futex.c 89.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/export.h>
59
#include <linux/magic.h>
60 61
#include <linux/pid.h>
#include <linux/nsproxy.h>
62
#include <linux/ptrace.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/wake_q.h>
65
#include <linux/sched/mm.h>
66
#include <linux/hugetlb.h>
C
Colin Cross 已提交
67
#include <linux/freezer.h>
68
#include <linux/bootmem.h>
69
#include <linux/fault-inject.h>
70

71
#include <asm/futex.h>
L
Linus Torvalds 已提交
72

73
#include "locking/rtmutex_common.h"
74

75
/*
76 77 78 79
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
80 81 82 83
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
84 85 86
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
87 88
 *
 * The waker side modifies the user space value of the futex and calls
89 90 91
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
92
 *
93 94 95 96 97
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
119 120 121 122 123
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
124 125 126
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
127
 *
128
 *   waiters++; (a)
129 130 131 132 133 134 135 136 137 138
 *   smp_mb(); (A) <-- paired with -.
 *                                  |
 *   lock(hash_bucket(futex));      |
 *                                  |
 *   uval = *futex;                 |
 *                                  |        *futex = newval;
 *                                  |        sys_futex(WAKE, futex);
 *                                  |          futex_wake(futex);
 *                                  |
 *                                  `--------> smp_mb(); (B)
139
 *   if (uval == val)
140
 *     queue();
141
 *     unlock(hash_bucket(futex));
142 143
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
144 145
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
146
 *
147 148
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 150
 * to futex and the waiters read -- this is done by the barriers for both
 * shared and private futexes in get_futex_key_refs().
151 152 153 154 155 156 157 158 159 160 161 162
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
163 164 165 166 167 168 169 170 171 172 173
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
174 175
 */

176
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177
int __read_mostly futex_cmpxchg_enabled;
178
#endif
179

180 181 182 183
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
184 185 186 187 188 189 190 191 192
#ifdef CONFIG_MMU
# define FLAGS_SHARED		0x01
#else
/*
 * NOMMU does not have per process address space. Let the compiler optimize
 * code away.
 */
# define FLAGS_SHARED		0x00
#endif
193 194 195
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

217 218
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
219
 * @list:		priority-sorted list of tasks waiting on this futex
220 221 222 223 224 225 226 227 228
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
229 230 231
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
232
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233
 * The order of wakeup is always to make the first condition true, then
234 235 236 237
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
238 239
 */
struct futex_q {
P
Pierre Peiffer 已提交
240
	struct plist_node list;
L
Linus Torvalds 已提交
241

242
	struct task_struct *task;
L
Linus Torvalds 已提交
243 244
	spinlock_t *lock_ptr;
	union futex_key key;
245
	struct futex_pi_state *pi_state;
246
	struct rt_mutex_waiter *rt_waiter;
247
	union futex_key *requeue_pi_key;
248
	u32 bitset;
L
Linus Torvalds 已提交
249 250
};

251 252 253 254 255 256
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
257
/*
D
Darren Hart 已提交
258 259 260
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
261 262
 */
struct futex_hash_bucket {
263
	atomic_t waiters;
P
Pierre Peiffer 已提交
264 265
	spinlock_t lock;
	struct plist_head chain;
266
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
267

268 269 270 271 272 273 274 275 276 277 278
/*
 * The base of the bucket array and its size are always used together
 * (after initialization only in hash_futex()), so ensure that they
 * reside in the same cacheline.
 */
static struct {
	struct futex_hash_bucket *queues;
	unsigned long            hashsize;
} __futex_data __read_mostly __aligned(2*sizeof(long));
#define futex_queues   (__futex_data.queues)
#define futex_hashsize (__futex_data.hashsize)
279

L
Linus Torvalds 已提交
280

281 282 283 284 285 286 287 288
/*
 * Fault injections for futexes.
 */
#ifdef CONFIG_FAIL_FUTEX

static struct {
	struct fault_attr attr;

289
	bool ignore_private;
290 291
} fail_futex = {
	.attr = FAULT_ATTR_INITIALIZER,
292
	.ignore_private = false,
293 294 295 296 297 298 299 300
};

static int __init setup_fail_futex(char *str)
{
	return setup_fault_attr(&fail_futex.attr, str);
}
__setup("fail_futex=", setup_fail_futex);

301
static bool should_fail_futex(bool fshared)
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
{
	if (fail_futex.ignore_private && !fshared)
		return false;

	return should_fail(&fail_futex.attr, 1);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_futex_debugfs(void)
{
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;

	dir = fault_create_debugfs_attr("fail_futex", NULL,
					&fail_futex.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);

	if (!debugfs_create_bool("ignore-private", mode, dir,
				 &fail_futex.ignore_private)) {
		debugfs_remove_recursive(dir);
		return -ENOMEM;
	}

	return 0;
}

late_initcall(fail_futex_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else
static inline bool should_fail_futex(bool fshared)
{
	return false;
}
#endif /* CONFIG_FAIL_FUTEX */

341 342
static inline void futex_get_mm(union futex_key *key)
{
V
Vegard Nossum 已提交
343
	mmgrab(key->private.mm);
344 345 346
	/*
	 * Ensure futex_get_mm() implies a full barrier such that
	 * get_futex_key() implies a full barrier. This is relied upon
347
	 * as smp_mb(); (B), see the ordering comment above.
348
	 */
349
	smp_mb__after_atomic();
350 351
}

352 353 354 355
/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 357
{
#ifdef CONFIG_SMP
358
	atomic_inc(&hb->waiters);
359
	/*
360
	 * Full barrier (A), see the ordering comment above.
361
	 */
362
	smp_mb__after_atomic();
363 364 365 366 367 368 369 370 371 372 373 374 375
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}
376

377 378 379 380
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	return atomic_read(&hb->waiters);
381
#else
382
	return 1;
383 384 385
#endif
}

386 387 388 389 390 391
/**
 * hash_futex - Return the hash bucket in the global hash
 * @key:	Pointer to the futex key for which the hash is calculated
 *
 * We hash on the keys returned from get_futex_key (see below) and return the
 * corresponding hash bucket in the global hash.
L
Linus Torvalds 已提交
392 393 394 395 396 397
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
398
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
399 400
}

401 402 403 404 405 406

/**
 * match_futex - Check whether two futex keys are equal
 * @key1:	Pointer to key1
 * @key2:	Pointer to key2
 *
L
Linus Torvalds 已提交
407 408 409 410
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
411 412
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
413 414 415 416
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

417 418 419 420 421 422 423 424 425 426
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

427 428 429 430 431 432 433 434 435 436
	/*
	 * On MMU less systems futexes are always "private" as there is no per
	 * process address space. We need the smp wmb nevertheless - yes,
	 * arch/blackfin has MMU less SMP ...
	 */
	if (!IS_ENABLED(CONFIG_MMU)) {
		smp_mb(); /* explicit smp_mb(); (B) */
		return;
	}

437 438
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
439
		ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 441
		break;
	case FUT_OFF_MMSHARED:
442
		futex_get_mm(key); /* implies smp_mb(); (B) */
443
		break;
444
	default:
445 446 447 448 449
		/*
		 * Private futexes do not hold reference on an inode or
		 * mm, therefore the only purpose of calling get_futex_key_refs
		 * is because we need the barrier for the lockless waiter check.
		 */
450
		smp_mb(); /* explicit smp_mb(); (B) */
451 452 453 454 455
	}
}

/*
 * Drop a reference to the resource addressed by a key.
456 457 458
 * The hash bucket spinlock must not be held. This is
 * a no-op for private futexes, see comment in the get
 * counterpart.
459 460 461
 */
static void drop_futex_key_refs(union futex_key *key)
{
462 463 464
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
465
		return;
466
	}
467

468 469 470
	if (!IS_ENABLED(CONFIG_MMU))
		return;

471 472 473 474 475 476 477 478 479 480
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
481
/**
482 483 484 485
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
486 487
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 *              VERIFY_WRITE)
E
Eric Dumazet 已提交
488
 *
489 490
 * Return: a negative error code or 0
 *
E
Eric Dumazet 已提交
491
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
492
 *
A
Al Viro 已提交
493
 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
L
Linus Torvalds 已提交
494 495 496
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
497
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
498
 */
499
static int
500
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
501
{
502
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
503
	struct mm_struct *mm = current->mm;
504
	struct page *page, *tail;
505
	struct address_space *mapping;
506
	int err, ro = 0;
L
Linus Torvalds 已提交
507 508 509 510

	/*
	 * The futex address must be "naturally" aligned.
	 */
511
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
512
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
513
		return -EINVAL;
514
	address -= key->both.offset;
L
Linus Torvalds 已提交
515

516 517 518
	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
		return -EFAULT;

519 520 521
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

E
Eric Dumazet 已提交
522 523 524 525 526 527 528 529 530 531
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
532
		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
E
Eric Dumazet 已提交
533 534
		return 0;
	}
L
Linus Torvalds 已提交
535

536
again:
537 538 539 540
	/* Ignore any VERIFY_READ mapping (futex common case) */
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

541
	err = get_user_pages_fast(address, 1, 1, &page);
542 543 544 545 546 547 548 549
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
	if (err == -EFAULT && rw == VERIFY_READ) {
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
550 551
	if (err < 0)
		return err;
552 553
	else
		err = 0;
554

555 556 557 558 559 560 561 562 563 564
	/*
	 * The treatment of mapping from this point on is critical. The page
	 * lock protects many things but in this context the page lock
	 * stabilizes mapping, prevents inode freeing in the shared
	 * file-backed region case and guards against movement to swap cache.
	 *
	 * Strictly speaking the page lock is not needed in all cases being
	 * considered here and page lock forces unnecessarily serialization
	 * From this point on, mapping will be re-verified if necessary and
	 * page lock will be acquired only if it is unavoidable
565 566 567 568 569 570 571
	 *
	 * Mapping checks require the head page for any compound page so the
	 * head page and mapping is looked up now. For anonymous pages, it
	 * does not matter if the page splits in the future as the key is
	 * based on the address. For filesystem-backed pages, the tail is
	 * required as the index of the page determines the key. For
	 * base pages, there is no tail page and tail == page.
572
	 */
573
	tail = page;
574 575 576
	page = compound_head(page);
	mapping = READ_ONCE(page->mapping);

577
	/*
578
	 * If page->mapping is NULL, then it cannot be a PageAnon
579 580 581 582 583 584 585 586 587 588 589
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
590
	 * an unlikely race, but we do need to retry for page->mapping.
591
	 */
592 593 594 595 596 597 598 599 600 601
	if (unlikely(!mapping)) {
		int shmem_swizzled;

		/*
		 * Page lock is required to identify which special case above
		 * applies. If this is really a shmem page then the page lock
		 * will prevent unexpected transitions.
		 */
		lock_page(page);
		shmem_swizzled = PageSwapCache(page) || page->mapping;
602 603
		unlock_page(page);
		put_page(page);
604

605 606
		if (shmem_swizzled)
			goto again;
607

608
		return -EFAULT;
609
	}
L
Linus Torvalds 已提交
610 611 612 613

	/*
	 * Private mappings are handled in a simple way.
	 *
614 615 616
	 * If the futex key is stored on an anonymous page, then the associated
	 * object is the mm which is implicitly pinned by the calling process.
	 *
L
Linus Torvalds 已提交
617 618
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
619
	 * the object not the particular process.
L
Linus Torvalds 已提交
620
	 */
621
	if (PageAnon(page)) {
622 623 624 625
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
626
		if (unlikely(should_fail_futex(fshared)) || ro) {
627 628 629 630
			err = -EFAULT;
			goto out;
		}

631
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
632
		key->private.mm = mm;
633
		key->private.address = address;
634 635 636

		get_futex_key_refs(key); /* implies smp_mb(); (B) */

637
	} else {
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
		struct inode *inode;

		/*
		 * The associated futex object in this case is the inode and
		 * the page->mapping must be traversed. Ordinarily this should
		 * be stabilised under page lock but it's not strictly
		 * necessary in this case as we just want to pin the inode, not
		 * update the radix tree or anything like that.
		 *
		 * The RCU read lock is taken as the inode is finally freed
		 * under RCU. If the mapping still matches expectations then the
		 * mapping->host can be safely accessed as being a valid inode.
		 */
		rcu_read_lock();

		if (READ_ONCE(page->mapping) != mapping) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		inode = READ_ONCE(mapping->host);
		if (!inode) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/*
		 * Take a reference unless it is about to be freed. Previously
		 * this reference was taken by ihold under the page lock
		 * pinning the inode in place so i_lock was unnecessary. The
		 * only way for this check to fail is if the inode was
		 * truncated in parallel so warn for now if this happens.
		 *
		 * We are not calling into get_futex_key_refs() in file-backed
		 * cases, therefore a successful atomic_inc return below will
		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
		 */
		if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/* Should be impossible but lets be paranoid for now */
		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
			err = -EFAULT;
			rcu_read_unlock();
			iput(inode);

			goto out;
		}

695
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
696
		key->shared.inode = inode;
697
		key->shared.pgoff = basepage_index(tail);
698
		rcu_read_unlock();
L
Linus Torvalds 已提交
699 700
	}

701
out:
702
	put_page(page);
703
	return err;
L
Linus Torvalds 已提交
704 705
}

706
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
707
{
708
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
709 710
}

711 712
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
713 714 715 716 717
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
718
 * We have no generic implementation of a non-destructive write to the
719 720 721 722 723 724
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
725 726 727 728
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
729
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
730
			       FAULT_FLAG_WRITE, NULL);
731 732
	up_read(&mm->mmap_sem);

733 734 735
	return ret < 0 ? ret : 0;
}

736 737
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
738 739
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

755 756
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
757
{
758
	int ret;
T
Thomas Gleixner 已提交
759 760

	pagefault_disable();
761
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
762 763
	pagefault_enable();

764
	return ret;
T
Thomas Gleixner 已提交
765 766 767
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
768 769 770
{
	int ret;

771
	pagefault_disable();
772
	ret = __get_user(*dest, from);
773
	pagefault_enable();
L
Linus Torvalds 已提交
774 775 776 777

	return ret ? -EFAULT : 0;
}

778 779 780 781 782 783 784 785 786 787 788

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

789
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
790 791 792 793 794 795 796 797

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
798
	pi_state->key = FUTEX_KEY_INIT;
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

815
/*
816 817 818
 * Drops a reference to the pi_state object and frees or caches it
 * when the last reference is gone.
 *
819 820
 * Must be called with the hb lock held.
 */
821
static void put_pi_state(struct futex_pi_state *pi_state)
822
{
823 824 825
	if (!pi_state)
		return;

826 827 828 829 830 831 832 833
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
834
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
835
		list_del_init(&pi_state->list);
836
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;

863
	rcu_read_lock();
864
	p = find_task_by_vpid(pid);
865 866
	if (p)
		get_task_struct(p);
867

868
	rcu_read_unlock();
869 870 871 872 873 874 875 876 877 878 879 880 881

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
882
	struct futex_hash_bucket *hb;
883
	union futex_key key = FUTEX_KEY_INIT;
884

885 886
	if (!futex_cmpxchg_enabled)
		return;
887 888 889
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
890
	 * versus waiters unqueueing themselves:
891
	 */
892
	raw_spin_lock_irq(&curr->pi_lock);
893 894 895 896 897
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
898
		hb = hash_futex(&key);
899
		raw_spin_unlock_irq(&curr->pi_lock);
900 901 902

		spin_lock(&hb->lock);

903
		raw_spin_lock_irq(&curr->pi_lock);
904 905 906 907
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
908 909 910 911 912 913
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
914 915
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
916
		pi_state->owner = NULL;
917
		raw_spin_unlock_irq(&curr->pi_lock);
918 919 920 921 922

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

923
		raw_spin_lock_irq(&curr->pi_lock);
924
	}
925
	raw_spin_unlock_irq(&curr->pi_lock);
926 927
}

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync.
 */
977 978 979 980 981 982 983 984

/*
 * Validate that the existing waiter has a pi_state and sanity check
 * the pi_state against the user space value. If correct, attach to
 * it.
 */
static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
			      struct futex_pi_state **ps)
985
{
986
	pid_t pid = uval & FUTEX_TID_MASK;
987

988 989 990 991 992
	/*
	 * Userspace might have messed up non-PI and PI futexes [3]
	 */
	if (unlikely(!pi_state))
		return -EINVAL;
993

994
	WARN_ON(!atomic_read(&pi_state->refcount));
995

996 997 998 999
	/*
	 * Handle the owner died case:
	 */
	if (uval & FUTEX_OWNER_DIED) {
1000
		/*
1001 1002 1003
		 * exit_pi_state_list sets owner to NULL and wakes the
		 * topmost waiter. The task which acquires the
		 * pi_state->rt_mutex will fixup owner.
1004
		 */
1005
		if (!pi_state->owner) {
1006
			/*
1007 1008
			 * No pi state owner, but the user space TID
			 * is not 0. Inconsistent state. [5]
1009
			 */
1010 1011
			if (pid)
				return -EINVAL;
1012
			/*
1013
			 * Take a ref on the state and return success. [4]
1014
			 */
1015
			goto out_state;
1016
		}
1017 1018

		/*
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
		 * If TID is 0, then either the dying owner has not
		 * yet executed exit_pi_state_list() or some waiter
		 * acquired the rtmutex in the pi state, but did not
		 * yet fixup the TID in user space.
		 *
		 * Take a ref on the state and return success. [6]
		 */
		if (!pid)
			goto out_state;
	} else {
		/*
		 * If the owner died bit is not set, then the pi_state
		 * must have an owner. [7]
1032
		 */
1033
		if (!pi_state->owner)
1034
			return -EINVAL;
1035 1036
	}

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	/*
	 * Bail out if user space manipulated the futex value. If pi
	 * state exists then the owner TID must be the same as the
	 * user space TID. [9/10]
	 */
	if (pid != task_pid_vnr(pi_state->owner))
		return -EINVAL;
out_state:
	atomic_inc(&pi_state->refcount);
	*ps = pi_state;
	return 0;
}

1050 1051 1052 1053 1054 1055
/*
 * Lookup the task for the TID provided from user space and attach to
 * it after doing proper sanity checks.
 */
static int attach_to_pi_owner(u32 uval, union futex_key *key,
			      struct futex_pi_state **ps)
1056 1057
{
	pid_t pid = uval & FUTEX_TID_MASK;
1058 1059
	struct futex_pi_state *pi_state;
	struct task_struct *p;
1060

1061
	/*
1062
	 * We are the first waiter - try to look up the real owner and attach
1063
	 * the new pi_state to it, but bail out when TID = 0 [1]
1064
	 */
1065
	if (!pid)
1066
		return -ESRCH;
1067
	p = futex_find_get_task(pid);
1068 1069
	if (!p)
		return -ESRCH;
1070

1071
	if (unlikely(p->flags & PF_KTHREAD)) {
1072 1073 1074 1075
		put_task_struct(p);
		return -EPERM;
	}

1076 1077 1078 1079 1080 1081
	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
1082
	raw_spin_lock_irq(&p->pi_lock);
1083 1084 1085 1086 1087 1088 1089 1090
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

1091
		raw_spin_unlock_irq(&p->pi_lock);
1092 1093 1094
		put_task_struct(p);
		return ret;
	}
1095

1096 1097 1098
	/*
	 * No existing pi state. First waiter. [2]
	 */
1099 1100 1101
	pi_state = alloc_pi_state();

	/*
1102
	 * Initialize the pi_mutex in locked state and make @p
1103 1104 1105 1106 1107
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
1108
	pi_state->key = *key;
1109

1110
	WARN_ON(!list_empty(&pi_state->list));
1111 1112
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
1113
	raw_spin_unlock_irq(&p->pi_lock);
1114 1115 1116

	put_task_struct(p);

P
Pierre Peiffer 已提交
1117
	*ps = pi_state;
1118 1119 1120 1121

	return 0;
}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
			   union futex_key *key, struct futex_pi_state **ps)
{
	struct futex_q *match = futex_top_waiter(hb, key);

	/*
	 * If there is a waiter on that futex, validate it and
	 * attach to the pi_state when the validation succeeds.
	 */
	if (match)
		return attach_to_pi_state(uval, match->pi_state, ps);

	/*
	 * We are the first waiter - try to look up the owner based on
	 * @uval and attach to it.
	 */
	return attach_to_pi_owner(uval, key, ps);
}

1141 1142 1143 1144
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 uninitialized_var(curval);

1145 1146 1147
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1148 1149 1150 1151 1152 1153 1154
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
		return -EFAULT;

	/*If user space value changed, let the caller retry */
	return curval != uval ? -EAGAIN : 0;
}

1155
/**
1156
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1157 1158 1159 1160 1161 1162 1163 1164
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1165
 *
1166 1167 1168
 * Return:
 *  0 - ready to wait;
 *  1 - acquired the lock;
1169 1170 1171 1172 1173 1174 1175
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
1176
				struct task_struct *task, int set_waiters)
1177
{
1178 1179 1180
	u32 uval, newval, vpid = task_pid_vnr(task);
	struct futex_q *match;
	int ret;
1181 1182

	/*
1183 1184
	 * Read the user space value first so we can validate a few
	 * things before proceeding further.
1185
	 */
1186
	if (get_futex_value_locked(&uval, uaddr))
1187 1188
		return -EFAULT;

1189 1190 1191
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1192 1193 1194
	/*
	 * Detect deadlocks.
	 */
1195
	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1196 1197
		return -EDEADLK;

1198 1199 1200
	if ((unlikely(should_fail_futex(true))))
		return -EDEADLK;

1201
	/*
1202 1203
	 * Lookup existing state first. If it exists, try to attach to
	 * its pi_state.
1204
	 */
1205 1206 1207
	match = futex_top_waiter(hb, key);
	if (match)
		return attach_to_pi_state(uval, match->pi_state, ps);
1208 1209

	/*
1210 1211 1212 1213
	 * No waiter and user TID is 0. We are here because the
	 * waiters or the owner died bit is set or called from
	 * requeue_cmp_pi or for whatever reason something took the
	 * syscall.
1214
	 */
1215
	if (!(uval & FUTEX_TID_MASK)) {
1216
		/*
1217 1218
		 * We take over the futex. No other waiters and the user space
		 * TID is 0. We preserve the owner died bit.
1219
		 */
1220 1221
		newval = uval & FUTEX_OWNER_DIED;
		newval |= vpid;
1222

1223 1224 1225 1226 1227 1228 1229 1230
		/* The futex requeue_pi code can enforce the waiters bit */
		if (set_waiters)
			newval |= FUTEX_WAITERS;

		ret = lock_pi_update_atomic(uaddr, uval, newval);
		/* If the take over worked, return 1 */
		return ret < 0 ? ret : 1;
	}
1231 1232

	/*
1233 1234 1235
	 * First waiter. Set the waiters bit before attaching ourself to
	 * the owner. If owner tries to unlock, it will be forced into
	 * the kernel and blocked on hb->lock.
1236
	 */
1237 1238 1239 1240
	newval = uval | FUTEX_WAITERS;
	ret = lock_pi_update_atomic(uaddr, uval, newval);
	if (ret)
		return ret;
1241
	/*
1242 1243 1244
	 * If the update of the user space value succeeded, we try to
	 * attach to the owner. If that fails, no harm done, we only
	 * set the FUTEX_WAITERS bit in the user space variable.
1245
	 */
1246
	return attach_to_pi_owner(uval, key, ps);
1247 1248
}

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

1259 1260
	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
	    || WARN_ON(plist_node_empty(&q->list)))
1261 1262 1263 1264
		return;

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
1265
	hb_waiters_dec(hb);
1266 1267
}

L
Linus Torvalds 已提交
1268 1269
/*
 * The hash bucket lock must be held when this is called.
1270 1271 1272
 * Afterwards, the futex_q must not be accessed. Callers
 * must ensure to later call wake_up_q() for the actual
 * wakeups to occur.
L
Linus Torvalds 已提交
1273
 */
1274
static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
L
Linus Torvalds 已提交
1275
{
T
Thomas Gleixner 已提交
1276 1277
	struct task_struct *p = q->task;

1278 1279 1280
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

L
Linus Torvalds 已提交
1281
	/*
1282 1283
	 * Queue the task for later wakeup for after we've released
	 * the hb->lock. wake_q_add() grabs reference to p.
L
Linus Torvalds 已提交
1284
	 */
1285
	wake_q_add(wake_q, p);
1286
	__unqueue_futex(q);
L
Linus Torvalds 已提交
1287
	/*
T
Thomas Gleixner 已提交
1288 1289 1290 1291
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
1292
	 */
1293
	smp_wmb();
L
Linus Torvalds 已提交
1294 1295 1296
	q->lock_ptr = NULL;
}

1297 1298
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
			 struct futex_hash_bucket *hb)
1299 1300 1301
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
1302
	u32 uninitialized_var(curval), newval;
1303
	DEFINE_WAKE_Q(wake_q);
1304
	bool deboost;
1305
	int ret = 0;
1306 1307 1308 1309

	if (!pi_state)
		return -EINVAL;

1310 1311 1312 1313 1314 1315 1316
	/*
	 * If current does not own the pi_state then the futex is
	 * inconsistent and user space fiddled with the futex value.
	 */
	if (pi_state->owner != current)
		return -EINVAL;

1317
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1318 1319 1320
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
1321 1322 1323
	 * It is possible that the next waiter (the one that brought
	 * this owner to the kernel) timed out and is no longer
	 * waiting on the lock.
1324 1325 1326 1327 1328
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
1329 1330 1331
	 * We pass it to the next owner. The WAITERS bit is always
	 * kept enabled while there is PI state around. We cleanup the
	 * owner died bit, because we are the owner.
1332
	 */
1333
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1334

1335 1336 1337
	if (unlikely(should_fail_futex(true)))
		ret = -EFAULT;

1338
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1339
		ret = -EFAULT;
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	} else if (curval != uval) {
		/*
		 * If a unconditional UNLOCK_PI operation (user space did not
		 * try the TID->0 transition) raced with a waiter setting the
		 * FUTEX_WAITERS flag between get_user() and locking the hash
		 * bucket lock, retry the operation.
		 */
		if ((FUTEX_TID_MASK & curval) == uval)
			ret = -EAGAIN;
		else
			ret = -EINVAL;
	}
1352
	if (ret) {
1353
		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1354
		return ret;
1355
	}
1356

1357
	raw_spin_lock(&pi_state->owner->pi_lock);
1358 1359
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1360
	raw_spin_unlock(&pi_state->owner->pi_lock);
1361

1362
	raw_spin_lock(&new_owner->pi_lock);
1363
	WARN_ON(!list_empty(&pi_state->list));
1364 1365
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1366
	raw_spin_unlock(&new_owner->pi_lock);
1367

1368
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

	deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);

	/*
	 * First unlock HB so the waiter does not spin on it once he got woken
	 * up. Second wake up the waiter before the priority is adjusted. If we
	 * deboost first (and lose our higher priority), then the task might get
	 * scheduled away before the wake up can take place.
	 */
	spin_unlock(&hb->lock);
	wake_up_q(&wake_q);
	if (deboost)
		rt_mutex_adjust_prio(current);
1382 1383 1384 1385

	return 0;
}

I
Ingo Molnar 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1402 1403 1404
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1405
	spin_unlock(&hb1->lock);
1406 1407
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1408 1409
}

L
Linus Torvalds 已提交
1410
/*
D
Darren Hart 已提交
1411
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1412
 */
1413 1414
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1415
{
1416
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1417
	struct futex_q *this, *next;
1418
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1419
	int ret;
1420
	DEFINE_WAKE_Q(wake_q);
L
Linus Torvalds 已提交
1421

1422 1423 1424
	if (!bitset)
		return -EINVAL;

1425
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
L
Linus Torvalds 已提交
1426 1427 1428
	if (unlikely(ret != 0))
		goto out;

1429
	hb = hash_futex(&key);
1430 1431 1432 1433 1434

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1435
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1436

J
Jason Low 已提交
1437
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1438
		if (match_futex (&this->key, &key)) {
1439
			if (this->pi_state || this->rt_waiter) {
1440 1441 1442
				ret = -EINVAL;
				break;
			}
1443 1444 1445 1446 1447

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

1448
			mark_wake_futex(&wake_q, this);
L
Linus Torvalds 已提交
1449 1450 1451 1452 1453
			if (++ret >= nr_wake)
				break;
		}
	}

1454
	spin_unlock(&hb->lock);
1455
	wake_up_q(&wake_q);
1456
out_put_key:
1457
	put_futex_key(&key);
1458
out:
L
Linus Torvalds 已提交
1459 1460 1461
	return ret;
}

1462 1463 1464 1465
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1466
static int
1467
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1468
	      int nr_wake, int nr_wake2, int op)
1469
{
1470
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1471
	struct futex_hash_bucket *hb1, *hb2;
1472
	struct futex_q *this, *next;
D
Darren Hart 已提交
1473
	int ret, op_ret;
1474
	DEFINE_WAKE_Q(wake_q);
1475

D
Darren Hart 已提交
1476
retry:
1477
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1478 1479
	if (unlikely(ret != 0))
		goto out;
1480
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1481
	if (unlikely(ret != 0))
1482
		goto out_put_key1;
1483

1484 1485
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1486

D
Darren Hart 已提交
1487
retry_private:
T
Thomas Gleixner 已提交
1488
	double_lock_hb(hb1, hb2);
1489
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1490 1491
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
1492
		double_unlock_hb(hb1, hb2);
1493

1494
#ifndef CONFIG_MMU
1495 1496 1497 1498
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
1499
		ret = op_ret;
1500
		goto out_put_keys;
1501 1502
#endif

1503 1504
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
1505
			goto out_put_keys;
1506 1507
		}

1508
		ret = fault_in_user_writeable(uaddr2);
1509
		if (ret)
1510
			goto out_put_keys;
1511

1512
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1513 1514
			goto retry_private;

1515 1516
		put_futex_key(&key2);
		put_futex_key(&key1);
D
Darren Hart 已提交
1517
		goto retry;
1518 1519
	}

J
Jason Low 已提交
1520
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1521
		if (match_futex (&this->key, &key1)) {
1522 1523 1524 1525
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1526
			mark_wake_futex(&wake_q, this);
1527 1528 1529 1530 1531 1532 1533
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1534
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1535
			if (match_futex (&this->key, &key2)) {
1536 1537 1538 1539
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1540
				mark_wake_futex(&wake_q, this);
1541 1542 1543 1544 1545 1546 1547
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1548
out_unlock:
D
Darren Hart 已提交
1549
	double_unlock_hb(hb1, hb2);
1550
	wake_up_q(&wake_q);
1551
out_put_keys:
1552
	put_futex_key(&key2);
1553
out_put_key1:
1554
	put_futex_key(&key1);
1555
out:
1556 1557 1558
	return ret;
}

D
Darren Hart 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
1577 1578
		hb_waiters_dec(hb1);
		hb_waiters_inc(hb2);
1579
		plist_add(&q->list, &hb2->chain);
D
Darren Hart 已提交
1580 1581 1582 1583 1584 1585
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1586 1587
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1588 1589 1590
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1591 1592 1593 1594 1595
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1596 1597 1598
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1599 1600
 */
static inline
1601 1602
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1603 1604 1605 1606
{
	get_futex_key_refs(key);
	q->key = *key;

1607
	__unqueue_futex(q);
1608 1609 1610 1611

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1612 1613
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1614
	wake_up_state(q->task, TASK_NORMAL);
1615 1616 1617 1618
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1619 1620 1621 1622 1623 1624 1625
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1626 1627
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1628 1629 1630
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1631
 *
1632 1633
 * Return:
 *  0 - failed to acquire the lock atomically;
1634
 * >0 - acquired the lock, return value is vpid of the top_waiter
1635 1636 1637 1638 1639 1640
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1641
				 struct futex_pi_state **ps, int set_waiters)
1642
{
1643
	struct futex_q *top_waiter = NULL;
1644
	u32 curval;
1645
	int ret, vpid;
1646 1647 1648 1649

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1650 1651 1652
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1653 1654 1655 1656 1657 1658 1659 1660
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1661 1662 1663 1664 1665 1666
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1667 1668 1669 1670
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1671
	/*
1672 1673 1674
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1675
	 */
1676
	vpid = task_pid_vnr(top_waiter->task);
1677 1678
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1679
	if (ret == 1) {
1680
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1681 1682
		return vpid;
	}
1683 1684 1685 1686 1687
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1688
 * @uaddr1:	source futex user address
1689
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1690 1691 1692 1693 1694
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1695
 *		pi futex (pi to pi requeue is not supported)
1696 1697 1698 1699
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1700 1701
 * Return:
 * >=0 - on success, the number of tasks requeued or woken;
1702
 *  <0 - on error
L
Linus Torvalds 已提交
1703
 */
1704 1705 1706
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1707
{
1708
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1709 1710
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1711
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1712
	struct futex_q *this, *next;
1713
	DEFINE_WAKE_Q(wake_q);
1714 1715

	if (requeue_pi) {
1716 1717 1718 1719 1720 1721 1722
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1742

1743
retry:
1744
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1745 1746
	if (unlikely(ret != 0))
		goto out;
1747 1748
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1749
	if (unlikely(ret != 0))
1750
		goto out_put_key1;
L
Linus Torvalds 已提交
1751

1752 1753 1754 1755 1756 1757 1758 1759 1760
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

1761 1762
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1763

D
Darren Hart 已提交
1764
retry_private:
1765
	hb_waiters_inc(hb2);
I
Ingo Molnar 已提交
1766
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1767

1768 1769
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1770

1771
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1772 1773

		if (unlikely(ret)) {
D
Darren Hart 已提交
1774
			double_unlock_hb(hb1, hb2);
1775
			hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1776

1777
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1778 1779
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1780

1781
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1782
				goto retry_private;
L
Linus Torvalds 已提交
1783

1784 1785
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
1786
			goto retry;
L
Linus Torvalds 已提交
1787
		}
1788
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1789 1790 1791 1792 1793
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1794
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1795 1796 1797 1798 1799 1800
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1801
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1802
						 &key2, &pi_state, nr_requeue);
1803 1804 1805 1806 1807

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
1808 1809
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
1810 1811
		 * If the lock was not taken, we have pi_state and an initial
		 * refcount on it. In case of an error we have nothing.
1812
		 */
1813
		if (ret > 0) {
1814
			WARN_ON(pi_state);
1815
			drop_count++;
1816
			task_count++;
1817
			/*
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
			 * If we acquired the lock, then the user space value
			 * of uaddr2 should be vpid. It cannot be changed by
			 * the top waiter as it is blocked on hb2 lock if it
			 * tries to do so. If something fiddled with it behind
			 * our back the pi state lookup might unearth it. So
			 * we rather use the known value than rereading and
			 * handing potential crap to lookup_pi_state.
			 *
			 * If that call succeeds then we have pi_state and an
			 * initial refcount on it.
1828
			 */
1829
			ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1830 1831 1832 1833
		}

		switch (ret) {
		case 0:
1834
			/* We hold a reference on the pi state. */
1835
			break;
1836 1837

			/* If the above failed, then pi_state is NULL */
1838 1839
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
1840
			hb_waiters_dec(hb2);
1841 1842
			put_futex_key(&key2);
			put_futex_key(&key1);
1843
			ret = fault_in_user_writeable(uaddr2);
1844 1845 1846 1847
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
1848 1849 1850 1851 1852 1853
			/*
			 * Two reasons for this:
			 * - Owner is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
			 */
1854
			double_unlock_hb(hb1, hb2);
1855
			hb_waiters_dec(hb2);
1856 1857
			put_futex_key(&key2);
			put_futex_key(&key1);
1858 1859 1860 1861 1862 1863 1864
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
1865
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1866 1867 1868 1869
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1870
			continue;
1871

1872 1873 1874
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
1875 1876 1877
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
1878 1879
		 */
		if ((requeue_pi && !this->rt_waiter) ||
1880 1881
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
1882 1883 1884
			ret = -EINVAL;
			break;
		}
1885 1886 1887 1888 1889 1890 1891

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
1892
			mark_wake_futex(&wake_q, this);
1893 1894
			continue;
		}
L
Linus Torvalds 已提交
1895

1896 1897 1898 1899 1900 1901
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1902 1903 1904 1905 1906
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
1907 1908 1909 1910 1911
			/*
			 * Prepare the waiter to take the rt_mutex. Take a
			 * refcount on the pi_state and store the pointer in
			 * the futex_q object of the waiter.
			 */
1912 1913 1914 1915
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
1916
							this->task);
1917
			if (ret == 1) {
1918 1919 1920 1921 1922 1923 1924 1925
				/*
				 * We got the lock. We do neither drop the
				 * refcount on pi_state nor clear
				 * this->pi_state because the waiter needs the
				 * pi_state for cleaning up the user space
				 * value. It will drop the refcount after
				 * doing so.
				 */
1926
				requeue_pi_wake_futex(this, &key2, hb2);
1927
				drop_count++;
1928 1929
				continue;
			} else if (ret) {
1930 1931 1932 1933 1934 1935 1936 1937
				/*
				 * rt_mutex_start_proxy_lock() detected a
				 * potential deadlock when we tried to queue
				 * that waiter. Drop the pi_state reference
				 * which we took above and remove the pointer
				 * to the state from the waiters futex_q
				 * object.
				 */
1938
				this->pi_state = NULL;
1939
				put_pi_state(pi_state);
1940 1941 1942 1943 1944
				/*
				 * We stop queueing more waiters and let user
				 * space deal with the mess.
				 */
				break;
1945
			}
L
Linus Torvalds 已提交
1946
		}
1947 1948
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1949 1950
	}

1951 1952 1953 1954 1955
	/*
	 * We took an extra initial reference to the pi_state either
	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
	 * need to drop it here again.
	 */
1956
	put_pi_state(pi_state);
1957 1958

out_unlock:
D
Darren Hart 已提交
1959
	double_unlock_hb(hb1, hb2);
1960
	wake_up_q(&wake_q);
1961
	hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1962

1963 1964 1965 1966 1967 1968
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1969
	while (--drop_count >= 0)
1970
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1971

1972
out_put_keys:
1973
	put_futex_key(&key2);
1974
out_put_key1:
1975
	put_futex_key(&key1);
1976
out:
1977
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1978 1979 1980
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1981
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1982
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
1983
{
1984
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1985

1986
	hb = hash_futex(&q->key);
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
	hb_waiters_inc(hb);

1998
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1999

2000
	spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2001
	return hb;
L
Linus Torvalds 已提交
2002 2003
}

2004
static inline void
J
Jason Low 已提交
2005
queue_unlock(struct futex_hash_bucket *hb)
2006
	__releases(&hb->lock)
2007 2008
{
	spin_unlock(&hb->lock);
2009
	hb_waiters_dec(hb);
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
E
Eric Sesterhenn 已提交
2024
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2025
	__releases(&hb->lock)
L
Linus Torvalds 已提交
2026
{
P
Pierre Peiffer 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
2041
	q->task = current;
2042
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
2043 2044
}

2045 2046 2047 2048 2049 2050 2051
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
2052 2053
 * Return:
 *   1 - if the futex_q was still queued (and we removed unqueued it);
2054
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
2055 2056 2057 2058
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
2059
	int ret = 0;
L
Linus Torvalds 已提交
2060 2061

	/* In the common case we don't take the spinlock, which is nice. */
2062
retry:
2063 2064 2065 2066 2067 2068
	/*
	 * q->lock_ptr can change between this read and the following spin_lock.
	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
	 * optimizing lock_ptr out of the logic below.
	 */
	lock_ptr = READ_ONCE(q->lock_ptr);
2069
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
2088
		__unqueue_futex(q);
2089 2090 2091

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
2092 2093 2094 2095
		spin_unlock(lock_ptr);
		ret = 1;
	}

2096
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
2097 2098 2099
	return ret;
}

2100 2101
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
2102 2103
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
2104
 */
P
Pierre Peiffer 已提交
2105
static void unqueue_me_pi(struct futex_q *q)
2106
	__releases(q->lock_ptr)
2107
{
2108
	__unqueue_futex(q);
2109 2110

	BUG_ON(!q->pi_state);
2111
	put_pi_state(q->pi_state);
2112 2113
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
2114
	spin_unlock(q->lock_ptr);
2115 2116
}

P
Pierre Peiffer 已提交
2117
/*
2118
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
2119
 *
2120 2121
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
2122
 */
2123
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2124
				struct task_struct *newowner)
P
Pierre Peiffer 已提交
2125
{
2126
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
2127
	struct futex_pi_state *pi_state = q->pi_state;
2128
	struct task_struct *oldowner = pi_state->owner;
2129
	u32 uval, uninitialized_var(curval), newval;
D
Darren Hart 已提交
2130
	int ret;
P
Pierre Peiffer 已提交
2131 2132

	/* Owner died? */
2133 2134 2135 2136 2137
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
2138 2139 2140 2141
	 * previous highest priority waiter or we are the highest priority
	 * waiter but failed to get the rtmutex the first time.
	 * We have to replace the newowner TID in the user space variable.
	 * This must be atomic as we have to preserve the owner died bit here.
2142
	 *
D
Darren Hart 已提交
2143 2144 2145
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

2160
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
2171
	if (pi_state->owner != NULL) {
2172
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
2173 2174
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
2175
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2176
	}
P
Pierre Peiffer 已提交
2177

2178
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
2179

2180
	raw_spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
2181
	WARN_ON(!list_empty(&pi_state->list));
2182
	list_add(&pi_state->list, &newowner->pi_state_list);
2183
	raw_spin_unlock_irq(&newowner->pi_lock);
2184
	return 0;
P
Pierre Peiffer 已提交
2185 2186

	/*
2187
	 * To handle the page fault we need to drop the hash bucket
2188 2189
	 * lock here. That gives the other task (either the highest priority
	 * waiter itself or the task which stole the rtmutex) the
2190 2191 2192 2193 2194
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
2195
	 */
2196 2197
handle_fault:
	spin_unlock(q->lock_ptr);
2198

2199
	ret = fault_in_user_writeable(uaddr);
2200

2201
	spin_lock(q->lock_ptr);
2202

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
2213 2214
}

N
Nick Piggin 已提交
2215
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
2216

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
2227 2228 2229
 * Return:
 *  1 - success, lock taken;
 *  0 - success, lock not taken;
2230 2231
 * <0 - on error (-EFAULT)
 */
2232
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
2243
			ret = fixup_pi_state_owner(uaddr, q, current);
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
2265
		 * rt_mutex. Too late.
2266
		 */
2267
		raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2268
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2269 2270
		if (!owner)
			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2271
		raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2272
		ret = fixup_pi_state_owner(uaddr, q, owner);
2273 2274 2275 2276 2277
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
2278
	 * the owner of the rt_mutex.
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

2290 2291 2292 2293 2294 2295 2296
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
2297
				struct hrtimer_sleeper *timeout)
2298
{
2299 2300
	/*
	 * The task state is guaranteed to be set before another task can
2301
	 * wake it. set_current_state() is implemented using smp_store_mb() and
2302 2303 2304
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
2305
	set_current_state(TASK_INTERRUPTIBLE);
2306
	queue_me(q, hb);
2307 2308

	/* Arm the timer */
2309
	if (timeout)
2310 2311 2312
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);

	/*
2313 2314
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
2315 2316 2317 2318 2319 2320 2321 2322
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
2323
			freezable_schedule();
2324 2325 2326 2327
	}
	__set_current_state(TASK_RUNNING);
}

2328 2329 2330 2331
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
2332
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2333 2334 2335 2336 2337 2338 2339 2340
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
2341 2342
 * Return:
 *  0 - uaddr contains val and hb has been locked;
2343
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2344
 */
2345
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2346
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
2347
{
2348 2349
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
2350 2351

	/*
D
Darren Hart 已提交
2352
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
2353 2354 2355 2356 2357 2358 2359
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
2360 2361
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
2362 2363
	 * cond(var) false, which would violate the guarantee.
	 *
2364 2365 2366 2367
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
2368
	 */
2369
retry:
2370
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2371
	if (unlikely(ret != 0))
2372
		return ret;
2373 2374 2375 2376

retry_private:
	*hb = queue_lock(q);

2377
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
2378

2379
	if (ret) {
J
Jason Low 已提交
2380
		queue_unlock(*hb);
L
Linus Torvalds 已提交
2381

2382
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
2383
		if (ret)
2384
			goto out;
L
Linus Torvalds 已提交
2385

2386
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2387 2388
			goto retry_private;

2389
		put_futex_key(&q->key);
D
Darren Hart 已提交
2390
		goto retry;
L
Linus Torvalds 已提交
2391
	}
2392

2393
	if (uval != val) {
J
Jason Low 已提交
2394
		queue_unlock(*hb);
2395
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2396
	}
L
Linus Torvalds 已提交
2397

2398 2399
out:
	if (ret)
2400
		put_futex_key(&q->key);
2401 2402 2403
	return ret;
}

2404 2405
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2406 2407 2408 2409
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2410
	struct futex_q q = futex_q_init;
2411 2412 2413 2414 2415 2416 2417 2418 2419
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

2420 2421 2422
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2423 2424 2425 2426 2427
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
2428
retry:
2429 2430 2431 2432
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2433
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2434 2435 2436
	if (ret)
		goto out;

2437
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2438
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2439 2440

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2441
	ret = 0;
2442
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2443
	if (!unqueue_me(&q))
2444
		goto out;
P
Peter Zijlstra 已提交
2445
	ret = -ETIMEDOUT;
2446
	if (to && !to->task)
2447
		goto out;
N
Nick Piggin 已提交
2448

2449
	/*
T
Thomas Gleixner 已提交
2450 2451
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2452
	 */
2453
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2454 2455
		goto retry;

P
Peter Zijlstra 已提交
2456
	ret = -ERESTARTSYS;
2457
	if (!abs_time)
2458
		goto out;
L
Linus Torvalds 已提交
2459

2460
	restart = &current->restart_block;
P
Peter Zijlstra 已提交
2461
	restart->fn = futex_wait_restart;
2462
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2463
	restart->futex.val = val;
T
Thomas Gleixner 已提交
2464
	restart->futex.time = *abs_time;
P
Peter Zijlstra 已提交
2465
	restart->futex.bitset = bitset;
2466
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2467

P
Peter Zijlstra 已提交
2468 2469
	ret = -ERESTART_RESTARTBLOCK;

2470
out:
2471 2472 2473 2474
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2475 2476 2477
	return ret;
}

N
Nick Piggin 已提交
2478 2479 2480

static long futex_wait_restart(struct restart_block *restart)
{
2481
	u32 __user *uaddr = restart->futex.uaddr;
2482
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2483

2484
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
T
Thomas Gleixner 已提交
2485
		t = restart->futex.time;
2486 2487
		tp = &t;
	}
N
Nick Piggin 已提交
2488
	restart->fn = do_no_restart_syscall;
2489 2490 2491

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2492 2493 2494
}


2495 2496 2497
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
2498 2499 2500 2501 2502
 * if there are waiters then it will block as a consequence of relying
 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
 * a 0 value of the futex too.).
 *
 * Also serves as futex trylock_pi()'ing, and due semantics.
2503
 */
2504
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2505
			 ktime_t *time, int trylock)
2506
{
2507
	struct hrtimer_sleeper timeout, *to = NULL;
2508
	struct futex_hash_bucket *hb;
2509
	struct futex_q q = futex_q_init;
2510
	int res, ret;
2511 2512 2513 2514

	if (refill_pi_state_cache())
		return -ENOMEM;

2515
	if (time) {
2516
		to = &timeout;
2517 2518
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
2519
		hrtimer_init_sleeper(to, current);
2520
		hrtimer_set_expires(&to->timer, *time);
2521 2522
	}

2523
retry:
2524
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2525
	if (unlikely(ret != 0))
2526
		goto out;
2527

D
Darren Hart 已提交
2528
retry_private:
E
Eric Sesterhenn 已提交
2529
	hb = queue_lock(&q);
2530

2531
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2532
	if (unlikely(ret)) {
2533 2534 2535 2536
		/*
		 * Atomic work succeeded and we got the lock,
		 * or failed. Either way, we do _not_ block.
		 */
2537
		switch (ret) {
2538 2539 2540 2541 2542 2543
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2544 2545
		case -EAGAIN:
			/*
2546 2547 2548 2549
			 * Two reasons for this:
			 * - Task is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
2550
			 */
J
Jason Low 已提交
2551
			queue_unlock(hb);
2552
			put_futex_key(&q.key);
2553 2554 2555
			cond_resched();
			goto retry;
		default:
2556
			goto out_unlock_put_key;
2557 2558 2559 2560 2561 2562
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
2563
	queue_me(&q, hb);
2564 2565 2566 2567 2568

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
2569 2570 2571
	if (!trylock) {
		ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
	} else {
2572 2573 2574 2575 2576
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

2577
	spin_lock(q.lock_ptr);
2578 2579 2580 2581
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2582
	res = fixup_owner(uaddr, &q, !ret);
2583 2584 2585 2586 2587 2588
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2589

2590
	/*
2591 2592
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2593 2594 2595 2596
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

2597 2598
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2599

2600
	goto out_put_key;
2601

2602
out_unlock_put_key:
J
Jason Low 已提交
2603
	queue_unlock(hb);
2604

2605
out_put_key:
2606
	put_futex_key(&q.key);
2607
out:
2608 2609
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
2610
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2611

2612
uaddr_faulted:
J
Jason Low 已提交
2613
	queue_unlock(hb);
2614

2615
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2616 2617
	if (ret)
		goto out_put_key;
2618

2619
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2620 2621
		goto retry_private;

2622
	put_futex_key(&q.key);
D
Darren Hart 已提交
2623
	goto retry;
2624 2625 2626 2627 2628 2629 2630
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2631
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2632
{
2633
	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2634
	union futex_key key = FUTEX_KEY_INIT;
2635 2636
	struct futex_hash_bucket *hb;
	struct futex_q *match;
D
Darren Hart 已提交
2637
	int ret;
2638 2639 2640 2641 2642 2643 2644

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2645
	if ((uval & FUTEX_TID_MASK) != vpid)
2646 2647
		return -EPERM;

2648
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2649 2650
	if (ret)
		return ret;
2651 2652 2653 2654 2655

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
2656 2657 2658
	 * Check waiters first. We do not trust user space values at
	 * all and we at least want to know if user space fiddled
	 * with the futex value instead of blindly unlocking.
2659
	 */
2660 2661
	match = futex_top_waiter(hb, &key);
	if (match) {
2662 2663 2664 2665 2666 2667 2668
		ret = wake_futex_pi(uaddr, uval, match, hb);
		/*
		 * In case of success wake_futex_pi dropped the hash
		 * bucket lock.
		 */
		if (!ret)
			goto out_putkey;
2669
		/*
2670 2671
		 * The atomic access to the futex value generated a
		 * pagefault, so retry the user-access and the wakeup:
2672 2673 2674
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
2675 2676 2677 2678 2679 2680 2681 2682 2683
		/*
		 * A unconditional UNLOCK_PI op raced against a waiter
		 * setting the FUTEX_WAITERS bit. Try again.
		 */
		if (ret == -EAGAIN) {
			spin_unlock(&hb->lock);
			put_futex_key(&key);
			goto retry;
		}
2684 2685 2686 2687
		/*
		 * wake_futex_pi has detected invalid state. Tell user
		 * space.
		 */
2688 2689
		goto out_unlock;
	}
2690

2691
	/*
2692 2693 2694 2695 2696
	 * We have no kernel internal state, i.e. no waiters in the
	 * kernel. Waiters which are about to queue themselves are stuck
	 * on hb->lock. So we can safely ignore them. We do neither
	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
	 * owner.
2697
	 */
2698
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2699
		goto pi_faulted;
2700

2701 2702 2703 2704 2705
	/*
	 * If uval has changed, let user space handle it.
	 */
	ret = (curval == uval) ? 0 : -EAGAIN;

2706 2707
out_unlock:
	spin_unlock(&hb->lock);
2708
out_putkey:
2709
	put_futex_key(&key);
2710 2711 2712
	return ret;

pi_faulted:
2713
	spin_unlock(&hb->lock);
2714
	put_futex_key(&key);
2715

2716
	ret = fault_in_user_writeable(uaddr);
2717
	if (!ret)
2718 2719
		goto retry;

L
Linus Torvalds 已提交
2720 2721 2722
	return ret;
}

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
2735 2736 2737
 * Return:
 *  0 = no early wakeup detected;
 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
2759
		plist_del(&q->list, &hb->chain);
2760
		hb_waiters_dec(hb);
2761

T
Thomas Gleixner 已提交
2762
		/* Handle spurious wakeups gracefully */
2763
		ret = -EWOULDBLOCK;
2764 2765
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2766
		else if (signal_pending(current))
2767
			ret = -ERESTARTNOINTR;
2768 2769 2770 2771 2772 2773
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2774
 * @uaddr:	the futex we initially wait on (non-pi)
2775
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2776
 *		the same type, no requeueing from private to shared, etc.
2777 2778
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2779
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2780 2781 2782
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2783 2784 2785 2786 2787
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
2788 2789
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2790
 * via the following--
2791
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2792 2793 2794
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2795
 *
2796
 * If 3, cleanup and return -ERESTARTNOINTR.
2797 2798 2799 2800 2801 2802 2803
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2804
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2805 2806 2807
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
2808 2809
 * Return:
 *  0 - On success;
2810 2811
 * <0 - On error
 */
2812
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2813
				 u32 val, ktime_t *abs_time, u32 bitset,
2814
				 u32 __user *uaddr2)
2815 2816 2817 2818 2819
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
2820 2821
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
2822 2823
	int res, ret;

2824 2825 2826
	if (uaddr == uaddr2)
		return -EINVAL;

2827 2828 2829 2830 2831
	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
2832 2833 2834
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
2845 2846
	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2847 2848
	rt_waiter.task = NULL;

2849
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2850 2851 2852
	if (unlikely(ret != 0))
		goto out;

2853 2854 2855 2856
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2857 2858 2859 2860
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
2861
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
2862 2863
	if (ret)
		goto out_key2;
2864

2865 2866 2867 2868 2869
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
2870
		queue_unlock(hb);
2871 2872 2873 2874
		ret = -EINVAL;
		goto out_put_keys;
	}

2875
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2876
	futex_wait_queue_me(hb, &q, to);
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
2888 2889 2890
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
2901
			ret = fixup_pi_state_owner(uaddr2, &q, current);
2902 2903 2904 2905
			/*
			 * Drop the reference to the pi state which
			 * the requeue_pi() code acquired for us.
			 */
2906
			put_pi_state(q.pi_state);
2907 2908 2909 2910 2911 2912 2913 2914
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
2915
		WARN_ON(!q.pi_state);
2916
		pi_mutex = &q.pi_state->pi_mutex;
2917
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2918 2919 2920 2921 2922 2923 2924
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
2925
		res = fixup_owner(uaddr2, &q, !ret);
2926 2927
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2928
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
2942
		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2943 2944 2945
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2946 2947 2948 2949 2950
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2951
		 */
2952
		ret = -EWOULDBLOCK;
2953 2954 2955
	}

out_put_keys:
2956
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
2957
out_key2:
2958
	put_futex_key(&key2);
2959 2960 2961 2962 2963 2964 2965 2966 2967

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2968 2969 2970 2971 2972 2973 2974
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2975
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2976 2977 2978 2979 2980 2981 2982 2983
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
2984 2985 2986
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
2987
 */
2988 2989
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2990
{
2991 2992
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
3005 3006 3007 3008
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3009
 */
3010 3011 3012
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
3013
{
A
Al Viro 已提交
3014
	struct robust_list_head __user *head;
3015
	unsigned long ret;
3016
	struct task_struct *p;
3017

3018 3019 3020
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

3021 3022 3023
	rcu_read_lock();

	ret = -ESRCH;
3024
	if (!pid)
3025
		p = current;
3026
	else {
3027
		p = find_task_by_vpid(pid);
3028 3029 3030 3031
		if (!p)
			goto err_unlock;
	}

3032
	ret = -EPERM;
3033
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3034 3035 3036 3037 3038
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

3039 3040 3041 3042 3043
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
3044
	rcu_read_unlock();
3045 3046 3047 3048 3049 3050 3051 3052

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
3053
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3054
{
3055
	u32 uval, uninitialized_var(nval), mval;
3056

3057 3058
retry:
	if (get_user(uval, uaddr))
3059 3060
		return -1;

3061
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
3072
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
		/*
		 * We are not holding a lock here, but we want to have
		 * the pagefault_disable/enable() protection because
		 * we want to handle the fault gracefully. If the
		 * access fails we try to fault in the futex with R/W
		 * verification via get_user_pages. get_user() above
		 * does not guarantee R/W access. If that fails we
		 * give up and leave the futex locked.
		 */
		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
		}
3087
		if (nval != uval)
3088
			goto retry;
3089

3090 3091 3092 3093
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
3094
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
3095
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3096 3097 3098 3099
	}
	return 0;
}

3100 3101 3102 3103
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
3104
				     struct robust_list __user * __user *head,
3105
				     unsigned int *pi)
3106 3107 3108
{
	unsigned long uentry;

A
Al Viro 已提交
3109
	if (get_user(uentry, (unsigned long __user *)head))
3110 3111
		return -EFAULT;

A
Al Viro 已提交
3112
	*entry = (void __user *)(uentry & ~1UL);
3113 3114 3115 3116 3117
	*pi = uentry & 1;

	return 0;
}

3118 3119 3120 3121 3122 3123 3124 3125 3126
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
3127
	struct robust_list __user *entry, *next_entry, *pending;
3128 3129
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
3130
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
3131
	int rc;
3132

3133 3134 3135
	if (!futex_cmpxchg_enabled)
		return;

3136 3137 3138 3139
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
3140
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
3151
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3152
		return;
3153

M
Martin Schwidefsky 已提交
3154
	next_entry = NULL;	/* avoid warning with gcc */
3155
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
3156 3157 3158 3159 3160
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3161 3162
		/*
		 * A pending lock might already be on the list, so
3163
		 * don't process it twice:
3164 3165
		 */
		if (entry != pending)
A
Al Viro 已提交
3166
			if (handle_futex_death((void __user *)entry + futex_offset,
3167
						curr, pi))
3168
				return;
M
Martin Schwidefsky 已提交
3169
		if (rc)
3170
			return;
M
Martin Schwidefsky 已提交
3171 3172
		entry = next_entry;
		pi = next_pi;
3173 3174 3175 3176 3177 3178 3179 3180
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
3181 3182 3183 3184

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
3185 3186
}

3187
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3188
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
3189
{
T
Thomas Gleixner 已提交
3190
	int cmd = op & FUTEX_CMD_MASK;
3191
	unsigned int flags = 0;
E
Eric Dumazet 已提交
3192 3193

	if (!(op & FUTEX_PRIVATE_FLAG))
3194
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
3195

3196 3197
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
3198 3199
		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
		    cmd != FUTEX_WAIT_REQUEUE_PI)
3200 3201
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
3202

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
3213
	switch (cmd) {
L
Linus Torvalds 已提交
3214
	case FUTEX_WAIT:
3215 3216
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
3217
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
3218
	case FUTEX_WAKE:
3219 3220
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
3221
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
3222
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
3223
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
3224
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
3225
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3226
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
3227
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3228
	case FUTEX_LOCK_PI:
3229
		return futex_lock_pi(uaddr, flags, timeout, 0);
3230
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
3231
		return futex_unlock_pi(uaddr, flags);
3232
	case FUTEX_TRYLOCK_PI:
3233
		return futex_lock_pi(uaddr, flags, NULL, 1);
3234 3235
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
3236 3237
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
3238
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
3239
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
3240
	}
T
Thomas Gleixner 已提交
3241
	return -ENOSYS;
L
Linus Torvalds 已提交
3242 3243 3244
}


3245 3246 3247
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
3248
{
3249 3250
	struct timespec ts;
	ktime_t t, *tp = NULL;
3251
	u32 val2 = 0;
E
Eric Dumazet 已提交
3252
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
3253

3254
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3255 3256
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3257 3258
		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
			return -EFAULT;
3259
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
3260
			return -EFAULT;
3261
		if (!timespec_valid(&ts))
3262
			return -EINVAL;
3263 3264

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
3265
		if (cmd == FUTEX_WAIT)
3266
			t = ktime_add_safe(ktime_get(), t);
3267
		tp = &t;
L
Linus Torvalds 已提交
3268 3269
	}
	/*
3270
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3271
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
3272
	 */
3273
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3274
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3275
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
3276

3277
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
3278 3279
}

3280
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
3281
{
3282
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3283
	u32 curval;
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
3302
	unsigned int futex_shift;
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
3314 3315 3316
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
3317 3318

	futex_detect_cmpxchg();
3319

3320
	for (i = 0; i < futex_hashsize; i++) {
3321
		atomic_set(&futex_queues[i].waiters, 0);
3322
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
3323 3324 3325
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
3326 3327
	return 0;
}
3328
core_initcall(futex_init);