futex.c 68.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/module.h>
59
#include <linux/magic.h>
60 61 62
#include <linux/pid.h>
#include <linux/nsproxy.h>

63
#include <asm/futex.h>
L
Linus Torvalds 已提交
64

65 66
#include "rtmutex_common.h"

67 68
int __read_mostly futex_cmpxchg_enabled;

L
Linus Torvalds 已提交
69 70
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

92 93 94 95 96 97 98 99 100 101 102
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
103 104 105
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
106
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
L
Linus Torvalds 已提交
107
 * The order of wakup is always to make the first condition true, then
108 109 110 111
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
112 113
 */
struct futex_q {
P
Pierre Peiffer 已提交
114
	struct plist_node list;
L
Linus Torvalds 已提交
115

116
	struct task_struct *task;
L
Linus Torvalds 已提交
117 118
	spinlock_t *lock_ptr;
	union futex_key key;
119
	struct futex_pi_state *pi_state;
120
	struct rt_mutex_waiter *rt_waiter;
121
	union futex_key *requeue_pi_key;
122
	u32 bitset;
L
Linus Torvalds 已提交
123 124 125
};

/*
D
Darren Hart 已提交
126 127 128
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
129 130
 */
struct futex_hash_bucket {
P
Pierre Peiffer 已提交
131 132
	spinlock_t lock;
	struct plist_head chain;
L
Linus Torvalds 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
};

static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];

/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
153 154
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
155 156 157 158
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		atomic_inc(&key->shared.inode->i_count);
		break;
	case FUT_OFF_MMSHARED:
		atomic_inc(&key->private.mm->mm_count);
		break;
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_futex_key_refs(union futex_key *key)
{
185 186 187
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
188
		return;
189
	}
190 191 192 193 194 195 196 197 198 199 200

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
201
/**
202 203 204 205
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
E
Eric Dumazet 已提交
206 207 208
 *
 * Returns a negative error code or 0
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
209
 *
210
 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
L
Linus Torvalds 已提交
211 212 213
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
214
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
215
 */
216
static int
217
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
L
Linus Torvalds 已提交
218
{
219
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
220 221 222 223 224 225 226
	struct mm_struct *mm = current->mm;
	struct page *page;
	int err;

	/*
	 * The futex address must be "naturally" aligned.
	 */
227
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
228
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
229
		return -EINVAL;
230
	address -= key->both.offset;
L
Linus Torvalds 已提交
231

E
Eric Dumazet 已提交
232 233 234 235 236 237 238 239
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
240
		if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
E
Eric Dumazet 已提交
241 242 243
			return -EFAULT;
		key->private.mm = mm;
		key->private.address = address;
244
		get_futex_key_refs(key);
E
Eric Dumazet 已提交
245 246
		return 0;
	}
L
Linus Torvalds 已提交
247

248
again:
249
	err = get_user_pages_fast(address, 1, 1, &page);
250 251 252
	if (err < 0)
		return err;

253
	page = compound_head(page);
254 255 256 257 258 259
	lock_page(page);
	if (!page->mapping) {
		unlock_page(page);
		put_page(page);
		goto again;
	}
L
Linus Torvalds 已提交
260 261 262 263 264 265

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
266
	 * the object not the particular process.
L
Linus Torvalds 已提交
267
	 */
268 269
	if (PageAnon(page)) {
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
270
		key->private.mm = mm;
271
		key->private.address = address;
272 273 274 275
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
		key->shared.inode = page->mapping->host;
		key->shared.pgoff = page->index;
L
Linus Torvalds 已提交
276 277
	}

278
	get_futex_key_refs(key);
L
Linus Torvalds 已提交
279

280 281 282
	unlock_page(page);
	put_page(page);
	return 0;
L
Linus Torvalds 已提交
283 284
}

285
static inline
P
Peter Zijlstra 已提交
286
void put_futex_key(int fshared, union futex_key *key)
L
Linus Torvalds 已提交
287
{
288
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
289 290
}

291 292
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
293 294 295 296 297 298 299 300 301 302 303 304
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
 * We have no generic implementation of a non destructive write to the
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
305 306 307 308 309 310 311 312
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
	ret = get_user_pages(current, mm, (unsigned long)uaddr,
			     1, 1, 0, NULL, NULL);
	up_read(&mm->mmap_sem);

313 314 315
	return ret < 0 ? ret : 0;
}

316 317
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
318 319
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

T
Thomas Gleixner 已提交
335 336 337 338 339 340 341 342 343 344 345 346
static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 curval;

	pagefault_disable();
	curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
	pagefault_enable();

	return curval;
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
347 348 349
{
	int ret;

350
	pagefault_disable();
351
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
352
	pagefault_enable();
L
Linus Torvalds 已提交
353 354 355 356

	return ret ? -EFAULT : 0;
}

357 358 359 360 361 362 363 364 365 366 367

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

368
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
369 370 371 372 373 374 375 376

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
377
	pi_state->key = FUTEX_KEY_INIT;
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
404
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
405
		list_del_init(&pi_state->list);
406
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;

433
	rcu_read_lock();
434
	p = find_task_by_vpid(pid);
435 436
	if (p)
		get_task_struct(p);
437

438
	rcu_read_unlock();
439 440 441 442 443 444 445 446 447 448 449 450 451

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
452
	struct futex_hash_bucket *hb;
453
	union futex_key key = FUTEX_KEY_INIT;
454

455 456
	if (!futex_cmpxchg_enabled)
		return;
457 458 459
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
460
	 * versus waiters unqueueing themselves:
461
	 */
462
	raw_spin_lock_irq(&curr->pi_lock);
463 464 465 466 467
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
468
		hb = hash_futex(&key);
469
		raw_spin_unlock_irq(&curr->pi_lock);
470 471 472

		spin_lock(&hb->lock);

473
		raw_spin_lock_irq(&curr->pi_lock);
474 475 476 477
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
478 479 480 481 482 483
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
484 485
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
486
		pi_state->owner = NULL;
487
		raw_spin_unlock_irq(&curr->pi_lock);
488 489 490 491 492

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

493
		raw_spin_lock_irq(&curr->pi_lock);
494
	}
495
	raw_spin_unlock_irq(&curr->pi_lock);
496 497 498
}

static int
P
Pierre Peiffer 已提交
499 500
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
		union futex_key *key, struct futex_pi_state **ps)
501 502 503
{
	struct futex_pi_state *pi_state = NULL;
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
504
	struct plist_head *head;
505
	struct task_struct *p;
506
	pid_t pid = uval & FUTEX_TID_MASK;
507 508 509

	head = &hb->chain;

P
Pierre Peiffer 已提交
510
	plist_for_each_entry_safe(this, next, head, list) {
P
Pierre Peiffer 已提交
511
		if (match_futex(&this->key, key)) {
512 513 514 515 516
			/*
			 * Another waiter already exists - bump up
			 * the refcount and return its pi_state:
			 */
			pi_state = this->pi_state;
517 518 519 520 521 522
			/*
			 * Userspace might have messed up non PI and PI futexes
			 */
			if (unlikely(!pi_state))
				return -EINVAL;

523
			WARN_ON(!atomic_read(&pi_state->refcount));
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542

			/*
			 * When pi_state->owner is NULL then the owner died
			 * and another waiter is on the fly. pi_state->owner
			 * is fixed up by the task which acquires
			 * pi_state->rt_mutex.
			 *
			 * We do not check for pid == 0 which can happen when
			 * the owner died and robust_list_exit() cleared the
			 * TID.
			 */
			if (pid && pi_state->owner) {
				/*
				 * Bail out if user space manipulated the
				 * futex value.
				 */
				if (pid != task_pid_vnr(pi_state->owner))
					return -EINVAL;
			}
543

544
			atomic_inc(&pi_state->refcount);
P
Pierre Peiffer 已提交
545
			*ps = pi_state;
546 547 548 549 550 551

			return 0;
		}
	}

	/*
552
	 * We are the first waiter - try to look up the real owner and attach
553
	 * the new pi_state to it, but bail out when TID = 0
554
	 */
555
	if (!pid)
556
		return -ESRCH;
557
	p = futex_find_get_task(pid);
558 559
	if (!p)
		return -ESRCH;
560 561 562 563 564 565 566

	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
567
	raw_spin_lock_irq(&p->pi_lock);
568 569 570 571 572 573 574 575
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

576
		raw_spin_unlock_irq(&p->pi_lock);
577 578 579
		put_task_struct(p);
		return ret;
	}
580 581 582 583 584 585 586 587 588 589

	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make 'p'
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
590
	pi_state->key = *key;
591

592
	WARN_ON(!list_empty(&pi_state->list));
593 594
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
595
	raw_spin_unlock_irq(&p->pi_lock);
596 597 598

	put_task_struct(p);

P
Pierre Peiffer 已提交
599
	*ps = pi_state;
600 601 602 603

	return 0;
}

604
/**
605
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
606 607 608 609 610 611 612 613
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
614 615 616 617 618 619 620 621 622 623 624
 *
 * Returns:
 *  0 - ready to wait
 *  1 - acquired the lock
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
625
				struct task_struct *task, int set_waiters)
626 627 628 629 630 631 632 633 634 635 636 637 638
{
	int lock_taken, ret, ownerdied = 0;
	u32 uval, newval, curval;

retry:
	ret = lock_taken = 0;

	/*
	 * To avoid races, we attempt to take the lock here again
	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
	 * the locks. It will most likely not succeed.
	 */
	newval = task_pid_vnr(task);
639 640
	if (set_waiters)
		newval |= FUTEX_WAITERS;
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728

	curval = cmpxchg_futex_value_locked(uaddr, 0, newval);

	if (unlikely(curval == -EFAULT))
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
	if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
		return -EDEADLK;

	/*
	 * Surprise - we got the lock. Just return to userspace:
	 */
	if (unlikely(!curval))
		return 1;

	uval = curval;

	/*
	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
	 * to wake at the next unlock.
	 */
	newval = curval | FUTEX_WAITERS;

	/*
	 * There are two cases, where a futex might have no owner (the
	 * owner TID is 0): OWNER_DIED. We take over the futex in this
	 * case. We also do an unconditional take over, when the owner
	 * of the futex died.
	 *
	 * This is safe as we are protected by the hash bucket lock !
	 */
	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
		/* Keep the OWNER_DIED bit */
		newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
		ownerdied = 0;
		lock_taken = 1;
	}

	curval = cmpxchg_futex_value_locked(uaddr, uval, newval);

	if (unlikely(curval == -EFAULT))
		return -EFAULT;
	if (unlikely(curval != uval))
		goto retry;

	/*
	 * We took the lock due to owner died take over.
	 */
	if (unlikely(lock_taken))
		return 1;

	/*
	 * We dont have the lock. Look up the PI state (or create it if
	 * we are the first waiter):
	 */
	ret = lookup_pi_state(uval, hb, key, ps);

	if (unlikely(ret)) {
		switch (ret) {
		case -ESRCH:
			/*
			 * No owner found for this futex. Check if the
			 * OWNER_DIED bit is set to figure out whether
			 * this is a robust futex or not.
			 */
			if (get_futex_value_locked(&curval, uaddr))
				return -EFAULT;

			/*
			 * We simply start over in case of a robust
			 * futex. The code above will take the futex
			 * and return happy.
			 */
			if (curval & FUTEX_OWNER_DIED) {
				ownerdied = 1;
				goto retry;
			}
		default:
			break;
		}
	}

	return ret;
}

L
Linus Torvalds 已提交
729 730 731 732 733 734
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
T
Thomas Gleixner 已提交
735 736
	struct task_struct *p = q->task;

L
Linus Torvalds 已提交
737
	/*
T
Thomas Gleixner 已提交
738 739 740 741 742
	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
	 * a non futex wake up happens on another CPU then the task
	 * might exit and p would dereference a non existing task
	 * struct. Prevent this by holding a reference on p across the
	 * wake up.
L
Linus Torvalds 已提交
743
	 */
T
Thomas Gleixner 已提交
744 745 746
	get_task_struct(p);

	plist_del(&q->list, &q->list.plist);
L
Linus Torvalds 已提交
747
	/*
T
Thomas Gleixner 已提交
748 749 750 751
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
752
	 */
753
	smp_wmb();
L
Linus Torvalds 已提交
754
	q->lock_ptr = NULL;
T
Thomas Gleixner 已提交
755 756 757

	wake_up_state(p, TASK_NORMAL);
	put_task_struct(p);
L
Linus Torvalds 已提交
758 759
}

760 761 762 763 764 765 766 767 768
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
	u32 curval, newval;

	if (!pi_state)
		return -EINVAL;

769 770 771 772 773 774 775
	/*
	 * If current does not own the pi_state then the futex is
	 * inconsistent and user space fiddled with the futex value.
	 */
	if (pi_state->owner != current)
		return -EINVAL;

776
	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
	 * This happens when we have stolen the lock and the original
	 * pending owner did not enqueue itself back on the rt_mutex.
	 * Thats not a tragedy. We know that way, that a lock waiter
	 * is on the fly. We make the futex_q waiter the pending owner.
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
	 * We pass it to the next owner. (The WAITERS bit is always
	 * kept enabled while there is PI state around. We must also
	 * preserve the owner died bit.)
	 */
793
	if (!(uval & FUTEX_OWNER_DIED)) {
794 795
		int ret = 0;

796
		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
797

T
Thomas Gleixner 已提交
798
		curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
799

800
		if (curval == -EFAULT)
801
			ret = -EFAULT;
802
		else if (curval != uval)
803 804
			ret = -EINVAL;
		if (ret) {
805
			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
806 807
			return ret;
		}
808
	}
809

810
	raw_spin_lock_irq(&pi_state->owner->pi_lock);
811 812
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
813
	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
814

815
	raw_spin_lock_irq(&new_owner->pi_lock);
816
	WARN_ON(!list_empty(&pi_state->list));
817 818
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
819
	raw_spin_unlock_irq(&new_owner->pi_lock);
820

821
	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
822 823 824 825 826 827 828 829 830 831 832 833 834
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
	u32 oldval;

	/*
	 * There is no waiter, so we unlock the futex. The owner died
	 * bit has not to be preserved here. We are the owner:
	 */
T
Thomas Gleixner 已提交
835
	oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
836 837 838 839 840 841 842 843 844

	if (oldval == -EFAULT)
		return oldval;
	if (oldval != uval)
		return -EAGAIN;

	return 0;
}

I
Ingo Molnar 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
861 862 863
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
864
	spin_unlock(&hb1->lock);
865 866
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
867 868
}

L
Linus Torvalds 已提交
869
/*
D
Darren Hart 已提交
870
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
871
 */
P
Peter Zijlstra 已提交
872
static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
873
{
874
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
875
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
876
	struct plist_head *head;
877
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
878 879
	int ret;

880 881 882
	if (!bitset)
		return -EINVAL;

883
	ret = get_futex_key(uaddr, fshared, &key);
L
Linus Torvalds 已提交
884 885 886
	if (unlikely(ret != 0))
		goto out;

887 888 889
	hb = hash_futex(&key);
	spin_lock(&hb->lock);
	head = &hb->chain;
L
Linus Torvalds 已提交
890

P
Pierre Peiffer 已提交
891
	plist_for_each_entry_safe(this, next, head, list) {
L
Linus Torvalds 已提交
892
		if (match_futex (&this->key, &key)) {
893
			if (this->pi_state || this->rt_waiter) {
894 895 896
				ret = -EINVAL;
				break;
			}
897 898 899 900 901

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

L
Linus Torvalds 已提交
902 903 904 905 906 907
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

908
	spin_unlock(&hb->lock);
909
	put_futex_key(fshared, &key);
910
out:
L
Linus Torvalds 已提交
911 912 913
	return ret;
}

914 915 916 917
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
918
static int
P
Peter Zijlstra 已提交
919
futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
920
	      int nr_wake, int nr_wake2, int op)
921
{
922
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
923
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
924
	struct plist_head *head;
925
	struct futex_q *this, *next;
D
Darren Hart 已提交
926
	int ret, op_ret;
927

D
Darren Hart 已提交
928
retry:
929
	ret = get_futex_key(uaddr1, fshared, &key1);
930 931
	if (unlikely(ret != 0))
		goto out;
932
	ret = get_futex_key(uaddr2, fshared, &key2);
933
	if (unlikely(ret != 0))
934
		goto out_put_key1;
935

936 937
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
938

D
Darren Hart 已提交
939
retry_private:
T
Thomas Gleixner 已提交
940
	double_lock_hb(hb1, hb2);
941
	op_ret = futex_atomic_op_inuser(op, uaddr2);
942 943
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
944
		double_unlock_hb(hb1, hb2);
945

946
#ifndef CONFIG_MMU
947 948 949 950
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
951
		ret = op_ret;
952
		goto out_put_keys;
953 954
#endif

955 956
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
957
			goto out_put_keys;
958 959
		}

960
		ret = fault_in_user_writeable(uaddr2);
961
		if (ret)
962
			goto out_put_keys;
963

D
Darren Hart 已提交
964 965 966
		if (!fshared)
			goto retry_private;

967 968
		put_futex_key(fshared, &key2);
		put_futex_key(fshared, &key1);
D
Darren Hart 已提交
969
		goto retry;
970 971
	}

972
	head = &hb1->chain;
973

P
Pierre Peiffer 已提交
974
	plist_for_each_entry_safe(this, next, head, list) {
975 976 977 978 979 980 981 982
		if (match_futex (&this->key, &key1)) {
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
983
		head = &hb2->chain;
984 985

		op_ret = 0;
P
Pierre Peiffer 已提交
986
		plist_for_each_entry_safe(this, next, head, list) {
987 988 989 990 991 992 993 994 995
			if (match_futex (&this->key, &key2)) {
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

D
Darren Hart 已提交
996
	double_unlock_hb(hb1, hb2);
997
out_put_keys:
998
	put_futex_key(fshared, &key2);
999
out_put_key1:
1000
	put_futex_key(fshared, &key1);
1001
out:
1002 1003 1004
	return ret;
}

D
Darren Hart 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
		plist_add(&q->list, &hb2->chain);
		q->lock_ptr = &hb2->lock;
#ifdef CONFIG_DEBUG_PI_LIST
1026
		q->list.plist.spinlock = &hb2->lock;
D
Darren Hart 已提交
1027 1028 1029 1030 1031 1032
#endif
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1033 1034
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1035 1036 1037
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1038 1039 1040 1041 1042
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1043 1044 1045
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1046 1047
 */
static inline
1048 1049
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
{
	get_futex_key_refs(key);
	q->key = *key;

	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1060 1061
	q->lock_ptr = &hb->lock;
#ifdef CONFIG_DEBUG_PI_LIST
1062
	q->list.plist.spinlock = &hb->lock;
1063 1064
#endif

T
Thomas Gleixner 已提交
1065
	wake_up_state(q->task, TASK_NORMAL);
1066 1067 1068 1069
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1070 1071 1072 1073 1074 1075 1076
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1077 1078
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1079 1080 1081
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
 *
 * Returns:
 *  0 - failed to acquire the lock atomicly
 *  1 - acquired the lock
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1092
				 struct futex_pi_state **ps, int set_waiters)
1093
{
1094
	struct futex_q *top_waiter = NULL;
1095 1096 1097 1098 1099 1100
	u32 curval;
	int ret;

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1101 1102 1103 1104 1105 1106 1107 1108
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1109 1110 1111 1112 1113 1114
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1115 1116 1117 1118
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1119
	/*
1120 1121 1122
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1123
	 */
1124 1125
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1126
	if (ret == 1)
1127
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
 * uaddr1:	source futex user address
 * uaddr2:	target futex user address
 * nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * requeue_pi:	if we are attempting to requeue from a non-pi futex to a
 * 		pi futex (pi to pi requeue is not supported)
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
 * Returns:
 * >=0 - on success, the number of tasks requeued or woken
 *  <0 - on error
L
Linus Torvalds 已提交
1147
 */
P
Peter Zijlstra 已提交
1148
static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1149 1150
			 int nr_wake, int nr_requeue, u32 *cmpval,
			 int requeue_pi)
L
Linus Torvalds 已提交
1151
{
1152
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1153 1154
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1155
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
1156
	struct plist_head *head1;
L
Linus Torvalds 已提交
1157
	struct futex_q *this, *next;
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	u32 curval2;

	if (requeue_pi) {
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1180

1181
retry:
1182 1183 1184 1185 1186 1187 1188 1189 1190
	if (pi_state != NULL) {
		/*
		 * We will have to lookup the pi_state again, so free this one
		 * to keep the accounting correct.
		 */
		free_pi_state(pi_state);
		pi_state = NULL;
	}

1191
	ret = get_futex_key(uaddr1, fshared, &key1);
L
Linus Torvalds 已提交
1192 1193
	if (unlikely(ret != 0))
		goto out;
1194
	ret = get_futex_key(uaddr2, fshared, &key2);
L
Linus Torvalds 已提交
1195
	if (unlikely(ret != 0))
1196
		goto out_put_key1;
L
Linus Torvalds 已提交
1197

1198 1199
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1200

D
Darren Hart 已提交
1201
retry_private:
I
Ingo Molnar 已提交
1202
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1203

1204 1205
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1206

1207
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1208 1209

		if (unlikely(ret)) {
D
Darren Hart 已提交
1210
			double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1211

1212
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1213 1214
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1215

D
Darren Hart 已提交
1216 1217
			if (!fshared)
				goto retry_private;
L
Linus Torvalds 已提交
1218

D
Darren Hart 已提交
1219 1220 1221
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
			goto retry;
L
Linus Torvalds 已提交
1222
		}
1223
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1224 1225 1226 1227 1228
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1229
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1230 1231 1232 1233 1234 1235
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1236
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1237
						 &key2, &pi_state, nr_requeue);
1238 1239 1240 1241 1242 1243 1244 1245 1246

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
		 * reference to it.
		 */
		if (ret == 1) {
			WARN_ON(pi_state);
1247
			drop_count++;
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
			task_count++;
			ret = get_futex_value_locked(&curval2, uaddr2);
			if (!ret)
				ret = lookup_pi_state(curval2, hb2, &key2,
						      &pi_state);
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
1262
			ret = fault_in_user_writeable(uaddr2);
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
			/* The owner was exiting, try again. */
			double_unlock_hb(hb1, hb2);
			put_futex_key(fshared, &key2);
			put_futex_key(fshared, &key1);
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

1278
	head1 = &hb1->chain;
P
Pierre Peiffer 已提交
1279
	plist_for_each_entry_safe(this, next, head1, list) {
1280 1281 1282 1283
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1284
			continue;
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
		 */
		if ((requeue_pi && !this->rt_waiter) ||
		    (!requeue_pi && this->rt_waiter)) {
			ret = -EINVAL;
			break;
		}
1295 1296 1297 1298 1299 1300 1301

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
L
Linus Torvalds 已提交
1302
			wake_futex(this);
1303 1304
			continue;
		}
L
Linus Torvalds 已提交
1305

1306 1307 1308 1309 1310 1311
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
							this->task, 1);
			if (ret == 1) {
				/* We got the lock. */
1325
				requeue_pi_wake_futex(this, &key2, hb2);
1326
				drop_count++;
1327 1328 1329 1330 1331 1332 1333
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
L
Linus Torvalds 已提交
1334
		}
1335 1336
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1337 1338 1339
	}

out_unlock:
D
Darren Hart 已提交
1340
	double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1341

1342 1343 1344 1345 1346 1347
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1348
	while (--drop_count >= 0)
1349
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1350

1351
out_put_keys:
1352
	put_futex_key(fshared, &key2);
1353
out_put_key1:
1354
	put_futex_key(fshared, &key1);
1355
out:
1356 1357 1358
	if (pi_state != NULL)
		free_pi_state(pi_state);
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1359 1360 1361
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1362
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1363
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
1364
{
1365
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1366

1367
	get_futex_key_refs(&q->key);
1368 1369
	hb = hash_futex(&q->key);
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1370

1371 1372
	spin_lock(&hb->lock);
	return hb;
L
Linus Torvalds 已提交
1373 1374
}

1375 1376
static inline void
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1377
	__releases(&hb->lock)
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
{
	spin_unlock(&hb->lock);
	drop_futex_key_refs(&q->key);
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
E
Eric Sesterhenn 已提交
1395
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1396
	__releases(&hb->lock)
L
Linus Torvalds 已提交
1397
{
P
Pierre Peiffer 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
#ifdef CONFIG_DEBUG_PI_LIST
1412
	q->list.plist.spinlock = &hb->lock;
P
Pierre Peiffer 已提交
1413 1414
#endif
	plist_add(&q->list, &hb->chain);
1415
	q->task = current;
1416
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1417 1418
}

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
 * Returns:
 *   1 - if the futex_q was still queued (and we removed unqueued it)
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
1429 1430 1431 1432
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1433
	int ret = 0;
L
Linus Torvalds 已提交
1434 1435

	/* In the common case we don't take the spinlock, which is nice. */
1436
retry:
L
Linus Torvalds 已提交
1437
	lock_ptr = q->lock_ptr;
1438
	barrier();
1439
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
P
Pierre Peiffer 已提交
1458 1459
		WARN_ON(plist_node_empty(&q->list));
		plist_del(&q->list, &q->list.plist);
1460 1461 1462

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
1463 1464 1465 1466
		spin_unlock(lock_ptr);
		ret = 1;
	}

1467
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1468 1469 1470
	return ret;
}

1471 1472
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
1473 1474
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1475
 */
P
Pierre Peiffer 已提交
1476
static void unqueue_me_pi(struct futex_q *q)
1477
	__releases(q->lock_ptr)
1478
{
P
Pierre Peiffer 已提交
1479 1480
	WARN_ON(plist_node_empty(&q->list));
	plist_del(&q->list, &q->list.plist);
1481 1482 1483 1484 1485

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
1486
	spin_unlock(q->lock_ptr);
1487

1488
	drop_futex_key_refs(&q->key);
1489 1490
}

P
Pierre Peiffer 已提交
1491
/*
1492
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
1493
 *
1494 1495
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
1496
 */
1497
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
P
Peter Zijlstra 已提交
1498
				struct task_struct *newowner, int fshared)
P
Pierre Peiffer 已提交
1499
{
1500
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
1501
	struct futex_pi_state *pi_state = q->pi_state;
1502
	struct task_struct *oldowner = pi_state->owner;
P
Pierre Peiffer 已提交
1503
	u32 uval, curval, newval;
D
Darren Hart 已提交
1504
	int ret;
P
Pierre Peiffer 已提交
1505 1506

	/* Owner died? */
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
	 * pending owner or we are the pending owner which failed to
	 * get the rtmutex. We have to replace the pending owner TID
	 * in the user space variable. This must be atomic as we have
	 * to preserve the owner died bit here.
	 *
D
Darren Hart 已提交
1517 1518 1519
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

		curval = cmpxchg_futex_value_locked(uaddr, uval, newval);

		if (curval == -EFAULT)
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
1547
	if (pi_state->owner != NULL) {
1548
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
1549 1550
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
1551
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1552
	}
P
Pierre Peiffer 已提交
1553

1554
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
1555

1556
	raw_spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
1557
	WARN_ON(!list_empty(&pi_state->list));
1558
	list_add(&pi_state->list, &newowner->pi_state_list);
1559
	raw_spin_unlock_irq(&newowner->pi_lock);
1560
	return 0;
P
Pierre Peiffer 已提交
1561 1562

	/*
1563 1564 1565 1566 1567 1568 1569 1570
	 * To handle the page fault we need to drop the hash bucket
	 * lock here. That gives the other task (either the pending
	 * owner itself or the task which stole the rtmutex) the
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
1571
	 */
1572 1573
handle_fault:
	spin_unlock(q->lock_ptr);
1574

1575
	ret = fault_in_user_writeable(uaddr);
1576

1577
	spin_lock(q->lock_ptr);
1578

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
1589 1590
}

E
Eric Dumazet 已提交
1591 1592
/*
 * In case we must use restart_block to restart a futex_wait,
1593
 * we encode in the 'flags' shared capability
E
Eric Dumazet 已提交
1594
 */
1595 1596
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
1597
#define FLAGS_HAS_TIMEOUT	0x04
E
Eric Dumazet 已提交
1598

N
Nick Piggin 已提交
1599
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
1600

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @fshared:	whether the futex is shared (1) or not (0)
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
 * Returns:
 *  1 - success, lock taken
 *  0 - success, lock not taken
 * <0 - on error (-EFAULT)
 */
static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
		       int locked)
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
			ret = fixup_pi_state_owner(uaddr, q, current, fshared);
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
		 * rt_mutex. Too late. We can access the rt_mutex_owner without
		 * locking, as the other task is now blocked on the hash bucket
		 * lock. Fix the state up.
		 */
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
		ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
	 * the owner, nor the pending owner, of the rt_mutex.
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

1674 1675 1676 1677 1678 1679 1680
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
1681
				struct hrtimer_sleeper *timeout)
1682
{
1683 1684 1685 1686 1687 1688
	/*
	 * The task state is guaranteed to be set before another task can
	 * wake it. set_current_state() is implemented using set_mb() and
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
1689
	set_current_state(TASK_INTERRUPTIBLE);
1690
	queue_me(q, hb);
1691 1692 1693 1694 1695 1696 1697 1698 1699

	/* Arm the timer */
	if (timeout) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	/*
1700 1701
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
			schedule();
	}
	__set_current_state(TASK_RUNNING);
}

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
 * @fshared:	whether the futex is shared (1) or not (0)
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
 * Returns:
 *  0 - uaddr contains val and hb has been locked
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
 */
static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
1734
{
1735 1736
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
1737 1738

	/*
D
Darren Hart 已提交
1739
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
	 * any cond.  If we queued after testing *uaddr, that would open
	 * a race condition where we could block indefinitely with
	 * cond(var) false, which would violate the guarantee.
	 *
	 * A consequence is that futex_wait() can return zero and absorb
	 * a wakeup when *uaddr != val on entry to the syscall.  This is
	 * rare, but normal.
	 */
1755 1756
retry:
	q->key = FUTEX_KEY_INIT;
1757
	ret = get_futex_key(uaddr, fshared, &q->key);
1758
	if (unlikely(ret != 0))
1759
		return ret;
1760 1761 1762 1763

retry_private:
	*hb = queue_lock(q);

1764
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
1765

1766 1767
	if (ret) {
		queue_unlock(q, *hb);
L
Linus Torvalds 已提交
1768

1769
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
1770
		if (ret)
1771
			goto out;
L
Linus Torvalds 已提交
1772

D
Darren Hart 已提交
1773 1774 1775
		if (!fshared)
			goto retry_private;

1776
		put_futex_key(fshared, &q->key);
D
Darren Hart 已提交
1777
		goto retry;
L
Linus Torvalds 已提交
1778
	}
1779

1780 1781 1782
	if (uval != val) {
		queue_unlock(q, *hb);
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
1783
	}
L
Linus Torvalds 已提交
1784

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
out:
	if (ret)
		put_futex_key(fshared, &q->key);
	return ret;
}

static int futex_wait(u32 __user *uaddr, int fshared,
		      u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
	struct futex_q q;
	int ret;

	if (!bitset)
		return -EINVAL;

	q.pi_state = NULL;
	q.bitset = bitset;
1805
	q.rt_waiter = NULL;
1806
	q.requeue_pi_key = NULL;
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

	if (abs_time) {
		to = &timeout;

		hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
				      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
1818
retry:
1819 1820 1821 1822 1823
	/* Prepare to wait on uaddr. */
	ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
	if (ret)
		goto out;

1824
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
1825
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
1826 1827

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
1828
	ret = 0;
L
Linus Torvalds 已提交
1829
	if (!unqueue_me(&q))
P
Peter Zijlstra 已提交
1830 1831
		goto out_put_key;
	ret = -ETIMEDOUT;
1832
	if (to && !to->task)
P
Peter Zijlstra 已提交
1833
		goto out_put_key;
N
Nick Piggin 已提交
1834

1835
	/*
T
Thomas Gleixner 已提交
1836 1837
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
1838
	 */
T
Thomas Gleixner 已提交
1839 1840 1841 1842 1843
	if (!signal_pending(current)) {
		put_futex_key(fshared, &q.key);
		goto retry;
	}

P
Peter Zijlstra 已提交
1844
	ret = -ERESTARTSYS;
1845
	if (!abs_time)
P
Peter Zijlstra 已提交
1846
		goto out_put_key;
L
Linus Torvalds 已提交
1847

P
Peter Zijlstra 已提交
1848 1849
	restart = &current_thread_info()->restart_block;
	restart->fn = futex_wait_restart;
1850
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
1851 1852 1853
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
1854
	restart->futex.flags = FLAGS_HAS_TIMEOUT;
P
Peter Zijlstra 已提交
1855 1856 1857 1858 1859

	if (fshared)
		restart->futex.flags |= FLAGS_SHARED;
	if (clockrt)
		restart->futex.flags |= FLAGS_CLOCKRT;
1860

P
Peter Zijlstra 已提交
1861 1862 1863 1864
	ret = -ERESTART_RESTARTBLOCK;

out_put_key:
	put_futex_key(fshared, &q.key);
1865
out:
1866 1867 1868 1869
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
1870 1871 1872
	return ret;
}

N
Nick Piggin 已提交
1873 1874 1875

static long futex_wait_restart(struct restart_block *restart)
{
1876
	u32 __user *uaddr = restart->futex.uaddr;
P
Peter Zijlstra 已提交
1877
	int fshared = 0;
1878
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
1879

1880 1881 1882 1883
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
1884
	restart->fn = do_no_restart_syscall;
1885
	if (restart->futex.flags & FLAGS_SHARED)
P
Peter Zijlstra 已提交
1886
		fshared = 1;
1887
	return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1888 1889
				restart->futex.bitset,
				restart->futex.flags & FLAGS_CLOCKRT);
N
Nick Piggin 已提交
1890 1891 1892
}


1893 1894 1895 1896 1897 1898
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
P
Peter Zijlstra 已提交
1899
static int futex_lock_pi(u32 __user *uaddr, int fshared,
E
Eric Dumazet 已提交
1900
			 int detect, ktime_t *time, int trylock)
1901
{
1902
	struct hrtimer_sleeper timeout, *to = NULL;
1903 1904
	struct futex_hash_bucket *hb;
	struct futex_q q;
1905
	int res, ret;
1906 1907 1908 1909

	if (refill_pi_state_cache())
		return -ENOMEM;

1910
	if (time) {
1911
		to = &timeout;
1912 1913
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
1914
		hrtimer_init_sleeper(to, current);
1915
		hrtimer_set_expires(&to->timer, *time);
1916 1917
	}

1918
	q.pi_state = NULL;
1919
	q.rt_waiter = NULL;
1920
	q.requeue_pi_key = NULL;
1921
retry:
1922
	q.key = FUTEX_KEY_INIT;
1923
	ret = get_futex_key(uaddr, fshared, &q.key);
1924
	if (unlikely(ret != 0))
1925
		goto out;
1926

D
Darren Hart 已提交
1927
retry_private:
E
Eric Sesterhenn 已提交
1928
	hb = queue_lock(&q);
1929

1930
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1931
	if (unlikely(ret)) {
1932
		switch (ret) {
1933 1934 1935 1936 1937 1938
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
1939 1940 1941 1942 1943 1944
		case -EAGAIN:
			/*
			 * Task is exiting and we just wait for the
			 * exit to complete.
			 */
			queue_unlock(&q, hb);
1945
			put_futex_key(fshared, &q.key);
1946 1947 1948
			cond_resched();
			goto retry;
		default:
1949
			goto out_unlock_put_key;
1950 1951 1952 1953 1954 1955
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
1956
	queue_me(&q, hb);
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
	if (!trylock)
		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
	else {
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

1970
	spin_lock(q.lock_ptr);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
	res = fixup_owner(uaddr, fshared, &q, !ret);
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
1982

1983
	/*
1984 1985
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
1986 1987 1988 1989
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

1990 1991
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
1992

1993
	goto out_put_key;
1994

1995
out_unlock_put_key:
1996 1997
	queue_unlock(&q, hb);

1998
out_put_key:
1999
	put_futex_key(fshared, &q.key);
2000
out:
2001 2002
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
2003
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2004

2005
uaddr_faulted:
2006 2007
	queue_unlock(&q, hb);

2008
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2009 2010
	if (ret)
		goto out_put_key;
2011

D
Darren Hart 已提交
2012 2013 2014 2015 2016
	if (!fshared)
		goto retry_private;

	put_futex_key(fshared, &q.key);
	goto retry;
2017 2018 2019 2020 2021 2022 2023
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
P
Peter Zijlstra 已提交
2024
static int futex_unlock_pi(u32 __user *uaddr, int fshared)
2025 2026 2027 2028
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
	u32 uval;
P
Pierre Peiffer 已提交
2029
	struct plist_head *head;
2030
	union futex_key key = FUTEX_KEY_INIT;
D
Darren Hart 已提交
2031
	int ret;
2032 2033 2034 2035 2036 2037 2038

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2039
	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2040 2041
		return -EPERM;

2042
	ret = get_futex_key(uaddr, fshared, &key);
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	if (unlikely(ret != 0))
		goto out;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
	 * To avoid races, try to do the TID -> 0 atomic transition
	 * again. If it succeeds then we can return without waking
	 * anyone else up:
	 */
T
Thomas Gleixner 已提交
2054
	if (!(uval & FUTEX_OWNER_DIED))
2055
		uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
T
Thomas Gleixner 已提交
2056

2057 2058 2059 2060 2061 2062 2063

	if (unlikely(uval == -EFAULT))
		goto pi_faulted;
	/*
	 * Rare case: we managed to release the lock atomically,
	 * no need to wake anyone else up:
	 */
2064
	if (unlikely(uval == task_pid_vnr(current)))
2065 2066 2067 2068 2069 2070 2071 2072
		goto out_unlock;

	/*
	 * Ok, other tasks may need to be woken up - check waiters
	 * and do the wakeup if necessary:
	 */
	head = &hb->chain;

P
Pierre Peiffer 已提交
2073
	plist_for_each_entry_safe(this, next, head, list) {
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
		if (!match_futex (&this->key, &key))
			continue;
		ret = wake_futex_pi(uaddr, uval, this);
		/*
		 * The atomic access to the futex value
		 * generated a pagefault, so retry the
		 * user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
	/*
	 * No waiters - kernel unlocks the futex:
	 */
2089 2090 2091 2092 2093
	if (!(uval & FUTEX_OWNER_DIED)) {
		ret = unlock_futex_pi(uaddr, uval);
		if (ret == -EFAULT)
			goto pi_faulted;
	}
2094 2095 2096

out_unlock:
	spin_unlock(&hb->lock);
2097
	put_futex_key(fshared, &key);
2098

2099
out:
2100 2101 2102
	return ret;

pi_faulted:
2103
	spin_unlock(&hb->lock);
D
Darren Hart 已提交
2104
	put_futex_key(fshared, &key);
2105

2106
	ret = fault_in_user_writeable(uaddr);
2107
	if (!ret)
2108 2109
		goto retry;

L
Linus Torvalds 已提交
2110 2111 2112
	return ret;
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
 * Returns
 *  0 - no early wakeup detected
2127
 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
		plist_del(&q->list, &q->list.plist);

T
Thomas Gleixner 已提交
2151
		/* Handle spurious wakeups gracefully */
2152
		ret = -EWOULDBLOCK;
2153 2154
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2155
		else if (signal_pending(current))
2156
			ret = -ERESTARTNOINTR;
2157 2158 2159 2160 2161 2162
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2163
 * @uaddr:	the futex we initially wait on (non-pi)
2164 2165 2166 2167
 * @fshared:	whether the futexes are shared (1) or not (0).  They must be
 * 		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2168
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
 * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
 * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
 * complete the acquisition of the rt_mutex prior to returning to userspace.
 * This ensures the rt_mutex maintains an owner when it has waiters; without
 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
 * need to.
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
 * via the following:
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2182 2183 2184
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2185
 *
2186
 * If 3, cleanup and return -ERESTARTNOINTR.
2187 2188 2189 2190 2191 2192 2193
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2194
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
 * Returns:
 *  0 - On success
 * <0 - On error
 */
static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
				 u32 val, ktime_t *abs_time, u32 bitset,
				 int clockrt, u32 __user *uaddr2)
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
	union futex_key key2;
	struct futex_q q;
	int res, ret;

	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
		hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
				      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
	rt_waiter.task = NULL;

	key2 = FUTEX_KEY_INIT;
2234
	ret = get_futex_key(uaddr2, fshared, &key2);
2235 2236 2237
	if (unlikely(ret != 0))
		goto out;

2238 2239 2240 2241 2242
	q.pi_state = NULL;
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2243 2244
	/* Prepare to wait on uaddr. */
	ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
T
Thomas Gleixner 已提交
2245 2246
	if (ret)
		goto out_key2;
2247 2248

	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2249
	futex_wait_queue_me(hb, &q, to);
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
	 * race with the atomic proxy lock acquition by the requeue code.
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
			ret = fixup_pi_state_owner(uaddr2, &q, current,
						   fshared);
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
		WARN_ON(!&q.pi_state);
		pi_mutex = &q.pi_state->pi_mutex;
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
		res = fixup_owner(uaddr2, fshared, &q, !ret);
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2295
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
		if (rt_mutex_owner(pi_mutex) == current)
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2313 2314 2315 2316 2317
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2318
		 */
2319
		ret = -EWOULDBLOCK;
2320 2321 2322 2323
	}

out_put_keys:
	put_futex_key(fshared, &q.key);
T
Thomas Gleixner 已提交
2324
out_key2:
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	put_futex_key(fshared, &key2);

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2335 2336 2337 2338 2339 2340 2341
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2342
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2343 2344 2345 2346 2347 2348 2349 2350
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
2351 2352 2353
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
2354
 */
2355 2356
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2357
{
2358 2359
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
2372 2373 2374 2375
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2376
 */
2377 2378 2379
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2380
{
A
Al Viro 已提交
2381
	struct robust_list_head __user *head;
2382
	unsigned long ret;
2383
	const struct cred *cred = current_cred(), *pcred;
2384

2385 2386 2387
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2388 2389 2390 2391 2392 2393
	if (!pid)
		head = current->robust_list;
	else {
		struct task_struct *p;

		ret = -ESRCH;
2394
		rcu_read_lock();
2395
		p = find_task_by_vpid(pid);
2396 2397 2398
		if (!p)
			goto err_unlock;
		ret = -EPERM;
2399 2400 2401
		pcred = __task_cred(p);
		if (cred->euid != pcred->euid &&
		    cred->euid != pcred->uid &&
2402
		    !capable(CAP_SYS_PTRACE))
2403 2404
			goto err_unlock;
		head = p->robust_list;
2405
		rcu_read_unlock();
2406 2407 2408 2409 2410 2411 2412
	}

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2413
	rcu_read_unlock();
2414 2415 2416 2417 2418 2419 2420 2421

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2422
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2423
{
2424
	u32 uval, nval, mval;
2425

2426 2427
retry:
	if (get_user(uval, uaddr))
2428 2429
		return -1;

2430
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2441 2442 2443
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
		nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);

2444 2445 2446 2447
		if (nval == -EFAULT)
			return -1;

		if (nval != uval)
2448
			goto retry;
2449

2450 2451 2452 2453
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
2454
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
2455
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2456 2457 2458 2459
	}
	return 0;
}

2460 2461 2462 2463
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
2464
				     struct robust_list __user * __user *head,
2465
				     unsigned int *pi)
2466 2467 2468
{
	unsigned long uentry;

A
Al Viro 已提交
2469
	if (get_user(uentry, (unsigned long __user *)head))
2470 2471
		return -EFAULT;

A
Al Viro 已提交
2472
	*entry = (void __user *)(uentry & ~1UL);
2473 2474 2475 2476 2477
	*pi = uentry & 1;

	return 0;
}

2478 2479 2480 2481 2482 2483 2484 2485 2486
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
2487 2488
	struct robust_list __user *entry, *next_entry, *pending;
	unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2489
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
2490
	int rc;
2491

2492 2493 2494
	if (!futex_cmpxchg_enabled)
		return;

2495 2496 2497 2498
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2499
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
2510
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2511
		return;
2512

M
Martin Schwidefsky 已提交
2513
	next_entry = NULL;	/* avoid warning with gcc */
2514
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
2515 2516 2517 2518 2519
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2520 2521
		/*
		 * A pending lock might already be on the list, so
2522
		 * don't process it twice:
2523 2524
		 */
		if (entry != pending)
A
Al Viro 已提交
2525
			if (handle_futex_death((void __user *)entry + futex_offset,
2526
						curr, pi))
2527
				return;
M
Martin Schwidefsky 已提交
2528
		if (rc)
2529
			return;
M
Martin Schwidefsky 已提交
2530 2531
		entry = next_entry;
		pi = next_pi;
2532 2533 2534 2535 2536 2537 2538 2539
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
2540 2541 2542 2543

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
2544 2545
}

2546
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2547
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
2548
{
2549
	int clockrt, ret = -ENOSYS;
E
Eric Dumazet 已提交
2550
	int cmd = op & FUTEX_CMD_MASK;
P
Peter Zijlstra 已提交
2551
	int fshared = 0;
E
Eric Dumazet 已提交
2552 2553

	if (!(op & FUTEX_PRIVATE_FLAG))
P
Peter Zijlstra 已提交
2554
		fshared = 1;
L
Linus Torvalds 已提交
2555

2556
	clockrt = op & FUTEX_CLOCK_REALTIME;
2557
	if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2558
		return -ENOSYS;
L
Linus Torvalds 已提交
2559

E
Eric Dumazet 已提交
2560
	switch (cmd) {
L
Linus Torvalds 已提交
2561
	case FUTEX_WAIT:
2562 2563
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
2564
		ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
L
Linus Torvalds 已提交
2565 2566
		break;
	case FUTEX_WAKE:
2567 2568 2569
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
		ret = futex_wake(uaddr, fshared, val, val3);
L
Linus Torvalds 已提交
2570 2571
		break;
	case FUTEX_REQUEUE:
2572
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
2573 2574
		break;
	case FUTEX_CMP_REQUEUE:
2575 2576
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
				    0);
L
Linus Torvalds 已提交
2577
		break;
2578
	case FUTEX_WAKE_OP:
E
Eric Dumazet 已提交
2579
		ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2580
		break;
2581
	case FUTEX_LOCK_PI:
2582 2583
		if (futex_cmpxchg_enabled)
			ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2584 2585
		break;
	case FUTEX_UNLOCK_PI:
2586 2587
		if (futex_cmpxchg_enabled)
			ret = futex_unlock_pi(uaddr, fshared);
2588 2589
		break;
	case FUTEX_TRYLOCK_PI:
2590 2591
		if (futex_cmpxchg_enabled)
			ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2592
		break;
2593 2594 2595 2596 2597 2598 2599 2600 2601
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
		ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
					    clockrt, uaddr2);
		break;
	case FUTEX_CMP_REQUEUE_PI:
		ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
				    1);
		break;
L
Linus Torvalds 已提交
2602 2603 2604 2605 2606 2607 2608
	default:
		ret = -ENOSYS;
	}
	return ret;
}


2609 2610 2611
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
2612
{
2613 2614
	struct timespec ts;
	ktime_t t, *tp = NULL;
2615
	u32 val2 = 0;
E
Eric Dumazet 已提交
2616
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
2617

2618
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2619 2620
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2621
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
2622
			return -EFAULT;
2623
		if (!timespec_valid(&ts))
2624
			return -EINVAL;
2625 2626

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
2627
		if (cmd == FUTEX_WAIT)
2628
			t = ktime_add_safe(ktime_get(), t);
2629
		tp = &t;
L
Linus Torvalds 已提交
2630 2631
	}
	/*
2632
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2633
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
2634
	 */
2635
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2636
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2637
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
2638

2639
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
2640 2641
}

2642
static int __init futex_init(void)
L
Linus Torvalds 已提交
2643
{
2644
	u32 curval;
T
Thomas Gleixner 已提交
2645
	int i;
A
Akinobu Mita 已提交
2646

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non functional ones will return
	 * -ENOSYS.
	 */
	curval = cmpxchg_futex_value_locked(NULL, 0, 0);
	if (curval == -EFAULT)
		futex_cmpxchg_enabled = 1;

T
Thomas Gleixner 已提交
2661 2662 2663 2664 2665
	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
		plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
2666 2667
	return 0;
}
2668
__initcall(futex_init);