, hb2);
1761
	wake_up_q(&wake_q);
1762 1763 1764
	return ret;
}

D
Darren Hart 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
1783 1784
		hb_waiters_dec(hb1);
		hb_waiters_inc(hb2);
1785
		plist_add(&q->list, &hb2->chain);
D
Darren Hart 已提交
1786 1787 1788 1789 1790
		q->lock_ptr = &hb2->lock;
	}
	q->key = *key2;
}

1791 1792
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1793 1794 1795
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1796 1797 1798 1799 1800
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1801 1802 1803
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1804 1805
 */
static inline
1806 1807
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1808 1809 1810
{
	q->key = *key;

1811
	__unqueue_futex(q);
1812 1813 1814 1815

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1816 1817
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1818
	wake_up_state(q->task, TASK_NORMAL);
1819 1820 1821 1822
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1823 1824 1825 1826 1827 1828
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
T
Thomas Gleixner 已提交
1829 1830
 * @exiting:		Pointer to store the task pointer of the owner task
 *			which is in the middle of exiting
1831
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1832 1833
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1834 1835 1836
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1837
 *
T
Thomas Gleixner 已提交
1838 1839 1840 1841
 * @exiting is only set when the return value is -EBUSY. If so, this holds
 * a refcount on the exiting task on return and the caller needs to drop it
 * after waiting for the exit to complete.
 *
1842
 * Return:
1843 1844 1845
 *  -  0 - failed to acquire the lock atomically;
 *  - >0 - acquired the lock, return value is vpid of the top_waiter
 *  - <0 - error
1846
 */
T
Thomas Gleixner 已提交
1847 1848 1849 1850 1851
static int
futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
			   struct futex_hash_bucket *hb2, union futex_key *key1,
			   union futex_key *key2, struct futex_pi_state **ps,
			   struct task_struct **exiting, int set_waiters)
1852
{
1853
	struct futex_q *top_waiter = NULL;
1854
	u32 curval;
1855
	int ret, vpid;
1856 1857 1858 1859

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1860 1861 1862
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1863 1864 1865 1866 1867 1868 1869 1870
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1871 1872 1873 1874 1875 1876
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1877 1878 1879 1880
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1881
	/*
1882 1883 1884
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1885
	 */
1886
	vpid = task_pid_vnr(top_waiter->task);
1887
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
T
Thomas Gleixner 已提交
1888
				   exiting, set_waiters);
1889
	if (ret == 1) {
1890
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1891 1892
		return vpid;
	}
1893 1894 1895 1896 1897
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1898
 * @uaddr1:	source futex user address
1899
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1900 1901 1902 1903 1904
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1905
 *		pi futex (pi to pi requeue is not supported)
1906 1907 1908 1909
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1910
 * Return:
1911 1912
 *  - >=0 - on success, the number of tasks requeued or woken;
 *  -  <0 - on error
L
Linus Torvalds 已提交
1913
 */
1914 1915 1916
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1917
{
1918
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1919
	int task_count = 0, ret;
1920
	struct futex_pi_state *pi_state = NULL;
1921
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1922
	struct futex_q *this, *next;
1923
	DEFINE_WAKE_Q(wake_q);
1924

1925 1926 1927
	if (nr_wake < 0 || nr_requeue < 0)
		return -EINVAL;

1928 1929 1930 1931 1932 1933 1934 1935 1936
	/*
	 * When PI not supported: return -ENOSYS if requeue_pi is true,
	 * consequently the compiler knows requeue_pi is always false past
	 * this point which will optimize away all the conditional code
	 * further down.
	 */
	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
		return -ENOSYS;

1937
	if (requeue_pi) {
1938 1939 1940 1941 1942 1943 1944
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1964

1965
retry:
1966
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
L
Linus Torvalds 已提交
1967
	if (unlikely(ret != 0))
A
André Almeida 已提交
1968
		return ret;
1969
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1970
			    requeue_pi ? FUTEX_WRITE : FUTEX_READ);
L
Linus Torvalds 已提交
1971
	if (unlikely(ret != 0))
A
André Almeida 已提交
1972
		return ret;
L
Linus Torvalds 已提交
1973

1974 1975 1976 1977
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
A
André Almeida 已提交
1978 1979
	if (requeue_pi && match_futex(&key1, &key2))
		return -EINVAL;
1980

1981 1982
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1983

D
Darren Hart 已提交
1984
retry_private:
1985
	hb_waiters_inc(hb2);
I
Ingo Molnar 已提交
1986
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1987

1988 1989
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1990

1991
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1992 1993

		if (unlikely(ret)) {
D
Darren Hart 已提交
1994
			double_unlock_hb(hb1, hb2);
1995
			hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1996

1997
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1998
			if (ret)
A
André Almeida 已提交
1999
				return ret;
L
Linus Torvalds 已提交
2000

2001
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2002
				goto retry_private;
L
Linus Torvalds 已提交
2003

D
Darren Hart 已提交
2004
			goto retry;
L
Linus Torvalds 已提交
2005
		}
2006
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
2007 2008 2009 2010 2011
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

2012
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
T
Thomas Gleixner 已提交
2013 2014
		struct task_struct *exiting = NULL;

2015 2016 2017 2018 2019 2020
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
2021
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
T
Thomas Gleixner 已提交
2022 2023
						 &key2, &pi_state,
						 &exiting, nr_requeue);
2024 2025 2026 2027 2028

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
2029 2030
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
2031 2032
		 * If the lock was not taken, we have pi_state and an initial
		 * refcount on it. In case of an error we have nothing.
2033
		 */
2034
		if (ret > 0) {
2035 2036
			WARN_ON(pi_state);
			task_count++;
2037
			/*
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
			 * If we acquired the lock, then the user space value
			 * of uaddr2 should be vpid. It cannot be changed by
			 * the top waiter as it is blocked on hb2 lock if it
			 * tries to do so. If something fiddled with it behind
			 * our back the pi state lookup might unearth it. So
			 * we rather use the known value than rereading and
			 * handing potential crap to lookup_pi_state.
			 *
			 * If that call succeeds then we have pi_state and an
			 * initial refcount on it.
2048
			 */
T
Thomas Gleixner 已提交
2049 2050
			ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
					      &pi_state, &exiting);
2051 2052 2053 2054
		}

		switch (ret) {
		case 0:
2055
			/* We hold a reference on the pi state. */
2056
			break;
2057 2058

			/* If the above failed, then pi_state is NULL */
2059 2060
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
2061
			hb_waiters_dec(hb2);
2062
			ret = fault_in_user_writeable(uaddr2);
2063 2064
			if (!ret)
				goto retry;
A
André Almeida 已提交
2065
			return ret;
2066
		case -EBUSY:
2067
		case -EAGAIN:
2068 2069
			/*
			 * Two reasons for this:
2070
			 * - EBUSY: Owner is exiting and we just wait for the
2071
			 *   exit to complete.
2072
			 * - EAGAIN: The user space value changed.
2073
			 */
2074
			double_unlock_hb(hb1, hb2);
2075
			hb_waiters_dec(hb2);
T
Thomas Gleixner 已提交
2076 2077 2078 2079 2080 2081
			/*
			 * Handle the case where the owner is in the middle of
			 * exiting. Wait for the exit to complete otherwise
			 * this task might loop forever, aka. live lock.
			 */
			wait_for_owner_exiting(ret, exiting);
2082 2083 2084 2085 2086 2087 2088
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
2089
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2090 2091 2092 2093
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
2094
			continue;
2095

2096 2097 2098
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
2099 2100 2101
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
2102 2103
		 */
		if ((requeue_pi && !this->rt_waiter) ||
2104 2105
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
2106 2107 2108
			ret = -EINVAL;
			break;
		}
2109 2110 2111 2112 2113 2114 2115

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
2116
			mark_wake_futex(&wake_q, this);
2117 2118
			continue;
		}
L
Linus Torvalds 已提交
2119

2120 2121 2122 2123 2124 2125
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

2126 2127 2128 2129 2130
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
2131 2132 2133 2134 2135
			/*
			 * Prepare the waiter to take the rt_mutex. Take a
			 * refcount on the pi_state and store the pointer in
			 * the futex_q object of the waiter.
			 */
P
Peter Zijlstra 已提交
2136
			get_pi_state(pi_state);
2137 2138 2139
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
2140
							this->task);
2141
			if (ret == 1) {
2142 2143 2144 2145 2146 2147 2148 2149
				/*
				 * We got the lock. We do neither drop the
				 * refcount on pi_state nor clear
				 * this->pi_state because the waiter needs the
				 * pi_state for cleaning up the user space
				 * value. It will drop the refcount after
				 * doing so.
				 */
2150
				requeue_pi_wake_futex(this, &key2, hb2);
2151 2152
				continue;
			} else if (ret) {
2153 2154 2155 2156 2157 2158 2159 2160
				/*
				 * rt_mutex_start_proxy_lock() detected a
				 * potential deadlock when we tried to queue
				 * that waiter. Drop the pi_state reference
				 * which we took above and remove the pointer
				 * to the state from the waiters futex_q
				 * object.
				 */
2161
				this->pi_state = NULL;
2162
				put_pi_state(pi_state);
2163 2164 2165 2166 2167
				/*
				 * We stop queueing more waiters and let user
				 * space deal with the mess.
				 */
				break;
2168
			}
L
Linus Torvalds 已提交
2169
		}
2170
		requeue_futex(this, hb1, hb2, &key2);
L
Linus Torvalds 已提交
2171 2172
	}

2173 2174 2175 2176 2177
	/*
	 * We took an extra initial reference to the pi_state either
	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
	 * need to drop it here again.
	 */
2178
	put_pi_state(pi_state);
2179 2180

out_unlock:
D
Darren Hart 已提交
2181
	double_unlock_hb(hb1, hb2);
2182
	wake_up_q(&wake_q);
2183
	hb_waiters_dec(hb2);
2184
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
2185 2186 2187
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
2188
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2189
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
2190
{
2191
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
2192

2193
	hb = hash_futex(&q->key);
2194 2195 2196 2197 2198 2199 2200 2201 2202

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
D
Davidlohr Bueso 已提交
2203
	hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2204

2205
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
2206

D
Davidlohr Bueso 已提交
2207
	spin_lock(&hb->lock);
2208
	return hb;
L
Linus Torvalds 已提交
2209 2210
}

2211
static inline void
J
Jason Low 已提交
2212
queue_unlock(struct futex_hash_bucket *hb)
2213
	__releases(&hb->lock)
2214 2215
{
	spin_unlock(&hb->lock);
2216
	hb_waiters_dec(hb);
2217 2218
}

2219
static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
2220
{
P
Pierre Peiffer 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
2235
	q->task = current;
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
	__releases(&hb->lock)
{
	__queue_me(q, hb);
2254
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
2255 2256
}

2257 2258 2259 2260 2261 2262 2263
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
2264
 * Return:
2265 2266
 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
 *  - 0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
2267 2268 2269 2270
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
2271
	int ret = 0;
L
Linus Torvalds 已提交
2272 2273

	/* In the common case we don't take the spinlock, which is nice. */
2274
retry:
2275 2276 2277 2278 2279 2280
	/*
	 * q->lock_ptr can change between this read and the following spin_lock.
	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
	 * optimizing lock_ptr out of the logic below.
	 */
	lock_ptr = READ_ONCE(q->lock_ptr);
2281
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
2300
		__unqueue_futex(q);
2301 2302 2303

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
2304 2305 2306 2307 2308 2309 2310
		spin_unlock(lock_ptr);
		ret = 1;
	}

	return ret;
}

2311 2312
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
2313 2314
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
2315
 */
P
Pierre Peiffer 已提交
2316
static void unqueue_me_pi(struct futex_q *q)
2317
	__releases(q->lock_ptr)
2318
{
2319
	__unqueue_futex(q);
2320 2321

	BUG_ON(!q->pi_state);
2322
	put_pi_state(q->pi_state);
2323 2324
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
2325
	spin_unlock(q->lock_ptr);
2326 2327
}

2328
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2329
				struct task_struct *argowner)
P
Pierre Peiffer 已提交
2330 2331
{
	struct futex_pi_state *pi_state = q->pi_state;
2332
	u32 uval, curval, newval;
2333 2334
	struct task_struct *oldowner, *newowner;
	u32 newtid;
2335
	int ret, err = 0;
P
Pierre Peiffer 已提交
2336

2337 2338
	lockdep_assert_held(q->lock_ptr);

P
Peter Zijlstra 已提交
2339 2340 2341
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	oldowner = pi_state->owner;
2342 2343

	/*
2344
	 * We are here because either:
2345
	 *
2346 2347 2348 2349 2350 2351 2352 2353 2354
	 *  - we stole the lock and pi_state->owner needs updating to reflect
	 *    that (@argowner == current),
	 *
	 * or:
	 *
	 *  - someone stole our lock and we need to fix things to point to the
	 *    new owner (@argowner == NULL).
	 *
	 * Either way, we have to replace the TID in the user space variable.
2355
	 * This must be atomic as we have to preserve the owner died bit here.
2356
	 *
D
Darren Hart 已提交
2357 2358 2359
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
2360
	 *
P
Peter Zijlstra 已提交
2361 2362 2363 2364
	 * Modifying pi_state _before_ the user space value would leave the
	 * pi_state in an inconsistent state when we fault here, because we
	 * need to drop the locks to handle the fault. This might be observed
	 * in the PID check in lookup_pi_state.
2365 2366
	 */
retry:
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
	if (!argowner) {
		if (oldowner != current) {
			/*
			 * We raced against a concurrent self; things are
			 * already fixed up. Nothing to do.
			 */
			ret = 0;
			goto out_unlock;
		}

		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
			/* We got the lock after all, nothing to fix. */
			ret = 0;
			goto out_unlock;
		}

		/*
2384 2385
		 * The trylock just failed, so either there is an owner or
		 * there is a higher priority waiter than this one.
2386 2387
		 */
		newowner = rt_mutex_owner(&pi_state->pi_mutex);
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
		/*
		 * If the higher priority waiter has not yet taken over the
		 * rtmutex then newowner is NULL. We can't return here with
		 * that state because it's inconsistent vs. the user space
		 * state. So drop the locks and try again. It's a valid
		 * situation and not any different from the other retry
		 * conditions.
		 */
		if (unlikely(!newowner)) {
			err = -EAGAIN;
			goto handle_err;
		}
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	} else {
		WARN_ON_ONCE(argowner != current);
		if (oldowner == current) {
			/*
			 * We raced against a concurrent self; things are
			 * already fixed up. Nothing to do.
			 */
			ret = 0;
			goto out_unlock;
		}
		newowner = argowner;
	}

	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Peter Zijlstra 已提交
2414 2415 2416
	/* Owner died? */
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;
2417

2418 2419 2420
	err = get_futex_value_locked(&uval, uaddr);
	if (err)
		goto handle_err;
2421

2422
	for (;;) {
2423 2424
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

2425 2426 2427 2428
		err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
		if (err)
			goto handle_err;

2429 2430 2431 2432 2433 2434 2435 2436 2437
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
2438
	if (pi_state->owner != NULL) {
P
Peter Zijlstra 已提交
2439
		raw_spin_lock(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
2440 2441
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
P
Peter Zijlstra 已提交
2442
		raw_spin_unlock(&pi_state->owner->pi_lock);
2443
	}
P
Pierre Peiffer 已提交
2444

2445
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
2446

P
Peter Zijlstra 已提交
2447
	raw_spin_lock(&newowner->pi_lock);
P
Pierre Peiffer 已提交
2448
	WARN_ON(!list_empty(&pi_state->list));
2449
	list_add(&pi_state->list, &newowner->pi_state_list);
P
Peter Zijlstra 已提交
2450 2451 2452
	raw_spin_unlock(&newowner->pi_lock);
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

2453
	return 0;
P
Pierre Peiffer 已提交
2454 2455

	/*
2456 2457 2458 2459 2460 2461 2462
	 * In order to reschedule or handle a page fault, we need to drop the
	 * locks here. In the case of a fault, this gives the other task
	 * (either the highest priority waiter itself or the task which stole
	 * the rtmutex) the chance to try the fixup of the pi_state. So once we
	 * are back from handling the fault we need to check the pi_state after
	 * reacquiring the locks and before trying to do another fixup. When
	 * the fixup has been done already we simply return.
P
Peter Zijlstra 已提交
2463 2464 2465 2466
	 *
	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
	 * drop hb->lock since the caller owns the hb -> futex_q relation.
	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
P
Pierre Peiffer 已提交
2467
	 */
2468
handle_err:
P
Peter Zijlstra 已提交
2469
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2470
	spin_unlock(q->lock_ptr);
2471

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	switch (err) {
	case -EFAULT:
		ret = fault_in_user_writeable(uaddr);
		break;

	case -EAGAIN:
		cond_resched();
		ret = 0;
		break;

	default:
		WARN_ON_ONCE(1);
		ret = err;
		break;
	}
2487

2488
	spin_lock(q->lock_ptr);
P
Peter Zijlstra 已提交
2489
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2490

2491 2492 2493
	/*
	 * Check if someone else fixed it for us:
	 */
P
Peter Zijlstra 已提交
2494 2495 2496 2497
	if (pi_state->owner != oldowner) {
		ret = 0;
		goto out_unlock;
	}
2498 2499

	if (ret)
P
Peter Zijlstra 已提交
2500
		goto out_unlock;
2501 2502

	goto retry;
P
Peter Zijlstra 已提交
2503 2504 2505 2506

out_unlock:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
P
Pierre Peiffer 已提交
2507 2508
}

N
Nick Piggin 已提交
2509
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
2510

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
2521
 * Return:
2522 2523 2524
 *  -  1 - success, lock taken;
 *  -  0 - success, lock not taken;
 *  - <0 - on error (-EFAULT)
2525
 */
2526
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2527 2528 2529 2530 2531 2532 2533
{
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
2534
		 *
2535 2536 2537
		 * Speculative pi_state->owner read (we don't hold wait_lock);
		 * since we own the lock pi_state->owner == current is the
		 * stable state, anything else needs more attention.
2538 2539
		 */
		if (q->pi_state->owner != current)
2540
			ret = fixup_pi_state_owner(uaddr, q, current);
A
André Almeida 已提交
2541
		return ret ? ret : locked;
2542 2543
	}

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
	/*
	 * If we didn't get the lock; check if anybody stole it from us. In
	 * that case, we need to fix up the uval to point to them instead of
	 * us, otherwise bad things happen. [10]
	 *
	 * Another speculative read; pi_state->owner == current is unstable
	 * but needs our attention.
	 */
	if (q->pi_state->owner == current) {
		ret = fixup_pi_state_owner(uaddr, q, NULL);
A
André Almeida 已提交
2554
		return ret;
2555 2556
	}

2557 2558
	/*
	 * Paranoia check. If we did not take the lock, then we should not be
2559
	 * the owner of the rt_mutex.
2560
	 */
2561
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2562 2563 2564 2565
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);
2566
	}
2567

A
André Almeida 已提交
2568
	return ret;
2569 2570
}

2571 2572 2573 2574 2575 2576 2577
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
2578
				struct hrtimer_sleeper *timeout)
2579
{
2580 2581
	/*
	 * The task state is guaranteed to be set before another task can
2582
	 * wake it. set_current_state() is implemented using smp_store_mb() and
2583 2584 2585
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
2586
	set_current_state(TASK_INTERRUPTIBLE);
2587
	queue_me(q, hb);
2588 2589

	/* Arm the timer */
2590
	if (timeout)
2591
		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2592 2593

	/*
2594 2595
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
2596 2597 2598 2599 2600 2601 2602 2603
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
2604
			freezable_schedule();
2605 2606 2607 2608
	}
	__set_current_state(TASK_RUNNING);
}

2609 2610 2611 2612
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
2613
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2614 2615 2616 2617 2618 2619 2620 2621
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
2622
 * Return:
2623 2624
 *  -  0 - uaddr contains val and hb has been locked;
 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2625
 */
2626
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2627
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
2628
{
2629 2630
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
2631 2632

	/*
D
Darren Hart 已提交
2633
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
2634 2635 2636 2637 2638 2639 2640
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
2641 2642
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
2643 2644
	 * cond(var) false, which would violate the guarantee.
	 *
2645 2646 2647 2648
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
2649
	 */
2650
retry:
2651
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2652
	if (unlikely(ret != 0))
2653
		return ret;
2654 2655 2656 2657

retry_private:
	*hb = queue_lock(q);

2658
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
2659

2660
	if (ret) {
J
Jason Low 已提交
2661
		queue_unlock(*hb);
L
Linus Torvalds 已提交
2662

2663
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
2664
		if (ret)
A
André Almeida 已提交
2665
			return ret;
L
Linus Torvalds 已提交
2666

2667
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2668 2669 2670
			goto retry_private;

		goto retry;
L
Linus Torvalds 已提交
2671
	}
2672

2673
	if (uval != val) {
J
Jason Low 已提交
2674
		queue_unlock(*hb);
2675
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2676
	}
L
Linus Torvalds 已提交
2677

2678 2679 2680
	return ret;
}

2681 2682
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2683
{
2684
	struct hrtimer_sleeper timeout, *to;
2685 2686
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2687
	struct futex_q q = futex_q_init;
2688 2689 2690 2691 2692 2693
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

2694 2695
	to = futex_setup_timer(abs_time, &timeout, flags,
			       current->timer_slack_ns);
T
Thomas Gleixner 已提交
2696
retry:
2697 2698 2699 2700
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2701
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2702 2703 2704
	if (ret)
		goto out;

2705
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2706
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2707 2708

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2709
	ret = 0;
2710
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2711
	if (!unqueue_me(&q))
2712
		goto out;
P
Peter Zijlstra 已提交
2713
	ret = -ETIMEDOUT;
2714
	if (to && !to->task)
2715
		goto out;
N
Nick Piggin 已提交
2716

2717
	/*
T
Thomas Gleixner 已提交
2718 2719
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2720
	 */
2721
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2722 2723
		goto retry;

P
Peter Zijlstra 已提交
2724
	ret = -ERESTARTSYS;
2725
	if (!abs_time)
2726
		goto out;
L
Linus Torvalds 已提交
2727

2728
	restart = &current->restart_block;
P
Peter Zijlstra 已提交
2729
	restart->fn = futex_wait_restart;
2730
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2731
	restart->futex.val = val;
T
Thomas Gleixner 已提交
2732
	restart->futex.time = *abs_time;
P
Peter Zijlstra 已提交
2733
	restart->futex.bitset = bitset;
2734
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2735

P
Peter Zijlstra 已提交
2736 2737
	ret = -ERESTART_RESTARTBLOCK;

2738
out:
2739 2740 2741 2742
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2743 2744 2745
	return ret;
}

N
Nick Piggin 已提交
2746 2747 2748

static long futex_wait_restart(struct restart_block *restart)
{
2749
	u32 __user *uaddr = restart->futex.uaddr;
2750
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2751

2752
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
T
Thomas Gleixner 已提交
2753
		t = restart->futex.time;
2754 2755
		tp = &t;
	}
N
Nick Piggin 已提交
2756
	restart->fn = do_no_restart_syscall;
2757 2758 2759

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2760 2761 2762
}


2763 2764 2765
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
2766 2767 2768 2769 2770
 * if there are waiters then it will block as a consequence of relying
 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
 * a 0 value of the futex too.).
 *
 * Also serves as futex trylock_pi()'ing, and due semantics.
2771
 */
2772
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2773
			 ktime_t *time, int trylock)
2774
{
2775
	struct hrtimer_sleeper timeout, *to;
2776
	struct futex_pi_state *pi_state = NULL;
T
Thomas Gleixner 已提交
2777
	struct task_struct *exiting = NULL;
2778
	struct rt_mutex_waiter rt_waiter;
2779
	struct futex_hash_bucket *hb;
2780
	struct futex_q q = futex_q_init;
2781
	int res, ret;
2782

2783 2784 2785
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

2786 2787 2788
	if (refill_pi_state_cache())
		return -ENOMEM;

2789
	to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2790

2791
retry:
2792
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2793
	if (unlikely(ret != 0))
2794
		goto out;
2795

D
Darren Hart 已提交
2796
retry_private:
E
Eric Sesterhenn 已提交
2797
	hb = queue_lock(&q);
2798

T
Thomas Gleixner 已提交
2799 2800
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
				   &exiting, 0);
2801
	if (unlikely(ret)) {
2802 2803 2804 2805
		/*
		 * Atomic work succeeded and we got the lock,
		 * or failed. Either way, we do _not_ block.
		 */
2806
		switch (ret) {
2807 2808 2809 2810 2811 2812
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2813
		case -EBUSY:
2814 2815
		case -EAGAIN:
			/*
2816
			 * Two reasons for this:
2817
			 * - EBUSY: Task is exiting and we just wait for the
2818
			 *   exit to complete.
2819
			 * - EAGAIN: The user space value changed.
2820
			 */
J
Jason Low 已提交
2821
			queue_unlock(hb);
T
Thomas Gleixner 已提交
2822 2823 2824 2825 2826 2827
			/*
			 * Handle the case where the owner is in the middle of
			 * exiting. Wait for the exit to complete otherwise
			 * this task might loop forever, aka. live lock.
			 */
			wait_for_owner_exiting(ret, exiting);
2828 2829 2830
			cond_resched();
			goto retry;
		default:
2831
			goto out_unlock_put_key;
2832 2833 2834
		}
	}

2835 2836
	WARN_ON(!q.pi_state);

2837 2838 2839
	/*
	 * Only actually queue now that the atomic ops are done:
	 */
2840
	__queue_me(&q, hb);
2841

2842
	if (trylock) {
2843
		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2844 2845
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
2846
		goto no_block;
2847 2848
	}

2849 2850
	rt_mutex_init_waiter(&rt_waiter);

2851
	/*
2852 2853 2854 2855 2856 2857 2858
	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
	 * hold it while doing rt_mutex_start_proxy(), because then it will
	 * include hb->lock in the blocking chain, even through we'll not in
	 * fact hold it while blocking. This will lead it to report -EDEADLK
	 * and BUG when futex_unlock_pi() interleaves with this.
	 *
	 * Therefore acquire wait_lock while holding hb->lock, but drop the
2859 2860 2861 2862
	 * latter before calling __rt_mutex_start_proxy_lock(). This
	 * interleaves with futex_unlock_pi() -- which does a similar lock
	 * handoff -- such that the latter can observe the futex_q::pi_state
	 * before __rt_mutex_start_proxy_lock() is done.
2863
	 */
2864 2865
	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
	spin_unlock(q.lock_ptr);
2866 2867 2868 2869 2870
	/*
	 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
	 * such that futex_unlock_pi() is guaranteed to observe the waiter when
	 * it sees the futex_q::pi_state.
	 */
2871 2872 2873
	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);

2874 2875 2876
	if (ret) {
		if (ret == 1)
			ret = 0;
2877
		goto cleanup;
2878 2879 2880
	}

	if (unlikely(to))
2881
		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2882 2883 2884

	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);

2885
cleanup:
2886
	spin_lock(q.lock_ptr);
2887
	/*
2888
	 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2889
	 * first acquire the hb->lock before removing the lock from the
2890 2891
	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
	 * lists consistent.
2892 2893 2894
	 *
	 * In particular; it is important that futex_unlock_pi() can not
	 * observe this inconsistency.
2895 2896 2897 2898 2899
	 */
	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
		ret = 0;

no_block:
2900 2901 2902 2903
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2904
	res = fixup_owner(uaddr, &q, !ret);
2905 2906 2907 2908 2909 2910
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2911

2912
	/*
2913 2914
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2915
	 */
2916 2917 2918 2919
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
		pi_state = q.pi_state;
		get_pi_state(pi_state);
	}
2920

2921 2922
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2923

2924 2925 2926 2927 2928
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

A
André Almeida 已提交
2929
	goto out;
2930

2931
out_unlock_put_key:
J
Jason Low 已提交
2932
	queue_unlock(hb);
2933

2934
out:
2935 2936
	if (to) {
		hrtimer_cancel(&to->timer);
2937
		destroy_hrtimer_on_stack(&to->timer);
2938
	}
2939
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2940

2941
uaddr_faulted:
J
Jason Low 已提交
2942
	queue_unlock(hb);
2943

2944
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2945
	if (ret)
A
André Almeida 已提交
2946
		goto out;
2947

2948
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2949 2950 2951
		goto retry_private;

	goto retry;
2952 2953 2954 2955 2956 2957 2958
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2959
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2960
{
2961
	u32 curval, uval, vpid = task_pid_vnr(current);
2962
	union futex_key key = FUTEX_KEY_INIT;
2963
	struct futex_hash_bucket *hb;
2964
	struct futex_q *top_waiter;
D
Darren Hart 已提交
2965
	int ret;
2966

2967 2968 2969
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

2970 2971 2972 2973 2974 2975
retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2976
	if ((uval & FUTEX_TID_MASK) != vpid)
2977 2978
		return -EPERM;

2979
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2980 2981
	if (ret)
		return ret;
2982 2983 2984 2985 2986

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
2987 2988 2989
	 * Check waiters first. We do not trust user space values at
	 * all and we at least want to know if user space fiddled
	 * with the futex value instead of blindly unlocking.
2990
	 */
2991 2992
	top_waiter = futex_top_waiter(hb, &key);
	if (top_waiter) {
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
		struct futex_pi_state *pi_state = top_waiter->pi_state;

		ret = -EINVAL;
		if (!pi_state)
			goto out_unlock;

		/*
		 * If current does not own the pi_state then the futex is
		 * inconsistent and user space fiddled with the futex value.
		 */
		if (pi_state->owner != current)
			goto out_unlock;

3006
		get_pi_state(pi_state);
3007
		/*
3008 3009 3010 3011
		 * By taking wait_lock while still holding hb->lock, we ensure
		 * there is no point where we hold neither; and therefore
		 * wake_futex_pi() must observe a state consistent with what we
		 * observed.
3012 3013 3014 3015
		 *
		 * In particular; this forces __rt_mutex_start_proxy() to
		 * complete such that we're guaranteed to observe the
		 * rt_waiter. Also see the WARN in wake_futex_pi().
3016
		 */
3017
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3018 3019
		spin_unlock(&hb->lock);

3020
		/* drops pi_state->pi_mutex.wait_lock */
3021 3022 3023 3024 3025 3026
		ret = wake_futex_pi(uaddr, uval, pi_state);

		put_pi_state(pi_state);

		/*
		 * Success, we're done! No tricky corner cases.
3027 3028 3029
		 */
		if (!ret)
			goto out_putkey;
3030
		/*
3031 3032
		 * The atomic access to the futex value generated a
		 * pagefault, so retry the user-access and the wakeup:
3033 3034 3035
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
3036 3037 3038 3039
		/*
		 * A unconditional UNLOCK_PI op raced against a waiter
		 * setting the FUTEX_WAITERS bit. Try again.
		 */
3040 3041
		if (ret == -EAGAIN)
			goto pi_retry;
3042 3043 3044 3045
		/*
		 * wake_futex_pi has detected invalid state. Tell user
		 * space.
		 */
3046
		goto out_putkey;
3047
	}
3048

3049
	/*
3050 3051 3052 3053 3054
	 * We have no kernel internal state, i.e. no waiters in the
	 * kernel. Waiters which are about to queue themselves are stuck
	 * on hb->lock. So we can safely ignore them. We do neither
	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
	 * owner.
3055
	 */
3056
	if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3057
		spin_unlock(&hb->lock);
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
		switch (ret) {
		case -EFAULT:
			goto pi_faulted;

		case -EAGAIN:
			goto pi_retry;

		default:
			WARN_ON_ONCE(1);
			goto out_putkey;
		}
3069
	}
3070

3071 3072 3073 3074 3075
	/*
	 * If uval has changed, let user space handle it.
	 */
	ret = (curval == uval) ? 0 : -EAGAIN;

3076 3077
out_unlock:
	spin_unlock(&hb->lock);
3078
out_putkey:
3079 3080
	return ret;

3081 3082 3083 3084
pi_retry:
	cond_resched();
	goto retry;

3085 3086
pi_faulted:

3087
	ret = fault_in_user_writeable(uaddr);
3088
	if (!ret)
3089 3090
		goto retry;

L
Linus Torvalds 已提交
3091 3092 3093
	return ret;
}

3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
3106
 * Return:
3107 3108
 *  -  0 = no early wakeup detected;
 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
3130
		plist_del(&q->list, &hb->chain);
3131
		hb_waiters_dec(hb);
3132

T
Thomas Gleixner 已提交
3133
		/* Handle spurious wakeups gracefully */
3134
		ret = -EWOULDBLOCK;
3135 3136
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
3137
		else if (signal_pending(current))
3138
			ret = -ERESTARTNOINTR;
3139 3140 3141 3142 3143 3144
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3145
 * @uaddr:	the futex we initially wait on (non-pi)
3146
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3147
 *		the same type, no requeueing from private to shared, etc.
3148 3149
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
3150
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
3151 3152 3153
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3154 3155 3156 3157 3158
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
3159 3160
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3161
 * via the following--
3162
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3163 3164 3165
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
3166
 *
3167
 * If 3, cleanup and return -ERESTARTNOINTR.
3168 3169 3170 3171 3172 3173 3174
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
3175
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3176 3177 3178
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
3179
 * Return:
3180 3181
 *  -  0 - On success;
 *  - <0 - On error
3182
 */
3183
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3184
				 u32 val, ktime_t *abs_time, u32 bitset,
3185
				 u32 __user *uaddr2)
3186
{
3187
	struct hrtimer_sleeper timeout, *to;
3188
	struct futex_pi_state *pi_state = NULL;
3189 3190
	struct rt_mutex_waiter rt_waiter;
	struct futex_hash_bucket *hb;
3191 3192
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
3193 3194
	int res, ret;

3195 3196 3197
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

3198 3199 3200
	if (uaddr == uaddr2)
		return -EINVAL;

3201 3202 3203
	if (!bitset)
		return -EINVAL;

3204 3205
	to = futex_setup_timer(abs_time, &timeout, flags,
			       current->timer_slack_ns);
3206 3207 3208 3209 3210

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
3211
	rt_mutex_init_waiter(&rt_waiter);
3212

3213
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3214 3215 3216
	if (unlikely(ret != 0))
		goto out;

3217 3218 3219 3220
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

3221 3222 3223 3224
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
3225
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
3226
	if (ret)
A
André Almeida 已提交
3227
		goto out;
3228

3229 3230 3231 3232 3233
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
3234
		queue_unlock(hb);
3235
		ret = -EINVAL;
A
André Almeida 已提交
3236
		goto out;
3237 3238
	}

3239
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
3240
	futex_wait_queue_me(hb, &q, to);
3241 3242 3243 3244 3245

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
A
André Almeida 已提交
3246
		goto out;
3247 3248 3249 3250 3251

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
3252 3253 3254
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
3265
			ret = fixup_pi_state_owner(uaddr2, &q, current);
3266 3267 3268 3269
			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
				pi_state = q.pi_state;
				get_pi_state(pi_state);
			}
3270 3271 3272 3273
			/*
			 * Drop the reference to the pi state which
			 * the requeue_pi() code acquired for us.
			 */
3274
			put_pi_state(q.pi_state);
3275 3276 3277
			spin_unlock(q.lock_ptr);
		}
	} else {
3278 3279
		struct rt_mutex *pi_mutex;

3280 3281 3282 3283 3284
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
3285
		WARN_ON(!q.pi_state);
3286
		pi_mutex = &q.pi_state->pi_mutex;
3287
		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3288 3289

		spin_lock(q.lock_ptr);
3290 3291 3292 3293
		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
			ret = 0;

		debug_rt_mutex_free_waiter(&rt_waiter);
3294 3295 3296 3297
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
3298
		res = fixup_owner(uaddr2, &q, !ret);
3299 3300
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
3301
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3302 3303 3304 3305
		 */
		if (res)
			ret = (res < 0) ? res : 0;

3306 3307 3308 3309 3310
		/*
		 * If fixup_pi_state_owner() faulted and was unable to handle
		 * the fault, unlock the rt_mutex and return the fault to
		 * userspace.
		 */
3311 3312 3313 3314
		if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
			pi_state = q.pi_state;
			get_pi_state(pi_state);
		}
3315

3316 3317 3318 3319
		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

3320 3321 3322 3323 3324
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

3325
	if (ret == -EINTR) {
3326
		/*
3327 3328 3329 3330 3331
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
3332
		 */
3333
		ret = -EWOULDBLOCK;
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
	}

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

3344 3345 3346 3347 3348 3349 3350
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
3351
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3352 3353 3354 3355 3356 3357 3358 3359
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
3360 3361 3362
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
3363
 */
3364 3365
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
3366
{
3367 3368
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
3381 3382 3383 3384
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3385
 */
3386 3387 3388
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
3389
{
A
Al Viro 已提交
3390
	struct robust_list_head __user *head;
3391
	unsigned long ret;
3392
	struct task_struct *p;
3393

3394 3395 3396
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

3397 3398 3399
	rcu_read_lock();

	ret = -ESRCH;
3400
	if (!pid)
3401
		p = current;
3402
	else {
3403
		p = find_task_by_vpid(pid);
3404 3405 3406 3407
		if (!p)
			goto err_unlock;
	}

3408
	ret = -EPERM;
3409
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3410 3411 3412 3413 3414
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

3415 3416 3417 3418 3419
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
3420
	rcu_read_unlock();
3421 3422 3423 3424

	return ret;
}

Y
Yang Tao 已提交
3425 3426 3427 3428
/* Constants for the pending_op argument of handle_futex_death */
#define HANDLE_DEATH_PENDING	true
#define HANDLE_DEATH_LIST	false

3429 3430 3431 3432
/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
Y
Yang Tao 已提交
3433 3434
static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
			      bool pi, bool pending_op)
3435
{
3436
	u32 uval, nval, mval;
3437
	int err;
3438

3439 3440 3441 3442
	/* Futex address must be 32bit aligned */
	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
		return -1;

3443 3444
retry:
	if (get_user(uval, uaddr))
3445 3446
		return -1;

Y
Yang Tao 已提交
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	/*
	 * Special case for regular (non PI) futexes. The unlock path in
	 * user space has two race scenarios:
	 *
	 * 1. The unlock path releases the user space futex value and
	 *    before it can execute the futex() syscall to wake up
	 *    waiters it is killed.
	 *
	 * 2. A woken up waiter is killed before it can acquire the
	 *    futex in user space.
	 *
	 * In both cases the TID validation below prevents a wakeup of
	 * potential waiters which can cause these waiters to block
	 * forever.
	 *
	 * In both cases the following conditions are met:
	 *
	 *	1) task->robust_list->list_op_pending != NULL
	 *	   @pending_op == true
	 *	2) User space futex value == 0
	 *	3) Regular futex: @pi == false
	 *
	 * If these conditions are met, it is safe to attempt waking up a
	 * potential waiter without touching the user space futex value and
	 * trying to set the OWNER_DIED bit. The user space futex value is
	 * uncontended and the rest of the user space mutex state is
	 * consistent, so a woken waiter will just take over the
	 * uncontended futex. Setting the OWNER_DIED bit would create
	 * inconsistent state and malfunction of the user space owner died
	 * handling.
	 */
	if (pending_op && !pi && !uval) {
		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
		return 0;
	}

3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
		return 0;

	/*
	 * Ok, this dying thread is truly holding a futex
	 * of interest. Set the OWNER_DIED bit atomically
	 * via cmpxchg, and if the value had FUTEX_WAITERS
	 * set, wake up a waiter (if any). (We have to do a
	 * futex_wake() even if OWNER_DIED is already set -
	 * to handle the rare but possible case of recursive
	 * thread-death.) The rest of the cleanup is done in
	 * userspace.
	 */
	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;

	/*
	 * We are not holding a lock here, but we want to have
	 * the pagefault_disable/enable() protection because
	 * we want to handle the fault gracefully. If the
	 * access fails we try to fault in the futex with R/W
	 * verification via get_user_pages. get_user() above
	 * does not guarantee R/W access. If that fails we
	 * give up and leave the futex locked.
	 */
	if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
		switch (err) {
		case -EFAULT:
3510 3511 3512
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
3513 3514 3515

		case -EAGAIN:
			cond_resched();
3516
			goto retry;
3517

3518 3519 3520 3521
		default:
			WARN_ON_ONCE(1);
			return err;
		}
3522
	}
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533

	if (nval != uval)
		goto retry;

	/*
	 * Wake robust non-PI futexes here. The wakeup of
	 * PI futexes happens in exit_pi_state():
	 */
	if (!pi && (uval & FUTEX_WAITERS))
		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);

3534 3535 3536
	return 0;
}

3537 3538 3539 3540
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
3541
				     struct robust_list __user * __user *head,
3542
				     unsigned int *pi)
3543 3544 3545
{
	unsigned long uentry;

A
Al Viro 已提交
3546
	if (get_user(uentry, (unsigned long __user *)head))
3547 3548
		return -EFAULT;

A
Al Viro 已提交
3549
	*entry = (void __user *)(uentry & ~1UL);
3550 3551 3552 3553 3554
	*pi = uentry & 1;

	return 0;
}

3555 3556 3557 3558 3559 3560
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
3561
static void exit_robust_list(struct task_struct *curr)
3562 3563
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
3564
	struct robust_list __user *entry, *next_entry, *pending;
3565
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3566
	unsigned int next_pi;
3567
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
3568
	int rc;
3569

3570 3571 3572
	if (!futex_cmpxchg_enabled)
		return;

3573 3574 3575 3576
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
3577
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
3588
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3589
		return;
3590

M
Martin Schwidefsky 已提交
3591
	next_entry = NULL;	/* avoid warning with gcc */
3592
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
3593 3594 3595 3596 3597
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3598 3599
		/*
		 * A pending lock might already be on the list, so
3600
		 * don't process it twice:
3601
		 */
Y
Yang Tao 已提交
3602
		if (entry != pending) {
A
Al Viro 已提交
3603
			if (handle_futex_death((void __user *)entry + futex_offset,
Y
Yang Tao 已提交
3604
						curr, pi, HANDLE_DEATH_LIST))
3605
				return;
Y
Yang Tao 已提交
3606
		}
M
Martin Schwidefsky 已提交
3607
		if (rc)
3608
			return;
M
Martin Schwidefsky 已提交
3609 3610
		entry = next_entry;
		pi = next_pi;
3611 3612 3613 3614 3615 3616 3617 3618
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
3619

Y
Yang Tao 已提交
3620
	if (pending) {
M
Martin Schwidefsky 已提交
3621
		handle_futex_death((void __user *)pending + futex_offset,
Y
Yang Tao 已提交
3622 3623
				   curr, pip, HANDLE_DEATH_PENDING);
	}
3624 3625
}

3626
static void futex_cleanup(struct task_struct *tsk)
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
{
	if (unlikely(tsk->robust_list)) {
		exit_robust_list(tsk);
		tsk->robust_list = NULL;
	}

#ifdef CONFIG_COMPAT
	if (unlikely(tsk->compat_robust_list)) {
		compat_exit_robust_list(tsk);
		tsk->compat_robust_list = NULL;
	}
#endif

	if (unlikely(!list_empty(&tsk->pi_state_list)))
		exit_pi_state_list(tsk);
}

3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
/**
 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
 * @tsk:	task to set the state on
 *
 * Set the futex exit state of the task lockless. The futex waiter code
 * observes that state when a task is exiting and loops until the task has
 * actually finished the futex cleanup. The worst case for this is that the
 * waiter runs through the wait loop until the state becomes visible.
 *
 * This is called from the recursive fault handling path in do_exit().
 *
 * This is best effort. Either the futex exit code has run already or
 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
 * take it over. If not, the problem is pushed back to user space. If the
 * futex exit code did not run yet, then an already queued waiter might
 * block forever, but there is nothing which can be done about that.
 */
void futex_exit_recursive(struct task_struct *tsk)
{
3663 3664 3665
	/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
	if (tsk->futex_state == FUTEX_STATE_EXITING)
		mutex_unlock(&tsk->futex_exit_mutex);
3666 3667 3668
	tsk->futex_state = FUTEX_STATE_DEAD;
}

3669
static void futex_cleanup_begin(struct task_struct *tsk)
3670
{
3671 3672 3673 3674 3675 3676 3677 3678
	/*
	 * Prevent various race issues against a concurrent incoming waiter
	 * including live locks by forcing the waiter to block on
	 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
	 * attach_to_pi_owner().
	 */
	mutex_lock(&tsk->futex_exit_mutex);

3679
	/*
3680 3681 3682 3683 3684 3685 3686 3687 3688
	 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
	 *
	 * This ensures that all subsequent checks of tsk->futex_state in
	 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
	 * tsk->pi_lock held.
	 *
	 * It guarantees also that a pi_state which was queued right before
	 * the state change under tsk->pi_lock by a concurrent waiter must
	 * be observed in exit_pi_state_list().
3689 3690
	 */
	raw_spin_lock_irq(&tsk->pi_lock);
3691
	tsk->futex_state = FUTEX_STATE_EXITING;
3692
	raw_spin_unlock_irq(&tsk->pi_lock);
3693
}
3694

3695 3696 3697 3698 3699 3700 3701
static void futex_cleanup_end(struct task_struct *tsk, int state)
{
	/*
	 * Lockless store. The only side effect is that an observer might
	 * take another loop until it becomes visible.
	 */
	tsk->futex_state = state;
3702 3703 3704 3705 3706
	/*
	 * Drop the exit protection. This unblocks waiters which observed
	 * FUTEX_STATE_EXITING to reevaluate the state.
	 */
	mutex_unlock(&tsk->futex_exit_mutex);
3707
}
3708

3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
void futex_exec_release(struct task_struct *tsk)
{
	/*
	 * The state handling is done for consistency, but in the case of
	 * exec() there is no way to prevent futher damage as the PID stays
	 * the same. But for the unlikely and arguably buggy case that a
	 * futex is held on exec(), this provides at least as much state
	 * consistency protection which is possible.
	 */
	futex_cleanup_begin(tsk);
	futex_cleanup(tsk);
	/*
	 * Reset the state to FUTEX_STATE_OK. The task is alive and about
	 * exec a new binary.
	 */
	futex_cleanup_end(tsk, FUTEX_STATE_OK);
}

void futex_exit_release(struct task_struct *tsk)
{
	futex_cleanup_begin(tsk);
	futex_cleanup(tsk);
	futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3732 3733
}

3734
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3735
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
3736
{
T
Thomas Gleixner 已提交
3737
	int cmd = op & FUTEX_CMD_MASK;
3738
	unsigned int flags = 0;
E
Eric Dumazet 已提交
3739 3740

	if (!(op & FUTEX_PRIVATE_FLAG))
3741
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
3742

3743 3744
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
3745 3746
		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
		    cmd != FUTEX_WAIT_REQUEUE_PI)
3747 3748
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
3749

3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
3760
	switch (cmd) {
L
Linus Torvalds 已提交
3761
	case FUTEX_WAIT:
3762
		val3 = FUTEX_BITSET_MATCH_ANY;
3763
		fallthrough;
3764
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
3765
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
3766
	case FUTEX_WAKE:
3767
		val3 = FUTEX_BITSET_MATCH_ANY;
3768
		fallthrough;
3769
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
3770
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
3771
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
3772
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
3773
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
3774
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3775
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
3776
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3777
	case FUTEX_LOCK_PI:
3778
		return futex_lock_pi(uaddr, flags, timeout, 0);
3779
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
3780
		return futex_unlock_pi(uaddr, flags);
3781
	case FUTEX_TRYLOCK_PI:
3782
		return futex_lock_pi(uaddr, flags, NULL, 1);
3783 3784
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
3785 3786
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
3787
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
3788
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
3789
	}
T
Thomas Gleixner 已提交
3790
	return -ENOSYS;
L
Linus Torvalds 已提交
3791 3792 3793
}


3794
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3795
		struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3796
		u32, val3)
L
Linus Torvalds 已提交
3797
{
3798
	struct timespec64 ts;
3799
	ktime_t t, *tp = NULL;
3800
	u32 val2 = 0;
E
Eric Dumazet 已提交
3801
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
3802

3803
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3804 3805
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3806 3807
		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
			return -EFAULT;
3808
		if (get_timespec64(&ts, utime))
L
Linus Torvalds 已提交
3809
			return -EFAULT;
3810
		if (!timespec64_valid(&ts))
3811
			return -EINVAL;
3812

3813
		t = timespec64_to_ktime(ts);
E
Eric Dumazet 已提交
3814
		if (cmd == FUTEX_WAIT)
3815
			t = ktime_add_safe(ktime_get(), t);
3816 3817
		else if (!(op & FUTEX_CLOCK_REALTIME))
			t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3818
		tp = &t;
L
Linus Torvalds 已提交
3819 3820
	}
	/*
3821
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3822
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
3823
	 */
3824
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3825
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3826
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
3827

3828
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
3829 3830
}

3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
#ifdef CONFIG_COMPAT
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int
compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
		   compat_uptr_t __user *head, unsigned int *pi)
{
	if (get_user(*uentry, head))
		return -EFAULT;

	*entry = compat_ptr((*uentry) & ~1);
	*pi = (unsigned int)(*uentry) & 1;

	return 0;
}

static void __user *futex_uaddr(struct robust_list __user *entry,
				compat_long_t futex_offset)
{
	compat_uptr_t base = ptr_to_compat(entry);
	void __user *uaddr = compat_ptr(base + futex_offset);

	return uaddr;
}

/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
3863
static void compat_exit_robust_list(struct task_struct *curr)
3864 3865 3866 3867
{
	struct compat_robust_list_head __user *head = curr->compat_robust_list;
	struct robust_list __user *entry, *next_entry, *pending;
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3868
	unsigned int next_pi;
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
	compat_uptr_t uentry, next_uentry, upending;
	compat_long_t futex_offset;
	int rc;

	if (!futex_cmpxchg_enabled)
		return;

	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
	if (compat_fetch_robust_entry(&upending, &pending,
			       &head->list_op_pending, &pip))
		return;

	next_entry = NULL;	/* avoid warning with gcc */
	while (entry != (struct robust_list __user *) &head->list) {
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
			(compat_uptr_t __user *)&entry->next, &next_pi);
		/*
		 * A pending lock might already be on the list, so
		 * dont process it twice:
		 */
		if (entry != pending) {
			void __user *uaddr = futex_uaddr(entry, futex_offset);

Y
Yang Tao 已提交
3910 3911
			if (handle_futex_death(uaddr, curr, pi,
					       HANDLE_DEATH_LIST))
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
				return;
		}
		if (rc)
			return;
		uentry = next_uentry;
		entry = next_entry;
		pi = next_pi;
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
	if (pending) {
		void __user *uaddr = futex_uaddr(pending, futex_offset);

Y
Yang Tao 已提交
3930
		handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
	}
}

COMPAT_SYSCALL_DEFINE2(set_robust_list,
		struct compat_robust_list_head __user *, head,
		compat_size_t, len)
{
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->compat_robust_list = head;

	return 0;
}

COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
			compat_uptr_t __user *, head_ptr,
			compat_size_t __user *, len_ptr)
{
	struct compat_robust_list_head __user *head;
	unsigned long ret;
	struct task_struct *p;

	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

	rcu_read_lock();

	ret = -ESRCH;
	if (!pid)
		p = current;
	else {
		p = find_task_by_vpid(pid);
		if (!p)
			goto err_unlock;
	}

	ret = -EPERM;
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
		goto err_unlock;

	head = p->compat_robust_list;
	rcu_read_unlock();

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(ptr_to_compat(head), head_ptr);

err_unlock:
	rcu_read_unlock();

	return ret;
}
3987
#endif /* CONFIG_COMPAT */
3988

3989
#ifdef CONFIG_COMPAT_32BIT_TIME
3990
SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3991 3992 3993
		struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
		u32, val3)
{
3994
	struct timespec64 ts;
3995 3996 3997 3998 3999 4000 4001
	ktime_t t, *tp = NULL;
	int val2 = 0;
	int cmd = op & FUTEX_CMD_MASK;

	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
4002
		if (get_old_timespec32(&ts, utime))
4003
			return -EFAULT;
4004
		if (!timespec64_valid(&ts))
4005 4006
			return -EINVAL;

4007
		t = timespec64_to_ktime(ts);
4008 4009
		if (cmd == FUTEX_WAIT)
			t = ktime_add_safe(ktime_get(), t);
4010 4011
		else if (!(op & FUTEX_CLOCK_REALTIME))
			t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
4012 4013 4014 4015 4016 4017 4018 4019
		tp = &t;
	}
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
		val2 = (int) (unsigned long) utime;

	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
}
4020
#endif /* CONFIG_COMPAT_32BIT_TIME */
4021

4022
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
4023
{
4024
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4025
	u32 curval;
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
4044
	unsigned int futex_shift;
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
4056 4057 4058
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
4059 4060

	futex_detect_cmpxchg();
4061

4062
	for (i = 0; i < futex_hashsize; i++) {
4063
		atomic_set(&futex_queues[i].waiters, 0);
4064
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
4065 4066 4067
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
4068 4069
	return 0;
}
4070
core_initcall(futex_init);