futex.c 110.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
12 13 14 15
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
16 17 18 19
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
20 21 22
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
23 24 25 26
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
27 28 29 30 31 32 33
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 */
34
#include <linux/compat.h>
L
Linus Torvalds 已提交
35 36 37 38 39 40 41 42 43 44
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
45
#include <linux/signal.h>
46
#include <linux/export.h>
47
#include <linux/magic.h>
48 49
#include <linux/pid.h>
#include <linux/nsproxy.h>
50
#include <linux/ptrace.h>
51
#include <linux/sched/rt.h>
52
#include <linux/sched/wake_q.h>
53
#include <linux/sched/mm.h>
54
#include <linux/hugetlb.h>
C
Colin Cross 已提交
55
#include <linux/freezer.h>
M
Mike Rapoport 已提交
56
#include <linux/memblock.h>
57
#include <linux/fault-inject.h>
58
#include <linux/refcount.h>
59

60
#include <asm/futex.h>
L
Linus Torvalds 已提交
61

62
#include "locking/rtmutex_common.h"
63

64
/*
65 66 67 68
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
69 70 71 72
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
73 74 75
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
76 77
 *
 * The waker side modifies the user space value of the futex and calls
78 79 80
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
81
 *
82 83 84 85 86
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
108 109 110 111 112
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
113 114 115
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
116
 *
117
 *   waiters++; (a)
118 119 120 121 122 123 124 125 126 127
 *   smp_mb(); (A) <-- paired with -.
 *                                  |
 *   lock(hash_bucket(futex));      |
 *                                  |
 *   uval = *futex;                 |
 *                                  |        *futex = newval;
 *                                  |        sys_futex(WAKE, futex);
 *                                  |          futex_wake(futex);
 *                                  |
 *                                  `--------> smp_mb(); (B)
128
 *   if (uval == val)
129
 *     queue();
130
 *     unlock(hash_bucket(futex));
131 132
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
133 134
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
135
 *
136 137
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
138
 * to futex and the waiters read (see hb_waiters_pending()).
139 140 141 142 143 144 145 146 147 148 149 150
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
151 152 153 154 155 156 157 158 159 160 161
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
162 163
 */

164 165 166 167
#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
#define futex_cmpxchg_enabled 1
#else
static int  __read_mostly futex_cmpxchg_enabled;
168
#endif
169

170 171 172 173
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
174 175 176 177 178 179 180 181 182
#ifdef CONFIG_MMU
# define FLAGS_SHARED		0x01
#else
/*
 * NOMMU does not have per process address space. Let the compiler optimize
 * code away.
 */
# define FLAGS_SHARED		0x00
#endif
183 184 185
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
202
	refcount_t refcount;
203 204

	union futex_key key;
205
} __randomize_layout;
206

207 208
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
209
 * @list:		priority-sorted list of tasks waiting on this futex
210 211 212 213 214 215 216 217
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
218
 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
L
Linus Torvalds 已提交
219 220 221
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
222
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223
 * The order of wakeup is always to make the first condition true, then
224 225 226 227
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
228 229
 */
struct futex_q {
P
Pierre Peiffer 已提交
230
	struct plist_node list;
L
Linus Torvalds 已提交
231

232
	struct task_struct *task;
L
Linus Torvalds 已提交
233 234
	spinlock_t *lock_ptr;
	union futex_key key;
235
	struct futex_pi_state *pi_state;
236
	struct rt_mutex_waiter *rt_waiter;
237
	union futex_key *requeue_pi_key;
238
	u32 bitset;
239
} __randomize_layout;
L
Linus Torvalds 已提交
240

241 242 243 244 245 246
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
247
/*
D
Darren Hart 已提交
248 249 250
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
251 252
 */
struct futex_hash_bucket {
253
	atomic_t waiters;
P
Pierre Peiffer 已提交
254 255
	spinlock_t lock;
	struct plist_head chain;
256
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
257

258 259 260 261 262 263 264 265 266 267 268
/*
 * The base of the bucket array and its size are always used together
 * (after initialization only in hash_futex()), so ensure that they
 * reside in the same cacheline.
 */
static struct {
	struct futex_hash_bucket *queues;
	unsigned long            hashsize;
} __futex_data __read_mostly __aligned(2*sizeof(long));
#define futex_queues   (__futex_data.queues)
#define futex_hashsize (__futex_data.hashsize)
269

L
Linus Torvalds 已提交
270

271 272 273 274 275 276 277 278
/*
 * Fault injections for futexes.
 */
#ifdef CONFIG_FAIL_FUTEX

static struct {
	struct fault_attr attr;

279
	bool ignore_private;
280 281
} fail_futex = {
	.attr = FAULT_ATTR_INITIALIZER,
282
	.ignore_private = false,
283 284 285 286 287 288 289 290
};

static int __init setup_fail_futex(char *str)
{
	return setup_fault_attr(&fail_futex.attr, str);
}
__setup("fail_futex=", setup_fail_futex);

291
static bool should_fail_futex(bool fshared)
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
{
	if (fail_futex.ignore_private && !fshared)
		return false;

	return should_fail(&fail_futex.attr, 1);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_futex_debugfs(void)
{
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;

	dir = fault_create_debugfs_attr("fail_futex", NULL,
					&fail_futex.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);

311 312
	debugfs_create_bool("ignore-private", mode, dir,
			    &fail_futex.ignore_private);
313 314 315 316 317 318 319 320 321 322 323 324 325 326
	return 0;
}

late_initcall(fail_futex_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else
static inline bool should_fail_futex(bool fshared)
{
	return false;
}
#endif /* CONFIG_FAIL_FUTEX */

327 328 329 330 331 332
#ifdef CONFIG_COMPAT
static void compat_exit_robust_list(struct task_struct *curr);
#else
static inline void compat_exit_robust_list(struct task_struct *curr) { }
#endif

333 334 335 336
/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
337 338
{
#ifdef CONFIG_SMP
339
	atomic_inc(&hb->waiters);
340
	/*
341
	 * Full barrier (A), see the ordering comment above.
342
	 */
343
	smp_mb__after_atomic();
344 345 346 347 348 349 350 351 352 353 354 355 356
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}
357

358 359 360
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
361 362 363 364
	/*
	 * Full barrier (B), see the ordering comment above.
	 */
	smp_mb();
365
	return atomic_read(&hb->waiters);
366
#else
367
	return 1;
368 369 370
#endif
}

371 372 373 374 375 376
/**
 * hash_futex - Return the hash bucket in the global hash
 * @key:	Pointer to the futex key for which the hash is calculated
 *
 * We hash on the keys returned from get_futex_key (see below) and return the
 * corresponding hash bucket in the global hash.
L
Linus Torvalds 已提交
377 378 379
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
T
Thomas Gleixner 已提交
380
	u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
L
Linus Torvalds 已提交
381
			  key->both.offset);
T
Thomas Gleixner 已提交
382

383
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
384 385
}

386 387 388 389 390 391

/**
 * match_futex - Check whether two futex keys are equal
 * @key1:	Pointer to key1
 * @key2:	Pointer to key2
 *
L
Linus Torvalds 已提交
392 393 394 395
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
396 397
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
398 399 400 401
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

402 403 404 405 406
enum futex_access {
	FUTEX_READ,
	FUTEX_WRITE
};

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/**
 * futex_setup_timer - set up the sleeping hrtimer.
 * @time:	ptr to the given timeout value
 * @timeout:	the hrtimer_sleeper structure to be set up
 * @flags:	futex flags
 * @range_ns:	optional range in ns
 *
 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
 *	   value given
 */
static inline struct hrtimer_sleeper *
futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
		  int flags, u64 range_ns)
{
	if (!time)
		return NULL;

424 425 426
	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
427 428 429 430 431 432 433 434 435
	/*
	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
	 * effectively the same as calling hrtimer_set_expires().
	 */
	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);

	return timeout;
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
/*
 * Generate a machine wide unique identifier for this inode.
 *
 * This relies on u64 not wrapping in the life-time of the machine; which with
 * 1ns resolution means almost 585 years.
 *
 * This further relies on the fact that a well formed program will not unmap
 * the file while it has a (shared) futex waiting on it. This mapping will have
 * a file reference which pins the mount and inode.
 *
 * If for some reason an inode gets evicted and read back in again, it will get
 * a new sequence number and will _NOT_ match, even though it is the exact same
 * file.
 *
 * It is important that match_futex() will never have a false-positive, esp.
 * for PI futexes that can mess up the state. The above argues that false-negatives
 * are only possible for malformed programs.
 */
static u64 get_inode_sequence_number(struct inode *inode)
{
	static atomic64_t i_seq;
	u64 old;

	/* Does the inode already have a sequence number? */
	old = atomic64_read(&inode->i_sequence);
	if (likely(old))
		return old;

	for (;;) {
		u64 new = atomic64_add_return(1, &i_seq);
		if (WARN_ON_ONCE(!new))
			continue;

		old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
		if (old)
			return old;
		return new;
	}
}

E
Eric Dumazet 已提交
476
/**
477 478 479 480
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
481 482
 * @rw:		mapping needs to be read/write (values: FUTEX_READ,
 *              FUTEX_WRITE)
E
Eric Dumazet 已提交
483
 *
484 485
 * Return: a negative error code or 0
 *
486
 * The key words are stored in @key on success.
L
Linus Torvalds 已提交
487
 *
488
 * For shared mappings (when @fshared), the key is:
489
 *
490
 *   ( inode->i_sequence, page->index, offset_within_page )
491
 *
492 493 494
 * [ also see get_inode_sequence_number() ]
 *
 * For private mappings (or when !@fshared), the key is:
495
 *
496 497 498 499
 *   ( current->mm, address, 0 )
 *
 * This allows (cross process, where applicable) identification of the futex
 * without keeping the page pinned for the duration of the FUTEX_WAIT.
L
Linus Torvalds 已提交
500
 *
D
Darren Hart 已提交
501
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
502
 */
503
static int
504
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
L
Linus Torvalds 已提交
505
{
506
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
507
	struct mm_struct *mm = current->mm;
508
	struct page *page, *tail;
509
	struct address_space *mapping;
510
	int err, ro = 0;
L
Linus Torvalds 已提交
511 512 513 514

	/*
	 * The futex address must be "naturally" aligned.
	 */
515
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
516
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
517
		return -EINVAL;
518
	address -= key->both.offset;
L
Linus Torvalds 已提交
519

520
	if (unlikely(!access_ok(uaddr, sizeof(u32))))
521 522
		return -EFAULT;

523 524 525
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

E
Eric Dumazet 已提交
526 527 528 529 530 531 532 533 534 535 536 537
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
		return 0;
	}
L
Linus Torvalds 已提交
538

539
again:
540 541 542 543
	/* Ignore any VERIFY_READ mapping (futex common case) */
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

544
	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
545 546 547 548
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
549
	if (err == -EFAULT && rw == FUTEX_READ) {
550 551 552
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
553 554
	if (err < 0)
		return err;
555 556
	else
		err = 0;
557

558 559 560 561 562 563 564 565 566 567
	/*
	 * The treatment of mapping from this point on is critical. The page
	 * lock protects many things but in this context the page lock
	 * stabilizes mapping, prevents inode freeing in the shared
	 * file-backed region case and guards against movement to swap cache.
	 *
	 * Strictly speaking the page lock is not needed in all cases being
	 * considered here and page lock forces unnecessarily serialization
	 * From this point on, mapping will be re-verified if necessary and
	 * page lock will be acquired only if it is unavoidable
568 569 570 571 572 573 574
	 *
	 * Mapping checks require the head page for any compound page so the
	 * head page and mapping is looked up now. For anonymous pages, it
	 * does not matter if the page splits in the future as the key is
	 * based on the address. For filesystem-backed pages, the tail is
	 * required as the index of the page determines the key. For
	 * base pages, there is no tail page and tail == page.
575
	 */
576
	tail = page;
577 578 579
	page = compound_head(page);
	mapping = READ_ONCE(page->mapping);

580
	/*
581
	 * If page->mapping is NULL, then it cannot be a PageAnon
582 583 584 585 586 587 588 589 590 591 592
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
593
	 * an unlikely race, but we do need to retry for page->mapping.
594
	 */
595 596 597 598 599 600 601 602 603 604
	if (unlikely(!mapping)) {
		int shmem_swizzled;

		/*
		 * Page lock is required to identify which special case above
		 * applies. If this is really a shmem page then the page lock
		 * will prevent unexpected transitions.
		 */
		lock_page(page);
		shmem_swizzled = PageSwapCache(page) || page->mapping;
605 606
		unlock_page(page);
		put_page(page);
607

608 609
		if (shmem_swizzled)
			goto again;
610

611
		return -EFAULT;
612
	}
L
Linus Torvalds 已提交
613 614 615 616

	/*
	 * Private mappings are handled in a simple way.
	 *
617 618 619
	 * If the futex key is stored on an anonymous page, then the associated
	 * object is the mm which is implicitly pinned by the calling process.
	 *
L
Linus Torvalds 已提交
620 621
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
622
	 * the object not the particular process.
L
Linus Torvalds 已提交
623
	 */
624
	if (PageAnon(page)) {
625 626 627 628
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
629
		if (unlikely(should_fail_futex(fshared)) || ro) {
630 631 632 633
			err = -EFAULT;
			goto out;
		}

634
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
635
		key->private.mm = mm;
636
		key->private.address = address;
637

638
	} else {
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
		struct inode *inode;

		/*
		 * The associated futex object in this case is the inode and
		 * the page->mapping must be traversed. Ordinarily this should
		 * be stabilised under page lock but it's not strictly
		 * necessary in this case as we just want to pin the inode, not
		 * update the radix tree or anything like that.
		 *
		 * The RCU read lock is taken as the inode is finally freed
		 * under RCU. If the mapping still matches expectations then the
		 * mapping->host can be safely accessed as being a valid inode.
		 */
		rcu_read_lock();

		if (READ_ONCE(page->mapping) != mapping) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		inode = READ_ONCE(mapping->host);
		if (!inode) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

669
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
670
		key->shared.i_seq = get_inode_sequence_number(inode);
671
		key->shared.pgoff = basepage_index(tail);
672
		rcu_read_unlock();
L
Linus Torvalds 已提交
673 674
	}

675
out:
676
	put_page(page);
677
	return err;
L
Linus Torvalds 已提交
678 679
}

680
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
681 682 683
{
}

684 685
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
686 687 688 689 690
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
691
 * We have no generic implementation of a non-destructive write to the
692 693 694 695 696 697
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
698 699 700 701
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
702
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
703
			       FAULT_FLAG_WRITE, NULL);
704 705
	up_read(&mm->mmap_sem);

706 707 708
	return ret < 0 ? ret : 0;
}

709 710
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
711 712
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

728 729
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
730
{
731
	int ret;
T
Thomas Gleixner 已提交
732 733

	pagefault_disable();
734
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
735 736
	pagefault_enable();

737
	return ret;
T
Thomas Gleixner 已提交
738 739 740
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
741 742 743
{
	int ret;

744
	pagefault_disable();
745
	ret = __get_user(*dest, from);
746
	pagefault_enable();
L
Linus Torvalds 已提交
747 748 749 750

	return ret ? -EFAULT : 0;
}

751 752 753 754 755 756 757 758 759 760 761

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

762
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
763 764 765 766 767 768 769

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
770
	refcount_set(&pi_state->refcount, 1);
771
	pi_state->key = FUTEX_KEY_INIT;
772 773 774 775 776 777

	current->pi_state_cache = pi_state;

	return 0;
}

P
Peter Zijlstra 已提交
778
static struct futex_pi_state *alloc_pi_state(void)
779 780 781 782 783 784 785 786 787
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

P
Peter Zijlstra 已提交
788 789
static void get_pi_state(struct futex_pi_state *pi_state)
{
790
	WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
P
Peter Zijlstra 已提交
791 792
}

793
/*
794 795
 * Drops a reference to the pi_state object and frees or caches it
 * when the last reference is gone.
796
 */
797
static void put_pi_state(struct futex_pi_state *pi_state)
798
{
799 800 801
	if (!pi_state)
		return;

802
	if (!refcount_dec_and_test(&pi_state->refcount))
803 804 805 806 807 808 809
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
810
		struct task_struct *owner;
811

812 813 814 815 816 817 818 819 820
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
		owner = pi_state->owner;
		if (owner) {
			raw_spin_lock(&owner->pi_lock);
			list_del_init(&pi_state->list);
			raw_spin_unlock(&owner->pi_lock);
		}
		rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
821 822
	}

823
	if (current->pi_state_cache) {
824
		kfree(pi_state);
825
	} else {
826 827 828 829 830 831
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
832
		refcount_set(&pi_state->refcount, 1);
833 834 835 836
		current->pi_state_cache = pi_state;
	}
}

837 838
#ifdef CONFIG_FUTEX_PI

839 840 841 842 843
/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
844
static void exit_pi_state_list(struct task_struct *curr)
845 846 847
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
848
	struct futex_hash_bucket *hb;
849
	union futex_key key = FUTEX_KEY_INIT;
850

851 852
	if (!futex_cmpxchg_enabled)
		return;
853 854 855
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
856
	 * versus waiters unqueueing themselves:
857
	 */
858
	raw_spin_lock_irq(&curr->pi_lock);
859 860 861 862
	while (!list_empty(head)) {
		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
863
		hb = hash_futex(&key);
864 865 866 867 868 869 870 871 872 873 874

		/*
		 * We can race against put_pi_state() removing itself from the
		 * list (a waiter going away). put_pi_state() will first
		 * decrement the reference count and then modify the list, so
		 * its possible to see the list entry but fail this reference
		 * acquire.
		 *
		 * In that case; drop the locks to let put_pi_state() make
		 * progress and retry the loop.
		 */
875
		if (!refcount_inc_not_zero(&pi_state->refcount)) {
876 877 878 879 880
			raw_spin_unlock_irq(&curr->pi_lock);
			cpu_relax();
			raw_spin_lock_irq(&curr->pi_lock);
			continue;
		}
881
		raw_spin_unlock_irq(&curr->pi_lock);
882 883

		spin_lock(&hb->lock);
884 885
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
		raw_spin_lock(&curr->pi_lock);
886 887 888 889
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
890
		if (head->next != next) {
891
			/* retain curr->pi_lock for the loop invariant */
892
			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
893
			spin_unlock(&hb->lock);
894
			put_pi_state(pi_state);
895 896 897 898
			continue;
		}

		WARN_ON(pi_state->owner != curr);
899 900
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
901 902
		pi_state->owner = NULL;

903
		raw_spin_unlock(&curr->pi_lock);
904
		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
905 906
		spin_unlock(&hb->lock);

907 908 909
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);

910
		raw_spin_lock_irq(&curr->pi_lock);
911
	}
912
	raw_spin_unlock_irq(&curr->pi_lock);
913
}
914 915
#else
static inline void exit_pi_state_list(struct task_struct *curr) { }
916 917
#endif

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync.
P
Peter Zijlstra 已提交
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
 *
 *
 * Serialization and lifetime rules:
 *
 * hb->lock:
 *
 *	hb -> futex_q, relation
 *	futex_q -> pi_state, relation
 *
 *	(cannot be raw because hb can contain arbitrary amount
 *	 of futex_q's)
 *
 * pi_mutex->wait_lock:
 *
 *	{uval, pi_state}
 *
 *	(and pi_mutex 'obviously')
 *
 * p->pi_lock:
 *
 *	p->pi_state_list -> pi_state->list, relation
 *
 * pi_state->refcount:
 *
 *	pi_state lifetime
 *
 *
 * Lock order:
 *
 *   hb->lock
 *     pi_mutex->wait_lock
 *       p->pi_lock
 *
999
 */
1000 1001 1002 1003 1004 1005

/*
 * Validate that the existing waiter has a pi_state and sanity check
 * the pi_state against the user space value. If correct, attach to
 * it.
 */
P
Peter Zijlstra 已提交
1006 1007
static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
			      struct futex_pi_state *pi_state,
1008
			      struct futex_pi_state **ps)
1009
{
1010
	pid_t pid = uval & FUTEX_TID_MASK;
1011 1012
	u32 uval2;
	int ret;
1013

1014 1015 1016 1017 1018
	/*
	 * Userspace might have messed up non-PI and PI futexes [3]
	 */
	if (unlikely(!pi_state))
		return -EINVAL;
1019

P
Peter Zijlstra 已提交
1020 1021 1022 1023 1024 1025
	/*
	 * We get here with hb->lock held, and having found a
	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
	 * which in turn means that futex_lock_pi() still has a reference on
	 * our pi_state.
1026 1027 1028 1029 1030
	 *
	 * The waiter holding a reference on @pi_state also protects against
	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
	 * free pi_state before we can take a reference ourselves.
P
Peter Zijlstra 已提交
1031
	 */
1032
	WARN_ON(!refcount_read(&pi_state->refcount));
1033

P
Peter Zijlstra 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	/*
	 * Now that we have a pi_state, we can acquire wait_lock
	 * and do the state validation.
	 */
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	/*
	 * Since {uval, pi_state} is serialized by wait_lock, and our current
	 * uval was read without holding it, it can have changed. Verify it
	 * still is what we expect it to be, otherwise retry the entire
	 * operation.
	 */
	if (get_futex_value_locked(&uval2, uaddr))
		goto out_efault;

	if (uval != uval2)
		goto out_eagain;

1052 1053 1054 1055
	/*
	 * Handle the owner died case:
	 */
	if (uval & FUTEX_OWNER_DIED) {
1056
		/*
1057 1058 1059
		 * exit_pi_state_list sets owner to NULL and wakes the
		 * topmost waiter. The task which acquires the
		 * pi_state->rt_mutex will fixup owner.
1060
		 */
1061
		if (!pi_state->owner) {
1062
			/*
1063 1064
			 * No pi state owner, but the user space TID
			 * is not 0. Inconsistent state. [5]
1065
			 */
1066
			if (pid)
P
Peter Zijlstra 已提交
1067
				goto out_einval;
1068
			/*
1069
			 * Take a ref on the state and return success. [4]
1070
			 */
P
Peter Zijlstra 已提交
1071
			goto out_attach;
1072
		}
1073 1074

		/*
1075 1076 1077 1078 1079 1080 1081 1082
		 * If TID is 0, then either the dying owner has not
		 * yet executed exit_pi_state_list() or some waiter
		 * acquired the rtmutex in the pi state, but did not
		 * yet fixup the TID in user space.
		 *
		 * Take a ref on the state and return success. [6]
		 */
		if (!pid)
P
Peter Zijlstra 已提交
1083
			goto out_attach;
1084 1085 1086 1087
	} else {
		/*
		 * If the owner died bit is not set, then the pi_state
		 * must have an owner. [7]
1088
		 */
1089
		if (!pi_state->owner)
P
Peter Zijlstra 已提交
1090
			goto out_einval;
1091 1092
	}

1093 1094 1095 1096 1097 1098
	/*
	 * Bail out if user space manipulated the futex value. If pi
	 * state exists then the owner TID must be the same as the
	 * user space TID. [9/10]
	 */
	if (pid != task_pid_vnr(pi_state->owner))
P
Peter Zijlstra 已提交
1099 1100 1101
		goto out_einval;

out_attach:
P
Peter Zijlstra 已提交
1102
	get_pi_state(pi_state);
P
Peter Zijlstra 已提交
1103
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1104 1105
	*ps = pi_state;
	return 0;
P
Peter Zijlstra 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

out_einval:
	ret = -EINVAL;
	goto out_error;

out_eagain:
	ret = -EAGAIN;
	goto out_error;

out_efault:
	ret = -EFAULT;
	goto out_error;

out_error:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
1122 1123
}

T
Thomas Gleixner 已提交
1124 1125
/**
 * wait_for_owner_exiting - Block until the owner has exited
1126
 * @ret: owner's current futex lock status
T
Thomas Gleixner 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
 * @exiting:	Pointer to the exiting task
 *
 * Caller must hold a refcount on @exiting.
 */
static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
{
	if (ret != -EBUSY) {
		WARN_ON_ONCE(exiting);
		return;
	}

	if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
		return;

	mutex_lock(&exiting->futex_exit_mutex);
	/*
	 * No point in doing state checking here. If the waiter got here
	 * while the task was in exec()->exec_futex_release() then it can
	 * have any FUTEX_STATE_* value when the waiter has acquired the
	 * mutex. OK, if running, EXITING or DEAD if it reached exit()
	 * already. Highly unlikely and not a problem. Just one more round
	 * through the futex maze.
	 */
	mutex_unlock(&exiting->futex_exit_mutex);

	put_task_struct(exiting);
}

T
Thomas Gleixner 已提交
1155 1156 1157 1158 1159 1160
static int handle_exit_race(u32 __user *uaddr, u32 uval,
			    struct task_struct *tsk)
{
	u32 uval2;

	/*
1161 1162
	 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
	 * caller that the alleged owner is busy.
T
Thomas Gleixner 已提交
1163
	 */
1164
	if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1165
		return -EBUSY;
T
Thomas Gleixner 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	/*
	 * Reread the user space value to handle the following situation:
	 *
	 * CPU0				CPU1
	 *
	 * sys_exit()			sys_futex()
	 *  do_exit()			 futex_lock_pi()
	 *                                futex_lock_pi_atomic()
	 *   exit_signals(tsk)		    No waiters:
	 *    tsk->flags |= PF_EXITING;	    *uaddr == 0x00000PID
	 *  mm_release(tsk)		    Set waiter bit
	 *   exit_robust_list(tsk) {	    *uaddr = 0x80000PID;
	 *      Set owner died		    attach_to_pi_owner() {
	 *    *uaddr = 0xC0000000;	     tsk = get_task(PID);
	 *   }				     if (!tsk->flags & PF_EXITING) {
	 *  ...				       attach();
1183 1184 1185
	 *  tsk->futex_state =               } else {
	 *	FUTEX_STATE_DEAD;              if (tsk->futex_state !=
	 *					  FUTEX_STATE_DEAD)
T
Thomas Gleixner 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	 *				         return -EAGAIN;
	 *				       return -ESRCH; <--- FAIL
	 *				     }
	 *
	 * Returning ESRCH unconditionally is wrong here because the
	 * user space value has been changed by the exiting task.
	 *
	 * The same logic applies to the case where the exiting task is
	 * already gone.
	 */
	if (get_futex_value_locked(&uval2, uaddr))
		return -EFAULT;

	/* If the user space value has changed, try again. */
	if (uval2 != uval)
		return -EAGAIN;

	/*
	 * The exiting task did not have a robust list, the robust list was
	 * corrupted or the user space value in *uaddr is simply bogus.
	 * Give up and tell user space.
	 */
	return -ESRCH;
}

1211 1212 1213 1214
/*
 * Lookup the task for the TID provided from user space and attach to
 * it after doing proper sanity checks.
 */
T
Thomas Gleixner 已提交
1215
static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
T
Thomas Gleixner 已提交
1216 1217
			      struct futex_pi_state **ps,
			      struct task_struct **exiting)
1218 1219
{
	pid_t pid = uval & FUTEX_TID_MASK;
1220 1221
	struct futex_pi_state *pi_state;
	struct task_struct *p;
1222

1223
	/*
1224
	 * We are the first waiter - try to look up the real owner and attach
1225
	 * the new pi_state to it, but bail out when TID = 0 [1]
T
Thomas Gleixner 已提交
1226 1227 1228
	 *
	 * The !pid check is paranoid. None of the call sites should end up
	 * with pid == 0, but better safe than sorry. Let the caller retry
1229
	 */
1230
	if (!pid)
T
Thomas Gleixner 已提交
1231
		return -EAGAIN;
1232
	p = find_get_task_by_vpid(pid);
1233
	if (!p)
T
Thomas Gleixner 已提交
1234
		return handle_exit_race(uaddr, uval, NULL);
1235

1236
	if (unlikely(p->flags & PF_KTHREAD)) {
1237 1238 1239 1240
		put_task_struct(p);
		return -EPERM;
	}

1241
	/*
1242 1243 1244
	 * We need to look at the task state to figure out, whether the
	 * task is exiting. To protect against the change of the task state
	 * in futex_exit_release(), we do this protected by p->pi_lock:
1245
	 */
1246
	raw_spin_lock_irq(&p->pi_lock);
1247
	if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1248
		/*
1249 1250 1251
		 * The task is on the way out. When the futex state is
		 * FUTEX_STATE_DEAD, we know that the task has finished
		 * the cleanup:
1252
		 */
T
Thomas Gleixner 已提交
1253
		int ret = handle_exit_race(uaddr, uval, p);
1254

1255
		raw_spin_unlock_irq(&p->pi_lock);
T
Thomas Gleixner 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		/*
		 * If the owner task is between FUTEX_STATE_EXITING and
		 * FUTEX_STATE_DEAD then store the task pointer and keep
		 * the reference on the task struct. The calling code will
		 * drop all locks, wait for the task to reach
		 * FUTEX_STATE_DEAD and then drop the refcount. This is
		 * required to prevent a live lock when the current task
		 * preempted the exiting task between the two states.
		 */
		if (ret == -EBUSY)
			*exiting = p;
		else
			put_task_struct(p);
1269 1270
		return ret;
	}
1271

1272 1273
	/*
	 * No existing pi state. First waiter. [2]
P
Peter Zijlstra 已提交
1274 1275 1276
	 *
	 * This creates pi_state, we have hb->lock held, this means nothing can
	 * observe this state, wait_lock is irrelevant.
1277
	 */
1278 1279 1280
	pi_state = alloc_pi_state();

	/*
1281
	 * Initialize the pi_mutex in locked state and make @p
1282 1283 1284 1285 1286
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
1287
	pi_state->key = *key;
1288

1289
	WARN_ON(!list_empty(&pi_state->list));
1290
	list_add(&pi_state->list, &p->pi_state_list);
1291 1292 1293 1294
	/*
	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
	 * because there is no concurrency as the object is not published yet.
	 */
1295
	pi_state->owner = p;
1296
	raw_spin_unlock_irq(&p->pi_lock);
1297 1298 1299

	put_task_struct(p);

P
Pierre Peiffer 已提交
1300
	*ps = pi_state;
1301 1302 1303 1304

	return 0;
}

P
Peter Zijlstra 已提交
1305 1306
static int lookup_pi_state(u32 __user *uaddr, u32 uval,
			   struct futex_hash_bucket *hb,
T
Thomas Gleixner 已提交
1307 1308
			   union futex_key *key, struct futex_pi_state **ps,
			   struct task_struct **exiting)
1309
{
1310
	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1311 1312 1313 1314 1315

	/*
	 * If there is a waiter on that futex, validate it and
	 * attach to the pi_state when the validation succeeds.
	 */
1316
	if (top_waiter)
P
Peter Zijlstra 已提交
1317
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1318 1319 1320 1321 1322

	/*
	 * We are the first waiter - try to look up the owner based on
	 * @uval and attach to it.
	 */
T
Thomas Gleixner 已提交
1323
	return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1324 1325
}

1326 1327
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
1328
	int err;
1329 1330
	u32 uninitialized_var(curval);

1331 1332 1333
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1334 1335 1336
	err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
	if (unlikely(err))
		return err;
1337

P
Peter Zijlstra 已提交
1338
	/* If user space value changed, let the caller retry */
1339 1340 1341
	return curval != uval ? -EAGAIN : 0;
}

1342
/**
1343
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1344 1345 1346 1347 1348 1349 1350
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
T
Thomas Gleixner 已提交
1351 1352
 * @exiting:		Pointer to store the task pointer of the owner task
 *			which is in the middle of exiting
1353
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1354
 *
1355
 * Return:
1356 1357 1358
 *  -  0 - ready to wait;
 *  -  1 - acquired the lock;
 *  - <0 - error
1359 1360
 *
 * The hb->lock and futex_key refs shall be held by the caller.
T
Thomas Gleixner 已提交
1361 1362 1363 1364
 *
 * @exiting is only set when the return value is -EBUSY. If so, this holds
 * a refcount on the exiting task on return and the caller needs to drop it
 * after waiting for the exit to complete.
1365 1366 1367 1368
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
T
Thomas Gleixner 已提交
1369 1370 1371
				struct task_struct *task,
				struct task_struct **exiting,
				int set_waiters)
1372
{
1373
	u32 uval, newval, vpid = task_pid_vnr(task);
1374
	struct futex_q *top_waiter;
1375
	int ret;
1376 1377

	/*
1378 1379
	 * Read the user space value first so we can validate a few
	 * things before proceeding further.
1380
	 */
1381
	if (get_futex_value_locked(&uval, uaddr))
1382 1383
		return -EFAULT;

1384 1385 1386
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1387 1388 1389
	/*
	 * Detect deadlocks.
	 */
1390
	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1391 1392
		return -EDEADLK;

1393 1394 1395
	if ((unlikely(should_fail_futex(true))))
		return -EDEADLK;

1396
	/*
1397 1398
	 * Lookup existing state first. If it exists, try to attach to
	 * its pi_state.
1399
	 */
1400 1401
	top_waiter = futex_top_waiter(hb, key);
	if (top_waiter)
P
Peter Zijlstra 已提交
1402
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1403 1404

	/*
1405 1406 1407 1408
	 * No waiter and user TID is 0. We are here because the
	 * waiters or the owner died bit is set or called from
	 * requeue_cmp_pi or for whatever reason something took the
	 * syscall.
1409
	 */
1410
	if (!(uval & FUTEX_TID_MASK)) {
1411
		/*
1412 1413
		 * We take over the futex. No other waiters and the user space
		 * TID is 0. We preserve the owner died bit.
1414
		 */
1415 1416
		newval = uval & FUTEX_OWNER_DIED;
		newval |= vpid;
1417

1418 1419 1420 1421 1422 1423 1424 1425
		/* The futex requeue_pi code can enforce the waiters bit */
		if (set_waiters)
			newval |= FUTEX_WAITERS;

		ret = lock_pi_update_atomic(uaddr, uval, newval);
		/* If the take over worked, return 1 */
		return ret < 0 ? ret : 1;
	}
1426 1427

	/*
1428 1429 1430
	 * First waiter. Set the waiters bit before attaching ourself to
	 * the owner. If owner tries to unlock, it will be forced into
	 * the kernel and blocked on hb->lock.
1431
	 */
1432 1433 1434 1435
	newval = uval | FUTEX_WAITERS;
	ret = lock_pi_update_atomic(uaddr, uval, newval);
	if (ret)
		return ret;
1436
	/*
1437 1438 1439
	 * If the update of the user space value succeeded, we try to
	 * attach to the owner. If that fails, no harm done, we only
	 * set the FUTEX_WAITERS bit in the user space variable.
1440
	 */
T
Thomas Gleixner 已提交
1441
	return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1442 1443
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

1454
	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1455
		return;
1456
	lockdep_assert_held(q->lock_ptr);
1457 1458 1459

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
1460
	hb_waiters_dec(hb);
1461 1462
}

L
Linus Torvalds 已提交
1463 1464
/*
 * The hash bucket lock must be held when this is called.
1465 1466 1467
 * Afterwards, the futex_q must not be accessed. Callers
 * must ensure to later call wake_up_q() for the actual
 * wakeups to occur.
L
Linus Torvalds 已提交
1468
 */
1469
static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
L
Linus Torvalds 已提交
1470
{
T
Thomas Gleixner 已提交
1471 1472
	struct task_struct *p = q->task;

1473 1474 1475
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

1476
	get_task_struct(p);
1477
	__unqueue_futex(q);
L
Linus Torvalds 已提交
1478
	/*
1479 1480 1481 1482 1483
	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
	 * is written, without taking any locks. This is possible in the event
	 * of a spurious wakeup, for example. A memory barrier is required here
	 * to prevent the following store to lock_ptr from getting ahead of the
	 * plist_del in __unqueue_futex().
L
Linus Torvalds 已提交
1484
	 */
1485
	smp_store_release(&q->lock_ptr, NULL);
1486 1487 1488

	/*
	 * Queue the task for later wakeup for after we've released
1489
	 * the hb->lock.
1490
	 */
1491
	wake_q_add_safe(wake_q, p);
L
Linus Torvalds 已提交
1492 1493
}

1494 1495 1496 1497
/*
 * Caller must hold a reference on @pi_state.
 */
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1498
{
1499
	u32 uninitialized_var(curval), newval;
1500
	struct task_struct *new_owner;
P
Peter Zijlstra 已提交
1501
	bool postunlock = false;
1502
	DEFINE_WAKE_Q(wake_q);
1503
	int ret = 0;
1504 1505

	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1506
	if (WARN_ON_ONCE(!new_owner)) {
1507
		/*
1508
		 * As per the comment in futex_unlock_pi() this should not happen.
1509 1510 1511 1512 1513 1514 1515 1516
		 *
		 * When this happens, give up our locks and try again, giving
		 * the futex_lock_pi() instance time to complete, either by
		 * waiting on the rtmutex or removing itself from the futex
		 * queue.
		 */
		ret = -EAGAIN;
		goto out_unlock;
1517
	}
1518 1519

	/*
1520 1521 1522
	 * We pass it to the next owner. The WAITERS bit is always kept
	 * enabled while there is PI state around. We cleanup the owner
	 * died bit, because we are the owner.
1523
	 */
1524
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1525

1526 1527 1528
	if (unlikely(should_fail_futex(true)))
		ret = -EFAULT;

1529 1530
	ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
	if (!ret && (curval != uval)) {
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
		/*
		 * If a unconditional UNLOCK_PI operation (user space did not
		 * try the TID->0 transition) raced with a waiter setting the
		 * FUTEX_WAITERS flag between get_user() and locking the hash
		 * bucket lock, retry the operation.
		 */
		if ((FUTEX_TID_MASK & curval) == uval)
			ret = -EAGAIN;
		else
			ret = -EINVAL;
	}
P
Peter Zijlstra 已提交
1542

1543 1544
	if (ret)
		goto out_unlock;
1545

1546 1547 1548 1549 1550
	/*
	 * This is a point of no return; once we modify the uval there is no
	 * going back and subsequent operations must not fail.
	 */

1551
	raw_spin_lock(&pi_state->owner->pi_lock);
1552 1553
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1554
	raw_spin_unlock(&pi_state->owner->pi_lock);
1555

1556
	raw_spin_lock(&new_owner->pi_lock);
1557
	WARN_ON(!list_empty(&pi_state->list));
1558 1559
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1560
	raw_spin_unlock(&new_owner->pi_lock);
1561

P
Peter Zijlstra 已提交
1562
	postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1563

1564
out_unlock:
1565 1566
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

P
Peter Zijlstra 已提交
1567 1568
	if (postunlock)
		rt_mutex_postunlock(&wake_q);
1569

1570
	return ret;
1571 1572
}

I
Ingo Molnar 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1589 1590 1591
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1592
	spin_unlock(&hb1->lock);
1593 1594
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1595 1596
}

L
Linus Torvalds 已提交
1597
/*
D
Darren Hart 已提交
1598
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1599
 */
1600 1601
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1602
{
1603
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1604
	struct futex_q *this, *next;
1605
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1606
	int ret;
1607
	DEFINE_WAKE_Q(wake_q);
L
Linus Torvalds 已提交
1608

1609 1610 1611
	if (!bitset)
		return -EINVAL;

1612
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
L
Linus Torvalds 已提交
1613 1614 1615
	if (unlikely(ret != 0))
		goto out;

1616
	hb = hash_futex(&key);
1617 1618 1619 1620 1621

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1622
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1623

J
Jason Low 已提交
1624
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1625
		if (match_futex (&this->key, &key)) {
1626
			if (this->pi_state || this->rt_waiter) {
1627 1628 1629
				ret = -EINVAL;
				break;
			}
1630 1631 1632 1633 1634

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

1635
			mark_wake_futex(&wake_q, this);
L
Linus Torvalds 已提交
1636 1637 1638 1639 1640
			if (++ret >= nr_wake)
				break;
		}
	}

1641
	spin_unlock(&hb->lock);
1642
	wake_up_q(&wake_q);
1643
out_put_key:
1644
	put_futex_key(&key);
1645
out:
L
Linus Torvalds 已提交
1646 1647 1648
	return ret;
}

1649 1650 1651 1652
static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
{
	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
1653 1654
	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1655 1656 1657
	int oldval, ret;

	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
		if (oparg < 0 || oparg > 31) {
			char comm[sizeof(current->comm)];
			/*
			 * kill this print and return -EINVAL when userspace
			 * is sane again
			 */
			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
					get_task_comm(comm, current), oparg);
			oparg &= 31;
		}
1668 1669 1670
		oparg = 1 << oparg;
	}

1671
	pagefault_disable();
1672
	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1673
	pagefault_enable();
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	if (ret)
		return ret;

	switch (cmp) {
	case FUTEX_OP_CMP_EQ:
		return oldval == cmparg;
	case FUTEX_OP_CMP_NE:
		return oldval != cmparg;
	case FUTEX_OP_CMP_LT:
		return oldval < cmparg;
	case FUTEX_OP_CMP_GE:
		return oldval >= cmparg;
	case FUTEX_OP_CMP_LE:
		return oldval <= cmparg;
	case FUTEX_OP_CMP_GT:
		return oldval > cmparg;
	default:
		return -ENOSYS;
	}
}

1695 1696 1697 1698
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1699
static int
1700
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1701
	      int nr_wake, int nr_wake2, int op)
1702
{
1703
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1704
	struct futex_hash_bucket *hb1, *hb2;
1705
	struct futex_q *this, *next;
D
Darren Hart 已提交
1706
	int ret, op_ret;
1707
	DEFINE_WAKE_Q(wake_q);
1708

D
Darren Hart 已提交
1709
retry:
1710
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1711 1712
	if (unlikely(ret != 0))
		goto out;
1713
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1714
	if (unlikely(ret != 0))
1715
		goto out_put_key1;
1716

1717 1718
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1719

D
Darren Hart 已提交
1720
retry_private:
T
Thomas Gleixner 已提交
1721
	double_lock_hb(hb1, hb2);
1722
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1723
	if (unlikely(op_ret < 0)) {
D
Darren Hart 已提交
1724
		double_unlock_hb(hb1, hb2);
1725

1726 1727 1728 1729 1730 1731
		if (!IS_ENABLED(CONFIG_MMU) ||
		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
			/*
			 * we don't get EFAULT from MMU faults if we don't have
			 * an MMU, but we might get them from range checking
			 */
1732
			ret = op_ret;
1733
			goto out_put_keys;
1734 1735
		}

1736 1737 1738 1739 1740
		if (op_ret == -EFAULT) {
			ret = fault_in_user_writeable(uaddr2);
			if (ret)
				goto out_put_keys;
		}
1741

1742 1743
		if (!(flags & FLAGS_SHARED)) {
			cond_resched();
D
Darren Hart 已提交
1744
			goto retry_private;
1745
		}
D
Darren Hart 已提交
1746

1747 1748
		put_futex_key(&key2);
		put_futex_key(&key1);
1749
		cond_resched();
D
Darren Hart 已提交
1750
		goto retry;
1751 1752
	}

J
Jason Low 已提交
1753
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1754
		if (match_futex (&this->key, &key1)) {
1755 1756 1757 1758
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1759
			mark_wake_futex(&wake_q, this);
1760 1761 1762 1763 1764 1765 1766
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1767
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1768
			if (match_futex (&this->key, &key2)) {
1769 1770 1771 1772
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1773
				mark_wake_futex(&wake_q, this);
1774 1775 1776 1777 1778 1779 1780
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1781
out_unlock:
D
Darren Hart 已提交
1782
	double_unlock_hb(hb1, hb2);
1783
	wake_up_q(&wake_q);
1784
out_put_keys:
1785
	put_futex_key(&key2);
1786
out_put_key1:
1787
	put_futex_key(&key1);
1788
out:
1789 1790 1791
	return ret;
}

D
Darren Hart 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
1810 1811
		hb_waiters_dec(hb1);
		hb_waiters_inc(hb2);
1812
		plist_add(&q->list, &hb2->chain);
D
Darren Hart 已提交
1813 1814 1815 1816 1817
		q->lock_ptr = &hb2->lock;
	}
	q->key = *key2;
}

1818 1819
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1820 1821 1822
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1823 1824 1825 1826 1827
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1828 1829 1830
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1831 1832
 */
static inline
1833 1834
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1835 1836 1837
{
	q->key = *key;

1838
	__unqueue_futex(q);
1839 1840 1841 1842

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1843 1844
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1845
	wake_up_state(q->task, TASK_NORMAL);
1846 1847 1848 1849
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1850 1851 1852 1853 1854 1855
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
T
Thomas Gleixner 已提交
1856 1857
 * @exiting:		Pointer to store the task pointer of the owner task
 *			which is in the middle of exiting
1858
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1859 1860
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1861 1862 1863
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1864
 *
T
Thomas Gleixner 已提交
1865 1866 1867 1868
 * @exiting is only set when the return value is -EBUSY. If so, this holds
 * a refcount on the exiting task on return and the caller needs to drop it
 * after waiting for the exit to complete.
 *
1869
 * Return:
1870 1871 1872
 *  -  0 - failed to acquire the lock atomically;
 *  - >0 - acquired the lock, return value is vpid of the top_waiter
 *  - <0 - error
1873
 */
T
Thomas Gleixner 已提交
1874 1875 1876 1877 1878
static int
futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
			   struct futex_hash_bucket *hb2, union futex_key *key1,
			   union futex_key *key2, struct futex_pi_state **ps,
			   struct task_struct **exiting, int set_waiters)
1879
{
1880
	struct futex_q *top_waiter = NULL;
1881
	u32 curval;
1882
	int ret, vpid;
1883 1884 1885 1886

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1887 1888 1889
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1890 1891 1892 1893 1894 1895 1896 1897
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1898 1899 1900 1901 1902 1903
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1904 1905 1906 1907
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1908
	/*
1909 1910 1911
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1912
	 */
1913
	vpid = task_pid_vnr(top_waiter->task);
1914
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
T
Thomas Gleixner 已提交
1915
				   exiting, set_waiters);
1916
	if (ret == 1) {
1917
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1918 1919
		return vpid;
	}
1920 1921 1922 1923 1924
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1925
 * @uaddr1:	source futex user address
1926
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1927 1928 1929 1930 1931
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1932
 *		pi futex (pi to pi requeue is not supported)
1933 1934 1935 1936
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1937
 * Return:
1938 1939
 *  - >=0 - on success, the number of tasks requeued or woken;
 *  -  <0 - on error
L
Linus Torvalds 已提交
1940
 */
1941 1942 1943
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1944
{
1945
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1946
	int task_count = 0, ret;
1947
	struct futex_pi_state *pi_state = NULL;
1948
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1949
	struct futex_q *this, *next;
1950
	DEFINE_WAKE_Q(wake_q);
1951

1952 1953 1954
	if (nr_wake < 0 || nr_requeue < 0)
		return -EINVAL;

1955 1956 1957 1958 1959 1960 1961 1962 1963
	/*
	 * When PI not supported: return -ENOSYS if requeue_pi is true,
	 * consequently the compiler knows requeue_pi is always false past
	 * this point which will optimize away all the conditional code
	 * further down.
	 */
	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
		return -ENOSYS;

1964
	if (requeue_pi) {
1965 1966 1967 1968 1969 1970 1971
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1991

1992
retry:
1993
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
L
Linus Torvalds 已提交
1994 1995
	if (unlikely(ret != 0))
		goto out;
1996
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1997
			    requeue_pi ? FUTEX_WRITE : FUTEX_READ);
L
Linus Torvalds 已提交
1998
	if (unlikely(ret != 0))
1999
		goto out_put_key1;
L
Linus Torvalds 已提交
2000

2001 2002 2003 2004 2005 2006 2007 2008 2009
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

2010 2011
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
2012

D
Darren Hart 已提交
2013
retry_private:
2014
	hb_waiters_inc(hb2);
I
Ingo Molnar 已提交
2015
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
2016

2017 2018
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
2019

2020
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
2021 2022

		if (unlikely(ret)) {
D
Darren Hart 已提交
2023
			double_unlock_hb(hb1, hb2);
2024
			hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
2025

2026
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
2027 2028
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
2029

2030
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2031
				goto retry_private;
L
Linus Torvalds 已提交
2032

2033 2034
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
2035
			goto retry;
L
Linus Torvalds 已提交
2036
		}
2037
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
2038 2039 2040 2041 2042
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

2043
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
T
Thomas Gleixner 已提交
2044 2045
		struct task_struct *exiting = NULL;

2046 2047 2048 2049 2050 2051
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
2052
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
T
Thomas Gleixner 已提交
2053 2054
						 &key2, &pi_state,
						 &exiting, nr_requeue);
2055 2056 2057 2058 2059

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
2060 2061
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
2062 2063
		 * If the lock was not taken, we have pi_state and an initial
		 * refcount on it. In case of an error we have nothing.
2064
		 */
2065
		if (ret > 0) {
2066 2067
			WARN_ON(pi_state);
			task_count++;
2068
			/*
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
			 * If we acquired the lock, then the user space value
			 * of uaddr2 should be vpid. It cannot be changed by
			 * the top waiter as it is blocked on hb2 lock if it
			 * tries to do so. If something fiddled with it behind
			 * our back the pi state lookup might unearth it. So
			 * we rather use the known value than rereading and
			 * handing potential crap to lookup_pi_state.
			 *
			 * If that call succeeds then we have pi_state and an
			 * initial refcount on it.
2079
			 */
T
Thomas Gleixner 已提交
2080 2081
			ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
					      &pi_state, &exiting);
2082 2083 2084 2085
		}

		switch (ret) {
		case 0:
2086
			/* We hold a reference on the pi state. */
2087
			break;
2088 2089

			/* If the above failed, then pi_state is NULL */
2090 2091
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
2092
			hb_waiters_dec(hb2);
2093 2094
			put_futex_key(&key2);
			put_futex_key(&key1);
2095
			ret = fault_in_user_writeable(uaddr2);
2096 2097 2098
			if (!ret)
				goto retry;
			goto out;
2099
		case -EBUSY:
2100
		case -EAGAIN:
2101 2102
			/*
			 * Two reasons for this:
2103
			 * - EBUSY: Owner is exiting and we just wait for the
2104
			 *   exit to complete.
2105
			 * - EAGAIN: The user space value changed.
2106
			 */
2107
			double_unlock_hb(hb1, hb2);
2108
			hb_waiters_dec(hb2);
2109 2110
			put_futex_key(&key2);
			put_futex_key(&key1);
T
Thomas Gleixner 已提交
2111 2112 2113 2114 2115 2116
			/*
			 * Handle the case where the owner is in the middle of
			 * exiting. Wait for the exit to complete otherwise
			 * this task might loop forever, aka. live lock.
			 */
			wait_for_owner_exiting(ret, exiting);
2117 2118 2119 2120 2121 2122 2123
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
2124
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2125 2126 2127 2128
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
2129
			continue;
2130

2131 2132 2133
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
2134 2135 2136
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
2137 2138
		 */
		if ((requeue_pi && !this->rt_waiter) ||
2139 2140
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
2141 2142 2143
			ret = -EINVAL;
			break;
		}
2144 2145 2146 2147 2148 2149 2150

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
2151
			mark_wake_futex(&wake_q, this);
2152 2153
			continue;
		}
L
Linus Torvalds 已提交
2154

2155 2156 2157 2158 2159 2160
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

2161 2162 2163 2164 2165
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
2166 2167 2168 2169 2170
			/*
			 * Prepare the waiter to take the rt_mutex. Take a
			 * refcount on the pi_state and store the pointer in
			 * the futex_q object of the waiter.
			 */
P
Peter Zijlstra 已提交
2171
			get_pi_state(pi_state);
2172 2173 2174
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
2175
							this->task);
2176
			if (ret == 1) {
2177 2178 2179 2180 2181 2182 2183 2184
				/*
				 * We got the lock. We do neither drop the
				 * refcount on pi_state nor clear
				 * this->pi_state because the waiter needs the
				 * pi_state for cleaning up the user space
				 * value. It will drop the refcount after
				 * doing so.
				 */
2185
				requeue_pi_wake_futex(this, &key2, hb2);
2186 2187
				continue;
			} else if (ret) {
2188 2189 2190 2191 2192 2193 2194 2195
				/*
				 * rt_mutex_start_proxy_lock() detected a
				 * potential deadlock when we tried to queue
				 * that waiter. Drop the pi_state reference
				 * which we took above and remove the pointer
				 * to the state from the waiters futex_q
				 * object.
				 */
2196
				this->pi_state = NULL;
2197
				put_pi_state(pi_state);
2198 2199 2200 2201 2202
				/*
				 * We stop queueing more waiters and let user
				 * space deal with the mess.
				 */
				break;
2203
			}
L
Linus Torvalds 已提交
2204
		}
2205
		requeue_futex(this, hb1, hb2, &key2);
L
Linus Torvalds 已提交
2206 2207
	}

2208 2209 2210 2211 2212
	/*
	 * We took an extra initial reference to the pi_state either
	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
	 * need to drop it here again.
	 */
2213
	put_pi_state(pi_state);
2214 2215

out_unlock:
D
Darren Hart 已提交
2216
	double_unlock_hb(hb1, hb2);
2217
	wake_up_q(&wake_q);
2218
	hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
2219

2220
out_put_keys:
2221
	put_futex_key(&key2);
2222
out_put_key1:
2223
	put_futex_key(&key1);
2224
out:
2225
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
2226 2227 2228
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
2229
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2230
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
2231
{
2232
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
2233

2234
	hb = hash_futex(&q->key);
2235 2236 2237 2238 2239 2240 2241 2242 2243

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
D
Davidlohr Bueso 已提交
2244
	hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2245

2246
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
2247

D
Davidlohr Bueso 已提交
2248
	spin_lock(&hb->lock);
2249
	return hb;
L
Linus Torvalds 已提交
2250 2251
}

2252
static inline void
J
Jason Low 已提交
2253
queue_unlock(struct futex_hash_bucket *hb)
2254
	__releases(&hb->lock)
2255 2256
{
	spin_unlock(&hb->lock);
2257
	hb_waiters_dec(hb);
2258 2259
}

2260
static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
2261
{
P
Pierre Peiffer 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
2276
	q->task = current;
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
	__releases(&hb->lock)
{
	__queue_me(q, hb);
2295
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
2296 2297
}

2298 2299 2300 2301 2302 2303 2304
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
2305
 * Return:
2306 2307
 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
 *  - 0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
2308 2309 2310 2311
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
2312
	int ret = 0;
L
Linus Torvalds 已提交
2313 2314

	/* In the common case we don't take the spinlock, which is nice. */
2315
retry:
2316 2317 2318 2319 2320 2321
	/*
	 * q->lock_ptr can change between this read and the following spin_lock.
	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
	 * optimizing lock_ptr out of the logic below.
	 */
	lock_ptr = READ_ONCE(q->lock_ptr);
2322
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
2341
		__unqueue_futex(q);
2342 2343 2344

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
2345 2346 2347 2348 2349 2350 2351
		spin_unlock(lock_ptr);
		ret = 1;
	}

	return ret;
}

2352 2353
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
2354 2355
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
2356
 */
P
Pierre Peiffer 已提交
2357
static void unqueue_me_pi(struct futex_q *q)
2358
	__releases(q->lock_ptr)
2359
{
2360
	__unqueue_futex(q);
2361 2362

	BUG_ON(!q->pi_state);
2363
	put_pi_state(q->pi_state);
2364 2365
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
2366
	spin_unlock(q->lock_ptr);
2367 2368
}

2369
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2370
				struct task_struct *argowner)
P
Pierre Peiffer 已提交
2371 2372
{
	struct futex_pi_state *pi_state = q->pi_state;
2373
	u32 uval, uninitialized_var(curval), newval;
2374 2375
	struct task_struct *oldowner, *newowner;
	u32 newtid;
2376
	int ret, err = 0;
P
Pierre Peiffer 已提交
2377

2378 2379
	lockdep_assert_held(q->lock_ptr);

P
Peter Zijlstra 已提交
2380 2381 2382
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	oldowner = pi_state->owner;
2383 2384

	/*
2385
	 * We are here because either:
2386
	 *
2387 2388 2389 2390 2391 2392 2393 2394 2395
	 *  - we stole the lock and pi_state->owner needs updating to reflect
	 *    that (@argowner == current),
	 *
	 * or:
	 *
	 *  - someone stole our lock and we need to fix things to point to the
	 *    new owner (@argowner == NULL).
	 *
	 * Either way, we have to replace the TID in the user space variable.
2396
	 * This must be atomic as we have to preserve the owner died bit here.
2397
	 *
D
Darren Hart 已提交
2398 2399 2400
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
2401
	 *
P
Peter Zijlstra 已提交
2402 2403 2404 2405
	 * Modifying pi_state _before_ the user space value would leave the
	 * pi_state in an inconsistent state when we fault here, because we
	 * need to drop the locks to handle the fault. This might be observed
	 * in the PID check in lookup_pi_state.
2406 2407
	 */
retry:
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	if (!argowner) {
		if (oldowner != current) {
			/*
			 * We raced against a concurrent self; things are
			 * already fixed up. Nothing to do.
			 */
			ret = 0;
			goto out_unlock;
		}

		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
			/* We got the lock after all, nothing to fix. */
			ret = 0;
			goto out_unlock;
		}

		/*
		 * Since we just failed the trylock; there must be an owner.
		 */
		newowner = rt_mutex_owner(&pi_state->pi_mutex);
		BUG_ON(!newowner);
	} else {
		WARN_ON_ONCE(argowner != current);
		if (oldowner == current) {
			/*
			 * We raced against a concurrent self; things are
			 * already fixed up. Nothing to do.
			 */
			ret = 0;
			goto out_unlock;
		}
		newowner = argowner;
	}

	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Peter Zijlstra 已提交
2443 2444 2445
	/* Owner died? */
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;
2446

2447 2448 2449
	err = get_futex_value_locked(&uval, uaddr);
	if (err)
		goto handle_err;
2450

2451
	for (;;) {
2452 2453
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

2454 2455 2456 2457
		err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
		if (err)
			goto handle_err;

2458 2459 2460 2461 2462 2463 2464 2465 2466
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
2467
	if (pi_state->owner != NULL) {
P
Peter Zijlstra 已提交
2468
		raw_spin_lock(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
2469 2470
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
P
Peter Zijlstra 已提交
2471
		raw_spin_unlock(&pi_state->owner->pi_lock);
2472
	}
P
Pierre Peiffer 已提交
2473

2474
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
2475

P
Peter Zijlstra 已提交
2476
	raw_spin_lock(&newowner->pi_lock);
P
Pierre Peiffer 已提交
2477
	WARN_ON(!list_empty(&pi_state->list));
2478
	list_add(&pi_state->list, &newowner->pi_state_list);
P
Peter Zijlstra 已提交
2479 2480 2481
	raw_spin_unlock(&newowner->pi_lock);
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

2482
	return 0;
P
Pierre Peiffer 已提交
2483 2484

	/*
2485 2486 2487 2488 2489 2490 2491
	 * In order to reschedule or handle a page fault, we need to drop the
	 * locks here. In the case of a fault, this gives the other task
	 * (either the highest priority waiter itself or the task which stole
	 * the rtmutex) the chance to try the fixup of the pi_state. So once we
	 * are back from handling the fault we need to check the pi_state after
	 * reacquiring the locks and before trying to do another fixup. When
	 * the fixup has been done already we simply return.
P
Peter Zijlstra 已提交
2492 2493 2494 2495
	 *
	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
	 * drop hb->lock since the caller owns the hb -> futex_q relation.
	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
P
Pierre Peiffer 已提交
2496
	 */
2497
handle_err:
P
Peter Zijlstra 已提交
2498
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2499
	spin_unlock(q->lock_ptr);
2500

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
	switch (err) {
	case -EFAULT:
		ret = fault_in_user_writeable(uaddr);
		break;

	case -EAGAIN:
		cond_resched();
		ret = 0;
		break;

	default:
		WARN_ON_ONCE(1);
		ret = err;
		break;
	}
2516

2517
	spin_lock(q->lock_ptr);
P
Peter Zijlstra 已提交
2518
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2519

2520 2521 2522
	/*
	 * Check if someone else fixed it for us:
	 */
P
Peter Zijlstra 已提交
2523 2524 2525 2526
	if (pi_state->owner != oldowner) {
		ret = 0;
		goto out_unlock;
	}
2527 2528

	if (ret)
P
Peter Zijlstra 已提交
2529
		goto out_unlock;
2530 2531

	goto retry;
P
Peter Zijlstra 已提交
2532 2533 2534 2535

out_unlock:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
P
Pierre Peiffer 已提交
2536 2537
}

N
Nick Piggin 已提交
2538
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
2539

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
2550
 * Return:
2551 2552 2553
 *  -  1 - success, lock taken;
 *  -  0 - success, lock not taken;
 *  - <0 - on error (-EFAULT)
2554
 */
2555
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2556 2557 2558 2559 2560 2561 2562
{
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
2563
		 *
2564 2565 2566
		 * Speculative pi_state->owner read (we don't hold wait_lock);
		 * since we own the lock pi_state->owner == current is the
		 * stable state, anything else needs more attention.
2567 2568
		 */
		if (q->pi_state->owner != current)
2569
			ret = fixup_pi_state_owner(uaddr, q, current);
2570 2571 2572
		goto out;
	}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	/*
	 * If we didn't get the lock; check if anybody stole it from us. In
	 * that case, we need to fix up the uval to point to them instead of
	 * us, otherwise bad things happen. [10]
	 *
	 * Another speculative read; pi_state->owner == current is unstable
	 * but needs our attention.
	 */
	if (q->pi_state->owner == current) {
		ret = fixup_pi_state_owner(uaddr, q, NULL);
		goto out;
	}

2586 2587
	/*
	 * Paranoia check. If we did not take the lock, then we should not be
2588
	 * the owner of the rt_mutex.
2589
	 */
2590
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2591 2592 2593 2594
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);
2595
	}
2596 2597 2598 2599 2600

out:
	return ret ? ret : locked;
}

2601 2602 2603 2604 2605 2606 2607
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
2608
				struct hrtimer_sleeper *timeout)
2609
{
2610 2611
	/*
	 * The task state is guaranteed to be set before another task can
2612
	 * wake it. set_current_state() is implemented using smp_store_mb() and
2613 2614 2615
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
2616
	set_current_state(TASK_INTERRUPTIBLE);
2617
	queue_me(q, hb);
2618 2619

	/* Arm the timer */
2620
	if (timeout)
2621
		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2622 2623

	/*
2624 2625
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
2626 2627 2628 2629 2630 2631 2632 2633
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
2634
			freezable_schedule();
2635 2636 2637 2638
	}
	__set_current_state(TASK_RUNNING);
}

2639 2640 2641 2642
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
2643
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2644 2645 2646 2647 2648 2649 2650 2651
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
2652
 * Return:
2653 2654
 *  -  0 - uaddr contains val and hb has been locked;
 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2655
 */
2656
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2657
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
2658
{
2659 2660
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
2661 2662

	/*
D
Darren Hart 已提交
2663
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
2664 2665 2666 2667 2668 2669 2670
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
2671 2672
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
2673 2674
	 * cond(var) false, which would violate the guarantee.
	 *
2675 2676 2677 2678
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
2679
	 */
2680
retry:
2681
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2682
	if (unlikely(ret != 0))
2683
		return ret;
2684 2685 2686 2687

retry_private:
	*hb = queue_lock(q);

2688
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
2689

2690
	if (ret) {
J
Jason Low 已提交
2691
		queue_unlock(*hb);
L
Linus Torvalds 已提交
2692

2693
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
2694
		if (ret)
2695
			goto out;
L
Linus Torvalds 已提交
2696

2697
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2698 2699
			goto retry_private;

2700
		put_futex_key(&q->key);
D
Darren Hart 已提交
2701
		goto retry;
L
Linus Torvalds 已提交
2702
	}
2703

2704
	if (uval != val) {
J
Jason Low 已提交
2705
		queue_unlock(*hb);
2706
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2707
	}
L
Linus Torvalds 已提交
2708

2709 2710
out:
	if (ret)
2711
		put_futex_key(&q->key);
2712 2713 2714
	return ret;
}

2715 2716
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2717
{
2718
	struct hrtimer_sleeper timeout, *to;
2719 2720
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2721
	struct futex_q q = futex_q_init;
2722 2723 2724 2725 2726 2727
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

2728 2729
	to = futex_setup_timer(abs_time, &timeout, flags,
			       current->timer_slack_ns);
T
Thomas Gleixner 已提交
2730
retry:
2731 2732 2733 2734
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2735
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2736 2737 2738
	if (ret)
		goto out;

2739
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2740
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2741 2742

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2743
	ret = 0;
2744
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2745
	if (!unqueue_me(&q))
2746
		goto out;
P
Peter Zijlstra 已提交
2747
	ret = -ETIMEDOUT;
2748
	if (to && !to->task)
2749
		goto out;
N
Nick Piggin 已提交
2750

2751
	/*
T
Thomas Gleixner 已提交
2752 2753
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2754
	 */
2755
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2756 2757
		goto retry;

P
Peter Zijlstra 已提交
2758
	ret = -ERESTARTSYS;
2759
	if (!abs_time)
2760
		goto out;
L
Linus Torvalds 已提交
2761

2762
	restart = &current->restart_block;
P
Peter Zijlstra 已提交
2763
	restart->fn = futex_wait_restart;
2764
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2765
	restart->futex.val = val;
T
Thomas Gleixner 已提交
2766
	restart->futex.time = *abs_time;
P
Peter Zijlstra 已提交
2767
	restart->futex.bitset = bitset;
2768
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2769

P
Peter Zijlstra 已提交
2770 2771
	ret = -ERESTART_RESTARTBLOCK;

2772
out:
2773 2774 2775 2776
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2777 2778 2779
	return ret;
}

N
Nick Piggin 已提交
2780 2781 2782

static long futex_wait_restart(struct restart_block *restart)
{
2783
	u32 __user *uaddr = restart->futex.uaddr;
2784
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2785

2786
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
T
Thomas Gleixner 已提交
2787
		t = restart->futex.time;
2788 2789
		tp = &t;
	}
N
Nick Piggin 已提交
2790
	restart->fn = do_no_restart_syscall;
2791 2792 2793

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2794 2795 2796
}


2797 2798 2799
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
2800 2801 2802 2803 2804
 * if there are waiters then it will block as a consequence of relying
 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
 * a 0 value of the futex too.).
 *
 * Also serves as futex trylock_pi()'ing, and due semantics.
2805
 */
2806
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2807
			 ktime_t *time, int trylock)
2808
{
2809
	struct hrtimer_sleeper timeout, *to;
2810
	struct futex_pi_state *pi_state = NULL;
T
Thomas Gleixner 已提交
2811
	struct task_struct *exiting = NULL;
2812
	struct rt_mutex_waiter rt_waiter;
2813
	struct futex_hash_bucket *hb;
2814
	struct futex_q q = futex_q_init;
2815
	int res, ret;
2816

2817 2818 2819
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

2820 2821 2822
	if (refill_pi_state_cache())
		return -ENOMEM;

2823
	to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2824

2825
retry:
2826
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2827
	if (unlikely(ret != 0))
2828
		goto out;
2829

D
Darren Hart 已提交
2830
retry_private:
E
Eric Sesterhenn 已提交
2831
	hb = queue_lock(&q);
2832

T
Thomas Gleixner 已提交
2833 2834
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
				   &exiting, 0);
2835
	if (unlikely(ret)) {
2836 2837 2838 2839
		/*
		 * Atomic work succeeded and we got the lock,
		 * or failed. Either way, we do _not_ block.
		 */
2840
		switch (ret) {
2841 2842 2843 2844 2845 2846
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2847
		case -EBUSY:
2848 2849
		case -EAGAIN:
			/*
2850
			 * Two reasons for this:
2851
			 * - EBUSY: Task is exiting and we just wait for the
2852
			 *   exit to complete.
2853
			 * - EAGAIN: The user space value changed.
2854
			 */
J
Jason Low 已提交
2855
			queue_unlock(hb);
2856
			put_futex_key(&q.key);
T
Thomas Gleixner 已提交
2857 2858 2859 2860 2861 2862
			/*
			 * Handle the case where the owner is in the middle of
			 * exiting. Wait for the exit to complete otherwise
			 * this task might loop forever, aka. live lock.
			 */
			wait_for_owner_exiting(ret, exiting);
2863 2864 2865
			cond_resched();
			goto retry;
		default:
2866
			goto out_unlock_put_key;
2867 2868 2869
		}
	}

2870 2871
	WARN_ON(!q.pi_state);

2872 2873 2874
	/*
	 * Only actually queue now that the atomic ops are done:
	 */
2875
	__queue_me(&q, hb);
2876

2877
	if (trylock) {
2878
		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2879 2880
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
2881
		goto no_block;
2882 2883
	}

2884 2885
	rt_mutex_init_waiter(&rt_waiter);

2886
	/*
2887 2888 2889 2890 2891 2892 2893
	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
	 * hold it while doing rt_mutex_start_proxy(), because then it will
	 * include hb->lock in the blocking chain, even through we'll not in
	 * fact hold it while blocking. This will lead it to report -EDEADLK
	 * and BUG when futex_unlock_pi() interleaves with this.
	 *
	 * Therefore acquire wait_lock while holding hb->lock, but drop the
2894 2895 2896 2897
	 * latter before calling __rt_mutex_start_proxy_lock(). This
	 * interleaves with futex_unlock_pi() -- which does a similar lock
	 * handoff -- such that the latter can observe the futex_q::pi_state
	 * before __rt_mutex_start_proxy_lock() is done.
2898
	 */
2899 2900
	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
	spin_unlock(q.lock_ptr);
2901 2902 2903 2904 2905
	/*
	 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
	 * such that futex_unlock_pi() is guaranteed to observe the waiter when
	 * it sees the futex_q::pi_state.
	 */
2906 2907 2908
	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);

2909 2910 2911
	if (ret) {
		if (ret == 1)
			ret = 0;
2912
		goto cleanup;
2913 2914 2915
	}

	if (unlikely(to))
2916
		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2917 2918 2919

	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);

2920
cleanup:
2921
	spin_lock(q.lock_ptr);
2922
	/*
2923
	 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2924
	 * first acquire the hb->lock before removing the lock from the
2925 2926
	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
	 * lists consistent.
2927 2928 2929
	 *
	 * In particular; it is important that futex_unlock_pi() can not
	 * observe this inconsistency.
2930 2931 2932 2933 2934
	 */
	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
		ret = 0;

no_block:
2935 2936 2937 2938
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2939
	res = fixup_owner(uaddr, &q, !ret);
2940 2941 2942 2943 2944 2945
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2946

2947
	/*
2948 2949
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2950
	 */
2951 2952 2953 2954
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
		pi_state = q.pi_state;
		get_pi_state(pi_state);
	}
2955

2956 2957
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2958

2959 2960 2961 2962 2963
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

2964
	goto out_put_key;
2965

2966
out_unlock_put_key:
J
Jason Low 已提交
2967
	queue_unlock(hb);
2968

2969
out_put_key:
2970
	put_futex_key(&q.key);
2971
out:
2972 2973
	if (to) {
		hrtimer_cancel(&to->timer);
2974
		destroy_hrtimer_on_stack(&to->timer);
2975
	}
2976
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2977

2978
uaddr_faulted:
J
Jason Low 已提交
2979
	queue_unlock(hb);
2980

2981
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2982 2983
	if (ret)
		goto out_put_key;
2984

2985
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2986 2987
		goto retry_private;

2988
	put_futex_key(&q.key);
D
Darren Hart 已提交
2989
	goto retry;
2990 2991 2992 2993 2994 2995 2996
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2997
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2998
{
2999
	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
3000
	union futex_key key = FUTEX_KEY_INIT;
3001
	struct futex_hash_bucket *hb;
3002
	struct futex_q *top_waiter;
D
Darren Hart 已提交
3003
	int ret;
3004

3005 3006 3007
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

3008 3009 3010 3011 3012 3013
retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
3014
	if ((uval & FUTEX_TID_MASK) != vpid)
3015 3016
		return -EPERM;

3017
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3018 3019
	if (ret)
		return ret;
3020 3021 3022 3023 3024

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
3025 3026 3027
	 * Check waiters first. We do not trust user space values at
	 * all and we at least want to know if user space fiddled
	 * with the futex value instead of blindly unlocking.
3028
	 */
3029 3030
	top_waiter = futex_top_waiter(hb, &key);
	if (top_waiter) {
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
		struct futex_pi_state *pi_state = top_waiter->pi_state;

		ret = -EINVAL;
		if (!pi_state)
			goto out_unlock;

		/*
		 * If current does not own the pi_state then the futex is
		 * inconsistent and user space fiddled with the futex value.
		 */
		if (pi_state->owner != current)
			goto out_unlock;

3044
		get_pi_state(pi_state);
3045
		/*
3046 3047 3048 3049
		 * By taking wait_lock while still holding hb->lock, we ensure
		 * there is no point where we hold neither; and therefore
		 * wake_futex_pi() must observe a state consistent with what we
		 * observed.
3050 3051 3052 3053
		 *
		 * In particular; this forces __rt_mutex_start_proxy() to
		 * complete such that we're guaranteed to observe the
		 * rt_waiter. Also see the WARN in wake_futex_pi().
3054
		 */
3055
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3056 3057
		spin_unlock(&hb->lock);

3058
		/* drops pi_state->pi_mutex.wait_lock */
3059 3060 3061 3062 3063 3064
		ret = wake_futex_pi(uaddr, uval, pi_state);

		put_pi_state(pi_state);

		/*
		 * Success, we're done! No tricky corner cases.
3065 3066 3067
		 */
		if (!ret)
			goto out_putkey;
3068
		/*
3069 3070
		 * The atomic access to the futex value generated a
		 * pagefault, so retry the user-access and the wakeup:
3071 3072 3073
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
3074 3075 3076 3077
		/*
		 * A unconditional UNLOCK_PI op raced against a waiter
		 * setting the FUTEX_WAITERS bit. Try again.
		 */
3078 3079
		if (ret == -EAGAIN)
			goto pi_retry;
3080 3081 3082 3083
		/*
		 * wake_futex_pi has detected invalid state. Tell user
		 * space.
		 */
3084
		goto out_putkey;
3085
	}
3086

3087
	/*
3088 3089 3090 3091 3092
	 * We have no kernel internal state, i.e. no waiters in the
	 * kernel. Waiters which are about to queue themselves are stuck
	 * on hb->lock. So we can safely ignore them. We do neither
	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
	 * owner.
3093
	 */
3094
	if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3095
		spin_unlock(&hb->lock);
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
		switch (ret) {
		case -EFAULT:
			goto pi_faulted;

		case -EAGAIN:
			goto pi_retry;

		default:
			WARN_ON_ONCE(1);
			goto out_putkey;
		}
3107
	}
3108

3109 3110 3111 3112 3113
	/*
	 * If uval has changed, let user space handle it.
	 */
	ret = (curval == uval) ? 0 : -EAGAIN;

3114 3115
out_unlock:
	spin_unlock(&hb->lock);
3116
out_putkey:
3117
	put_futex_key(&key);
3118 3119
	return ret;

3120 3121 3122 3123 3124
pi_retry:
	put_futex_key(&key);
	cond_resched();
	goto retry;

3125
pi_faulted:
3126
	put_futex_key(&key);
3127

3128
	ret = fault_in_user_writeable(uaddr);
3129
	if (!ret)
3130 3131
		goto retry;

L
Linus Torvalds 已提交
3132 3133 3134
	return ret;
}

3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
3147
 * Return:
3148 3149
 *  -  0 = no early wakeup detected;
 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
3171
		plist_del(&q->list, &hb->chain);
3172
		hb_waiters_dec(hb);
3173

T
Thomas Gleixner 已提交
3174
		/* Handle spurious wakeups gracefully */
3175
		ret = -EWOULDBLOCK;
3176 3177
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
3178
		else if (signal_pending(current))
3179
			ret = -ERESTARTNOINTR;
3180 3181 3182 3183 3184 3185
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3186
 * @uaddr:	the futex we initially wait on (non-pi)
3187
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3188
 *		the same type, no requeueing from private to shared, etc.
3189 3190
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
3191
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
3192 3193 3194
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3195 3196 3197 3198 3199
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
3200 3201
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3202
 * via the following--
3203
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3204 3205 3206
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
3207
 *
3208
 * If 3, cleanup and return -ERESTARTNOINTR.
3209 3210 3211 3212 3213 3214 3215
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
3216
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3217 3218 3219
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
3220
 * Return:
3221 3222
 *  -  0 - On success;
 *  - <0 - On error
3223
 */
3224
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3225
				 u32 val, ktime_t *abs_time, u32 bitset,
3226
				 u32 __user *uaddr2)
3227
{
3228
	struct hrtimer_sleeper timeout, *to;
3229
	struct futex_pi_state *pi_state = NULL;
3230 3231
	struct rt_mutex_waiter rt_waiter;
	struct futex_hash_bucket *hb;
3232 3233
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
3234 3235
	int res, ret;

3236 3237 3238
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

3239 3240 3241
	if (uaddr == uaddr2)
		return -EINVAL;

3242 3243 3244
	if (!bitset)
		return -EINVAL;

3245 3246
	to = futex_setup_timer(abs_time, &timeout, flags,
			       current->timer_slack_ns);
3247 3248 3249 3250 3251

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
3252
	rt_mutex_init_waiter(&rt_waiter);
3253

3254
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3255 3256 3257
	if (unlikely(ret != 0))
		goto out;

3258 3259 3260 3261
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

3262 3263 3264 3265
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
3266
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
3267 3268
	if (ret)
		goto out_key2;
3269

3270 3271 3272 3273 3274
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
3275
		queue_unlock(hb);
3276 3277 3278 3279
		ret = -EINVAL;
		goto out_put_keys;
	}

3280
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
3281
	futex_wait_queue_me(hb, &q, to);
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
3293 3294 3295
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
3306
			ret = fixup_pi_state_owner(uaddr2, &q, current);
3307 3308 3309 3310
			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
				pi_state = q.pi_state;
				get_pi_state(pi_state);
			}
3311 3312 3313 3314
			/*
			 * Drop the reference to the pi state which
			 * the requeue_pi() code acquired for us.
			 */
3315
			put_pi_state(q.pi_state);
3316 3317 3318
			spin_unlock(q.lock_ptr);
		}
	} else {
3319 3320
		struct rt_mutex *pi_mutex;

3321 3322 3323 3324 3325
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
3326
		WARN_ON(!q.pi_state);
3327
		pi_mutex = &q.pi_state->pi_mutex;
3328
		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3329 3330

		spin_lock(q.lock_ptr);
3331 3332 3333 3334
		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
			ret = 0;

		debug_rt_mutex_free_waiter(&rt_waiter);
3335 3336 3337 3338
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
3339
		res = fixup_owner(uaddr2, &q, !ret);
3340 3341
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
3342
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3343 3344 3345 3346
		 */
		if (res)
			ret = (res < 0) ? res : 0;

3347 3348 3349 3350 3351
		/*
		 * If fixup_pi_state_owner() faulted and was unable to handle
		 * the fault, unlock the rt_mutex and return the fault to
		 * userspace.
		 */
3352 3353 3354 3355
		if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
			pi_state = q.pi_state;
			get_pi_state(pi_state);
		}
3356

3357 3358 3359 3360
		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

3361 3362 3363 3364 3365
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

3366
	if (ret == -EINTR) {
3367
		/*
3368 3369 3370 3371 3372
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
3373
		 */
3374
		ret = -EWOULDBLOCK;
3375 3376 3377
	}

out_put_keys:
3378
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
3379
out_key2:
3380
	put_futex_key(&key2);
3381 3382 3383 3384 3385 3386 3387 3388 3389

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

3390 3391 3392 3393 3394 3395 3396
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
3397
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3398 3399 3400 3401 3402 3403 3404 3405
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
3406 3407 3408
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
3409
 */
3410 3411
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
3412
{
3413 3414
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
3427 3428 3429 3430
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3431
 */
3432 3433 3434
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
3435
{
A
Al Viro 已提交
3436
	struct robust_list_head __user *head;
3437
	unsigned long ret;
3438
	struct task_struct *p;
3439

3440 3441 3442
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

3443 3444 3445
	rcu_read_lock();

	ret = -ESRCH;
3446
	if (!pid)
3447
		p = current;
3448
	else {
3449
		p = find_task_by_vpid(pid);
3450 3451 3452 3453
		if (!p)
			goto err_unlock;
	}

3454
	ret = -EPERM;
3455
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3456 3457 3458 3459 3460
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

3461 3462 3463 3464 3465
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
3466
	rcu_read_unlock();
3467 3468 3469 3470

	return ret;
}

Y
Yang Tao 已提交
3471 3472 3473 3474
/* Constants for the pending_op argument of handle_futex_death */
#define HANDLE_DEATH_PENDING	true
#define HANDLE_DEATH_LIST	false

3475 3476 3477 3478
/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
Y
Yang Tao 已提交
3479 3480
static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
			      bool pi, bool pending_op)
3481
{
3482
	u32 uval, uninitialized_var(nval), mval;
3483
	int err;
3484

3485 3486 3487 3488
	/* Futex address must be 32bit aligned */
	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
		return -1;

3489 3490
retry:
	if (get_user(uval, uaddr))
3491 3492
		return -1;

Y
Yang Tao 已提交
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
	/*
	 * Special case for regular (non PI) futexes. The unlock path in
	 * user space has two race scenarios:
	 *
	 * 1. The unlock path releases the user space futex value and
	 *    before it can execute the futex() syscall to wake up
	 *    waiters it is killed.
	 *
	 * 2. A woken up waiter is killed before it can acquire the
	 *    futex in user space.
	 *
	 * In both cases the TID validation below prevents a wakeup of
	 * potential waiters which can cause these waiters to block
	 * forever.
	 *
	 * In both cases the following conditions are met:
	 *
	 *	1) task->robust_list->list_op_pending != NULL
	 *	   @pending_op == true
	 *	2) User space futex value == 0
	 *	3) Regular futex: @pi == false
	 *
	 * If these conditions are met, it is safe to attempt waking up a
	 * potential waiter without touching the user space futex value and
	 * trying to set the OWNER_DIED bit. The user space futex value is
	 * uncontended and the rest of the user space mutex state is
	 * consistent, so a woken waiter will just take over the
	 * uncontended futex. Setting the OWNER_DIED bit would create
	 * inconsistent state and malfunction of the user space owner died
	 * handling.
	 */
	if (pending_op && !pi && !uval) {
		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
		return 0;
	}

3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
		return 0;

	/*
	 * Ok, this dying thread is truly holding a futex
	 * of interest. Set the OWNER_DIED bit atomically
	 * via cmpxchg, and if the value had FUTEX_WAITERS
	 * set, wake up a waiter (if any). (We have to do a
	 * futex_wake() even if OWNER_DIED is already set -
	 * to handle the rare but possible case of recursive
	 * thread-death.) The rest of the cleanup is done in
	 * userspace.
	 */
	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;

	/*
	 * We are not holding a lock here, but we want to have
	 * the pagefault_disable/enable() protection because
	 * we want to handle the fault gracefully. If the
	 * access fails we try to fault in the futex with R/W
	 * verification via get_user_pages. get_user() above
	 * does not guarantee R/W access. If that fails we
	 * give up and leave the futex locked.
	 */
	if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
		switch (err) {
		case -EFAULT:
3556 3557 3558
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
3559 3560 3561

		case -EAGAIN:
			cond_resched();
3562
			goto retry;
3563

3564 3565 3566 3567
		default:
			WARN_ON_ONCE(1);
			return err;
		}
3568
	}
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579

	if (nval != uval)
		goto retry;

	/*
	 * Wake robust non-PI futexes here. The wakeup of
	 * PI futexes happens in exit_pi_state():
	 */
	if (!pi && (uval & FUTEX_WAITERS))
		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);

3580 3581 3582
	return 0;
}

3583 3584 3585 3586
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
3587
				     struct robust_list __user * __user *head,
3588
				     unsigned int *pi)
3589 3590 3591
{
	unsigned long uentry;

A
Al Viro 已提交
3592
	if (get_user(uentry, (unsigned long __user *)head))
3593 3594
		return -EFAULT;

A
Al Viro 已提交
3595
	*entry = (void __user *)(uentry & ~1UL);
3596 3597 3598 3599 3600
	*pi = uentry & 1;

	return 0;
}

3601 3602 3603 3604 3605 3606
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
3607
static void exit_robust_list(struct task_struct *curr)
3608 3609
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
3610
	struct robust_list __user *entry, *next_entry, *pending;
3611 3612
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
3613
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
3614
	int rc;
3615

3616 3617 3618
	if (!futex_cmpxchg_enabled)
		return;

3619 3620 3621 3622
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
3623
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
3634
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3635
		return;
3636

M
Martin Schwidefsky 已提交
3637
	next_entry = NULL;	/* avoid warning with gcc */
3638
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
3639 3640 3641 3642 3643
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3644 3645
		/*
		 * A pending lock might already be on the list, so
3646
		 * don't process it twice:
3647
		 */
Y
Yang Tao 已提交
3648
		if (entry != pending) {
A
Al Viro 已提交
3649
			if (handle_futex_death((void __user *)entry + futex_offset,
Y
Yang Tao 已提交
3650
						curr, pi, HANDLE_DEATH_LIST))
3651
				return;
Y
Yang Tao 已提交
3652
		}
M
Martin Schwidefsky 已提交
3653
		if (rc)
3654
			return;
M
Martin Schwidefsky 已提交
3655 3656
		entry = next_entry;
		pi = next_pi;
3657 3658 3659 3660 3661 3662 3663 3664
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
3665

Y
Yang Tao 已提交
3666
	if (pending) {
M
Martin Schwidefsky 已提交
3667
		handle_futex_death((void __user *)pending + futex_offset,
Y
Yang Tao 已提交
3668 3669
				   curr, pip, HANDLE_DEATH_PENDING);
	}
3670 3671
}

3672
static void futex_cleanup(struct task_struct *tsk)
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
{
	if (unlikely(tsk->robust_list)) {
		exit_robust_list(tsk);
		tsk->robust_list = NULL;
	}

#ifdef CONFIG_COMPAT
	if (unlikely(tsk->compat_robust_list)) {
		compat_exit_robust_list(tsk);
		tsk->compat_robust_list = NULL;
	}
#endif

	if (unlikely(!list_empty(&tsk->pi_state_list)))
		exit_pi_state_list(tsk);
}

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
/**
 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
 * @tsk:	task to set the state on
 *
 * Set the futex exit state of the task lockless. The futex waiter code
 * observes that state when a task is exiting and loops until the task has
 * actually finished the futex cleanup. The worst case for this is that the
 * waiter runs through the wait loop until the state becomes visible.
 *
 * This is called from the recursive fault handling path in do_exit().
 *
 * This is best effort. Either the futex exit code has run already or
 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
 * take it over. If not, the problem is pushed back to user space. If the
 * futex exit code did not run yet, then an already queued waiter might
 * block forever, but there is nothing which can be done about that.
 */
void futex_exit_recursive(struct task_struct *tsk)
{
3709 3710 3711
	/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
	if (tsk->futex_state == FUTEX_STATE_EXITING)
		mutex_unlock(&tsk->futex_exit_mutex);
3712 3713 3714
	tsk->futex_state = FUTEX_STATE_DEAD;
}

3715
static void futex_cleanup_begin(struct task_struct *tsk)
3716
{
3717 3718 3719 3720 3721 3722 3723 3724
	/*
	 * Prevent various race issues against a concurrent incoming waiter
	 * including live locks by forcing the waiter to block on
	 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
	 * attach_to_pi_owner().
	 */
	mutex_lock(&tsk->futex_exit_mutex);

3725
	/*
3726 3727 3728 3729 3730 3731 3732 3733 3734
	 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
	 *
	 * This ensures that all subsequent checks of tsk->futex_state in
	 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
	 * tsk->pi_lock held.
	 *
	 * It guarantees also that a pi_state which was queued right before
	 * the state change under tsk->pi_lock by a concurrent waiter must
	 * be observed in exit_pi_state_list().
3735 3736
	 */
	raw_spin_lock_irq(&tsk->pi_lock);
3737
	tsk->futex_state = FUTEX_STATE_EXITING;
3738
	raw_spin_unlock_irq(&tsk->pi_lock);
3739
}
3740

3741 3742 3743 3744 3745 3746 3747
static void futex_cleanup_end(struct task_struct *tsk, int state)
{
	/*
	 * Lockless store. The only side effect is that an observer might
	 * take another loop until it becomes visible.
	 */
	tsk->futex_state = state;
3748 3749 3750 3751 3752
	/*
	 * Drop the exit protection. This unblocks waiters which observed
	 * FUTEX_STATE_EXITING to reevaluate the state.
	 */
	mutex_unlock(&tsk->futex_exit_mutex);
3753
}
3754

3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
void futex_exec_release(struct task_struct *tsk)
{
	/*
	 * The state handling is done for consistency, but in the case of
	 * exec() there is no way to prevent futher damage as the PID stays
	 * the same. But for the unlikely and arguably buggy case that a
	 * futex is held on exec(), this provides at least as much state
	 * consistency protection which is possible.
	 */
	futex_cleanup_begin(tsk);
	futex_cleanup(tsk);
	/*
	 * Reset the state to FUTEX_STATE_OK. The task is alive and about
	 * exec a new binary.
	 */
	futex_cleanup_end(tsk, FUTEX_STATE_OK);
}

void futex_exit_release(struct task_struct *tsk)
{
	futex_cleanup_begin(tsk);
	futex_cleanup(tsk);
	futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3778 3779
}

3780
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3781
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
3782
{
T
Thomas Gleixner 已提交
3783
	int cmd = op & FUTEX_CMD_MASK;
3784
	unsigned int flags = 0;
E
Eric Dumazet 已提交
3785 3786

	if (!(op & FUTEX_PRIVATE_FLAG))
3787
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
3788

3789 3790
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
3791 3792
		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
		    cmd != FUTEX_WAIT_REQUEUE_PI)
3793 3794
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
3795

3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
3806
	switch (cmd) {
L
Linus Torvalds 已提交
3807
	case FUTEX_WAIT:
3808
		val3 = FUTEX_BITSET_MATCH_ANY;
3809
		/* fall through */
3810
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
3811
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
3812
	case FUTEX_WAKE:
3813
		val3 = FUTEX_BITSET_MATCH_ANY;
3814
		/* fall through */
3815
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
3816
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
3817
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
3818
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
3819
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
3820
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3821
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
3822
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3823
	case FUTEX_LOCK_PI:
3824
		return futex_lock_pi(uaddr, flags, timeout, 0);
3825
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
3826
		return futex_unlock_pi(uaddr, flags);
3827
	case FUTEX_TRYLOCK_PI:
3828
		return futex_lock_pi(uaddr, flags, NULL, 1);
3829 3830
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
3831 3832
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
3833
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
3834
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
3835
	}
T
Thomas Gleixner 已提交
3836
	return -ENOSYS;
L
Linus Torvalds 已提交
3837 3838 3839
}


3840
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3841
		struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3842
		u32, val3)
L
Linus Torvalds 已提交
3843
{
3844
	struct timespec64 ts;
3845
	ktime_t t, *tp = NULL;
3846
	u32 val2 = 0;
E
Eric Dumazet 已提交
3847
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
3848

3849
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3850 3851
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3852 3853
		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
			return -EFAULT;
3854
		if (get_timespec64(&ts, utime))
L
Linus Torvalds 已提交
3855
			return -EFAULT;
3856
		if (!timespec64_valid(&ts))
3857
			return -EINVAL;
3858

3859
		t = timespec64_to_ktime(ts);
E
Eric Dumazet 已提交
3860
		if (cmd == FUTEX_WAIT)
3861
			t = ktime_add_safe(ktime_get(), t);
3862
		tp = &t;
L
Linus Torvalds 已提交
3863 3864
	}
	/*
3865
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3866
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
3867
	 */
3868
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3869
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3870
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
3871

3872
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
3873 3874
}

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
#ifdef CONFIG_COMPAT
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int
compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
		   compat_uptr_t __user *head, unsigned int *pi)
{
	if (get_user(*uentry, head))
		return -EFAULT;

	*entry = compat_ptr((*uentry) & ~1);
	*pi = (unsigned int)(*uentry) & 1;

	return 0;
}

static void __user *futex_uaddr(struct robust_list __user *entry,
				compat_long_t futex_offset)
{
	compat_uptr_t base = ptr_to_compat(entry);
	void __user *uaddr = compat_ptr(base + futex_offset);

	return uaddr;
}

/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
3907
static void compat_exit_robust_list(struct task_struct *curr)
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
{
	struct compat_robust_list_head __user *head = curr->compat_robust_list;
	struct robust_list __user *entry, *next_entry, *pending;
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
	compat_uptr_t uentry, next_uentry, upending;
	compat_long_t futex_offset;
	int rc;

	if (!futex_cmpxchg_enabled)
		return;

	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
	if (compat_fetch_robust_entry(&upending, &pending,
			       &head->list_op_pending, &pip))
		return;

	next_entry = NULL;	/* avoid warning with gcc */
	while (entry != (struct robust_list __user *) &head->list) {
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
			(compat_uptr_t __user *)&entry->next, &next_pi);
		/*
		 * A pending lock might already be on the list, so
		 * dont process it twice:
		 */
		if (entry != pending) {
			void __user *uaddr = futex_uaddr(entry, futex_offset);

Y
Yang Tao 已提交
3954 3955
			if (handle_futex_death(uaddr, curr, pi,
					       HANDLE_DEATH_LIST))
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
				return;
		}
		if (rc)
			return;
		uentry = next_uentry;
		entry = next_entry;
		pi = next_pi;
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
	if (pending) {
		void __user *uaddr = futex_uaddr(pending, futex_offset);

Y
Yang Tao 已提交
3974
		handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
	}
}

COMPAT_SYSCALL_DEFINE2(set_robust_list,
		struct compat_robust_list_head __user *, head,
		compat_size_t, len)
{
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->compat_robust_list = head;

	return 0;
}

COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
			compat_uptr_t __user *, head_ptr,
			compat_size_t __user *, len_ptr)
{
	struct compat_robust_list_head __user *head;
	unsigned long ret;
	struct task_struct *p;

	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

	rcu_read_lock();

	ret = -ESRCH;
	if (!pid)
		p = current;
	else {
		p = find_task_by_vpid(pid);
		if (!p)
			goto err_unlock;
	}

	ret = -EPERM;
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
		goto err_unlock;

	head = p->compat_robust_list;
	rcu_read_unlock();

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(ptr_to_compat(head), head_ptr);

err_unlock:
	rcu_read_unlock();

	return ret;
}
4031
#endif /* CONFIG_COMPAT */
4032

4033
#ifdef CONFIG_COMPAT_32BIT_TIME
4034
SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4035 4036 4037
		struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
		u32, val3)
{
4038
	struct timespec64 ts;
4039 4040 4041 4042 4043 4044 4045
	ktime_t t, *tp = NULL;
	int val2 = 0;
	int cmd = op & FUTEX_CMD_MASK;

	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
4046
		if (get_old_timespec32(&ts, utime))
4047
			return -EFAULT;
4048
		if (!timespec64_valid(&ts))
4049 4050
			return -EINVAL;

4051
		t = timespec64_to_ktime(ts);
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
		if (cmd == FUTEX_WAIT)
			t = ktime_add_safe(ktime_get(), t);
		tp = &t;
	}
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
		val2 = (int) (unsigned long) utime;

	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
}
4062
#endif /* CONFIG_COMPAT_32BIT_TIME */
4063

4064
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
4065
{
4066
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4067
	u32 curval;
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
4086
	unsigned int futex_shift;
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
4098 4099 4100
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
4101 4102

	futex_detect_cmpxchg();
4103

4104
	for (i = 0; i < futex_hashsize; i++) {
4105
		atomic_set(&futex_queues[i].waiters, 0);
4106
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
4107 4108 4109
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
4110 4111
	return 0;
}
4112
core_initcall(futex_init);