futex.c 104.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
12 13 14 15
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
16 17 18 19
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
20 21 22
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
23 24 25 26
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
27 28 29 30 31 32 33
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 */
34
#include <linux/compat.h>
L
Linus Torvalds 已提交
35 36 37 38 39 40 41 42 43 44
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
45
#include <linux/signal.h>
46
#include <linux/export.h>
47
#include <linux/magic.h>
48 49
#include <linux/pid.h>
#include <linux/nsproxy.h>
50
#include <linux/ptrace.h>
51
#include <linux/sched/rt.h>
52
#include <linux/sched/wake_q.h>
53
#include <linux/sched/mm.h>
54
#include <linux/hugetlb.h>
C
Colin Cross 已提交
55
#include <linux/freezer.h>
M
Mike Rapoport 已提交
56
#include <linux/memblock.h>
57
#include <linux/fault-inject.h>
58
#include <linux/refcount.h>
59

60
#include <asm/futex.h>
L
Linus Torvalds 已提交
61

62
#include "locking/rtmutex_common.h"
63

64
/*
65 66 67 68
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
69 70 71 72
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
73 74 75
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
76 77
 *
 * The waker side modifies the user space value of the futex and calls
78 79 80
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
81
 *
82 83 84 85 86
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
108 109 110 111 112
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
113 114 115
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
116
 *
117
 *   waiters++; (a)
118 119 120 121 122 123 124 125 126 127
 *   smp_mb(); (A) <-- paired with -.
 *                                  |
 *   lock(hash_bucket(futex));      |
 *                                  |
 *   uval = *futex;                 |
 *                                  |        *futex = newval;
 *                                  |        sys_futex(WAKE, futex);
 *                                  |          futex_wake(futex);
 *                                  |
 *                                  `--------> smp_mb(); (B)
128
 *   if (uval == val)
129
 *     queue();
130
 *     unlock(hash_bucket(futex));
131 132
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
133 134
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
135
 *
136 137
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
138 139
 * to futex and the waiters read -- this is done by the barriers for both
 * shared and private futexes in get_futex_key_refs().
140 141 142 143 144 145 146 147 148 149 150 151
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
152 153 154 155 156 157 158 159 160 161 162
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
163 164
 */

165 166 167 168
#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
#define futex_cmpxchg_enabled 1
#else
static int  __read_mostly futex_cmpxchg_enabled;
169
#endif
170

171 172 173 174
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
175 176 177 178 179 180 181 182 183
#ifdef CONFIG_MMU
# define FLAGS_SHARED		0x01
#else
/*
 * NOMMU does not have per process address space. Let the compiler optimize
 * code away.
 */
# define FLAGS_SHARED		0x00
#endif
184 185 186
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
203
	refcount_t refcount;
204 205

	union futex_key key;
206
} __randomize_layout;
207

208 209
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
210
 * @list:		priority-sorted list of tasks waiting on this futex
211 212 213 214 215 216 217 218
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
219
 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
L
Linus Torvalds 已提交
220 221 222
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
223
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
224
 * The order of wakeup is always to make the first condition true, then
225 226 227 228
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
229 230
 */
struct futex_q {
P
Pierre Peiffer 已提交
231
	struct plist_node list;
L
Linus Torvalds 已提交
232

233
	struct task_struct *task;
L
Linus Torvalds 已提交
234 235
	spinlock_t *lock_ptr;
	union futex_key key;
236
	struct futex_pi_state *pi_state;
237
	struct rt_mutex_waiter *rt_waiter;
238
	union futex_key *requeue_pi_key;
239
	u32 bitset;
240
} __randomize_layout;
L
Linus Torvalds 已提交
241

242 243 244 245 246 247
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
248
/*
D
Darren Hart 已提交
249 250 251
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
252 253
 */
struct futex_hash_bucket {
254
	atomic_t waiters;
P
Pierre Peiffer 已提交
255 256
	spinlock_t lock;
	struct plist_head chain;
257
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
258

259 260 261 262 263 264 265 266 267 268 269
/*
 * The base of the bucket array and its size are always used together
 * (after initialization only in hash_futex()), so ensure that they
 * reside in the same cacheline.
 */
static struct {
	struct futex_hash_bucket *queues;
	unsigned long            hashsize;
} __futex_data __read_mostly __aligned(2*sizeof(long));
#define futex_queues   (__futex_data.queues)
#define futex_hashsize (__futex_data.hashsize)
270

L
Linus Torvalds 已提交
271

272 273 274 275 276 277 278 279
/*
 * Fault injections for futexes.
 */
#ifdef CONFIG_FAIL_FUTEX

static struct {
	struct fault_attr attr;

280
	bool ignore_private;
281 282
} fail_futex = {
	.attr = FAULT_ATTR_INITIALIZER,
283
	.ignore_private = false,
284 285 286 287 288 289 290 291
};

static int __init setup_fail_futex(char *str)
{
	return setup_fault_attr(&fail_futex.attr, str);
}
__setup("fail_futex=", setup_fail_futex);

292
static bool should_fail_futex(bool fshared)
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
{
	if (fail_futex.ignore_private && !fshared)
		return false;

	return should_fail(&fail_futex.attr, 1);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_futex_debugfs(void)
{
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;

	dir = fault_create_debugfs_attr("fail_futex", NULL,
					&fail_futex.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);

312 313
	debugfs_create_bool("ignore-private", mode, dir,
			    &fail_futex.ignore_private);
314 315 316 317 318 319 320 321 322 323 324 325 326 327
	return 0;
}

late_initcall(fail_futex_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else
static inline bool should_fail_futex(bool fshared)
{
	return false;
}
#endif /* CONFIG_FAIL_FUTEX */

328 329
static inline void futex_get_mm(union futex_key *key)
{
V
Vegard Nossum 已提交
330
	mmgrab(key->private.mm);
331 332 333
	/*
	 * Ensure futex_get_mm() implies a full barrier such that
	 * get_futex_key() implies a full barrier. This is relied upon
334
	 * as smp_mb(); (B), see the ordering comment above.
335
	 */
336
	smp_mb__after_atomic();
337 338
}

339 340 341 342
/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
343 344
{
#ifdef CONFIG_SMP
345
	atomic_inc(&hb->waiters);
346
	/*
347
	 * Full barrier (A), see the ordering comment above.
348
	 */
349
	smp_mb__after_atomic();
350 351 352 353 354 355 356 357 358 359 360 361 362
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}
363

364 365 366 367
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	return atomic_read(&hb->waiters);
368
#else
369
	return 1;
370 371 372
#endif
}

373 374 375 376 377 378
/**
 * hash_futex - Return the hash bucket in the global hash
 * @key:	Pointer to the futex key for which the hash is calculated
 *
 * We hash on the keys returned from get_futex_key (see below) and return the
 * corresponding hash bucket in the global hash.
L
Linus Torvalds 已提交
379 380 381 382 383 384
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
385
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
386 387
}

388 389 390 391 392 393

/**
 * match_futex - Check whether two futex keys are equal
 * @key1:	Pointer to key1
 * @key2:	Pointer to key2
 *
L
Linus Torvalds 已提交
394 395 396 397
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
398 399
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
400 401 402 403
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

404 405 406 407 408 409 410 411 412 413
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

414 415 416 417 418 419 420 421 422 423
	/*
	 * On MMU less systems futexes are always "private" as there is no per
	 * process address space. We need the smp wmb nevertheless - yes,
	 * arch/blackfin has MMU less SMP ...
	 */
	if (!IS_ENABLED(CONFIG_MMU)) {
		smp_mb(); /* explicit smp_mb(); (B) */
		return;
	}

424 425
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
426
		ihold(key->shared.inode); /* implies smp_mb(); (B) */
427 428
		break;
	case FUT_OFF_MMSHARED:
429
		futex_get_mm(key); /* implies smp_mb(); (B) */
430
		break;
431
	default:
432 433 434 435 436
		/*
		 * Private futexes do not hold reference on an inode or
		 * mm, therefore the only purpose of calling get_futex_key_refs
		 * is because we need the barrier for the lockless waiter check.
		 */
437
		smp_mb(); /* explicit smp_mb(); (B) */
438 439 440 441 442
	}
}

/*
 * Drop a reference to the resource addressed by a key.
443 444 445
 * The hash bucket spinlock must not be held. This is
 * a no-op for private futexes, see comment in the get
 * counterpart.
446 447 448
 */
static void drop_futex_key_refs(union futex_key *key)
{
449 450 451
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
452
		return;
453
	}
454

455 456 457
	if (!IS_ENABLED(CONFIG_MMU))
		return;

458 459 460 461 462 463 464 465 466 467
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

468 469 470 471 472
enum futex_access {
	FUTEX_READ,
	FUTEX_WRITE
};

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
/**
 * futex_setup_timer - set up the sleeping hrtimer.
 * @time:	ptr to the given timeout value
 * @timeout:	the hrtimer_sleeper structure to be set up
 * @flags:	futex flags
 * @range_ns:	optional range in ns
 *
 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
 *	   value given
 */
static inline struct hrtimer_sleeper *
futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
		  int flags, u64 range_ns)
{
	if (!time)
		return NULL;

	hrtimer_init_on_stack(&timeout->timer, (flags & FLAGS_CLOCKRT) ?
			      CLOCK_REALTIME : CLOCK_MONOTONIC,
			      HRTIMER_MODE_ABS);
493
	hrtimer_init_sleeper(timeout);
494 495 496 497 498 499 500 501 502 503

	/*
	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
	 * effectively the same as calling hrtimer_set_expires().
	 */
	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);

	return timeout;
}

E
Eric Dumazet 已提交
504
/**
505 506 507 508
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
509 510
 * @rw:		mapping needs to be read/write (values: FUTEX_READ,
 *              FUTEX_WRITE)
E
Eric Dumazet 已提交
511
 *
512 513
 * Return: a negative error code or 0
 *
514
 * The key words are stored in @key on success.
L
Linus Torvalds 已提交
515
 *
A
Al Viro 已提交
516
 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
L
Linus Torvalds 已提交
517 518 519
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
520
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
521
 */
522
static int
523
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
L
Linus Torvalds 已提交
524
{
525
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
526
	struct mm_struct *mm = current->mm;
527
	struct page *page, *tail;
528
	struct address_space *mapping;
529
	int err, ro = 0;
L
Linus Torvalds 已提交
530 531 532 533

	/*
	 * The futex address must be "naturally" aligned.
	 */
534
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
535
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
536
		return -EINVAL;
537
	address -= key->both.offset;
L
Linus Torvalds 已提交
538

539
	if (unlikely(!access_ok(uaddr, sizeof(u32))))
540 541
		return -EFAULT;

542 543 544
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

E
Eric Dumazet 已提交
545 546 547 548 549 550 551 552 553 554
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
555
		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
E
Eric Dumazet 已提交
556 557
		return 0;
	}
L
Linus Torvalds 已提交
558

559
again:
560 561 562 563
	/* Ignore any VERIFY_READ mapping (futex common case) */
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

564
	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
565 566 567 568
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
569
	if (err == -EFAULT && rw == FUTEX_READ) {
570 571 572
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
573 574
	if (err < 0)
		return err;
575 576
	else
		err = 0;
577

578 579 580 581 582 583 584 585 586 587
	/*
	 * The treatment of mapping from this point on is critical. The page
	 * lock protects many things but in this context the page lock
	 * stabilizes mapping, prevents inode freeing in the shared
	 * file-backed region case and guards against movement to swap cache.
	 *
	 * Strictly speaking the page lock is not needed in all cases being
	 * considered here and page lock forces unnecessarily serialization
	 * From this point on, mapping will be re-verified if necessary and
	 * page lock will be acquired only if it is unavoidable
588 589 590 591 592 593 594
	 *
	 * Mapping checks require the head page for any compound page so the
	 * head page and mapping is looked up now. For anonymous pages, it
	 * does not matter if the page splits in the future as the key is
	 * based on the address. For filesystem-backed pages, the tail is
	 * required as the index of the page determines the key. For
	 * base pages, there is no tail page and tail == page.
595
	 */
596
	tail = page;
597 598 599
	page = compound_head(page);
	mapping = READ_ONCE(page->mapping);

600
	/*
601
	 * If page->mapping is NULL, then it cannot be a PageAnon
602 603 604 605 606 607 608 609 610 611 612
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
613
	 * an unlikely race, but we do need to retry for page->mapping.
614
	 */
615 616 617 618 619 620 621 622 623 624
	if (unlikely(!mapping)) {
		int shmem_swizzled;

		/*
		 * Page lock is required to identify which special case above
		 * applies. If this is really a shmem page then the page lock
		 * will prevent unexpected transitions.
		 */
		lock_page(page);
		shmem_swizzled = PageSwapCache(page) || page->mapping;
625 626
		unlock_page(page);
		put_page(page);
627

628 629
		if (shmem_swizzled)
			goto again;
630

631
		return -EFAULT;
632
	}
L
Linus Torvalds 已提交
633 634 635 636

	/*
	 * Private mappings are handled in a simple way.
	 *
637 638 639
	 * If the futex key is stored on an anonymous page, then the associated
	 * object is the mm which is implicitly pinned by the calling process.
	 *
L
Linus Torvalds 已提交
640 641
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
642
	 * the object not the particular process.
L
Linus Torvalds 已提交
643
	 */
644
	if (PageAnon(page)) {
645 646 647 648
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
649
		if (unlikely(should_fail_futex(fshared)) || ro) {
650 651 652 653
			err = -EFAULT;
			goto out;
		}

654
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
655
		key->private.mm = mm;
656
		key->private.address = address;
657 658 659

		get_futex_key_refs(key); /* implies smp_mb(); (B) */

660
	} else {
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
		struct inode *inode;

		/*
		 * The associated futex object in this case is the inode and
		 * the page->mapping must be traversed. Ordinarily this should
		 * be stabilised under page lock but it's not strictly
		 * necessary in this case as we just want to pin the inode, not
		 * update the radix tree or anything like that.
		 *
		 * The RCU read lock is taken as the inode is finally freed
		 * under RCU. If the mapping still matches expectations then the
		 * mapping->host can be safely accessed as being a valid inode.
		 */
		rcu_read_lock();

		if (READ_ONCE(page->mapping) != mapping) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		inode = READ_ONCE(mapping->host);
		if (!inode) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/*
		 * Take a reference unless it is about to be freed. Previously
		 * this reference was taken by ihold under the page lock
		 * pinning the inode in place so i_lock was unnecessary. The
		 * only way for this check to fail is if the inode was
696 697
		 * truncated in parallel which is almost certainly an
		 * application bug. In such a case, just retry.
698 699 700 701 702
		 *
		 * We are not calling into get_futex_key_refs() in file-backed
		 * cases, therefore a successful atomic_inc return below will
		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
		 */
703
		if (!atomic_inc_not_zero(&inode->i_count)) {
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/* Should be impossible but lets be paranoid for now */
		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
			err = -EFAULT;
			rcu_read_unlock();
			iput(inode);

			goto out;
		}

719
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
720
		key->shared.inode = inode;
721
		key->shared.pgoff = basepage_index(tail);
722
		rcu_read_unlock();
L
Linus Torvalds 已提交
723 724
	}

725
out:
726
	put_page(page);
727
	return err;
L
Linus Torvalds 已提交
728 729
}

730
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
731
{
732
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
733 734
}

735 736
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
737 738 739 740 741
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
742
 * We have no generic implementation of a non-destructive write to the
743 744 745 746 747 748
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
749 750 751 752
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
753
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
754
			       FAULT_FLAG_WRITE, NULL);
755 756
	up_read(&mm->mmap_sem);

757 758 759
	return ret < 0 ? ret : 0;
}

760 761
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
762 763
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

779 780
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
781
{
782
	int ret;
T
Thomas Gleixner 已提交
783 784

	pagefault_disable();
785
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
786 787
	pagefault_enable();

788
	return ret;
T
Thomas Gleixner 已提交
789 790 791
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
792 793 794
{
	int ret;

795
	pagefault_disable();
796
	ret = __get_user(*dest, from);
797
	pagefault_enable();
L
Linus Torvalds 已提交
798 799 800 801

	return ret ? -EFAULT : 0;
}

802 803 804 805 806 807 808 809 810 811 812

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

813
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
814 815 816 817 818 819 820

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
821
	refcount_set(&pi_state->refcount, 1);
822
	pi_state->key = FUTEX_KEY_INIT;
823 824 825 826 827 828

	current->pi_state_cache = pi_state;

	return 0;
}

P
Peter Zijlstra 已提交
829
static struct futex_pi_state *alloc_pi_state(void)
830 831 832 833 834 835 836 837 838
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

P
Peter Zijlstra 已提交
839 840
static void get_pi_state(struct futex_pi_state *pi_state)
{
841
	WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
P
Peter Zijlstra 已提交
842 843
}

844
/*
845 846
 * Drops a reference to the pi_state object and frees or caches it
 * when the last reference is gone.
847
 */
848
static void put_pi_state(struct futex_pi_state *pi_state)
849
{
850 851 852
	if (!pi_state)
		return;

853
	if (!refcount_dec_and_test(&pi_state->refcount))
854 855 856 857 858 859 860
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
861
		struct task_struct *owner;
862

863 864 865 866 867 868 869 870 871
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
		owner = pi_state->owner;
		if (owner) {
			raw_spin_lock(&owner->pi_lock);
			list_del_init(&pi_state->list);
			raw_spin_unlock(&owner->pi_lock);
		}
		rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
872 873
	}

874
	if (current->pi_state_cache) {
875
		kfree(pi_state);
876
	} else {
877 878 879 880 881 882
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
883
		refcount_set(&pi_state->refcount, 1);
884 885 886 887
		current->pi_state_cache = pi_state;
	}
}

888 889
#ifdef CONFIG_FUTEX_PI

890 891 892 893 894 895 896 897 898
/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
899
	struct futex_hash_bucket *hb;
900
	union futex_key key = FUTEX_KEY_INIT;
901

902 903
	if (!futex_cmpxchg_enabled)
		return;
904 905 906
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
907
	 * versus waiters unqueueing themselves:
908
	 */
909
	raw_spin_lock_irq(&curr->pi_lock);
910 911 912 913
	while (!list_empty(head)) {
		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
914
		hb = hash_futex(&key);
915 916 917 918 919 920 921 922 923 924 925

		/*
		 * We can race against put_pi_state() removing itself from the
		 * list (a waiter going away). put_pi_state() will first
		 * decrement the reference count and then modify the list, so
		 * its possible to see the list entry but fail this reference
		 * acquire.
		 *
		 * In that case; drop the locks to let put_pi_state() make
		 * progress and retry the loop.
		 */
926
		if (!refcount_inc_not_zero(&pi_state->refcount)) {
927 928 929 930 931
			raw_spin_unlock_irq(&curr->pi_lock);
			cpu_relax();
			raw_spin_lock_irq(&curr->pi_lock);
			continue;
		}
932
		raw_spin_unlock_irq(&curr->pi_lock);
933 934

		spin_lock(&hb->lock);
935 936
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
		raw_spin_lock(&curr->pi_lock);
937 938 939 940
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
941
		if (head->next != next) {
942
			/* retain curr->pi_lock for the loop invariant */
943
			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
944
			spin_unlock(&hb->lock);
945
			put_pi_state(pi_state);
946 947 948 949
			continue;
		}

		WARN_ON(pi_state->owner != curr);
950 951
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
952 953
		pi_state->owner = NULL;

954
		raw_spin_unlock(&curr->pi_lock);
955
		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
956 957
		spin_unlock(&hb->lock);

958 959 960
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);

961
		raw_spin_lock_irq(&curr->pi_lock);
962
	}
963
	raw_spin_unlock_irq(&curr->pi_lock);
964 965
}

966 967
#endif

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync.
P
Peter Zijlstra 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
 *
 *
 * Serialization and lifetime rules:
 *
 * hb->lock:
 *
 *	hb -> futex_q, relation
 *	futex_q -> pi_state, relation
 *
 *	(cannot be raw because hb can contain arbitrary amount
 *	 of futex_q's)
 *
 * pi_mutex->wait_lock:
 *
 *	{uval, pi_state}
 *
 *	(and pi_mutex 'obviously')
 *
 * p->pi_lock:
 *
 *	p->pi_state_list -> pi_state->list, relation
 *
 * pi_state->refcount:
 *
 *	pi_state lifetime
 *
 *
 * Lock order:
 *
 *   hb->lock
 *     pi_mutex->wait_lock
 *       p->pi_lock
 *
1049
 */
1050 1051 1052 1053 1054 1055

/*
 * Validate that the existing waiter has a pi_state and sanity check
 * the pi_state against the user space value. If correct, attach to
 * it.
 */
P
Peter Zijlstra 已提交
1056 1057
static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
			      struct futex_pi_state *pi_state,
1058
			      struct futex_pi_state **ps)
1059
{
1060
	pid_t pid = uval & FUTEX_TID_MASK;
1061 1062
	u32 uval2;
	int ret;
1063

1064 1065 1066 1067 1068
	/*
	 * Userspace might have messed up non-PI and PI futexes [3]
	 */
	if (unlikely(!pi_state))
		return -EINVAL;
1069

P
Peter Zijlstra 已提交
1070 1071 1072 1073 1074 1075
	/*
	 * We get here with hb->lock held, and having found a
	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
	 * which in turn means that futex_lock_pi() still has a reference on
	 * our pi_state.
1076 1077 1078 1079 1080
	 *
	 * The waiter holding a reference on @pi_state also protects against
	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
	 * free pi_state before we can take a reference ourselves.
P
Peter Zijlstra 已提交
1081
	 */
1082
	WARN_ON(!refcount_read(&pi_state->refcount));
1083

P
Peter Zijlstra 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	/*
	 * Now that we have a pi_state, we can acquire wait_lock
	 * and do the state validation.
	 */
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	/*
	 * Since {uval, pi_state} is serialized by wait_lock, and our current
	 * uval was read without holding it, it can have changed. Verify it
	 * still is what we expect it to be, otherwise retry the entire
	 * operation.
	 */
	if (get_futex_value_locked(&uval2, uaddr))
		goto out_efault;

	if (uval != uval2)
		goto out_eagain;

1102 1103 1104 1105
	/*
	 * Handle the owner died case:
	 */
	if (uval & FUTEX_OWNER_DIED) {
1106
		/*
1107 1108 1109
		 * exit_pi_state_list sets owner to NULL and wakes the
		 * topmost waiter. The task which acquires the
		 * pi_state->rt_mutex will fixup owner.
1110
		 */
1111
		if (!pi_state->owner) {
1112
			/*
1113 1114
			 * No pi state owner, but the user space TID
			 * is not 0. Inconsistent state. [5]
1115
			 */
1116
			if (pid)
P
Peter Zijlstra 已提交
1117
				goto out_einval;
1118
			/*
1119
			 * Take a ref on the state and return success. [4]
1120
			 */
P
Peter Zijlstra 已提交
1121
			goto out_attach;
1122
		}
1123 1124

		/*
1125 1126 1127 1128 1129 1130 1131 1132
		 * If TID is 0, then either the dying owner has not
		 * yet executed exit_pi_state_list() or some waiter
		 * acquired the rtmutex in the pi state, but did not
		 * yet fixup the TID in user space.
		 *
		 * Take a ref on the state and return success. [6]
		 */
		if (!pid)
P
Peter Zijlstra 已提交
1133
			goto out_attach;
1134 1135 1136 1137
	} else {
		/*
		 * If the owner died bit is not set, then the pi_state
		 * must have an owner. [7]
1138
		 */
1139
		if (!pi_state->owner)
P
Peter Zijlstra 已提交
1140
			goto out_einval;
1141 1142
	}

1143 1144 1145 1146 1147 1148
	/*
	 * Bail out if user space manipulated the futex value. If pi
	 * state exists then the owner TID must be the same as the
	 * user space TID. [9/10]
	 */
	if (pid != task_pid_vnr(pi_state->owner))
P
Peter Zijlstra 已提交
1149 1150 1151
		goto out_einval;

out_attach:
P
Peter Zijlstra 已提交
1152
	get_pi_state(pi_state);
P
Peter Zijlstra 已提交
1153
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1154 1155
	*ps = pi_state;
	return 0;
P
Peter Zijlstra 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

out_einval:
	ret = -EINVAL;
	goto out_error;

out_eagain:
	ret = -EAGAIN;
	goto out_error;

out_efault:
	ret = -EFAULT;
	goto out_error;

out_error:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
1172 1173
}

T
Thomas Gleixner 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
static int handle_exit_race(u32 __user *uaddr, u32 uval,
			    struct task_struct *tsk)
{
	u32 uval2;

	/*
	 * If PF_EXITPIDONE is not yet set, then try again.
	 */
	if (tsk && !(tsk->flags & PF_EXITPIDONE))
		return -EAGAIN;

	/*
	 * Reread the user space value to handle the following situation:
	 *
	 * CPU0				CPU1
	 *
	 * sys_exit()			sys_futex()
	 *  do_exit()			 futex_lock_pi()
	 *                                futex_lock_pi_atomic()
	 *   exit_signals(tsk)		    No waiters:
	 *    tsk->flags |= PF_EXITING;	    *uaddr == 0x00000PID
	 *  mm_release(tsk)		    Set waiter bit
	 *   exit_robust_list(tsk) {	    *uaddr = 0x80000PID;
	 *      Set owner died		    attach_to_pi_owner() {
	 *    *uaddr = 0xC0000000;	     tsk = get_task(PID);
	 *   }				     if (!tsk->flags & PF_EXITING) {
	 *  ...				       attach();
	 *  tsk->flags |= PF_EXITPIDONE;     } else {
	 *				       if (!(tsk->flags & PF_EXITPIDONE))
	 *				         return -EAGAIN;
	 *				       return -ESRCH; <--- FAIL
	 *				     }
	 *
	 * Returning ESRCH unconditionally is wrong here because the
	 * user space value has been changed by the exiting task.
	 *
	 * The same logic applies to the case where the exiting task is
	 * already gone.
	 */
	if (get_futex_value_locked(&uval2, uaddr))
		return -EFAULT;

	/* If the user space value has changed, try again. */
	if (uval2 != uval)
		return -EAGAIN;

	/*
	 * The exiting task did not have a robust list, the robust list was
	 * corrupted or the user space value in *uaddr is simply bogus.
	 * Give up and tell user space.
	 */
	return -ESRCH;
}

1228 1229 1230 1231
/*
 * Lookup the task for the TID provided from user space and attach to
 * it after doing proper sanity checks.
 */
T
Thomas Gleixner 已提交
1232
static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1233
			      struct futex_pi_state **ps)
1234 1235
{
	pid_t pid = uval & FUTEX_TID_MASK;
1236 1237
	struct futex_pi_state *pi_state;
	struct task_struct *p;
1238

1239
	/*
1240
	 * We are the first waiter - try to look up the real owner and attach
1241
	 * the new pi_state to it, but bail out when TID = 0 [1]
T
Thomas Gleixner 已提交
1242 1243 1244
	 *
	 * The !pid check is paranoid. None of the call sites should end up
	 * with pid == 0, but better safe than sorry. Let the caller retry
1245
	 */
1246
	if (!pid)
T
Thomas Gleixner 已提交
1247
		return -EAGAIN;
1248
	p = find_get_task_by_vpid(pid);
1249
	if (!p)
T
Thomas Gleixner 已提交
1250
		return handle_exit_race(uaddr, uval, NULL);
1251

1252
	if (unlikely(p->flags & PF_KTHREAD)) {
1253 1254 1255 1256
		put_task_struct(p);
		return -EPERM;
	}

1257 1258 1259 1260 1261 1262
	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
1263
	raw_spin_lock_irq(&p->pi_lock);
1264 1265 1266 1267 1268 1269
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
T
Thomas Gleixner 已提交
1270
		int ret = handle_exit_race(uaddr, uval, p);
1271

1272
		raw_spin_unlock_irq(&p->pi_lock);
1273 1274 1275
		put_task_struct(p);
		return ret;
	}
1276

1277 1278
	/*
	 * No existing pi state. First waiter. [2]
P
Peter Zijlstra 已提交
1279 1280 1281
	 *
	 * This creates pi_state, we have hb->lock held, this means nothing can
	 * observe this state, wait_lock is irrelevant.
1282
	 */
1283 1284 1285
	pi_state = alloc_pi_state();

	/*
1286
	 * Initialize the pi_mutex in locked state and make @p
1287 1288 1289 1290 1291
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
1292
	pi_state->key = *key;
1293

1294
	WARN_ON(!list_empty(&pi_state->list));
1295
	list_add(&pi_state->list, &p->pi_state_list);
1296 1297 1298 1299
	/*
	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
	 * because there is no concurrency as the object is not published yet.
	 */
1300
	pi_state->owner = p;
1301
	raw_spin_unlock_irq(&p->pi_lock);
1302 1303 1304

	put_task_struct(p);

P
Pierre Peiffer 已提交
1305
	*ps = pi_state;
1306 1307 1308 1309

	return 0;
}

P
Peter Zijlstra 已提交
1310 1311
static int lookup_pi_state(u32 __user *uaddr, u32 uval,
			   struct futex_hash_bucket *hb,
1312 1313
			   union futex_key *key, struct futex_pi_state **ps)
{
1314
	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1315 1316 1317 1318 1319

	/*
	 * If there is a waiter on that futex, validate it and
	 * attach to the pi_state when the validation succeeds.
	 */
1320
	if (top_waiter)
P
Peter Zijlstra 已提交
1321
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1322 1323 1324 1325 1326

	/*
	 * We are the first waiter - try to look up the owner based on
	 * @uval and attach to it.
	 */
T
Thomas Gleixner 已提交
1327
	return attach_to_pi_owner(uaddr, uval, key, ps);
1328 1329
}

1330 1331
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
1332
	int err;
1333 1334
	u32 uninitialized_var(curval);

1335 1336 1337
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1338 1339 1340
	err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
	if (unlikely(err))
		return err;
1341

P
Peter Zijlstra 已提交
1342
	/* If user space value changed, let the caller retry */
1343 1344 1345
	return curval != uval ? -EAGAIN : 0;
}

1346
/**
1347
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1348 1349 1350 1351 1352 1353 1354 1355
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1356
 *
1357
 * Return:
1358 1359 1360
 *  -  0 - ready to wait;
 *  -  1 - acquired the lock;
 *  - <0 - error
1361 1362 1363 1364 1365 1366
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
1367
				struct task_struct *task, int set_waiters)
1368
{
1369
	u32 uval, newval, vpid = task_pid_vnr(task);
1370
	struct futex_q *top_waiter;
1371
	int ret;
1372 1373

	/*
1374 1375
	 * Read the user space value first so we can validate a few
	 * things before proceeding further.
1376
	 */
1377
	if (get_futex_value_locked(&uval, uaddr))
1378 1379
		return -EFAULT;

1380 1381 1382
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1383 1384 1385
	/*
	 * Detect deadlocks.
	 */
1386
	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1387 1388
		return -EDEADLK;

1389 1390 1391
	if ((unlikely(should_fail_futex(true))))
		return -EDEADLK;

1392
	/*
1393 1394
	 * Lookup existing state first. If it exists, try to attach to
	 * its pi_state.
1395
	 */
1396 1397
	top_waiter = futex_top_waiter(hb, key);
	if (top_waiter)
P
Peter Zijlstra 已提交
1398
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1399 1400

	/*
1401 1402 1403 1404
	 * No waiter and user TID is 0. We are here because the
	 * waiters or the owner died bit is set or called from
	 * requeue_cmp_pi or for whatever reason something took the
	 * syscall.
1405
	 */
1406
	if (!(uval & FUTEX_TID_MASK)) {
1407
		/*
1408 1409
		 * We take over the futex. No other waiters and the user space
		 * TID is 0. We preserve the owner died bit.
1410
		 */
1411 1412
		newval = uval & FUTEX_OWNER_DIED;
		newval |= vpid;
1413

1414 1415 1416 1417 1418 1419 1420 1421
		/* The futex requeue_pi code can enforce the waiters bit */
		if (set_waiters)
			newval |= FUTEX_WAITERS;

		ret = lock_pi_update_atomic(uaddr, uval, newval);
		/* If the take over worked, return 1 */
		return ret < 0 ? ret : 1;
	}
1422 1423

	/*
1424 1425 1426
	 * First waiter. Set the waiters bit before attaching ourself to
	 * the owner. If owner tries to unlock, it will be forced into
	 * the kernel and blocked on hb->lock.
1427
	 */
1428 1429 1430 1431
	newval = uval | FUTEX_WAITERS;
	ret = lock_pi_update_atomic(uaddr, uval, newval);
	if (ret)
		return ret;
1432
	/*
1433 1434 1435
	 * If the update of the user space value succeeded, we try to
	 * attach to the owner. If that fails, no harm done, we only
	 * set the FUTEX_WAITERS bit in the user space variable.
1436
	 */
T
Thomas Gleixner 已提交
1437
	return attach_to_pi_owner(uaddr, newval, key, ps);
1438 1439
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

1450
	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1451
		return;
1452
	lockdep_assert_held(q->lock_ptr);
1453 1454 1455

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
1456
	hb_waiters_dec(hb);
1457 1458
}

L
Linus Torvalds 已提交
1459 1460
/*
 * The hash bucket lock must be held when this is called.
1461 1462 1463
 * Afterwards, the futex_q must not be accessed. Callers
 * must ensure to later call wake_up_q() for the actual
 * wakeups to occur.
L
Linus Torvalds 已提交
1464
 */
1465
static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
L
Linus Torvalds 已提交
1466
{
T
Thomas Gleixner 已提交
1467 1468
	struct task_struct *p = q->task;

1469 1470 1471
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

1472
	get_task_struct(p);
1473
	__unqueue_futex(q);
L
Linus Torvalds 已提交
1474
	/*
1475 1476 1477 1478 1479
	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
	 * is written, without taking any locks. This is possible in the event
	 * of a spurious wakeup, for example. A memory barrier is required here
	 * to prevent the following store to lock_ptr from getting ahead of the
	 * plist_del in __unqueue_futex().
L
Linus Torvalds 已提交
1480
	 */
1481
	smp_store_release(&q->lock_ptr, NULL);
1482 1483 1484 1485 1486

	/*
	 * Queue the task for later wakeup for after we've released
	 * the hb->lock. wake_q_add() grabs reference to p.
	 */
1487
	wake_q_add_safe(wake_q, p);
L
Linus Torvalds 已提交
1488 1489
}

1490 1491 1492 1493
/*
 * Caller must hold a reference on @pi_state.
 */
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1494
{
1495
	u32 uninitialized_var(curval), newval;
1496
	struct task_struct *new_owner;
P
Peter Zijlstra 已提交
1497
	bool postunlock = false;
1498
	DEFINE_WAKE_Q(wake_q);
1499
	int ret = 0;
1500 1501

	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1502
	if (WARN_ON_ONCE(!new_owner)) {
1503
		/*
1504
		 * As per the comment in futex_unlock_pi() this should not happen.
1505 1506 1507 1508 1509 1510 1511 1512
		 *
		 * When this happens, give up our locks and try again, giving
		 * the futex_lock_pi() instance time to complete, either by
		 * waiting on the rtmutex or removing itself from the futex
		 * queue.
		 */
		ret = -EAGAIN;
		goto out_unlock;
1513
	}
1514 1515

	/*
1516 1517 1518
	 * We pass it to the next owner. The WAITERS bit is always kept
	 * enabled while there is PI state around. We cleanup the owner
	 * died bit, because we are the owner.
1519
	 */
1520
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1521

1522 1523 1524
	if (unlikely(should_fail_futex(true)))
		ret = -EFAULT;

1525 1526
	ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
	if (!ret && (curval != uval)) {
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
		/*
		 * If a unconditional UNLOCK_PI operation (user space did not
		 * try the TID->0 transition) raced with a waiter setting the
		 * FUTEX_WAITERS flag between get_user() and locking the hash
		 * bucket lock, retry the operation.
		 */
		if ((FUTEX_TID_MASK & curval) == uval)
			ret = -EAGAIN;
		else
			ret = -EINVAL;
	}
P
Peter Zijlstra 已提交
1538

1539 1540
	if (ret)
		goto out_unlock;
1541

1542 1543 1544 1545 1546
	/*
	 * This is a point of no return; once we modify the uval there is no
	 * going back and subsequent operations must not fail.
	 */

1547
	raw_spin_lock(&pi_state->owner->pi_lock);
1548 1549
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1550
	raw_spin_unlock(&pi_state->owner->pi_lock);
1551

1552
	raw_spin_lock(&new_owner->pi_lock);
1553
	WARN_ON(!list_empty(&pi_state->list));
1554 1555
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1556
	raw_spin_unlock(&new_owner->pi_lock);
1557

P
Peter Zijlstra 已提交
1558
	postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1559

1560
out_unlock:
1561 1562
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

P
Peter Zijlstra 已提交
1563 1564
	if (postunlock)
		rt_mutex_postunlock(&wake_q);
1565

1566
	return ret;
1567 1568
}

I
Ingo Molnar 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1585 1586 1587
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1588
	spin_unlock(&hb1->lock);
1589 1590
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1591 1592
}

L
Linus Torvalds 已提交
1593
/*
D
Darren Hart 已提交
1594
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1595
 */
1596 1597
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1598
{
1599
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1600
	struct futex_q *this, *next;
1601
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1602
	int ret;
1603
	DEFINE_WAKE_Q(wake_q);
L
Linus Torvalds 已提交
1604

1605 1606 1607
	if (!bitset)
		return -EINVAL;

1608
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
L
Linus Torvalds 已提交
1609 1610 1611
	if (unlikely(ret != 0))
		goto out;

1612
	hb = hash_futex(&key);
1613 1614 1615 1616 1617

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1618
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1619

J
Jason Low 已提交
1620
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1621
		if (match_futex (&this->key, &key)) {
1622
			if (this->pi_state || this->rt_waiter) {
1623 1624 1625
				ret = -EINVAL;
				break;
			}
1626 1627 1628 1629 1630

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

1631
			mark_wake_futex(&wake_q, this);
L
Linus Torvalds 已提交
1632 1633 1634 1635 1636
			if (++ret >= nr_wake)
				break;
		}
	}

1637
	spin_unlock(&hb->lock);
1638
	wake_up_q(&wake_q);
1639
out_put_key:
1640
	put_futex_key(&key);
1641
out:
L
Linus Torvalds 已提交
1642 1643 1644
	return ret;
}

1645 1646 1647 1648
static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
{
	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
1649 1650
	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1651 1652 1653
	int oldval, ret;

	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
		if (oparg < 0 || oparg > 31) {
			char comm[sizeof(current->comm)];
			/*
			 * kill this print and return -EINVAL when userspace
			 * is sane again
			 */
			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
					get_task_comm(comm, current), oparg);
			oparg &= 31;
		}
1664 1665 1666
		oparg = 1 << oparg;
	}

1667
	if (!access_ok(uaddr, sizeof(u32)))
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		return -EFAULT;

	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
	if (ret)
		return ret;

	switch (cmp) {
	case FUTEX_OP_CMP_EQ:
		return oldval == cmparg;
	case FUTEX_OP_CMP_NE:
		return oldval != cmparg;
	case FUTEX_OP_CMP_LT:
		return oldval < cmparg;
	case FUTEX_OP_CMP_GE:
		return oldval >= cmparg;
	case FUTEX_OP_CMP_LE:
		return oldval <= cmparg;
	case FUTEX_OP_CMP_GT:
		return oldval > cmparg;
	default:
		return -ENOSYS;
	}
}

1692 1693 1694 1695
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1696
static int
1697
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1698
	      int nr_wake, int nr_wake2, int op)
1699
{
1700
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1701
	struct futex_hash_bucket *hb1, *hb2;
1702
	struct futex_q *this, *next;
D
Darren Hart 已提交
1703
	int ret, op_ret;
1704
	DEFINE_WAKE_Q(wake_q);
1705

D
Darren Hart 已提交
1706
retry:
1707
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1708 1709
	if (unlikely(ret != 0))
		goto out;
1710
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1711
	if (unlikely(ret != 0))
1712
		goto out_put_key1;
1713

1714 1715
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1716

D
Darren Hart 已提交
1717
retry_private:
T
Thomas Gleixner 已提交
1718
	double_lock_hb(hb1, hb2);
1719
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1720
	if (unlikely(op_ret < 0)) {
D
Darren Hart 已提交
1721
		double_unlock_hb(hb1, hb2);
1722

1723 1724 1725 1726 1727 1728
		if (!IS_ENABLED(CONFIG_MMU) ||
		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
			/*
			 * we don't get EFAULT from MMU faults if we don't have
			 * an MMU, but we might get them from range checking
			 */
1729
			ret = op_ret;
1730
			goto out_put_keys;
1731 1732
		}

1733 1734 1735 1736 1737
		if (op_ret == -EFAULT) {
			ret = fault_in_user_writeable(uaddr2);
			if (ret)
				goto out_put_keys;
		}
1738

1739 1740
		if (!(flags & FLAGS_SHARED)) {
			cond_resched();
D
Darren Hart 已提交
1741
			goto retry_private;
1742
		}
D
Darren Hart 已提交
1743

1744 1745
		put_futex_key(&key2);
		put_futex_key(&key1);
1746
		cond_resched();
D
Darren Hart 已提交
1747
		goto retry;
1748 1749
	}

J
Jason Low 已提交
1750
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1751
		if (match_futex (&this->key, &key1)) {
1752 1753 1754 1755
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1756
			mark_wake_futex(&wake_q, this);
1757 1758 1759 1760 1761 1762 1763
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1764
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1765
			if (match_futex (&this->key, &key2)) {
1766 1767 1768 1769
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1770
				mark_wake_futex(&wake_q, this);
1771 1772 1773 1774 1775 1776 1777
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1778
out_unlock:
D
Darren Hart 已提交
1779
	double_unlock_hb(hb1, hb2);
1780
	wake_up_q(&wake_q);
1781
out_put_keys:
1782
	put_futex_key(&key2);
1783
out_put_key1:
1784
	put_futex_key(&key1);
1785
out:
1786 1787 1788
	return ret;
}

D
Darren Hart 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
1807 1808
		hb_waiters_dec(hb1);
		hb_waiters_inc(hb2);
1809
		plist_add(&q->list, &hb2->chain);
D
Darren Hart 已提交
1810 1811 1812 1813 1814 1815
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1816 1817
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1818 1819 1820
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1821 1822 1823 1824 1825
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1826 1827 1828
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1829 1830
 */
static inline
1831 1832
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1833 1834 1835 1836
{
	get_futex_key_refs(key);
	q->key = *key;

1837
	__unqueue_futex(q);
1838 1839 1840 1841

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1842 1843
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1844
	wake_up_state(q->task, TASK_NORMAL);
1845 1846 1847 1848
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1849 1850 1851 1852 1853 1854 1855
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1856 1857
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1858 1859 1860
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1861
 *
1862
 * Return:
1863 1864 1865
 *  -  0 - failed to acquire the lock atomically;
 *  - >0 - acquired the lock, return value is vpid of the top_waiter
 *  - <0 - error
1866 1867 1868 1869 1870
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1871
				 struct futex_pi_state **ps, int set_waiters)
1872
{
1873
	struct futex_q *top_waiter = NULL;
1874
	u32 curval;
1875
	int ret, vpid;
1876 1877 1878 1879

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1880 1881 1882
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1883 1884 1885 1886 1887 1888 1889 1890
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1891 1892 1893 1894 1895 1896
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1897 1898 1899 1900
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1901
	/*
1902 1903 1904
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1905
	 */
1906
	vpid = task_pid_vnr(top_waiter->task);
1907 1908
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1909
	if (ret == 1) {
1910
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1911 1912
		return vpid;
	}
1913 1914 1915 1916 1917
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1918
 * @uaddr1:	source futex user address
1919
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1920 1921 1922 1923 1924
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1925
 *		pi futex (pi to pi requeue is not supported)
1926 1927 1928 1929
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1930
 * Return:
1931 1932
 *  - >=0 - on success, the number of tasks requeued or woken;
 *  -  <0 - on error
L
Linus Torvalds 已提交
1933
 */
1934 1935 1936
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1937
{
1938
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1939 1940
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1941
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1942
	struct futex_q *this, *next;
1943
	DEFINE_WAKE_Q(wake_q);
1944

1945 1946 1947
	if (nr_wake < 0 || nr_requeue < 0)
		return -EINVAL;

1948 1949 1950 1951 1952 1953 1954 1955 1956
	/*
	 * When PI not supported: return -ENOSYS if requeue_pi is true,
	 * consequently the compiler knows requeue_pi is always false past
	 * this point which will optimize away all the conditional code
	 * further down.
	 */
	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
		return -ENOSYS;

1957
	if (requeue_pi) {
1958 1959 1960 1961 1962 1963 1964
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1984

1985
retry:
1986
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
L
Linus Torvalds 已提交
1987 1988
	if (unlikely(ret != 0))
		goto out;
1989
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1990
			    requeue_pi ? FUTEX_WRITE : FUTEX_READ);
L
Linus Torvalds 已提交
1991
	if (unlikely(ret != 0))
1992
		goto out_put_key1;
L
Linus Torvalds 已提交
1993

1994 1995 1996 1997 1998 1999 2000 2001 2002
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

2003 2004
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
2005

D
Darren Hart 已提交
2006
retry_private:
2007
	hb_waiters_inc(hb2);
I
Ingo Molnar 已提交
2008
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
2009

2010 2011
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
2012

2013
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
2014 2015

		if (unlikely(ret)) {
D
Darren Hart 已提交
2016
			double_unlock_hb(hb1, hb2);
2017
			hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
2018

2019
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
2020 2021
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
2022

2023
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2024
				goto retry_private;
L
Linus Torvalds 已提交
2025

2026 2027
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
2028
			goto retry;
L
Linus Torvalds 已提交
2029
		}
2030
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
2031 2032 2033 2034 2035
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

2036
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2037 2038 2039 2040 2041 2042
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
2043
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2044
						 &key2, &pi_state, nr_requeue);
2045 2046 2047 2048 2049

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
2050 2051
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
2052 2053
		 * If the lock was not taken, we have pi_state and an initial
		 * refcount on it. In case of an error we have nothing.
2054
		 */
2055
		if (ret > 0) {
2056
			WARN_ON(pi_state);
2057
			drop_count++;
2058
			task_count++;
2059
			/*
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
			 * If we acquired the lock, then the user space value
			 * of uaddr2 should be vpid. It cannot be changed by
			 * the top waiter as it is blocked on hb2 lock if it
			 * tries to do so. If something fiddled with it behind
			 * our back the pi state lookup might unearth it. So
			 * we rather use the known value than rereading and
			 * handing potential crap to lookup_pi_state.
			 *
			 * If that call succeeds then we have pi_state and an
			 * initial refcount on it.
2070
			 */
P
Peter Zijlstra 已提交
2071
			ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2072 2073 2074 2075
		}

		switch (ret) {
		case 0:
2076
			/* We hold a reference on the pi state. */
2077
			break;
2078 2079

			/* If the above failed, then pi_state is NULL */
2080 2081
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
2082
			hb_waiters_dec(hb2);
2083 2084
			put_futex_key(&key2);
			put_futex_key(&key1);
2085
			ret = fault_in_user_writeable(uaddr2);
2086 2087 2088 2089
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
2090 2091 2092 2093 2094 2095
			/*
			 * Two reasons for this:
			 * - Owner is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
			 */
2096
			double_unlock_hb(hb1, hb2);
2097
			hb_waiters_dec(hb2);
2098 2099
			put_futex_key(&key2);
			put_futex_key(&key1);
2100 2101 2102 2103 2104 2105 2106
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
2107
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2108 2109 2110 2111
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
2112
			continue;
2113

2114 2115 2116
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
2117 2118 2119
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
2120 2121
		 */
		if ((requeue_pi && !this->rt_waiter) ||
2122 2123
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
2124 2125 2126
			ret = -EINVAL;
			break;
		}
2127 2128 2129 2130 2131 2132 2133

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
2134
			mark_wake_futex(&wake_q, this);
2135 2136
			continue;
		}
L
Linus Torvalds 已提交
2137

2138 2139 2140 2141 2142 2143
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

2144 2145 2146 2147 2148
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
2149 2150 2151 2152 2153
			/*
			 * Prepare the waiter to take the rt_mutex. Take a
			 * refcount on the pi_state and store the pointer in
			 * the futex_q object of the waiter.
			 */
P
Peter Zijlstra 已提交
2154
			get_pi_state(pi_state);
2155 2156 2157
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
2158
							this->task);
2159
			if (ret == 1) {
2160 2161 2162 2163 2164 2165 2166 2167
				/*
				 * We got the lock. We do neither drop the
				 * refcount on pi_state nor clear
				 * this->pi_state because the waiter needs the
				 * pi_state for cleaning up the user space
				 * value. It will drop the refcount after
				 * doing so.
				 */
2168
				requeue_pi_wake_futex(this, &key2, hb2);
2169
				drop_count++;
2170 2171
				continue;
			} else if (ret) {
2172 2173 2174 2175 2176 2177 2178 2179
				/*
				 * rt_mutex_start_proxy_lock() detected a
				 * potential deadlock when we tried to queue
				 * that waiter. Drop the pi_state reference
				 * which we took above and remove the pointer
				 * to the state from the waiters futex_q
				 * object.
				 */
2180
				this->pi_state = NULL;
2181
				put_pi_state(pi_state);
2182 2183 2184 2185 2186
				/*
				 * We stop queueing more waiters and let user
				 * space deal with the mess.
				 */
				break;
2187
			}
L
Linus Torvalds 已提交
2188
		}
2189 2190
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
2191 2192
	}

2193 2194 2195 2196 2197
	/*
	 * We took an extra initial reference to the pi_state either
	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
	 * need to drop it here again.
	 */
2198
	put_pi_state(pi_state);
2199 2200

out_unlock:
D
Darren Hart 已提交
2201
	double_unlock_hb(hb1, hb2);
2202
	wake_up_q(&wake_q);
2203
	hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
2204

2205 2206 2207 2208 2209 2210
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
2211
	while (--drop_count >= 0)
2212
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
2213

2214
out_put_keys:
2215
	put_futex_key(&key2);
2216
out_put_key1:
2217
	put_futex_key(&key1);
2218
out:
2219
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
2220 2221 2222
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
2223
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2224
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
2225
{
2226
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
2227

2228
	hb = hash_futex(&q->key);
2229 2230 2231 2232 2233 2234 2235 2236 2237

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
D
Davidlohr Bueso 已提交
2238
	hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2239

2240
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
2241

D
Davidlohr Bueso 已提交
2242
	spin_lock(&hb->lock);
2243
	return hb;
L
Linus Torvalds 已提交
2244 2245
}

2246
static inline void
J
Jason Low 已提交
2247
queue_unlock(struct futex_hash_bucket *hb)
2248
	__releases(&hb->lock)
2249 2250
{
	spin_unlock(&hb->lock);
2251
	hb_waiters_dec(hb);
2252 2253
}

2254
static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
2255
{
P
Pierre Peiffer 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
2270
	q->task = current;
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
	__releases(&hb->lock)
{
	__queue_me(q, hb);
2289
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
2290 2291
}

2292 2293 2294 2295 2296 2297 2298
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
2299
 * Return:
2300 2301
 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
 *  - 0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
2302 2303 2304 2305
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
2306
	int ret = 0;
L
Linus Torvalds 已提交
2307 2308

	/* In the common case we don't take the spinlock, which is nice. */
2309
retry:
2310 2311 2312 2313 2314 2315
	/*
	 * q->lock_ptr can change between this read and the following spin_lock.
	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
	 * optimizing lock_ptr out of the logic below.
	 */
	lock_ptr = READ_ONCE(q->lock_ptr);
2316
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
2335
		__unqueue_futex(q);
2336 2337 2338

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
2339 2340 2341 2342
		spin_unlock(lock_ptr);
		ret = 1;
	}

2343
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
2344 2345 2346
	return ret;
}

2347 2348
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
2349 2350
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
2351
 */
P
Pierre Peiffer 已提交
2352
static void unqueue_me_pi(struct futex_q *q)
2353
	__releases(q->lock_ptr)
2354
{
2355
	__unqueue_futex(q);
2356 2357

	BUG_ON(!q->pi_state);
2358
	put_pi_state(q->pi_state);
2359 2360
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
2361
	spin_unlock(q->lock_ptr);
2362 2363
}

2364
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2365
				struct task_struct *argowner)
P
Pierre Peiffer 已提交
2366 2367
{
	struct futex_pi_state *pi_state = q->pi_state;
2368
	u32 uval, uninitialized_var(curval), newval;
2369 2370
	struct task_struct *oldowner, *newowner;
	u32 newtid;
2371
	int ret, err = 0;
P
Pierre Peiffer 已提交
2372

2373 2374
	lockdep_assert_held(q->lock_ptr);

P
Peter Zijlstra 已提交
2375 2376 2377
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	oldowner = pi_state->owner;
2378 2379

	/*
2380
	 * We are here because either:
2381
	 *
2382 2383 2384 2385 2386 2387 2388 2389 2390
	 *  - we stole the lock and pi_state->owner needs updating to reflect
	 *    that (@argowner == current),
	 *
	 * or:
	 *
	 *  - someone stole our lock and we need to fix things to point to the
	 *    new owner (@argowner == NULL).
	 *
	 * Either way, we have to replace the TID in the user space variable.
2391
	 * This must be atomic as we have to preserve the owner died bit here.
2392
	 *
D
Darren Hart 已提交
2393 2394 2395
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
2396
	 *
P
Peter Zijlstra 已提交
2397 2398 2399 2400
	 * Modifying pi_state _before_ the user space value would leave the
	 * pi_state in an inconsistent state when we fault here, because we
	 * need to drop the locks to handle the fault. This might be observed
	 * in the PID check in lookup_pi_state.
2401 2402
	 */
retry:
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
	if (!argowner) {
		if (oldowner != current) {
			/*
			 * We raced against a concurrent self; things are
			 * already fixed up. Nothing to do.
			 */
			ret = 0;
			goto out_unlock;
		}

		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
			/* We got the lock after all, nothing to fix. */
			ret = 0;
			goto out_unlock;
		}

		/*
		 * Since we just failed the trylock; there must be an owner.
		 */
		newowner = rt_mutex_owner(&pi_state->pi_mutex);
		BUG_ON(!newowner);
	} else {
		WARN_ON_ONCE(argowner != current);
		if (oldowner == current) {
			/*
			 * We raced against a concurrent self; things are
			 * already fixed up. Nothing to do.
			 */
			ret = 0;
			goto out_unlock;
		}
		newowner = argowner;
	}

	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Peter Zijlstra 已提交
2438 2439 2440
	/* Owner died? */
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;
2441

2442 2443 2444
	err = get_futex_value_locked(&uval, uaddr);
	if (err)
		goto handle_err;
2445

2446
	for (;;) {
2447 2448
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

2449 2450 2451 2452
		err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
		if (err)
			goto handle_err;

2453 2454 2455 2456 2457 2458 2459 2460 2461
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
2462
	if (pi_state->owner != NULL) {
P
Peter Zijlstra 已提交
2463
		raw_spin_lock(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
2464 2465
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
P
Peter Zijlstra 已提交
2466
		raw_spin_unlock(&pi_state->owner->pi_lock);
2467
	}
P
Pierre Peiffer 已提交
2468

2469
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
2470

P
Peter Zijlstra 已提交
2471
	raw_spin_lock(&newowner->pi_lock);
P
Pierre Peiffer 已提交
2472
	WARN_ON(!list_empty(&pi_state->list));
2473
	list_add(&pi_state->list, &newowner->pi_state_list);
P
Peter Zijlstra 已提交
2474 2475 2476
	raw_spin_unlock(&newowner->pi_lock);
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

2477
	return 0;
P
Pierre Peiffer 已提交
2478 2479

	/*
2480 2481 2482 2483 2484 2485 2486
	 * In order to reschedule or handle a page fault, we need to drop the
	 * locks here. In the case of a fault, this gives the other task
	 * (either the highest priority waiter itself or the task which stole
	 * the rtmutex) the chance to try the fixup of the pi_state. So once we
	 * are back from handling the fault we need to check the pi_state after
	 * reacquiring the locks and before trying to do another fixup. When
	 * the fixup has been done already we simply return.
P
Peter Zijlstra 已提交
2487 2488 2489 2490
	 *
	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
	 * drop hb->lock since the caller owns the hb -> futex_q relation.
	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
P
Pierre Peiffer 已提交
2491
	 */
2492
handle_err:
P
Peter Zijlstra 已提交
2493
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2494
	spin_unlock(q->lock_ptr);
2495

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
	switch (err) {
	case -EFAULT:
		ret = fault_in_user_writeable(uaddr);
		break;

	case -EAGAIN:
		cond_resched();
		ret = 0;
		break;

	default:
		WARN_ON_ONCE(1);
		ret = err;
		break;
	}
2511

2512
	spin_lock(q->lock_ptr);
P
Peter Zijlstra 已提交
2513
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2514

2515 2516 2517
	/*
	 * Check if someone else fixed it for us:
	 */
P
Peter Zijlstra 已提交
2518 2519 2520 2521
	if (pi_state->owner != oldowner) {
		ret = 0;
		goto out_unlock;
	}
2522 2523

	if (ret)
P
Peter Zijlstra 已提交
2524
		goto out_unlock;
2525 2526

	goto retry;
P
Peter Zijlstra 已提交
2527 2528 2529 2530

out_unlock:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
P
Pierre Peiffer 已提交
2531 2532
}

N
Nick Piggin 已提交
2533
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
2534

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
2545
 * Return:
2546 2547 2548
 *  -  1 - success, lock taken;
 *  -  0 - success, lock not taken;
 *  - <0 - on error (-EFAULT)
2549
 */
2550
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2551 2552 2553 2554 2555 2556 2557
{
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
2558
		 *
2559 2560 2561
		 * Speculative pi_state->owner read (we don't hold wait_lock);
		 * since we own the lock pi_state->owner == current is the
		 * stable state, anything else needs more attention.
2562 2563
		 */
		if (q->pi_state->owner != current)
2564
			ret = fixup_pi_state_owner(uaddr, q, current);
2565 2566 2567
		goto out;
	}

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
	/*
	 * If we didn't get the lock; check if anybody stole it from us. In
	 * that case, we need to fix up the uval to point to them instead of
	 * us, otherwise bad things happen. [10]
	 *
	 * Another speculative read; pi_state->owner == current is unstable
	 * but needs our attention.
	 */
	if (q->pi_state->owner == current) {
		ret = fixup_pi_state_owner(uaddr, q, NULL);
		goto out;
	}

2581 2582
	/*
	 * Paranoia check. If we did not take the lock, then we should not be
2583
	 * the owner of the rt_mutex.
2584
	 */
2585
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2586 2587 2588 2589
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);
2590
	}
2591 2592 2593 2594 2595

out:
	return ret ? ret : locked;
}

2596 2597 2598 2599 2600 2601 2602
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
2603
				struct hrtimer_sleeper *timeout)
2604
{
2605 2606
	/*
	 * The task state is guaranteed to be set before another task can
2607
	 * wake it. set_current_state() is implemented using smp_store_mb() and
2608 2609 2610
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
2611
	set_current_state(TASK_INTERRUPTIBLE);
2612
	queue_me(q, hb);
2613 2614

	/* Arm the timer */
2615
	if (timeout)
2616 2617 2618
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);

	/*
2619 2620
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
2621 2622 2623 2624 2625 2626 2627 2628
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
2629
			freezable_schedule();
2630 2631 2632 2633
	}
	__set_current_state(TASK_RUNNING);
}

2634 2635 2636 2637
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
2638
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2639 2640 2641 2642 2643 2644 2645 2646
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
2647
 * Return:
2648 2649
 *  -  0 - uaddr contains val and hb has been locked;
 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2650
 */
2651
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2652
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
2653
{
2654 2655
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
2656 2657

	/*
D
Darren Hart 已提交
2658
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
2659 2660 2661 2662 2663 2664 2665
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
2666 2667
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
2668 2669
	 * cond(var) false, which would violate the guarantee.
	 *
2670 2671 2672 2673
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
2674
	 */
2675
retry:
2676
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2677
	if (unlikely(ret != 0))
2678
		return ret;
2679 2680 2681 2682

retry_private:
	*hb = queue_lock(q);

2683
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
2684

2685
	if (ret) {
J
Jason Low 已提交
2686
		queue_unlock(*hb);
L
Linus Torvalds 已提交
2687

2688
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
2689
		if (ret)
2690
			goto out;
L
Linus Torvalds 已提交
2691

2692
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2693 2694
			goto retry_private;

2695
		put_futex_key(&q->key);
D
Darren Hart 已提交
2696
		goto retry;
L
Linus Torvalds 已提交
2697
	}
2698

2699
	if (uval != val) {
J
Jason Low 已提交
2700
		queue_unlock(*hb);
2701
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2702
	}
L
Linus Torvalds 已提交
2703

2704 2705
out:
	if (ret)
2706
		put_futex_key(&q->key);
2707 2708 2709
	return ret;
}

2710 2711
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2712
{
2713
	struct hrtimer_sleeper timeout, *to;
2714 2715
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2716
	struct futex_q q = futex_q_init;
2717 2718 2719 2720 2721 2722
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

2723 2724
	to = futex_setup_timer(abs_time, &timeout, flags,
			       current->timer_slack_ns);
T
Thomas Gleixner 已提交
2725
retry:
2726 2727 2728 2729
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2730
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2731 2732 2733
	if (ret)
		goto out;

2734
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2735
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2736 2737

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2738
	ret = 0;
2739
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2740
	if (!unqueue_me(&q))
2741
		goto out;
P
Peter Zijlstra 已提交
2742
	ret = -ETIMEDOUT;
2743
	if (to && !to->task)
2744
		goto out;
N
Nick Piggin 已提交
2745

2746
	/*
T
Thomas Gleixner 已提交
2747 2748
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2749
	 */
2750
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2751 2752
		goto retry;

P
Peter Zijlstra 已提交
2753
	ret = -ERESTARTSYS;
2754
	if (!abs_time)
2755
		goto out;
L
Linus Torvalds 已提交
2756

2757
	restart = &current->restart_block;
P
Peter Zijlstra 已提交
2758
	restart->fn = futex_wait_restart;
2759
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2760
	restart->futex.val = val;
T
Thomas Gleixner 已提交
2761
	restart->futex.time = *abs_time;
P
Peter Zijlstra 已提交
2762
	restart->futex.bitset = bitset;
2763
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2764

P
Peter Zijlstra 已提交
2765 2766
	ret = -ERESTART_RESTARTBLOCK;

2767
out:
2768 2769 2770 2771
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2772 2773 2774
	return ret;
}

N
Nick Piggin 已提交
2775 2776 2777

static long futex_wait_restart(struct restart_block *restart)
{
2778
	u32 __user *uaddr = restart->futex.uaddr;
2779
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2780

2781
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
T
Thomas Gleixner 已提交
2782
		t = restart->futex.time;
2783 2784
		tp = &t;
	}
N
Nick Piggin 已提交
2785
	restart->fn = do_no_restart_syscall;
2786 2787 2788

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2789 2790 2791
}


2792 2793 2794
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
2795 2796 2797 2798 2799
 * if there are waiters then it will block as a consequence of relying
 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
 * a 0 value of the futex too.).
 *
 * Also serves as futex trylock_pi()'ing, and due semantics.
2800
 */
2801
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2802
			 ktime_t *time, int trylock)
2803
{
2804
	struct hrtimer_sleeper timeout, *to;
2805
	struct futex_pi_state *pi_state = NULL;
2806
	struct rt_mutex_waiter rt_waiter;
2807
	struct futex_hash_bucket *hb;
2808
	struct futex_q q = futex_q_init;
2809
	int res, ret;
2810

2811 2812 2813
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

2814 2815 2816
	if (refill_pi_state_cache())
		return -ENOMEM;

2817
	to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2818

2819
retry:
2820
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2821
	if (unlikely(ret != 0))
2822
		goto out;
2823

D
Darren Hart 已提交
2824
retry_private:
E
Eric Sesterhenn 已提交
2825
	hb = queue_lock(&q);
2826

2827
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2828
	if (unlikely(ret)) {
2829 2830 2831 2832
		/*
		 * Atomic work succeeded and we got the lock,
		 * or failed. Either way, we do _not_ block.
		 */
2833
		switch (ret) {
2834 2835 2836 2837 2838 2839
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2840 2841
		case -EAGAIN:
			/*
2842 2843 2844 2845
			 * Two reasons for this:
			 * - Task is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
2846
			 */
J
Jason Low 已提交
2847
			queue_unlock(hb);
2848
			put_futex_key(&q.key);
2849 2850 2851
			cond_resched();
			goto retry;
		default:
2852
			goto out_unlock_put_key;
2853 2854 2855
		}
	}

2856 2857
	WARN_ON(!q.pi_state);

2858 2859 2860
	/*
	 * Only actually queue now that the atomic ops are done:
	 */
2861
	__queue_me(&q, hb);
2862

2863
	if (trylock) {
2864
		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2865 2866
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
2867
		goto no_block;
2868 2869
	}

2870 2871
	rt_mutex_init_waiter(&rt_waiter);

2872
	/*
2873 2874 2875 2876 2877 2878 2879
	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
	 * hold it while doing rt_mutex_start_proxy(), because then it will
	 * include hb->lock in the blocking chain, even through we'll not in
	 * fact hold it while blocking. This will lead it to report -EDEADLK
	 * and BUG when futex_unlock_pi() interleaves with this.
	 *
	 * Therefore acquire wait_lock while holding hb->lock, but drop the
2880 2881 2882 2883
	 * latter before calling __rt_mutex_start_proxy_lock(). This
	 * interleaves with futex_unlock_pi() -- which does a similar lock
	 * handoff -- such that the latter can observe the futex_q::pi_state
	 * before __rt_mutex_start_proxy_lock() is done.
2884
	 */
2885 2886
	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
	spin_unlock(q.lock_ptr);
2887 2888 2889 2890 2891
	/*
	 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
	 * such that futex_unlock_pi() is guaranteed to observe the waiter when
	 * it sees the futex_q::pi_state.
	 */
2892 2893 2894
	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);

2895 2896 2897
	if (ret) {
		if (ret == 1)
			ret = 0;
2898
		goto cleanup;
2899 2900 2901 2902 2903 2904 2905
	}

	if (unlikely(to))
		hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);

	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);

2906
cleanup:
2907
	spin_lock(q.lock_ptr);
2908
	/*
2909
	 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2910
	 * first acquire the hb->lock before removing the lock from the
2911 2912
	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
	 * lists consistent.
2913 2914 2915
	 *
	 * In particular; it is important that futex_unlock_pi() can not
	 * observe this inconsistency.
2916 2917 2918 2919 2920
	 */
	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
		ret = 0;

no_block:
2921 2922 2923 2924
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2925
	res = fixup_owner(uaddr, &q, !ret);
2926 2927 2928 2929 2930 2931
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2932

2933
	/*
2934 2935
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2936
	 */
2937 2938 2939 2940
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
		pi_state = q.pi_state;
		get_pi_state(pi_state);
	}
2941

2942 2943
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2944

2945 2946 2947 2948 2949
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

2950
	goto out_put_key;
2951

2952
out_unlock_put_key:
J
Jason Low 已提交
2953
	queue_unlock(hb);
2954

2955
out_put_key:
2956
	put_futex_key(&q.key);
2957
out:
2958 2959
	if (to) {
		hrtimer_cancel(&to->timer);
2960
		destroy_hrtimer_on_stack(&to->timer);
2961
	}
2962
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2963

2964
uaddr_faulted:
J
Jason Low 已提交
2965
	queue_unlock(hb);
2966

2967
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2968 2969
	if (ret)
		goto out_put_key;
2970

2971
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2972 2973
		goto retry_private;

2974
	put_futex_key(&q.key);
D
Darren Hart 已提交
2975
	goto retry;
2976 2977 2978 2979 2980 2981 2982
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2983
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2984
{
2985
	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2986
	union futex_key key = FUTEX_KEY_INIT;
2987
	struct futex_hash_bucket *hb;
2988
	struct futex_q *top_waiter;
D
Darren Hart 已提交
2989
	int ret;
2990

2991 2992 2993
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

2994 2995 2996 2997 2998 2999
retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
3000
	if ((uval & FUTEX_TID_MASK) != vpid)
3001 3002
		return -EPERM;

3003
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3004 3005
	if (ret)
		return ret;
3006 3007 3008 3009 3010

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
3011 3012 3013
	 * Check waiters first. We do not trust user space values at
	 * all and we at least want to know if user space fiddled
	 * with the futex value instead of blindly unlocking.
3014
	 */
3015 3016
	top_waiter = futex_top_waiter(hb, &key);
	if (top_waiter) {
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
		struct futex_pi_state *pi_state = top_waiter->pi_state;

		ret = -EINVAL;
		if (!pi_state)
			goto out_unlock;

		/*
		 * If current does not own the pi_state then the futex is
		 * inconsistent and user space fiddled with the futex value.
		 */
		if (pi_state->owner != current)
			goto out_unlock;

3030
		get_pi_state(pi_state);
3031
		/*
3032 3033 3034 3035
		 * By taking wait_lock while still holding hb->lock, we ensure
		 * there is no point where we hold neither; and therefore
		 * wake_futex_pi() must observe a state consistent with what we
		 * observed.
3036 3037 3038 3039
		 *
		 * In particular; this forces __rt_mutex_start_proxy() to
		 * complete such that we're guaranteed to observe the
		 * rt_waiter. Also see the WARN in wake_futex_pi().
3040
		 */
3041
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3042 3043
		spin_unlock(&hb->lock);

3044
		/* drops pi_state->pi_mutex.wait_lock */
3045 3046 3047 3048 3049 3050
		ret = wake_futex_pi(uaddr, uval, pi_state);

		put_pi_state(pi_state);

		/*
		 * Success, we're done! No tricky corner cases.
3051 3052 3053
		 */
		if (!ret)
			goto out_putkey;
3054
		/*
3055 3056
		 * The atomic access to the futex value generated a
		 * pagefault, so retry the user-access and the wakeup:
3057 3058 3059
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
3060 3061 3062 3063
		/*
		 * A unconditional UNLOCK_PI op raced against a waiter
		 * setting the FUTEX_WAITERS bit. Try again.
		 */
3064 3065
		if (ret == -EAGAIN)
			goto pi_retry;
3066 3067 3068 3069
		/*
		 * wake_futex_pi has detected invalid state. Tell user
		 * space.
		 */
3070
		goto out_putkey;
3071
	}
3072

3073
	/*
3074 3075 3076 3077 3078
	 * We have no kernel internal state, i.e. no waiters in the
	 * kernel. Waiters which are about to queue themselves are stuck
	 * on hb->lock. So we can safely ignore them. We do neither
	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
	 * owner.
3079
	 */
3080
	if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3081
		spin_unlock(&hb->lock);
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
		switch (ret) {
		case -EFAULT:
			goto pi_faulted;

		case -EAGAIN:
			goto pi_retry;

		default:
			WARN_ON_ONCE(1);
			goto out_putkey;
		}
3093
	}
3094

3095 3096 3097 3098 3099
	/*
	 * If uval has changed, let user space handle it.
	 */
	ret = (curval == uval) ? 0 : -EAGAIN;

3100 3101
out_unlock:
	spin_unlock(&hb->lock);
3102
out_putkey:
3103
	put_futex_key(&key);
3104 3105
	return ret;

3106 3107 3108 3109 3110
pi_retry:
	put_futex_key(&key);
	cond_resched();
	goto retry;

3111
pi_faulted:
3112
	put_futex_key(&key);
3113

3114
	ret = fault_in_user_writeable(uaddr);
3115
	if (!ret)
3116 3117
		goto retry;

L
Linus Torvalds 已提交
3118 3119 3120
	return ret;
}

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
3133
 * Return:
3134 3135
 *  -  0 = no early wakeup detected;
 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
3157
		plist_del(&q->list, &hb->chain);
3158
		hb_waiters_dec(hb);
3159

T
Thomas Gleixner 已提交
3160
		/* Handle spurious wakeups gracefully */
3161
		ret = -EWOULDBLOCK;
3162 3163
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
3164
		else if (signal_pending(current))
3165
			ret = -ERESTARTNOINTR;
3166 3167 3168 3169 3170 3171
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3172
 * @uaddr:	the futex we initially wait on (non-pi)
3173
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3174
 *		the same type, no requeueing from private to shared, etc.
3175 3176
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
3177
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
3178 3179 3180
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3181 3182 3183 3184 3185
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
3186 3187
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3188
 * via the following--
3189
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3190 3191 3192
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
3193
 *
3194
 * If 3, cleanup and return -ERESTARTNOINTR.
3195 3196 3197 3198 3199 3200 3201
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
3202
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3203 3204 3205
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
3206
 * Return:
3207 3208
 *  -  0 - On success;
 *  - <0 - On error
3209
 */
3210
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3211
				 u32 val, ktime_t *abs_time, u32 bitset,
3212
				 u32 __user *uaddr2)
3213
{
3214
	struct hrtimer_sleeper timeout, *to;
3215
	struct futex_pi_state *pi_state = NULL;
3216 3217
	struct rt_mutex_waiter rt_waiter;
	struct futex_hash_bucket *hb;
3218 3219
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
3220 3221
	int res, ret;

3222 3223 3224
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

3225 3226 3227
	if (uaddr == uaddr2)
		return -EINVAL;

3228 3229 3230
	if (!bitset)
		return -EINVAL;

3231 3232
	to = futex_setup_timer(abs_time, &timeout, flags,
			       current->timer_slack_ns);
3233 3234 3235 3236 3237

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
3238
	rt_mutex_init_waiter(&rt_waiter);
3239

3240
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3241 3242 3243
	if (unlikely(ret != 0))
		goto out;

3244 3245 3246 3247
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

3248 3249 3250 3251
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
3252
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
3253 3254
	if (ret)
		goto out_key2;
3255

3256 3257 3258 3259 3260
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
3261
		queue_unlock(hb);
3262 3263 3264 3265
		ret = -EINVAL;
		goto out_put_keys;
	}

3266
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
3267
	futex_wait_queue_me(hb, &q, to);
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
3279 3280 3281
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
3292
			ret = fixup_pi_state_owner(uaddr2, &q, current);
3293 3294 3295 3296
			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
				pi_state = q.pi_state;
				get_pi_state(pi_state);
			}
3297 3298 3299 3300
			/*
			 * Drop the reference to the pi state which
			 * the requeue_pi() code acquired for us.
			 */
3301
			put_pi_state(q.pi_state);
3302 3303 3304
			spin_unlock(q.lock_ptr);
		}
	} else {
3305 3306
		struct rt_mutex *pi_mutex;

3307 3308 3309 3310 3311
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
3312
		WARN_ON(!q.pi_state);
3313
		pi_mutex = &q.pi_state->pi_mutex;
3314
		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3315 3316

		spin_lock(q.lock_ptr);
3317 3318 3319 3320
		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
			ret = 0;

		debug_rt_mutex_free_waiter(&rt_waiter);
3321 3322 3323 3324
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
3325
		res = fixup_owner(uaddr2, &q, !ret);
3326 3327
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
3328
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3329 3330 3331 3332
		 */
		if (res)
			ret = (res < 0) ? res : 0;

3333 3334 3335 3336 3337
		/*
		 * If fixup_pi_state_owner() faulted and was unable to handle
		 * the fault, unlock the rt_mutex and return the fault to
		 * userspace.
		 */
3338 3339 3340 3341
		if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
			pi_state = q.pi_state;
			get_pi_state(pi_state);
		}
3342

3343 3344 3345 3346
		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

3347 3348 3349 3350 3351
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

3352
	if (ret == -EINTR) {
3353
		/*
3354 3355 3356 3357 3358
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
3359
		 */
3360
		ret = -EWOULDBLOCK;
3361 3362 3363
	}

out_put_keys:
3364
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
3365
out_key2:
3366
	put_futex_key(&key2);
3367 3368 3369 3370 3371 3372 3373 3374 3375

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

3376 3377 3378 3379 3380 3381 3382
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
3383
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3384 3385 3386 3387 3388 3389 3390 3391
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
3392 3393 3394
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
3395
 */
3396 3397
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
3398
{
3399 3400
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
3413 3414 3415 3416
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3417
 */
3418 3419 3420
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
3421
{
A
Al Viro 已提交
3422
	struct robust_list_head __user *head;
3423
	unsigned long ret;
3424
	struct task_struct *p;
3425

3426 3427 3428
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

3429 3430 3431
	rcu_read_lock();

	ret = -ESRCH;
3432
	if (!pid)
3433
		p = current;
3434
	else {
3435
		p = find_task_by_vpid(pid);
3436 3437 3438 3439
		if (!p)
			goto err_unlock;
	}

3440
	ret = -EPERM;
3441
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3442 3443 3444 3445 3446
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

3447 3448 3449 3450 3451
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
3452
	rcu_read_unlock();
3453 3454 3455 3456 3457 3458 3459 3460

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
3461
static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3462
{
3463
	u32 uval, uninitialized_var(nval), mval;
3464
	int err;
3465

3466 3467 3468 3469
	/* Futex address must be 32bit aligned */
	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
		return -1;

3470 3471
retry:
	if (get_user(uval, uaddr))
3472 3473
		return -1;

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
		return 0;

	/*
	 * Ok, this dying thread is truly holding a futex
	 * of interest. Set the OWNER_DIED bit atomically
	 * via cmpxchg, and if the value had FUTEX_WAITERS
	 * set, wake up a waiter (if any). (We have to do a
	 * futex_wake() even if OWNER_DIED is already set -
	 * to handle the rare but possible case of recursive
	 * thread-death.) The rest of the cleanup is done in
	 * userspace.
	 */
	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;

	/*
	 * We are not holding a lock here, but we want to have
	 * the pagefault_disable/enable() protection because
	 * we want to handle the fault gracefully. If the
	 * access fails we try to fault in the futex with R/W
	 * verification via get_user_pages. get_user() above
	 * does not guarantee R/W access. If that fails we
	 * give up and leave the futex locked.
	 */
	if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
		switch (err) {
		case -EFAULT:
3501 3502 3503
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
3504 3505 3506

		case -EAGAIN:
			cond_resched();
3507
			goto retry;
3508

3509 3510 3511 3512
		default:
			WARN_ON_ONCE(1);
			return err;
		}
3513
	}
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524

	if (nval != uval)
		goto retry;

	/*
	 * Wake robust non-PI futexes here. The wakeup of
	 * PI futexes happens in exit_pi_state():
	 */
	if (!pi && (uval & FUTEX_WAITERS))
		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);

3525 3526 3527
	return 0;
}

3528 3529 3530 3531
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
3532
				     struct robust_list __user * __user *head,
3533
				     unsigned int *pi)
3534 3535 3536
{
	unsigned long uentry;

A
Al Viro 已提交
3537
	if (get_user(uentry, (unsigned long __user *)head))
3538 3539
		return -EFAULT;

A
Al Viro 已提交
3540
	*entry = (void __user *)(uentry & ~1UL);
3541 3542 3543 3544 3545
	*pi = uentry & 1;

	return 0;
}

3546 3547 3548 3549 3550 3551 3552 3553 3554
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
3555
	struct robust_list __user *entry, *next_entry, *pending;
3556 3557
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
3558
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
3559
	int rc;
3560

3561 3562 3563
	if (!futex_cmpxchg_enabled)
		return;

3564 3565 3566 3567
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
3568
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
3579
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3580
		return;
3581

M
Martin Schwidefsky 已提交
3582
	next_entry = NULL;	/* avoid warning with gcc */
3583
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
3584 3585 3586 3587 3588
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3589 3590
		/*
		 * A pending lock might already be on the list, so
3591
		 * don't process it twice:
3592 3593
		 */
		if (entry != pending)
A
Al Viro 已提交
3594
			if (handle_futex_death((void __user *)entry + futex_offset,
3595
						curr, pi))
3596
				return;
M
Martin Schwidefsky 已提交
3597
		if (rc)
3598
			return;
M
Martin Schwidefsky 已提交
3599 3600
		entry = next_entry;
		pi = next_pi;
3601 3602 3603 3604 3605 3606 3607 3608
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
3609 3610 3611 3612

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
3613 3614
}

3615
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3616
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
3617
{
T
Thomas Gleixner 已提交
3618
	int cmd = op & FUTEX_CMD_MASK;
3619
	unsigned int flags = 0;
E
Eric Dumazet 已提交
3620 3621

	if (!(op & FUTEX_PRIVATE_FLAG))
3622
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
3623

3624 3625
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
3626 3627
		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
		    cmd != FUTEX_WAIT_REQUEUE_PI)
3628 3629
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
3630

3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
3641
	switch (cmd) {
L
Linus Torvalds 已提交
3642
	case FUTEX_WAIT:
3643
		val3 = FUTEX_BITSET_MATCH_ANY;
3644
		/* fall through */
3645
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
3646
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
3647
	case FUTEX_WAKE:
3648
		val3 = FUTEX_BITSET_MATCH_ANY;
3649
		/* fall through */
3650
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
3651
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
3652
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
3653
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
3654
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
3655
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3656
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
3657
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3658
	case FUTEX_LOCK_PI:
3659
		return futex_lock_pi(uaddr, flags, timeout, 0);
3660
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
3661
		return futex_unlock_pi(uaddr, flags);
3662
	case FUTEX_TRYLOCK_PI:
3663
		return futex_lock_pi(uaddr, flags, NULL, 1);
3664 3665
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
3666 3667
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
3668
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
3669
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
3670
	}
T
Thomas Gleixner 已提交
3671
	return -ENOSYS;
L
Linus Torvalds 已提交
3672 3673 3674
}


3675
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3676
		struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3677
		u32, val3)
L
Linus Torvalds 已提交
3678
{
3679
	struct timespec64 ts;
3680
	ktime_t t, *tp = NULL;
3681
	u32 val2 = 0;
E
Eric Dumazet 已提交
3682
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
3683

3684
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3685 3686
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3687 3688
		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
			return -EFAULT;
3689
		if (get_timespec64(&ts, utime))
L
Linus Torvalds 已提交
3690
			return -EFAULT;
3691
		if (!timespec64_valid(&ts))
3692
			return -EINVAL;
3693

3694
		t = timespec64_to_ktime(ts);
E
Eric Dumazet 已提交
3695
		if (cmd == FUTEX_WAIT)
3696
			t = ktime_add_safe(ktime_get(), t);
3697
		tp = &t;
L
Linus Torvalds 已提交
3698 3699
	}
	/*
3700
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3701
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
3702
	 */
3703
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3704
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3705
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
3706

3707
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
3708 3709
}

3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
#ifdef CONFIG_COMPAT
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int
compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
		   compat_uptr_t __user *head, unsigned int *pi)
{
	if (get_user(*uentry, head))
		return -EFAULT;

	*entry = compat_ptr((*uentry) & ~1);
	*pi = (unsigned int)(*uentry) & 1;

	return 0;
}

static void __user *futex_uaddr(struct robust_list __user *entry,
				compat_long_t futex_offset)
{
	compat_uptr_t base = ptr_to_compat(entry);
	void __user *uaddr = compat_ptr(base + futex_offset);

	return uaddr;
}

/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void compat_exit_robust_list(struct task_struct *curr)
{
	struct compat_robust_list_head __user *head = curr->compat_robust_list;
	struct robust_list __user *entry, *next_entry, *pending;
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
	compat_uptr_t uentry, next_uentry, upending;
	compat_long_t futex_offset;
	int rc;

	if (!futex_cmpxchg_enabled)
		return;

	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
	if (compat_fetch_robust_entry(&upending, &pending,
			       &head->list_op_pending, &pip))
		return;

	next_entry = NULL;	/* avoid warning with gcc */
	while (entry != (struct robust_list __user *) &head->list) {
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
			(compat_uptr_t __user *)&entry->next, &next_pi);
		/*
		 * A pending lock might already be on the list, so
		 * dont process it twice:
		 */
		if (entry != pending) {
			void __user *uaddr = futex_uaddr(entry, futex_offset);

			if (handle_futex_death(uaddr, curr, pi))
				return;
		}
		if (rc)
			return;
		uentry = next_uentry;
		entry = next_entry;
		pi = next_pi;
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
	if (pending) {
		void __user *uaddr = futex_uaddr(pending, futex_offset);

		handle_futex_death(uaddr, curr, pip);
	}
}

COMPAT_SYSCALL_DEFINE2(set_robust_list,
		struct compat_robust_list_head __user *, head,
		compat_size_t, len)
{
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->compat_robust_list = head;

	return 0;
}

COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
			compat_uptr_t __user *, head_ptr,
			compat_size_t __user *, len_ptr)
{
	struct compat_robust_list_head __user *head;
	unsigned long ret;
	struct task_struct *p;

	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

	rcu_read_lock();

	ret = -ESRCH;
	if (!pid)
		p = current;
	else {
		p = find_task_by_vpid(pid);
		if (!p)
			goto err_unlock;
	}

	ret = -EPERM;
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
		goto err_unlock;

	head = p->compat_robust_list;
	rcu_read_unlock();

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(ptr_to_compat(head), head_ptr);

err_unlock:
	rcu_read_unlock();

	return ret;
}
3865
#endif /* CONFIG_COMPAT */
3866

3867
#ifdef CONFIG_COMPAT_32BIT_TIME
3868
SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3869 3870 3871
		struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
		u32, val3)
{
3872
	struct timespec64 ts;
3873 3874 3875 3876 3877 3878 3879
	ktime_t t, *tp = NULL;
	int val2 = 0;
	int cmd = op & FUTEX_CMD_MASK;

	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3880
		if (get_old_timespec32(&ts, utime))
3881
			return -EFAULT;
3882
		if (!timespec64_valid(&ts))
3883 3884
			return -EINVAL;

3885
		t = timespec64_to_ktime(ts);
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
		if (cmd == FUTEX_WAIT)
			t = ktime_add_safe(ktime_get(), t);
		tp = &t;
	}
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
		val2 = (int) (unsigned long) utime;

	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
}
3896
#endif /* CONFIG_COMPAT_32BIT_TIME */
3897

3898
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
3899
{
3900
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3901
	u32 curval;
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
3920
	unsigned int futex_shift;
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
3932 3933 3934
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
3935 3936

	futex_detect_cmpxchg();
3937

3938
	for (i = 0; i < futex_hashsize; i++) {
3939
		atomic_set(&futex_queues[i].waiters, 0);
3940
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
3941 3942 3943
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
3944 3945
	return 0;
}
3946
core_initcall(futex_init);