futex.c 79.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/export.h>
59
#include <linux/magic.h>
60 61
#include <linux/pid.h>
#include <linux/nsproxy.h>
62
#include <linux/ptrace.h>
63
#include <linux/sched/rt.h>
64
#include <linux/hugetlb.h>
C
Colin Cross 已提交
65
#include <linux/freezer.h>
66
#include <linux/bootmem.h>
67

68
#include <asm/futex.h>
L
Linus Torvalds 已提交
69

70
#include "locking/rtmutex_common.h"
71

72
/*
73 74 75 76
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
77 78 79 80
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
81 82 83
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
84 85
 *
 * The waker side modifies the user space value of the futex and calls
86 87 88
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
89
 *
90 91 92 93 94
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
116 117 118 119 120
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
121 122 123
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
124
 *
125
 *   waiters++; (a)
126 127 128 129 130 131 132 133 134 135
 *   mb(); (A) <-- paired with -.
 *                              |
 *   lock(hash_bucket(futex));  |
 *                              |
 *   uval = *futex;             |
 *                              |        *futex = newval;
 *                              |        sys_futex(WAKE, futex);
 *                              |          futex_wake(futex);
 *                              |
 *                              `------->  mb(); (B)
136
 *   if (uval == val)
137
 *     queue();
138
 *     unlock(hash_bucket(futex));
139 140
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
141 142
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
143
 *
144 145 146 147 148
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 * to futex and the waiters read -- this is done by the barriers in
 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
 * futex type.
149 150 151 152 153 154 155 156 157 158 159 160
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
161 162 163 164 165 166 167 168 169 170 171
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
172 173
 */

174
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175
int __read_mostly futex_cmpxchg_enabled;
176
#endif
177

178 179 180 181 182 183 184 185
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

207 208
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
209
 * @list:		priority-sorted list of tasks waiting on this futex
210 211 212 213 214 215 216 217 218
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
219 220 221
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
222
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223
 * The order of wakeup is always to make the first condition true, then
224 225 226 227
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
228 229
 */
struct futex_q {
P
Pierre Peiffer 已提交
230
	struct plist_node list;
L
Linus Torvalds 已提交
231

232
	struct task_struct *task;
L
Linus Torvalds 已提交
233 234
	spinlock_t *lock_ptr;
	union futex_key key;
235
	struct futex_pi_state *pi_state;
236
	struct rt_mutex_waiter *rt_waiter;
237
	union futex_key *requeue_pi_key;
238
	u32 bitset;
L
Linus Torvalds 已提交
239 240
};

241 242 243 244 245 246
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
247
/*
D
Darren Hart 已提交
248 249 250
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
251 252
 */
struct futex_hash_bucket {
253
	atomic_t waiters;
P
Pierre Peiffer 已提交
254 255
	spinlock_t lock;
	struct plist_head chain;
256
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
257

258 259 260
static unsigned long __read_mostly futex_hashsize;

static struct futex_hash_bucket *futex_queues;
L
Linus Torvalds 已提交
261

262 263 264 265 266 267 268 269 270 271 272
static inline void futex_get_mm(union futex_key *key)
{
	atomic_inc(&key->private.mm->mm_count);
	/*
	 * Ensure futex_get_mm() implies a full barrier such that
	 * get_futex_key() implies a full barrier. This is relied upon
	 * as full barrier (B), see the ordering comment above.
	 */
	smp_mb__after_atomic_inc();
}

273 274 275 276
/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
277 278
{
#ifdef CONFIG_SMP
279
	atomic_inc(&hb->waiters);
280
	/*
281
	 * Full barrier (A), see the ordering comment above.
282
	 */
283 284 285 286 287 288 289 290 291 292 293 294 295 296
	smp_mb__after_atomic_inc();
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}
297

298 299 300 301
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	return atomic_read(&hb->waiters);
302
#else
303
	return 1;
304 305 306
#endif
}

L
Linus Torvalds 已提交
307 308 309 310 311 312 313 314
/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
315
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
316 317 318 319 320 321 322
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
323 324
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
325 326 327 328
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

329 330 331 332 333 334 335 336 337 338 339 340
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
341
		ihold(key->shared.inode); /* implies MB (B) */
342 343
		break;
	case FUT_OFF_MMSHARED:
344
		futex_get_mm(key); /* implies MB (B) */
345 346 347 348 349 350 351 352 353 354
		break;
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_futex_key_refs(union futex_key *key)
{
355 356 357
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
358
		return;
359
	}
360 361 362 363 364 365 366 367 368 369 370

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
371
/**
372 373 374 375
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
376 377
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 *              VERIFY_WRITE)
E
Eric Dumazet 已提交
378
 *
379 380
 * Return: a negative error code or 0
 *
E
Eric Dumazet 已提交
381
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
382
 *
A
Al Viro 已提交
383
 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
L
Linus Torvalds 已提交
384 385 386
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
387
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
388
 */
389
static int
390
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
391
{
392
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
393
	struct mm_struct *mm = current->mm;
394
	struct page *page, *page_head;
395
	int err, ro = 0;
L
Linus Torvalds 已提交
396 397 398 399

	/*
	 * The futex address must be "naturally" aligned.
	 */
400
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
401
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
402
		return -EINVAL;
403
	address -= key->both.offset;
L
Linus Torvalds 已提交
404

405 406 407
	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
		return -EFAULT;

E
Eric Dumazet 已提交
408 409 410 411 412 413 414 415 416 417
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
418
		get_futex_key_refs(key);  /* implies MB (B) */
E
Eric Dumazet 已提交
419 420
		return 0;
	}
L
Linus Torvalds 已提交
421

422
again:
423
	err = get_user_pages_fast(address, 1, 1, &page);
424 425 426 427 428 429 430 431
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
	if (err == -EFAULT && rw == VERIFY_READ) {
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
432 433
	if (err < 0)
		return err;
434 435
	else
		err = 0;
436

437 438 439
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	page_head = page;
	if (unlikely(PageTail(page))) {
440
		put_page(page);
441 442
		/* serialize against __split_huge_page_splitting() */
		local_irq_disable();
443
		if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
			page_head = compound_head(page);
			/*
			 * page_head is valid pointer but we must pin
			 * it before taking the PG_lock and/or
			 * PG_compound_lock. The moment we re-enable
			 * irqs __split_huge_page_splitting() can
			 * return and the head page can be freed from
			 * under us. We can't take the PG_lock and/or
			 * PG_compound_lock on a page that could be
			 * freed from under us.
			 */
			if (page != page_head) {
				get_page(page_head);
				put_page(page);
			}
			local_irq_enable();
		} else {
			local_irq_enable();
			goto again;
		}
	}
#else
	page_head = compound_head(page);
	if (page != page_head) {
		get_page(page_head);
		put_page(page);
	}
#endif

	lock_page(page_head);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

	/*
	 * If page_head->mapping is NULL, then it cannot be a PageAnon
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
	 * an unlikely race, but we do need to retry for page_head->mapping.
	 */
490
	if (!page_head->mapping) {
491
		int shmem_swizzled = PageSwapCache(page_head);
492 493
		unlock_page(page_head);
		put_page(page_head);
494 495 496
		if (shmem_swizzled)
			goto again;
		return -EFAULT;
497
	}
L
Linus Torvalds 已提交
498 499 500 501 502 503

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
504
	 * the object not the particular process.
L
Linus Torvalds 已提交
505
	 */
506
	if (PageAnon(page_head)) {
507 508 509 510 511 512 513 514 515
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
		if (ro) {
			err = -EFAULT;
			goto out;
		}

516
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
517
		key->private.mm = mm;
518
		key->private.address = address;
519 520
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
521
		key->shared.inode = page_head->mapping->host;
522
		key->shared.pgoff = basepage_index(page);
L
Linus Torvalds 已提交
523 524
	}

525
	get_futex_key_refs(key); /* implies MB (B) */
L
Linus Torvalds 已提交
526

527
out:
528 529
	unlock_page(page_head);
	put_page(page_head);
530
	return err;
L
Linus Torvalds 已提交
531 532
}

533
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
534
{
535
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
536 537
}

538 539
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
540 541 542 543 544
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
545
 * We have no generic implementation of a non-destructive write to the
546 547 548 549 550 551
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
552 553 554 555
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
556 557
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
			       FAULT_FLAG_WRITE);
558 559
	up_read(&mm->mmap_sem);

560 561 562
	return ret < 0 ? ret : 0;
}

563 564
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
565 566
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

582 583
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
584
{
585
	int ret;
T
Thomas Gleixner 已提交
586 587

	pagefault_disable();
588
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
589 590
	pagefault_enable();

591
	return ret;
T
Thomas Gleixner 已提交
592 593 594
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
595 596 597
{
	int ret;

598
	pagefault_disable();
599
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
600
	pagefault_enable();
L
Linus Torvalds 已提交
601 602 603 604

	return ret ? -EFAULT : 0;
}

605 606 607 608 609 610 611 612 613 614 615

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

616
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
617 618 619 620 621 622 623 624

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
625
	pi_state->key = FUTEX_KEY_INIT;
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
652
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
653
		list_del_init(&pi_state->list);
654
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;

681
	rcu_read_lock();
682
	p = find_task_by_vpid(pid);
683 684
	if (p)
		get_task_struct(p);
685

686
	rcu_read_unlock();
687 688 689 690 691 692 693 694 695 696 697 698 699

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
700
	struct futex_hash_bucket *hb;
701
	union futex_key key = FUTEX_KEY_INIT;
702

703 704
	if (!futex_cmpxchg_enabled)
		return;
705 706 707
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
708
	 * versus waiters unqueueing themselves:
709
	 */
710
	raw_spin_lock_irq(&curr->pi_lock);
711 712 713 714 715
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
716
		hb = hash_futex(&key);
717
		raw_spin_unlock_irq(&curr->pi_lock);
718 719 720

		spin_lock(&hb->lock);

721
		raw_spin_lock_irq(&curr->pi_lock);
722 723 724 725
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
726 727 728 729 730 731
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
732 733
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
734
		pi_state->owner = NULL;
735
		raw_spin_unlock_irq(&curr->pi_lock);
736 737 738 739 740

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

741
		raw_spin_lock_irq(&curr->pi_lock);
742
	}
743
	raw_spin_unlock_irq(&curr->pi_lock);
744 745 746
}

static int
P
Pierre Peiffer 已提交
747
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
748 749
		union futex_key *key, struct futex_pi_state **ps,
		struct task_struct *task)
750 751 752 753
{
	struct futex_pi_state *pi_state = NULL;
	struct futex_q *this, *next;
	struct task_struct *p;
754
	pid_t pid = uval & FUTEX_TID_MASK;
755

J
Jason Low 已提交
756
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
P
Pierre Peiffer 已提交
757
		if (match_futex(&this->key, key)) {
758 759 760 761 762
			/*
			 * Another waiter already exists - bump up
			 * the refcount and return its pi_state:
			 */
			pi_state = this->pi_state;
763
			/*
764
			 * Userspace might have messed up non-PI and PI futexes
765 766 767 768
			 */
			if (unlikely(!pi_state))
				return -EINVAL;

769
			WARN_ON(!atomic_read(&pi_state->refcount));
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

			/*
			 * When pi_state->owner is NULL then the owner died
			 * and another waiter is on the fly. pi_state->owner
			 * is fixed up by the task which acquires
			 * pi_state->rt_mutex.
			 *
			 * We do not check for pid == 0 which can happen when
			 * the owner died and robust_list_exit() cleared the
			 * TID.
			 */
			if (pid && pi_state->owner) {
				/*
				 * Bail out if user space manipulated the
				 * futex value.
				 */
				if (pid != task_pid_vnr(pi_state->owner))
					return -EINVAL;
			}
789

790 791 792 793 794 795 796 797 798 799
			/*
			 * Protect against a corrupted uval. If uval
			 * is 0x80000000 then pid is 0 and the waiter
			 * bit is set. So the deadlock check in the
			 * calling code has failed and we did not fall
			 * into the check above due to !pid.
			 */
			if (task && pi_state->owner == task)
				return -EDEADLK;

800
			atomic_inc(&pi_state->refcount);
P
Pierre Peiffer 已提交
801
			*ps = pi_state;
802 803 804 805 806 807

			return 0;
		}
	}

	/*
808
	 * We are the first waiter - try to look up the real owner and attach
809
	 * the new pi_state to it, but bail out when TID = 0
810
	 */
811
	if (!pid)
812
		return -ESRCH;
813
	p = futex_find_get_task(pid);
814 815
	if (!p)
		return -ESRCH;
816

817 818 819 820 821
	if (!p->mm) {
		put_task_struct(p);
		return -EPERM;
	}

822 823 824 825 826 827
	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
828
	raw_spin_lock_irq(&p->pi_lock);
829 830 831 832 833 834 835 836
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

837
		raw_spin_unlock_irq(&p->pi_lock);
838 839 840
		put_task_struct(p);
		return ret;
	}
841 842 843 844 845 846 847 848 849 850

	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make 'p'
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
851
	pi_state->key = *key;
852

853
	WARN_ON(!list_empty(&pi_state->list));
854 855
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
856
	raw_spin_unlock_irq(&p->pi_lock);
857 858 859

	put_task_struct(p);

P
Pierre Peiffer 已提交
860
	*ps = pi_state;
861 862 863 864

	return 0;
}

865
/**
866
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
867 868 869 870 871 872 873 874
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
875
 *
876 877 878
 * Return:
 *  0 - ready to wait;
 *  1 - acquired the lock;
879 880 881 882 883 884 885
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
886
				struct task_struct *task, int set_waiters)
887
{
888
	int lock_taken, ret, force_take = 0;
889
	u32 uval, newval, curval, vpid = task_pid_vnr(task);
890 891 892 893 894 895 896 897 898

retry:
	ret = lock_taken = 0;

	/*
	 * To avoid races, we attempt to take the lock here again
	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
	 * the locks. It will most likely not succeed.
	 */
899
	newval = vpid;
900 901
	if (set_waiters)
		newval |= FUTEX_WAITERS;
902

903
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
904 905 906 907 908
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
909
	if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
910 911 912
		return -EDEADLK;

	/*
913
	 * Surprise - we got the lock, but we do not trust user space at all.
914
	 */
915 916 917 918 919 920 921 922 923 924
	if (unlikely(!curval)) {
		/*
		 * We verify whether there is kernel state for this
		 * futex. If not, we can safely assume, that the 0 ->
		 * TID transition is correct. If state exists, we do
		 * not bother to fixup the user space state as it was
		 * corrupted already.
		 */
		return futex_top_waiter(hb, key) ? -EINVAL : 1;
	}
925 926 927 928 929 930 931 932 933 934

	uval = curval;

	/*
	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
	 * to wake at the next unlock.
	 */
	newval = curval | FUTEX_WAITERS;

	/*
935
	 * Should we force take the futex? See below.
936
	 */
937 938 939 940 941
	if (unlikely(force_take)) {
		/*
		 * Keep the OWNER_DIED and the WAITERS bit and set the
		 * new TID value.
		 */
942
		newval = (curval & ~FUTEX_TID_MASK) | vpid;
943
		force_take = 0;
944 945 946
		lock_taken = 1;
	}

947
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
948 949 950 951 952
		return -EFAULT;
	if (unlikely(curval != uval))
		goto retry;

	/*
953
	 * We took the lock due to forced take over.
954 955 956 957 958 959 960 961
	 */
	if (unlikely(lock_taken))
		return 1;

	/*
	 * We dont have the lock. Look up the PI state (or create it if
	 * we are the first waiter):
	 */
962
	ret = lookup_pi_state(uval, hb, key, ps, task);
963 964 965 966 967

	if (unlikely(ret)) {
		switch (ret) {
		case -ESRCH:
			/*
968 969 970 971 972 973 974 975
			 * We failed to find an owner for this
			 * futex. So we have no pi_state to block
			 * on. This can happen in two cases:
			 *
			 * 1) The owner died
			 * 2) A stale FUTEX_WAITERS bit
			 *
			 * Re-read the futex value.
976 977 978 979 980
			 */
			if (get_futex_value_locked(&curval, uaddr))
				return -EFAULT;

			/*
981 982 983
			 * If the owner died or we have a stale
			 * WAITERS bit the owner TID in the user space
			 * futex is 0.
984
			 */
985 986
			if (!(curval & FUTEX_TID_MASK)) {
				force_take = 1;
987 988 989 990 991 992 993 994 995 996
				goto retry;
			}
		default:
			break;
		}
	}

	return ret;
}

997 998 999 1000 1001 1002 1003 1004 1005 1006
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

1007 1008
	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
	    || WARN_ON(plist_node_empty(&q->list)))
1009 1010 1011 1012
		return;

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
1013
	hb_waiters_dec(hb);
1014 1015
}

L
Linus Torvalds 已提交
1016 1017 1018 1019 1020 1021
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
T
Thomas Gleixner 已提交
1022 1023
	struct task_struct *p = q->task;

1024 1025 1026
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

L
Linus Torvalds 已提交
1027
	/*
T
Thomas Gleixner 已提交
1028
	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
1029 1030
	 * a non-futex wake up happens on another CPU then the task
	 * might exit and p would dereference a non-existing task
T
Thomas Gleixner 已提交
1031 1032
	 * struct. Prevent this by holding a reference on p across the
	 * wake up.
L
Linus Torvalds 已提交
1033
	 */
T
Thomas Gleixner 已提交
1034 1035
	get_task_struct(p);

1036
	__unqueue_futex(q);
L
Linus Torvalds 已提交
1037
	/*
T
Thomas Gleixner 已提交
1038 1039 1040 1041
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
1042
	 */
1043
	smp_wmb();
L
Linus Torvalds 已提交
1044
	q->lock_ptr = NULL;
T
Thomas Gleixner 已提交
1045 1046 1047

	wake_up_state(p, TASK_NORMAL);
	put_task_struct(p);
L
Linus Torvalds 已提交
1048 1049
}

1050 1051 1052 1053
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
1054
	u32 uninitialized_var(curval), newval;
1055
	int ret = 0;
1056 1057 1058 1059

	if (!pi_state)
		return -EINVAL;

1060 1061 1062 1063 1064 1065 1066
	/*
	 * If current does not own the pi_state then the futex is
	 * inconsistent and user space fiddled with the futex value.
	 */
	if (pi_state->owner != current)
		return -EINVAL;

1067
	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1068 1069 1070
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
1071 1072 1073
	 * It is possible that the next waiter (the one that brought
	 * this owner to the kernel) timed out and is no longer
	 * waiting on the lock.
1074 1075 1076 1077 1078
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
1079 1080 1081
	 * We pass it to the next owner. The WAITERS bit is always
	 * kept enabled while there is PI state around. We cleanup the
	 * owner died bit, because we are the owner.
1082
	 */
1083
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1084

1085 1086 1087 1088 1089 1090 1091
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
		ret = -EFAULT;
	else if (curval != uval)
		ret = -EINVAL;
	if (ret) {
		raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
		return ret;
1092
	}
1093

1094
	raw_spin_lock_irq(&pi_state->owner->pi_lock);
1095 1096
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1097
	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1098

1099
	raw_spin_lock_irq(&new_owner->pi_lock);
1100
	WARN_ON(!list_empty(&pi_state->list));
1101 1102
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1103
	raw_spin_unlock_irq(&new_owner->pi_lock);
1104

1105
	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1106 1107 1108 1109 1110 1111 1112
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
1113
	u32 uninitialized_var(oldval);
1114 1115 1116 1117 1118

	/*
	 * There is no waiter, so we unlock the futex. The owner died
	 * bit has not to be preserved here. We are the owner:
	 */
1119 1120
	if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
		return -EFAULT;
1121 1122 1123 1124 1125 1126
	if (oldval != uval)
		return -EAGAIN;

	return 0;
}

I
Ingo Molnar 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1143 1144 1145
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1146
	spin_unlock(&hb1->lock);
1147 1148
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1149 1150
}

L
Linus Torvalds 已提交
1151
/*
D
Darren Hart 已提交
1152
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1153
 */
1154 1155
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1156
{
1157
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1158
	struct futex_q *this, *next;
1159
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1160 1161
	int ret;

1162 1163 1164
	if (!bitset)
		return -EINVAL;

1165
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
L
Linus Torvalds 已提交
1166 1167 1168
	if (unlikely(ret != 0))
		goto out;

1169
	hb = hash_futex(&key);
1170 1171 1172 1173 1174

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1175
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1176

J
Jason Low 已提交
1177
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1178
		if (match_futex (&this->key, &key)) {
1179
			if (this->pi_state || this->rt_waiter) {
1180 1181 1182
				ret = -EINVAL;
				break;
			}
1183 1184 1185 1186 1187

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

L
Linus Torvalds 已提交
1188 1189 1190 1191 1192 1193
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

1194
	spin_unlock(&hb->lock);
1195
out_put_key:
1196
	put_futex_key(&key);
1197
out:
L
Linus Torvalds 已提交
1198 1199 1200
	return ret;
}

1201 1202 1203 1204
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1205
static int
1206
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1207
	      int nr_wake, int nr_wake2, int op)
1208
{
1209
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1210
	struct futex_hash_bucket *hb1, *hb2;
1211
	struct futex_q *this, *next;
D
Darren Hart 已提交
1212
	int ret, op_ret;
1213

D
Darren Hart 已提交
1214
retry:
1215
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1216 1217
	if (unlikely(ret != 0))
		goto out;
1218
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1219
	if (unlikely(ret != 0))
1220
		goto out_put_key1;
1221

1222 1223
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1224

D
Darren Hart 已提交
1225
retry_private:
T
Thomas Gleixner 已提交
1226
	double_lock_hb(hb1, hb2);
1227
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1228 1229
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
1230
		double_unlock_hb(hb1, hb2);
1231

1232
#ifndef CONFIG_MMU
1233 1234 1235 1236
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
1237
		ret = op_ret;
1238
		goto out_put_keys;
1239 1240
#endif

1241 1242
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
1243
			goto out_put_keys;
1244 1245
		}

1246
		ret = fault_in_user_writeable(uaddr2);
1247
		if (ret)
1248
			goto out_put_keys;
1249

1250
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1251 1252
			goto retry_private;

1253 1254
		put_futex_key(&key2);
		put_futex_key(&key1);
D
Darren Hart 已提交
1255
		goto retry;
1256 1257
	}

J
Jason Low 已提交
1258
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1259
		if (match_futex (&this->key, &key1)) {
1260 1261 1262 1263
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1264 1265 1266 1267 1268 1269 1270 1271
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1272
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1273
			if (match_futex (&this->key, &key2)) {
1274 1275 1276 1277
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1278 1279 1280 1281 1282 1283 1284 1285
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1286
out_unlock:
D
Darren Hart 已提交
1287
	double_unlock_hb(hb1, hb2);
1288
out_put_keys:
1289
	put_futex_key(&key2);
1290
out_put_key1:
1291
	put_futex_key(&key1);
1292
out:
1293 1294 1295
	return ret;
}

D
Darren Hart 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
1314
		hb_waiters_dec(hb1);
D
Darren Hart 已提交
1315
		plist_add(&q->list, &hb2->chain);
1316
		hb_waiters_inc(hb2);
D
Darren Hart 已提交
1317 1318 1319 1320 1321 1322
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1323 1324
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1325 1326 1327
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1328 1329 1330 1331 1332
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1333 1334 1335
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1336 1337
 */
static inline
1338 1339
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1340 1341 1342 1343
{
	get_futex_key_refs(key);
	q->key = *key;

1344
	__unqueue_futex(q);
1345 1346 1347 1348

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1349 1350
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1351
	wake_up_state(q->task, TASK_NORMAL);
1352 1353 1354 1355
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1356 1357 1358 1359 1360 1361 1362
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1363 1364
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1365 1366 1367
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1368
 *
1369 1370
 * Return:
 *  0 - failed to acquire the lock atomically;
1371
 * >0 - acquired the lock, return value is vpid of the top_waiter
1372 1373 1374 1375 1376 1377
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1378
				 struct futex_pi_state **ps, int set_waiters)
1379
{
1380
	struct futex_q *top_waiter = NULL;
1381
	u32 curval;
1382
	int ret, vpid;
1383 1384 1385 1386

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1387 1388 1389 1390 1391 1392 1393 1394
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1395 1396 1397 1398 1399 1400
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1401 1402 1403 1404
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1405
	/*
1406 1407 1408
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1409
	 */
1410
	vpid = task_pid_vnr(top_waiter->task);
1411 1412
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1413
	if (ret == 1) {
1414
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1415 1416
		return vpid;
	}
1417 1418 1419 1420 1421
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1422
 * @uaddr1:	source futex user address
1423
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1424 1425 1426 1427 1428
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1429
 *		pi futex (pi to pi requeue is not supported)
1430 1431 1432 1433
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1434 1435
 * Return:
 * >=0 - on success, the number of tasks requeued or woken;
1436
 *  <0 - on error
L
Linus Torvalds 已提交
1437
 */
1438 1439 1440
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1441
{
1442
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1443 1444
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1445
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1446
	struct futex_q *this, *next;
1447 1448

	if (requeue_pi) {
1449 1450 1451 1452 1453 1454 1455
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1475

1476
retry:
1477 1478 1479 1480 1481 1482 1483 1484 1485
	if (pi_state != NULL) {
		/*
		 * We will have to lookup the pi_state again, so free this one
		 * to keep the accounting correct.
		 */
		free_pi_state(pi_state);
		pi_state = NULL;
	}

1486
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1487 1488
	if (unlikely(ret != 0))
		goto out;
1489 1490
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1491
	if (unlikely(ret != 0))
1492
		goto out_put_key1;
L
Linus Torvalds 已提交
1493

1494 1495 1496 1497 1498 1499 1500 1501 1502
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

1503 1504
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1505

D
Darren Hart 已提交
1506
retry_private:
1507
	hb_waiters_inc(hb2);
I
Ingo Molnar 已提交
1508
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1509

1510 1511
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1512

1513
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1514 1515

		if (unlikely(ret)) {
D
Darren Hart 已提交
1516
			double_unlock_hb(hb1, hb2);
1517
			hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1518

1519
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1520 1521
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1522

1523
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1524
				goto retry_private;
L
Linus Torvalds 已提交
1525

1526 1527
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
1528
			goto retry;
L
Linus Torvalds 已提交
1529
		}
1530
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1531 1532 1533 1534 1535
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1536
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1537 1538 1539 1540 1541 1542
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1543
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1544
						 &key2, &pi_state, nr_requeue);
1545 1546 1547 1548 1549

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
1550 1551
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
1552
		 */
1553
		if (ret > 0) {
1554
			WARN_ON(pi_state);
1555
			drop_count++;
1556
			task_count++;
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
			/*
			 * If we acquired the lock, then the user
			 * space value of uaddr2 should be vpid. It
			 * cannot be changed by the top waiter as it
			 * is blocked on hb2 lock if it tries to do
			 * so. If something fiddled with it behind our
			 * back the pi state lookup might unearth
			 * it. So we rather use the known value than
			 * rereading and handing potential crap to
			 * lookup_pi_state.
			 */
			ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
1569 1570 1571 1572 1573 1574 1575
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
1576
			hb_waiters_dec(hb2);
1577 1578
			put_futex_key(&key2);
			put_futex_key(&key1);
1579
			ret = fault_in_user_writeable(uaddr2);
1580 1581 1582 1583 1584 1585
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
			/* The owner was exiting, try again. */
			double_unlock_hb(hb1, hb2);
1586
			hb_waiters_dec(hb2);
1587 1588
			put_futex_key(&key2);
			put_futex_key(&key1);
1589 1590 1591 1592 1593 1594 1595
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
1596
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1597 1598 1599 1600
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1601
			continue;
1602

1603 1604 1605
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
1606 1607 1608
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
1609 1610
		 */
		if ((requeue_pi && !this->rt_waiter) ||
1611 1612
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
1613 1614 1615
			ret = -EINVAL;
			break;
		}
1616 1617 1618 1619 1620 1621 1622

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
L
Linus Torvalds 已提交
1623
			wake_futex(this);
1624 1625
			continue;
		}
L
Linus Torvalds 已提交
1626

1627 1628 1629 1630 1631 1632
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
							this->task, 1);
			if (ret == 1) {
				/* We got the lock. */
1646
				requeue_pi_wake_futex(this, &key2, hb2);
1647
				drop_count++;
1648 1649 1650 1651 1652 1653 1654
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
L
Linus Torvalds 已提交
1655
		}
1656 1657
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1658 1659 1660
	}

out_unlock:
D
Darren Hart 已提交
1661
	double_unlock_hb(hb1, hb2);
1662
	hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1663

1664 1665 1666 1667 1668 1669
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1670
	while (--drop_count >= 0)
1671
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1672

1673
out_put_keys:
1674
	put_futex_key(&key2);
1675
out_put_key1:
1676
	put_futex_key(&key1);
1677
out:
1678 1679 1680
	if (pi_state != NULL)
		free_pi_state(pi_state);
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1681 1682 1683
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1684
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1685
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
1686
{
1687
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1688

1689
	hb = hash_futex(&q->key);
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
	hb_waiters_inc(hb);

1701
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1702

1703
	spin_lock(&hb->lock); /* implies MB (A) */
1704
	return hb;
L
Linus Torvalds 已提交
1705 1706
}

1707
static inline void
J
Jason Low 已提交
1708
queue_unlock(struct futex_hash_bucket *hb)
1709
	__releases(&hb->lock)
1710 1711
{
	spin_unlock(&hb->lock);
1712
	hb_waiters_dec(hb);
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
E
Eric Sesterhenn 已提交
1727
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1728
	__releases(&hb->lock)
L
Linus Torvalds 已提交
1729
{
P
Pierre Peiffer 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
1744
	q->task = current;
1745
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1746 1747
}

1748 1749 1750 1751 1752 1753 1754
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
1755 1756
 * Return:
 *   1 - if the futex_q was still queued (and we removed unqueued it);
1757
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
1758 1759 1760 1761
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1762
	int ret = 0;
L
Linus Torvalds 已提交
1763 1764

	/* In the common case we don't take the spinlock, which is nice. */
1765
retry:
L
Linus Torvalds 已提交
1766
	lock_ptr = q->lock_ptr;
1767
	barrier();
1768
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
1787
		__unqueue_futex(q);
1788 1789 1790

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
1791 1792 1793 1794
		spin_unlock(lock_ptr);
		ret = 1;
	}

1795
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1796 1797 1798
	return ret;
}

1799 1800
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
1801 1802
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1803
 */
P
Pierre Peiffer 已提交
1804
static void unqueue_me_pi(struct futex_q *q)
1805
	__releases(q->lock_ptr)
1806
{
1807
	__unqueue_futex(q);
1808 1809 1810 1811 1812

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
1813
	spin_unlock(q->lock_ptr);
1814 1815
}

P
Pierre Peiffer 已提交
1816
/*
1817
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
1818
 *
1819 1820
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
1821
 */
1822
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1823
				struct task_struct *newowner)
P
Pierre Peiffer 已提交
1824
{
1825
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
1826
	struct futex_pi_state *pi_state = q->pi_state;
1827
	struct task_struct *oldowner = pi_state->owner;
1828
	u32 uval, uninitialized_var(curval), newval;
D
Darren Hart 已提交
1829
	int ret;
P
Pierre Peiffer 已提交
1830 1831

	/* Owner died? */
1832 1833 1834 1835 1836
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
1837 1838 1839 1840
	 * previous highest priority waiter or we are the highest priority
	 * waiter but failed to get the rtmutex the first time.
	 * We have to replace the newowner TID in the user space variable.
	 * This must be atomic as we have to preserve the owner died bit here.
1841
	 *
D
Darren Hart 已提交
1842 1843 1844
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

1859
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
1870
	if (pi_state->owner != NULL) {
1871
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
1872 1873
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
1874
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1875
	}
P
Pierre Peiffer 已提交
1876

1877
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
1878

1879
	raw_spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
1880
	WARN_ON(!list_empty(&pi_state->list));
1881
	list_add(&pi_state->list, &newowner->pi_state_list);
1882
	raw_spin_unlock_irq(&newowner->pi_lock);
1883
	return 0;
P
Pierre Peiffer 已提交
1884 1885

	/*
1886
	 * To handle the page fault we need to drop the hash bucket
1887 1888
	 * lock here. That gives the other task (either the highest priority
	 * waiter itself or the task which stole the rtmutex) the
1889 1890 1891 1892 1893
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
1894
	 */
1895 1896
handle_fault:
	spin_unlock(q->lock_ptr);
1897

1898
	ret = fault_in_user_writeable(uaddr);
1899

1900
	spin_lock(q->lock_ptr);
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
1912 1913
}

N
Nick Piggin 已提交
1914
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
1915

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
1926 1927 1928
 * Return:
 *  1 - success, lock taken;
 *  0 - success, lock not taken;
1929 1930
 * <0 - on error (-EFAULT)
 */
1931
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
1942
			ret = fixup_pi_state_owner(uaddr, q, current);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
1964
		 * rt_mutex. Too late.
1965
		 */
1966
		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1967
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1968 1969 1970
		if (!owner)
			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1971
		ret = fixup_pi_state_owner(uaddr, q, owner);
1972 1973 1974 1975 1976
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
1977
	 * the owner of the rt_mutex.
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

1989 1990 1991 1992 1993 1994 1995
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
1996
				struct hrtimer_sleeper *timeout)
1997
{
1998 1999 2000 2001 2002 2003
	/*
	 * The task state is guaranteed to be set before another task can
	 * wake it. set_current_state() is implemented using set_mb() and
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
2004
	set_current_state(TASK_INTERRUPTIBLE);
2005
	queue_me(q, hb);
2006 2007 2008 2009 2010 2011 2012 2013 2014

	/* Arm the timer */
	if (timeout) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	/*
2015 2016
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
2017 2018 2019 2020 2021 2022 2023 2024
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
2025
			freezable_schedule();
2026 2027 2028 2029
	}
	__set_current_state(TASK_RUNNING);
}

2030 2031 2032 2033
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
2034
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2035 2036 2037 2038 2039 2040 2041 2042
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
2043 2044
 * Return:
 *  0 - uaddr contains val and hb has been locked;
2045
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2046
 */
2047
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2048
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
2049
{
2050 2051
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
2052 2053

	/*
D
Darren Hart 已提交
2054
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
2055 2056 2057 2058 2059 2060 2061
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
2062 2063
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
2064 2065
	 * cond(var) false, which would violate the guarantee.
	 *
2066 2067 2068 2069
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
2070
	 */
2071
retry:
2072
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2073
	if (unlikely(ret != 0))
2074
		return ret;
2075 2076 2077 2078

retry_private:
	*hb = queue_lock(q);

2079
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
2080

2081
	if (ret) {
J
Jason Low 已提交
2082
		queue_unlock(*hb);
L
Linus Torvalds 已提交
2083

2084
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
2085
		if (ret)
2086
			goto out;
L
Linus Torvalds 已提交
2087

2088
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2089 2090
			goto retry_private;

2091
		put_futex_key(&q->key);
D
Darren Hart 已提交
2092
		goto retry;
L
Linus Torvalds 已提交
2093
	}
2094

2095
	if (uval != val) {
J
Jason Low 已提交
2096
		queue_unlock(*hb);
2097
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2098
	}
L
Linus Torvalds 已提交
2099

2100 2101
out:
	if (ret)
2102
		put_futex_key(&q->key);
2103 2104 2105
	return ret;
}

2106 2107
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2108 2109 2110 2111
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2112
	struct futex_q q = futex_q_init;
2113 2114 2115 2116 2117 2118 2119 2120 2121
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

2122 2123 2124
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2125 2126 2127 2128 2129
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
2130
retry:
2131 2132 2133 2134
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2135
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2136 2137 2138
	if (ret)
		goto out;

2139
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2140
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2141 2142

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2143
	ret = 0;
2144
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2145
	if (!unqueue_me(&q))
2146
		goto out;
P
Peter Zijlstra 已提交
2147
	ret = -ETIMEDOUT;
2148
	if (to && !to->task)
2149
		goto out;
N
Nick Piggin 已提交
2150

2151
	/*
T
Thomas Gleixner 已提交
2152 2153
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2154
	 */
2155
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2156 2157
		goto retry;

P
Peter Zijlstra 已提交
2158
	ret = -ERESTARTSYS;
2159
	if (!abs_time)
2160
		goto out;
L
Linus Torvalds 已提交
2161

P
Peter Zijlstra 已提交
2162 2163
	restart = &current_thread_info()->restart_block;
	restart->fn = futex_wait_restart;
2164
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2165 2166 2167
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
2168
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2169

P
Peter Zijlstra 已提交
2170 2171
	ret = -ERESTART_RESTARTBLOCK;

2172
out:
2173 2174 2175 2176
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2177 2178 2179
	return ret;
}

N
Nick Piggin 已提交
2180 2181 2182

static long futex_wait_restart(struct restart_block *restart)
{
2183
	u32 __user *uaddr = restart->futex.uaddr;
2184
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2185

2186 2187 2188 2189
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
2190
	restart->fn = do_no_restart_syscall;
2191 2192 2193

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2194 2195 2196
}


2197 2198 2199 2200 2201 2202
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
2203 2204
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
			 ktime_t *time, int trylock)
2205
{
2206
	struct hrtimer_sleeper timeout, *to = NULL;
2207
	struct futex_hash_bucket *hb;
2208
	struct futex_q q = futex_q_init;
2209
	int res, ret;
2210 2211 2212 2213

	if (refill_pi_state_cache())
		return -ENOMEM;

2214
	if (time) {
2215
		to = &timeout;
2216 2217
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
2218
		hrtimer_init_sleeper(to, current);
2219
		hrtimer_set_expires(&to->timer, *time);
2220 2221
	}

2222
retry:
2223
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2224
	if (unlikely(ret != 0))
2225
		goto out;
2226

D
Darren Hart 已提交
2227
retry_private:
E
Eric Sesterhenn 已提交
2228
	hb = queue_lock(&q);
2229

2230
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2231
	if (unlikely(ret)) {
2232
		switch (ret) {
2233 2234 2235 2236 2237 2238
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2239 2240 2241 2242 2243
		case -EAGAIN:
			/*
			 * Task is exiting and we just wait for the
			 * exit to complete.
			 */
J
Jason Low 已提交
2244
			queue_unlock(hb);
2245
			put_futex_key(&q.key);
2246 2247 2248
			cond_resched();
			goto retry;
		default:
2249
			goto out_unlock_put_key;
2250 2251 2252 2253 2254 2255
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
2256
	queue_me(&q, hb);
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
	if (!trylock)
		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
	else {
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

2270
	spin_lock(q.lock_ptr);
2271 2272 2273 2274
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2275
	res = fixup_owner(uaddr, &q, !ret);
2276 2277 2278 2279 2280 2281
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2282

2283
	/*
2284 2285
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2286 2287 2288 2289
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

2290 2291
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2292

2293
	goto out_put_key;
2294

2295
out_unlock_put_key:
J
Jason Low 已提交
2296
	queue_unlock(hb);
2297

2298
out_put_key:
2299
	put_futex_key(&q.key);
2300
out:
2301 2302
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
2303
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2304

2305
uaddr_faulted:
J
Jason Low 已提交
2306
	queue_unlock(hb);
2307

2308
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2309 2310
	if (ret)
		goto out_put_key;
2311

2312
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2313 2314
		goto retry_private;

2315
	put_futex_key(&q.key);
D
Darren Hart 已提交
2316
	goto retry;
2317 2318 2319 2320 2321 2322 2323
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2324
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2325 2326 2327
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
2328
	union futex_key key = FUTEX_KEY_INIT;
2329
	u32 uval, vpid = task_pid_vnr(current);
D
Darren Hart 已提交
2330
	int ret;
2331 2332 2333 2334 2335 2336 2337

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2338
	if ((uval & FUTEX_TID_MASK) != vpid)
2339 2340
		return -EPERM;

2341
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2342 2343 2344 2345 2346 2347 2348 2349 2350
	if (unlikely(ret != 0))
		goto out;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
	 * To avoid races, try to do the TID -> 0 atomic transition
	 * again. If it succeeds then we can return without waking
2351 2352
	 * anyone else up. We only try this if neither the waiters nor
	 * the owner died bit are set.
2353
	 */
2354
	if (!(uval & ~FUTEX_TID_MASK) &&
2355
	    cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2356 2357 2358 2359 2360
		goto pi_faulted;
	/*
	 * Rare case: we managed to release the lock atomically,
	 * no need to wake anyone else up:
	 */
2361
	if (unlikely(uval == vpid))
2362 2363 2364 2365 2366 2367
		goto out_unlock;

	/*
	 * Ok, other tasks may need to be woken up - check waiters
	 * and do the wakeup if necessary:
	 */
J
Jason Low 已提交
2368
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
		if (!match_futex (&this->key, &key))
			continue;
		ret = wake_futex_pi(uaddr, uval, this);
		/*
		 * The atomic access to the futex value
		 * generated a pagefault, so retry the
		 * user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
	/*
	 * No waiters - kernel unlocks the futex:
	 */
2384 2385 2386
	ret = unlock_futex_pi(uaddr, uval);
	if (ret == -EFAULT)
		goto pi_faulted;
2387 2388 2389

out_unlock:
	spin_unlock(&hb->lock);
2390
	put_futex_key(&key);
2391

2392
out:
2393 2394 2395
	return ret;

pi_faulted:
2396
	spin_unlock(&hb->lock);
2397
	put_futex_key(&key);
2398

2399
	ret = fault_in_user_writeable(uaddr);
2400
	if (!ret)
2401 2402
		goto retry;

L
Linus Torvalds 已提交
2403 2404 2405
	return ret;
}

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
2418 2419 2420
 * Return:
 *  0 = no early wakeup detected;
 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
2442
		plist_del(&q->list, &hb->chain);
2443
		hb_waiters_dec(hb);
2444

T
Thomas Gleixner 已提交
2445
		/* Handle spurious wakeups gracefully */
2446
		ret = -EWOULDBLOCK;
2447 2448
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2449
		else if (signal_pending(current))
2450
			ret = -ERESTARTNOINTR;
2451 2452 2453 2454 2455 2456
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2457
 * @uaddr:	the futex we initially wait on (non-pi)
2458
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2459 2460 2461
 * 		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2462
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2463 2464 2465
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2466 2467 2468 2469 2470
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
2471 2472
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2473
 * via the following--
2474
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2475 2476 2477
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2478
 *
2479
 * If 3, cleanup and return -ERESTARTNOINTR.
2480 2481 2482 2483 2484 2485 2486
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2487
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2488 2489 2490
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
2491 2492
 * Return:
 *  0 - On success;
2493 2494
 * <0 - On error
 */
2495
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2496
				 u32 val, ktime_t *abs_time, u32 bitset,
2497
				 u32 __user *uaddr2)
2498 2499 2500 2501 2502
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
2503 2504
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
2505 2506
	int res, ret;

2507 2508 2509
	if (uaddr == uaddr2)
		return -EINVAL;

2510 2511 2512 2513 2514
	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
2515 2516 2517
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
2528 2529
	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2530 2531
	rt_waiter.task = NULL;

2532
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2533 2534 2535
	if (unlikely(ret != 0))
		goto out;

2536 2537 2538 2539
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2540 2541 2542 2543
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
2544
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
2545 2546
	if (ret)
		goto out_key2;
2547

2548 2549 2550 2551 2552 2553 2554 2555 2556
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

2557
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2558
	futex_wait_queue_me(hb, &q, to);
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
2570 2571 2572
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
2583
			ret = fixup_pi_state_owner(uaddr2, &q, current);
2584 2585 2586 2587 2588 2589 2590 2591
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
2592
		WARN_ON(!q.pi_state);
2593 2594 2595 2596 2597 2598 2599 2600 2601
		pi_mutex = &q.pi_state->pi_mutex;
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
2602
		res = fixup_owner(uaddr2, &q, !ret);
2603 2604
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2605
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
2619
		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2620 2621 2622
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2623 2624 2625 2626 2627
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2628
		 */
2629
		ret = -EWOULDBLOCK;
2630 2631 2632
	}

out_put_keys:
2633
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
2634
out_key2:
2635
	put_futex_key(&key2);
2636 2637 2638 2639 2640 2641 2642 2643 2644

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2645 2646 2647 2648 2649 2650 2651
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2652
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2653 2654 2655 2656 2657 2658 2659 2660
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
2661 2662 2663
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
2664
 */
2665 2666
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2667
{
2668 2669
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
2682 2683 2684 2685
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2686
 */
2687 2688 2689
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2690
{
A
Al Viro 已提交
2691
	struct robust_list_head __user *head;
2692
	unsigned long ret;
2693
	struct task_struct *p;
2694

2695 2696 2697
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2698 2699 2700
	rcu_read_lock();

	ret = -ESRCH;
2701
	if (!pid)
2702
		p = current;
2703
	else {
2704
		p = find_task_by_vpid(pid);
2705 2706 2707 2708
		if (!p)
			goto err_unlock;
	}

2709 2710 2711 2712 2713 2714 2715
	ret = -EPERM;
	if (!ptrace_may_access(p, PTRACE_MODE_READ))
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

2716 2717 2718 2719 2720
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2721
	rcu_read_unlock();
2722 2723 2724 2725 2726 2727 2728 2729

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2730
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2731
{
2732
	u32 uval, uninitialized_var(nval), mval;
2733

2734 2735
retry:
	if (get_user(uval, uaddr))
2736 2737
		return -1;

2738
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2749
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
		/*
		 * We are not holding a lock here, but we want to have
		 * the pagefault_disable/enable() protection because
		 * we want to handle the fault gracefully. If the
		 * access fails we try to fault in the futex with R/W
		 * verification via get_user_pages. get_user() above
		 * does not guarantee R/W access. If that fails we
		 * give up and leave the futex locked.
		 */
		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
		}
2764
		if (nval != uval)
2765
			goto retry;
2766

2767 2768 2769 2770
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
2771
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
2772
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2773 2774 2775 2776
	}
	return 0;
}

2777 2778 2779 2780
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
2781
				     struct robust_list __user * __user *head,
2782
				     unsigned int *pi)
2783 2784 2785
{
	unsigned long uentry;

A
Al Viro 已提交
2786
	if (get_user(uentry, (unsigned long __user *)head))
2787 2788
		return -EFAULT;

A
Al Viro 已提交
2789
	*entry = (void __user *)(uentry & ~1UL);
2790 2791 2792 2793 2794
	*pi = uentry & 1;

	return 0;
}

2795 2796 2797 2798 2799 2800 2801 2802 2803
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
2804
	struct robust_list __user *entry, *next_entry, *pending;
2805 2806
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
2807
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
2808
	int rc;
2809

2810 2811 2812
	if (!futex_cmpxchg_enabled)
		return;

2813 2814 2815 2816
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2817
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
2828
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2829
		return;
2830

M
Martin Schwidefsky 已提交
2831
	next_entry = NULL;	/* avoid warning with gcc */
2832
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
2833 2834 2835 2836 2837
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2838 2839
		/*
		 * A pending lock might already be on the list, so
2840
		 * don't process it twice:
2841 2842
		 */
		if (entry != pending)
A
Al Viro 已提交
2843
			if (handle_futex_death((void __user *)entry + futex_offset,
2844
						curr, pi))
2845
				return;
M
Martin Schwidefsky 已提交
2846
		if (rc)
2847
			return;
M
Martin Schwidefsky 已提交
2848 2849
		entry = next_entry;
		pi = next_pi;
2850 2851 2852 2853 2854 2855 2856 2857
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
2858 2859 2860 2861

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
2862 2863
}

2864
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2865
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
2866
{
T
Thomas Gleixner 已提交
2867
	int cmd = op & FUTEX_CMD_MASK;
2868
	unsigned int flags = 0;
E
Eric Dumazet 已提交
2869 2870

	if (!(op & FUTEX_PRIVATE_FLAG))
2871
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
2872

2873 2874 2875 2876 2877
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
2878

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
2889
	switch (cmd) {
L
Linus Torvalds 已提交
2890
	case FUTEX_WAIT:
2891 2892
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
2893
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
2894
	case FUTEX_WAKE:
2895 2896
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
2897
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
2898
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
2899
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
2900
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
2901
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2902
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
2903
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2904
	case FUTEX_LOCK_PI:
T
Thomas Gleixner 已提交
2905
		return futex_lock_pi(uaddr, flags, val, timeout, 0);
2906
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
2907
		return futex_unlock_pi(uaddr, flags);
2908
	case FUTEX_TRYLOCK_PI:
T
Thomas Gleixner 已提交
2909
		return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2910 2911
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
2912 2913
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
2914
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
2915
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
2916
	}
T
Thomas Gleixner 已提交
2917
	return -ENOSYS;
L
Linus Torvalds 已提交
2918 2919 2920
}


2921 2922 2923
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
2924
{
2925 2926
	struct timespec ts;
	ktime_t t, *tp = NULL;
2927
	u32 val2 = 0;
E
Eric Dumazet 已提交
2928
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
2929

2930
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2931 2932
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2933
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
2934
			return -EFAULT;
2935
		if (!timespec_valid(&ts))
2936
			return -EINVAL;
2937 2938

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
2939
		if (cmd == FUTEX_WAIT)
2940
			t = ktime_add_safe(ktime_get(), t);
2941
		tp = &t;
L
Linus Torvalds 已提交
2942 2943
	}
	/*
2944
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2945
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
2946
	 */
2947
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2948
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2949
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
2950

2951
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
2952 2953
}

2954
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
2955
{
2956
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2957
	u32 curval;
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
2976
	unsigned int futex_shift;
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
2988 2989 2990
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
2991 2992

	futex_detect_cmpxchg();
2993

2994
	for (i = 0; i < futex_hashsize; i++) {
2995
		atomic_set(&futex_queues[i].waiters, 0);
2996
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
2997 2998 2999
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
3000 3001
	return 0;
}
3002
__initcall(futex_init);