futex.c 75.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/export.h>
59
#include <linux/magic.h>
60 61
#include <linux/pid.h>
#include <linux/nsproxy.h>
62
#include <linux/ptrace.h>
63
#include <linux/sched/rt.h>
64
#include <linux/hugetlb.h>
C
Colin Cross 已提交
65
#include <linux/freezer.h>
66
#include <linux/bootmem.h>
67

68
#include <asm/futex.h>
L
Linus Torvalds 已提交
69

70
#include "locking/rtmutex_common.h"
71

72 73 74 75 76 77
/*
 * Basic futex operation and ordering guarantees:
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
78 79 80
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
81 82
 *
 * The waker side modifies the user space value of the futex and calls
83 84 85
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
86
 *
87 88 89 90 91
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
113 114 115 116 117
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
118 119 120
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
121 122 123 124 125 126 127 128 129 130 131 132
 *
 *   waiters++;
 *   mb(); (A) <-- paired with -.
 *                              |
 *   lock(hash_bucket(futex));  |
 *                              |
 *   uval = *futex;             |
 *                              |        *futex = newval;
 *                              |        sys_futex(WAKE, futex);
 *                              |          futex_wake(futex);
 *                              |
 *                              `------->  mb(); (B)
133
 *   if (uval == val)
134
 *     queue();
135
 *     unlock(hash_bucket(futex));
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
 *                                           wake_waiters(futex);
 *                                           unlock(hash_bucket(futex));
 *
 * Where (A) orders the waiters increment and the futex value read -- this
 * is guaranteed by the head counter in the hb spinlock; and where (B)
 * orders the write to futex and the waiters read -- this is done by the
 * barriers in get_futex_key_refs(), through either ihold or atomic_inc,
 * depending on the futex type.
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
158 159
 */

160 161
int __read_mostly futex_cmpxchg_enabled;

162 163 164 165 166 167 168 169
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

191 192
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
193
 * @list:		priority-sorted list of tasks waiting on this futex
194 195 196 197 198 199 200 201 202
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
203 204 205
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
206
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
207
 * The order of wakeup is always to make the first condition true, then
208 209 210 211
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
212 213
 */
struct futex_q {
P
Pierre Peiffer 已提交
214
	struct plist_node list;
L
Linus Torvalds 已提交
215

216
	struct task_struct *task;
L
Linus Torvalds 已提交
217 218
	spinlock_t *lock_ptr;
	union futex_key key;
219
	struct futex_pi_state *pi_state;
220
	struct rt_mutex_waiter *rt_waiter;
221
	union futex_key *requeue_pi_key;
222
	u32 bitset;
L
Linus Torvalds 已提交
223 224
};

225 226 227 228 229 230
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
231
/*
D
Darren Hart 已提交
232 233 234
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
235 236
 */
struct futex_hash_bucket {
P
Pierre Peiffer 已提交
237 238
	spinlock_t lock;
	struct plist_head chain;
239
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
240

241 242 243
static unsigned long __read_mostly futex_hashsize;

static struct futex_hash_bucket *futex_queues;
L
Linus Torvalds 已提交
244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
static inline void futex_get_mm(union futex_key *key)
{
	atomic_inc(&key->private.mm->mm_count);
	/*
	 * Ensure futex_get_mm() implies a full barrier such that
	 * get_futex_key() implies a full barrier. This is relied upon
	 * as full barrier (B), see the ordering comment above.
	 */
	smp_mb__after_atomic_inc();
}

static inline bool hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	/*
	 * Tasks trying to enter the critical region are most likely
	 * potential waiters that will be added to the plist. Ensure
	 * that wakers won't miss to-be-slept tasks in the window between
	 * the wait call and the actual plist_add.
	 */
	if (spin_is_locked(&hb->lock))
		return true;
	smp_rmb(); /* Make sure we check the lock state first */

	return !plist_head_empty(&hb->chain);
#else
	return true;
#endif
}

L
Linus Torvalds 已提交
275 276 277 278 279 280 281 282
/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
283
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
284 285 286 287 288 289 290
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
291 292
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
293 294 295 296
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

297 298 299 300 301 302 303 304 305 306 307 308
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
309
		ihold(key->shared.inode); /* implies MB (B) */
310 311
		break;
	case FUT_OFF_MMSHARED:
312
		futex_get_mm(key); /* implies MB (B) */
313 314 315 316 317 318 319 320 321 322
		break;
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_futex_key_refs(union futex_key *key)
{
323 324 325
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
326
		return;
327
	}
328 329 330 331 332 333 334 335 336 337 338

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
339
/**
340 341 342 343
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
344 345
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 *              VERIFY_WRITE)
E
Eric Dumazet 已提交
346
 *
347 348
 * Return: a negative error code or 0
 *
E
Eric Dumazet 已提交
349
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
350
 *
A
Al Viro 已提交
351
 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
L
Linus Torvalds 已提交
352 353 354
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
355
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
356
 */
357
static int
358
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
359
{
360
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
361
	struct mm_struct *mm = current->mm;
362
	struct page *page, *page_head;
363
	int err, ro = 0;
L
Linus Torvalds 已提交
364 365 366 367

	/*
	 * The futex address must be "naturally" aligned.
	 */
368
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
369
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
370
		return -EINVAL;
371
	address -= key->both.offset;
L
Linus Torvalds 已提交
372

373 374 375
	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
		return -EFAULT;

E
Eric Dumazet 已提交
376 377 378 379 380 381 382 383 384 385
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
386
		get_futex_key_refs(key);  /* implies MB (B) */
E
Eric Dumazet 已提交
387 388
		return 0;
	}
L
Linus Torvalds 已提交
389

390
again:
391
	err = get_user_pages_fast(address, 1, 1, &page);
392 393 394 395 396 397 398 399
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
	if (err == -EFAULT && rw == VERIFY_READ) {
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
400 401
	if (err < 0)
		return err;
402 403
	else
		err = 0;
404

405 406 407
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	page_head = page;
	if (unlikely(PageTail(page))) {
408
		put_page(page);
409 410
		/* serialize against __split_huge_page_splitting() */
		local_irq_disable();
411
		if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
			page_head = compound_head(page);
			/*
			 * page_head is valid pointer but we must pin
			 * it before taking the PG_lock and/or
			 * PG_compound_lock. The moment we re-enable
			 * irqs __split_huge_page_splitting() can
			 * return and the head page can be freed from
			 * under us. We can't take the PG_lock and/or
			 * PG_compound_lock on a page that could be
			 * freed from under us.
			 */
			if (page != page_head) {
				get_page(page_head);
				put_page(page);
			}
			local_irq_enable();
		} else {
			local_irq_enable();
			goto again;
		}
	}
#else
	page_head = compound_head(page);
	if (page != page_head) {
		get_page(page_head);
		put_page(page);
	}
#endif

	lock_page(page_head);
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

	/*
	 * If page_head->mapping is NULL, then it cannot be a PageAnon
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
	 * an unlikely race, but we do need to retry for page_head->mapping.
	 */
458
	if (!page_head->mapping) {
459
		int shmem_swizzled = PageSwapCache(page_head);
460 461
		unlock_page(page_head);
		put_page(page_head);
462 463 464
		if (shmem_swizzled)
			goto again;
		return -EFAULT;
465
	}
L
Linus Torvalds 已提交
466 467 468 469 470 471

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
472
	 * the object not the particular process.
L
Linus Torvalds 已提交
473
	 */
474
	if (PageAnon(page_head)) {
475 476 477 478 479 480 481 482 483
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
		if (ro) {
			err = -EFAULT;
			goto out;
		}

484
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
485
		key->private.mm = mm;
486
		key->private.address = address;
487 488
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
489
		key->shared.inode = page_head->mapping->host;
490
		key->shared.pgoff = basepage_index(page);
L
Linus Torvalds 已提交
491 492
	}

493
	get_futex_key_refs(key); /* implies MB (B) */
L
Linus Torvalds 已提交
494

495
out:
496 497
	unlock_page(page_head);
	put_page(page_head);
498
	return err;
L
Linus Torvalds 已提交
499 500
}

501
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
502
{
503
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
504 505
}

506 507
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
508 509 510 511 512
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
513
 * We have no generic implementation of a non-destructive write to the
514 515 516 517 518 519
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
520 521 522 523
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
524 525
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
			       FAULT_FLAG_WRITE);
526 527
	up_read(&mm->mmap_sem);

528 529 530
	return ret < 0 ? ret : 0;
}

531 532
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
533 534
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

550 551
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
552
{
553
	int ret;
T
Thomas Gleixner 已提交
554 555

	pagefault_disable();
556
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
557 558
	pagefault_enable();

559
	return ret;
T
Thomas Gleixner 已提交
560 561 562
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
563 564 565
{
	int ret;

566
	pagefault_disable();
567
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
568
	pagefault_enable();
L
Linus Torvalds 已提交
569 570 571 572

	return ret ? -EFAULT : 0;
}

573 574 575 576 577 578 579 580 581 582 583

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

584
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
585 586 587 588 589 590 591 592

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
593
	pi_state->key = FUTEX_KEY_INIT;
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
620
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
621
		list_del_init(&pi_state->list);
622
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;

649
	rcu_read_lock();
650
	p = find_task_by_vpid(pid);
651 652
	if (p)
		get_task_struct(p);
653

654
	rcu_read_unlock();
655 656 657 658 659 660 661 662 663 664 665 666 667

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
668
	struct futex_hash_bucket *hb;
669
	union futex_key key = FUTEX_KEY_INIT;
670

671 672
	if (!futex_cmpxchg_enabled)
		return;
673 674 675
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
676
	 * versus waiters unqueueing themselves:
677
	 */
678
	raw_spin_lock_irq(&curr->pi_lock);
679 680 681 682 683
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
684
		hb = hash_futex(&key);
685
		raw_spin_unlock_irq(&curr->pi_lock);
686 687 688

		spin_lock(&hb->lock);

689
		raw_spin_lock_irq(&curr->pi_lock);
690 691 692 693
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
694 695 696 697 698 699
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
700 701
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
702
		pi_state->owner = NULL;
703
		raw_spin_unlock_irq(&curr->pi_lock);
704 705 706 707 708

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

709
		raw_spin_lock_irq(&curr->pi_lock);
710
	}
711
	raw_spin_unlock_irq(&curr->pi_lock);
712 713 714
}

static int
P
Pierre Peiffer 已提交
715 716
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
		union futex_key *key, struct futex_pi_state **ps)
717 718 719 720
{
	struct futex_pi_state *pi_state = NULL;
	struct futex_q *this, *next;
	struct task_struct *p;
721
	pid_t pid = uval & FUTEX_TID_MASK;
722

J
Jason Low 已提交
723
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
P
Pierre Peiffer 已提交
724
		if (match_futex(&this->key, key)) {
725 726 727 728 729
			/*
			 * Another waiter already exists - bump up
			 * the refcount and return its pi_state:
			 */
			pi_state = this->pi_state;
730
			/*
731
			 * Userspace might have messed up non-PI and PI futexes
732 733 734 735
			 */
			if (unlikely(!pi_state))
				return -EINVAL;

736
			WARN_ON(!atomic_read(&pi_state->refcount));
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

			/*
			 * When pi_state->owner is NULL then the owner died
			 * and another waiter is on the fly. pi_state->owner
			 * is fixed up by the task which acquires
			 * pi_state->rt_mutex.
			 *
			 * We do not check for pid == 0 which can happen when
			 * the owner died and robust_list_exit() cleared the
			 * TID.
			 */
			if (pid && pi_state->owner) {
				/*
				 * Bail out if user space manipulated the
				 * futex value.
				 */
				if (pid != task_pid_vnr(pi_state->owner))
					return -EINVAL;
			}
756

757
			atomic_inc(&pi_state->refcount);
P
Pierre Peiffer 已提交
758
			*ps = pi_state;
759 760 761 762 763 764

			return 0;
		}
	}

	/*
765
	 * We are the first waiter - try to look up the real owner and attach
766
	 * the new pi_state to it, but bail out when TID = 0
767
	 */
768
	if (!pid)
769
		return -ESRCH;
770
	p = futex_find_get_task(pid);
771 772
	if (!p)
		return -ESRCH;
773 774 775 776 777 778 779

	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
780
	raw_spin_lock_irq(&p->pi_lock);
781 782 783 784 785 786 787 788
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

789
		raw_spin_unlock_irq(&p->pi_lock);
790 791 792
		put_task_struct(p);
		return ret;
	}
793 794 795 796 797 798 799 800 801 802

	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make 'p'
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
803
	pi_state->key = *key;
804

805
	WARN_ON(!list_empty(&pi_state->list));
806 807
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
808
	raw_spin_unlock_irq(&p->pi_lock);
809 810 811

	put_task_struct(p);

P
Pierre Peiffer 已提交
812
	*ps = pi_state;
813 814 815 816

	return 0;
}

817
/**
818
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
819 820 821 822 823 824 825 826
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
827
 *
828 829 830
 * Return:
 *  0 - ready to wait;
 *  1 - acquired the lock;
831 832 833 834 835 836 837
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
838
				struct task_struct *task, int set_waiters)
839
{
840
	int lock_taken, ret, force_take = 0;
841
	u32 uval, newval, curval, vpid = task_pid_vnr(task);
842 843 844 845 846 847 848 849 850

retry:
	ret = lock_taken = 0;

	/*
	 * To avoid races, we attempt to take the lock here again
	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
	 * the locks. It will most likely not succeed.
	 */
851
	newval = vpid;
852 853
	if (set_waiters)
		newval |= FUTEX_WAITERS;
854

855
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
856 857 858 859 860
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
861
	if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
		return -EDEADLK;

	/*
	 * Surprise - we got the lock. Just return to userspace:
	 */
	if (unlikely(!curval))
		return 1;

	uval = curval;

	/*
	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
	 * to wake at the next unlock.
	 */
	newval = curval | FUTEX_WAITERS;

	/*
879
	 * Should we force take the futex? See below.
880
	 */
881 882 883 884 885
	if (unlikely(force_take)) {
		/*
		 * Keep the OWNER_DIED and the WAITERS bit and set the
		 * new TID value.
		 */
886
		newval = (curval & ~FUTEX_TID_MASK) | vpid;
887
		force_take = 0;
888 889 890
		lock_taken = 1;
	}

891
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
892 893 894 895 896
		return -EFAULT;
	if (unlikely(curval != uval))
		goto retry;

	/*
897
	 * We took the lock due to forced take over.
898 899 900 901 902 903 904 905 906 907 908 909 910 911
	 */
	if (unlikely(lock_taken))
		return 1;

	/*
	 * We dont have the lock. Look up the PI state (or create it if
	 * we are the first waiter):
	 */
	ret = lookup_pi_state(uval, hb, key, ps);

	if (unlikely(ret)) {
		switch (ret) {
		case -ESRCH:
			/*
912 913 914 915 916 917 918 919
			 * We failed to find an owner for this
			 * futex. So we have no pi_state to block
			 * on. This can happen in two cases:
			 *
			 * 1) The owner died
			 * 2) A stale FUTEX_WAITERS bit
			 *
			 * Re-read the futex value.
920 921 922 923 924
			 */
			if (get_futex_value_locked(&curval, uaddr))
				return -EFAULT;

			/*
925 926 927
			 * If the owner died or we have a stale
			 * WAITERS bit the owner TID in the user space
			 * futex is 0.
928
			 */
929 930
			if (!(curval & FUTEX_TID_MASK)) {
				force_take = 1;
931 932 933 934 935 936 937 938 939 940
				goto retry;
			}
		default:
			break;
		}
	}

	return ret;
}

941 942 943 944 945 946 947 948 949 950
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

951 952
	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
	    || WARN_ON(plist_node_empty(&q->list)))
953 954 955 956 957 958
		return;

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
}

L
Linus Torvalds 已提交
959 960 961 962 963 964
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
T
Thomas Gleixner 已提交
965 966
	struct task_struct *p = q->task;

967 968 969
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

L
Linus Torvalds 已提交
970
	/*
T
Thomas Gleixner 已提交
971
	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
972 973
	 * a non-futex wake up happens on another CPU then the task
	 * might exit and p would dereference a non-existing task
T
Thomas Gleixner 已提交
974 975
	 * struct. Prevent this by holding a reference on p across the
	 * wake up.
L
Linus Torvalds 已提交
976
	 */
T
Thomas Gleixner 已提交
977 978
	get_task_struct(p);

979
	__unqueue_futex(q);
L
Linus Torvalds 已提交
980
	/*
T
Thomas Gleixner 已提交
981 982 983 984
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
985
	 */
986
	smp_wmb();
L
Linus Torvalds 已提交
987
	q->lock_ptr = NULL;
T
Thomas Gleixner 已提交
988 989 990

	wake_up_state(p, TASK_NORMAL);
	put_task_struct(p);
L
Linus Torvalds 已提交
991 992
}

993 994 995 996
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
997
	u32 uninitialized_var(curval), newval;
998 999 1000 1001

	if (!pi_state)
		return -EINVAL;

1002 1003 1004 1005 1006 1007 1008
	/*
	 * If current does not own the pi_state then the futex is
	 * inconsistent and user space fiddled with the futex value.
	 */
	if (pi_state->owner != current)
		return -EINVAL;

1009
	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1010 1011 1012
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
1013 1014 1015
	 * It is possible that the next waiter (the one that brought
	 * this owner to the kernel) timed out and is no longer
	 * waiting on the lock.
1016 1017 1018 1019 1020 1021 1022 1023 1024
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
	 * We pass it to the next owner. (The WAITERS bit is always
	 * kept enabled while there is PI state around. We must also
	 * preserve the owner died bit.)
	 */
1025
	if (!(uval & FUTEX_OWNER_DIED)) {
1026 1027
		int ret = 0;

1028
		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1029

1030
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1031
			ret = -EFAULT;
1032
		else if (curval != uval)
1033 1034
			ret = -EINVAL;
		if (ret) {
1035
			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1036 1037
			return ret;
		}
1038
	}
1039

1040
	raw_spin_lock_irq(&pi_state->owner->pi_lock);
1041 1042
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1043
	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1044

1045
	raw_spin_lock_irq(&new_owner->pi_lock);
1046
	WARN_ON(!list_empty(&pi_state->list));
1047 1048
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1049
	raw_spin_unlock_irq(&new_owner->pi_lock);
1050

1051
	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1052 1053 1054 1055 1056 1057 1058
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
1059
	u32 uninitialized_var(oldval);
1060 1061 1062 1063 1064

	/*
	 * There is no waiter, so we unlock the futex. The owner died
	 * bit has not to be preserved here. We are the owner:
	 */
1065 1066
	if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
		return -EFAULT;
1067 1068 1069 1070 1071 1072
	if (oldval != uval)
		return -EAGAIN;

	return 0;
}

I
Ingo Molnar 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1089 1090 1091
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1092
	spin_unlock(&hb1->lock);
1093 1094
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1095 1096
}

L
Linus Torvalds 已提交
1097
/*
D
Darren Hart 已提交
1098
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1099
 */
1100 1101
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1102
{
1103
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1104
	struct futex_q *this, *next;
1105
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1106 1107
	int ret;

1108 1109 1110
	if (!bitset)
		return -EINVAL;

1111
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
L
Linus Torvalds 已提交
1112 1113 1114
	if (unlikely(ret != 0))
		goto out;

1115
	hb = hash_futex(&key);
1116 1117 1118 1119 1120

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1121
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1122

J
Jason Low 已提交
1123
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1124
		if (match_futex (&this->key, &key)) {
1125
			if (this->pi_state || this->rt_waiter) {
1126 1127 1128
				ret = -EINVAL;
				break;
			}
1129 1130 1131 1132 1133

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

L
Linus Torvalds 已提交
1134 1135 1136 1137 1138 1139
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

1140
	spin_unlock(&hb->lock);
1141
out_put_key:
1142
	put_futex_key(&key);
1143
out:
L
Linus Torvalds 已提交
1144 1145 1146
	return ret;
}

1147 1148 1149 1150
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1151
static int
1152
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1153
	      int nr_wake, int nr_wake2, int op)
1154
{
1155
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1156
	struct futex_hash_bucket *hb1, *hb2;
1157
	struct futex_q *this, *next;
D
Darren Hart 已提交
1158
	int ret, op_ret;
1159

D
Darren Hart 已提交
1160
retry:
1161
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1162 1163
	if (unlikely(ret != 0))
		goto out;
1164
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1165
	if (unlikely(ret != 0))
1166
		goto out_put_key1;
1167

1168 1169
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1170

D
Darren Hart 已提交
1171
retry_private:
T
Thomas Gleixner 已提交
1172
	double_lock_hb(hb1, hb2);
1173
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1174 1175
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
1176
		double_unlock_hb(hb1, hb2);
1177

1178
#ifndef CONFIG_MMU
1179 1180 1181 1182
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
1183
		ret = op_ret;
1184
		goto out_put_keys;
1185 1186
#endif

1187 1188
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
1189
			goto out_put_keys;
1190 1191
		}

1192
		ret = fault_in_user_writeable(uaddr2);
1193
		if (ret)
1194
			goto out_put_keys;
1195

1196
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1197 1198
			goto retry_private;

1199 1200
		put_futex_key(&key2);
		put_futex_key(&key1);
D
Darren Hart 已提交
1201
		goto retry;
1202 1203
	}

J
Jason Low 已提交
1204
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1205
		if (match_futex (&this->key, &key1)) {
1206 1207 1208 1209
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1210 1211 1212 1213 1214 1215 1216 1217
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1218
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1219
			if (match_futex (&this->key, &key2)) {
1220 1221 1222 1223
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1224 1225 1226 1227 1228 1229 1230 1231
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1232
out_unlock:
D
Darren Hart 已提交
1233
	double_unlock_hb(hb1, hb2);
1234
out_put_keys:
1235
	put_futex_key(&key2);
1236
out_put_key1:
1237
	put_futex_key(&key1);
1238
out:
1239 1240 1241
	return ret;
}

D
Darren Hart 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
		plist_add(&q->list, &hb2->chain);
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1267 1268
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1269 1270 1271
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1272 1273 1274 1275 1276
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1277 1278 1279
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1280 1281
 */
static inline
1282 1283
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1284 1285 1286 1287
{
	get_futex_key_refs(key);
	q->key = *key;

1288
	__unqueue_futex(q);
1289 1290 1291 1292

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1293 1294
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1295
	wake_up_state(q->task, TASK_NORMAL);
1296 1297 1298 1299
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1300 1301 1302 1303 1304 1305 1306
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1307 1308
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1309 1310 1311
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1312
 *
1313 1314 1315
 * Return:
 *  0 - failed to acquire the lock atomically;
 *  1 - acquired the lock;
1316 1317 1318 1319 1320 1321
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1322
				 struct futex_pi_state **ps, int set_waiters)
1323
{
1324
	struct futex_q *top_waiter = NULL;
1325 1326 1327 1328 1329 1330
	u32 curval;
	int ret;

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1331 1332 1333 1334 1335 1336 1337 1338
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1339 1340 1341 1342 1343 1344
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1345 1346 1347 1348
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1349
	/*
1350 1351 1352
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1353
	 */
1354 1355
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1356
	if (ret == 1)
1357
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1358 1359 1360 1361 1362 1363

	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1364
 * @uaddr1:	source futex user address
1365
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1366 1367 1368 1369 1370
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1371
 *		pi futex (pi to pi requeue is not supported)
1372 1373 1374 1375
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1376 1377
 * Return:
 * >=0 - on success, the number of tasks requeued or woken;
1378
 *  <0 - on error
L
Linus Torvalds 已提交
1379
 */
1380 1381 1382
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1383
{
1384
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1385 1386
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1387
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1388
	struct futex_q *this, *next;
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	u32 curval2;

	if (requeue_pi) {
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1411

1412
retry:
1413 1414 1415 1416 1417 1418 1419 1420 1421
	if (pi_state != NULL) {
		/*
		 * We will have to lookup the pi_state again, so free this one
		 * to keep the accounting correct.
		 */
		free_pi_state(pi_state);
		pi_state = NULL;
	}

1422
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1423 1424
	if (unlikely(ret != 0))
		goto out;
1425 1426
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1427
	if (unlikely(ret != 0))
1428
		goto out_put_key1;
L
Linus Torvalds 已提交
1429

1430 1431
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1432

D
Darren Hart 已提交
1433
retry_private:
I
Ingo Molnar 已提交
1434
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1435

1436 1437
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1438

1439
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1440 1441

		if (unlikely(ret)) {
D
Darren Hart 已提交
1442
			double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1443

1444
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1445 1446
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1447

1448
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1449
				goto retry_private;
L
Linus Torvalds 已提交
1450

1451 1452
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
1453
			goto retry;
L
Linus Torvalds 已提交
1454
		}
1455
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1456 1457 1458 1459 1460
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1461
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1462 1463 1464 1465 1466 1467
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1468
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1469
						 &key2, &pi_state, nr_requeue);
1470 1471 1472 1473 1474 1475 1476 1477 1478

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
		 * reference to it.
		 */
		if (ret == 1) {
			WARN_ON(pi_state);
1479
			drop_count++;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
			task_count++;
			ret = get_futex_value_locked(&curval2, uaddr2);
			if (!ret)
				ret = lookup_pi_state(curval2, hb2, &key2,
						      &pi_state);
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
1492 1493
			put_futex_key(&key2);
			put_futex_key(&key1);
1494
			ret = fault_in_user_writeable(uaddr2);
1495 1496 1497 1498 1499 1500
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
			/* The owner was exiting, try again. */
			double_unlock_hb(hb1, hb2);
1501 1502
			put_futex_key(&key2);
			put_futex_key(&key1);
1503 1504 1505 1506 1507 1508 1509
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
1510
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1511 1512 1513 1514
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1515
			continue;
1516

1517 1518 1519
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
1520 1521 1522
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
1523 1524
		 */
		if ((requeue_pi && !this->rt_waiter) ||
1525 1526
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
1527 1528 1529
			ret = -EINVAL;
			break;
		}
1530 1531 1532 1533 1534 1535 1536

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
L
Linus Torvalds 已提交
1537
			wake_futex(this);
1538 1539
			continue;
		}
L
Linus Torvalds 已提交
1540

1541 1542 1543 1544 1545 1546
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
							this->task, 1);
			if (ret == 1) {
				/* We got the lock. */
1560
				requeue_pi_wake_futex(this, &key2, hb2);
1561
				drop_count++;
1562 1563 1564 1565 1566 1567 1568
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
L
Linus Torvalds 已提交
1569
		}
1570 1571
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1572 1573 1574
	}

out_unlock:
D
Darren Hart 已提交
1575
	double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1576

1577 1578 1579 1580 1581 1582
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1583
	while (--drop_count >= 0)
1584
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1585

1586
out_put_keys:
1587
	put_futex_key(&key2);
1588
out_put_key1:
1589
	put_futex_key(&key1);
1590
out:
1591 1592 1593
	if (pi_state != NULL)
		free_pi_state(pi_state);
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1594 1595 1596
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1597
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1598
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
1599
{
1600
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1601

1602 1603
	hb = hash_futex(&q->key);
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1604

1605
	spin_lock(&hb->lock); /* implies MB (A) */
1606
	return hb;
L
Linus Torvalds 已提交
1607 1608
}

1609
static inline void
J
Jason Low 已提交
1610
queue_unlock(struct futex_hash_bucket *hb)
1611
	__releases(&hb->lock)
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
{
	spin_unlock(&hb->lock);
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
E
Eric Sesterhenn 已提交
1628
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1629
	__releases(&hb->lock)
L
Linus Torvalds 已提交
1630
{
P
Pierre Peiffer 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
1645
	q->task = current;
1646
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1647 1648
}

1649 1650 1651 1652 1653 1654 1655
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
1656 1657
 * Return:
 *   1 - if the futex_q was still queued (and we removed unqueued it);
1658
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
1659 1660 1661 1662
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1663
	int ret = 0;
L
Linus Torvalds 已提交
1664 1665

	/* In the common case we don't take the spinlock, which is nice. */
1666
retry:
L
Linus Torvalds 已提交
1667
	lock_ptr = q->lock_ptr;
1668
	barrier();
1669
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
1688
		__unqueue_futex(q);
1689 1690 1691

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
1692 1693 1694 1695
		spin_unlock(lock_ptr);
		ret = 1;
	}

1696
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1697 1698 1699
	return ret;
}

1700 1701
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
1702 1703
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1704
 */
P
Pierre Peiffer 已提交
1705
static void unqueue_me_pi(struct futex_q *q)
1706
	__releases(q->lock_ptr)
1707
{
1708
	__unqueue_futex(q);
1709 1710 1711 1712 1713

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
1714
	spin_unlock(q->lock_ptr);
1715 1716
}

P
Pierre Peiffer 已提交
1717
/*
1718
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
1719
 *
1720 1721
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
1722
 */
1723
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1724
				struct task_struct *newowner)
P
Pierre Peiffer 已提交
1725
{
1726
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
1727
	struct futex_pi_state *pi_state = q->pi_state;
1728
	struct task_struct *oldowner = pi_state->owner;
1729
	u32 uval, uninitialized_var(curval), newval;
D
Darren Hart 已提交
1730
	int ret;
P
Pierre Peiffer 已提交
1731 1732

	/* Owner died? */
1733 1734 1735 1736 1737
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
1738 1739 1740 1741
	 * previous highest priority waiter or we are the highest priority
	 * waiter but failed to get the rtmutex the first time.
	 * We have to replace the newowner TID in the user space variable.
	 * This must be atomic as we have to preserve the owner died bit here.
1742
	 *
D
Darren Hart 已提交
1743 1744 1745
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

1760
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
1771
	if (pi_state->owner != NULL) {
1772
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
1773 1774
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
1775
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1776
	}
P
Pierre Peiffer 已提交
1777

1778
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
1779

1780
	raw_spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
1781
	WARN_ON(!list_empty(&pi_state->list));
1782
	list_add(&pi_state->list, &newowner->pi_state_list);
1783
	raw_spin_unlock_irq(&newowner->pi_lock);
1784
	return 0;
P
Pierre Peiffer 已提交
1785 1786

	/*
1787
	 * To handle the page fault we need to drop the hash bucket
1788 1789
	 * lock here. That gives the other task (either the highest priority
	 * waiter itself or the task which stole the rtmutex) the
1790 1791 1792 1793 1794
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
1795
	 */
1796 1797
handle_fault:
	spin_unlock(q->lock_ptr);
1798

1799
	ret = fault_in_user_writeable(uaddr);
1800

1801
	spin_lock(q->lock_ptr);
1802

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
1813 1814
}

N
Nick Piggin 已提交
1815
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
1816

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
1827 1828 1829
 * Return:
 *  1 - success, lock taken;
 *  0 - success, lock not taken;
1830 1831
 * <0 - on error (-EFAULT)
 */
1832
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
1843
			ret = fixup_pi_state_owner(uaddr, q, current);
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
1865
		 * rt_mutex. Too late.
1866
		 */
1867
		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1868
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1869 1870 1871
		if (!owner)
			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1872
		ret = fixup_pi_state_owner(uaddr, q, owner);
1873 1874 1875 1876 1877
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
1878
	 * the owner of the rt_mutex.
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

1890 1891 1892 1893 1894 1895 1896
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
1897
				struct hrtimer_sleeper *timeout)
1898
{
1899 1900 1901 1902 1903 1904
	/*
	 * The task state is guaranteed to be set before another task can
	 * wake it. set_current_state() is implemented using set_mb() and
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
1905
	set_current_state(TASK_INTERRUPTIBLE);
1906
	queue_me(q, hb);
1907 1908 1909 1910 1911 1912 1913 1914 1915

	/* Arm the timer */
	if (timeout) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	/*
1916 1917
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
1918 1919 1920 1921 1922 1923 1924 1925
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
1926
			freezable_schedule();
1927 1928 1929 1930
	}
	__set_current_state(TASK_RUNNING);
}

1931 1932 1933 1934
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
1935
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1936 1937 1938 1939 1940 1941 1942 1943
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
1944 1945
 * Return:
 *  0 - uaddr contains val and hb has been locked;
1946
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1947
 */
1948
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1949
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
1950
{
1951 1952
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
1953 1954

	/*
D
Darren Hart 已提交
1955
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
1956 1957 1958 1959 1960 1961 1962
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
1963 1964
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
1965 1966
	 * cond(var) false, which would violate the guarantee.
	 *
1967 1968 1969 1970
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
1971
	 */
1972
retry:
1973
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1974
	if (unlikely(ret != 0))
1975
		return ret;
1976 1977 1978 1979

retry_private:
	*hb = queue_lock(q);

1980
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
1981

1982
	if (ret) {
J
Jason Low 已提交
1983
		queue_unlock(*hb);
L
Linus Torvalds 已提交
1984

1985
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
1986
		if (ret)
1987
			goto out;
L
Linus Torvalds 已提交
1988

1989
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1990 1991
			goto retry_private;

1992
		put_futex_key(&q->key);
D
Darren Hart 已提交
1993
		goto retry;
L
Linus Torvalds 已提交
1994
	}
1995

1996
	if (uval != val) {
J
Jason Low 已提交
1997
		queue_unlock(*hb);
1998
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
1999
	}
L
Linus Torvalds 已提交
2000

2001 2002
out:
	if (ret)
2003
		put_futex_key(&q->key);
2004 2005 2006
	return ret;
}

2007 2008
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2009 2010 2011 2012
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2013
	struct futex_q q = futex_q_init;
2014 2015 2016 2017 2018 2019 2020 2021 2022
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

2023 2024 2025
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2026 2027 2028 2029 2030
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
2031
retry:
2032 2033 2034 2035
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2036
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2037 2038 2039
	if (ret)
		goto out;

2040
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2041
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2042 2043

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2044
	ret = 0;
2045
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2046
	if (!unqueue_me(&q))
2047
		goto out;
P
Peter Zijlstra 已提交
2048
	ret = -ETIMEDOUT;
2049
	if (to && !to->task)
2050
		goto out;
N
Nick Piggin 已提交
2051

2052
	/*
T
Thomas Gleixner 已提交
2053 2054
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2055
	 */
2056
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2057 2058
		goto retry;

P
Peter Zijlstra 已提交
2059
	ret = -ERESTARTSYS;
2060
	if (!abs_time)
2061
		goto out;
L
Linus Torvalds 已提交
2062

P
Peter Zijlstra 已提交
2063 2064
	restart = &current_thread_info()->restart_block;
	restart->fn = futex_wait_restart;
2065
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2066 2067 2068
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
2069
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2070

P
Peter Zijlstra 已提交
2071 2072
	ret = -ERESTART_RESTARTBLOCK;

2073
out:
2074 2075 2076 2077
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2078 2079 2080
	return ret;
}

N
Nick Piggin 已提交
2081 2082 2083

static long futex_wait_restart(struct restart_block *restart)
{
2084
	u32 __user *uaddr = restart->futex.uaddr;
2085
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2086

2087 2088 2089 2090
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
2091
	restart->fn = do_no_restart_syscall;
2092 2093 2094

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2095 2096 2097
}


2098 2099 2100 2101 2102 2103
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
2104 2105
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
			 ktime_t *time, int trylock)
2106
{
2107
	struct hrtimer_sleeper timeout, *to = NULL;
2108
	struct futex_hash_bucket *hb;
2109
	struct futex_q q = futex_q_init;
2110
	int res, ret;
2111 2112 2113 2114

	if (refill_pi_state_cache())
		return -ENOMEM;

2115
	if (time) {
2116
		to = &timeout;
2117 2118
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
2119
		hrtimer_init_sleeper(to, current);
2120
		hrtimer_set_expires(&to->timer, *time);
2121 2122
	}

2123
retry:
2124
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2125
	if (unlikely(ret != 0))
2126
		goto out;
2127

D
Darren Hart 已提交
2128
retry_private:
E
Eric Sesterhenn 已提交
2129
	hb = queue_lock(&q);
2130

2131
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2132
	if (unlikely(ret)) {
2133
		switch (ret) {
2134 2135 2136 2137 2138 2139
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2140 2141 2142 2143 2144
		case -EAGAIN:
			/*
			 * Task is exiting and we just wait for the
			 * exit to complete.
			 */
J
Jason Low 已提交
2145
			queue_unlock(hb);
2146
			put_futex_key(&q.key);
2147 2148 2149
			cond_resched();
			goto retry;
		default:
2150
			goto out_unlock_put_key;
2151 2152 2153 2154 2155 2156
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
2157
	queue_me(&q, hb);
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
	if (!trylock)
		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
	else {
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

2171
	spin_lock(q.lock_ptr);
2172 2173 2174 2175
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2176
	res = fixup_owner(uaddr, &q, !ret);
2177 2178 2179 2180 2181 2182
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2183

2184
	/*
2185 2186
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2187 2188 2189 2190
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

2191 2192
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2193

2194
	goto out_put_key;
2195

2196
out_unlock_put_key:
J
Jason Low 已提交
2197
	queue_unlock(hb);
2198

2199
out_put_key:
2200
	put_futex_key(&q.key);
2201
out:
2202 2203
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
2204
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2205

2206
uaddr_faulted:
J
Jason Low 已提交
2207
	queue_unlock(hb);
2208

2209
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2210 2211
	if (ret)
		goto out_put_key;
2212

2213
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2214 2215
		goto retry_private;

2216
	put_futex_key(&q.key);
D
Darren Hart 已提交
2217
	goto retry;
2218 2219 2220 2221 2222 2223 2224
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2225
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2226 2227 2228
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
2229
	union futex_key key = FUTEX_KEY_INIT;
2230
	u32 uval, vpid = task_pid_vnr(current);
D
Darren Hart 已提交
2231
	int ret;
2232 2233 2234 2235 2236 2237 2238

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2239
	if ((uval & FUTEX_TID_MASK) != vpid)
2240 2241
		return -EPERM;

2242
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	if (unlikely(ret != 0))
		goto out;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
	 * To avoid races, try to do the TID -> 0 atomic transition
	 * again. If it succeeds then we can return without waking
	 * anyone else up:
	 */
2254 2255
	if (!(uval & FUTEX_OWNER_DIED) &&
	    cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2256 2257 2258 2259 2260
		goto pi_faulted;
	/*
	 * Rare case: we managed to release the lock atomically,
	 * no need to wake anyone else up:
	 */
2261
	if (unlikely(uval == vpid))
2262 2263 2264 2265 2266 2267
		goto out_unlock;

	/*
	 * Ok, other tasks may need to be woken up - check waiters
	 * and do the wakeup if necessary:
	 */
J
Jason Low 已提交
2268
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
		if (!match_futex (&this->key, &key))
			continue;
		ret = wake_futex_pi(uaddr, uval, this);
		/*
		 * The atomic access to the futex value
		 * generated a pagefault, so retry the
		 * user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
	/*
	 * No waiters - kernel unlocks the futex:
	 */
2284 2285 2286 2287 2288
	if (!(uval & FUTEX_OWNER_DIED)) {
		ret = unlock_futex_pi(uaddr, uval);
		if (ret == -EFAULT)
			goto pi_faulted;
	}
2289 2290 2291

out_unlock:
	spin_unlock(&hb->lock);
2292
	put_futex_key(&key);
2293

2294
out:
2295 2296 2297
	return ret;

pi_faulted:
2298
	spin_unlock(&hb->lock);
2299
	put_futex_key(&key);
2300

2301
	ret = fault_in_user_writeable(uaddr);
2302
	if (!ret)
2303 2304
		goto retry;

L
Linus Torvalds 已提交
2305 2306 2307
	return ret;
}

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
2320 2321 2322
 * Return:
 *  0 = no early wakeup detected;
 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
2344
		plist_del(&q->list, &hb->chain);
2345

T
Thomas Gleixner 已提交
2346
		/* Handle spurious wakeups gracefully */
2347
		ret = -EWOULDBLOCK;
2348 2349
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2350
		else if (signal_pending(current))
2351
			ret = -ERESTARTNOINTR;
2352 2353 2354 2355 2356 2357
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2358
 * @uaddr:	the futex we initially wait on (non-pi)
2359
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2360 2361 2362
 * 		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2363
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2364 2365 2366
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2367 2368 2369 2370 2371
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
2372 2373
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2374
 * via the following--
2375
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2376 2377 2378
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2379
 *
2380
 * If 3, cleanup and return -ERESTARTNOINTR.
2381 2382 2383 2384 2385 2386 2387
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2388
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2389 2390 2391
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
2392 2393
 * Return:
 *  0 - On success;
2394 2395
 * <0 - On error
 */
2396
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2397
				 u32 val, ktime_t *abs_time, u32 bitset,
2398
				 u32 __user *uaddr2)
2399 2400 2401 2402 2403
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
2404 2405
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
2406 2407
	int res, ret;

2408 2409 2410
	if (uaddr == uaddr2)
		return -EINVAL;

2411 2412 2413 2414 2415
	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
2416 2417 2418
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
2429 2430
	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2431 2432
	rt_waiter.task = NULL;

2433
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2434 2435 2436
	if (unlikely(ret != 0))
		goto out;

2437 2438 2439 2440
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2441 2442 2443 2444
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
2445
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
2446 2447
	if (ret)
		goto out_key2;
2448 2449

	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2450
	futex_wait_queue_me(hb, &q, to);
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
2462 2463 2464
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
2475
			ret = fixup_pi_state_owner(uaddr2, &q, current);
2476 2477 2478 2479 2480 2481 2482 2483
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
2484
		WARN_ON(!q.pi_state);
2485 2486 2487 2488 2489 2490 2491 2492 2493
		pi_mutex = &q.pi_state->pi_mutex;
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
2494
		res = fixup_owner(uaddr2, &q, !ret);
2495 2496
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2497
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
2511
		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2512 2513 2514
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2515 2516 2517 2518 2519
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2520
		 */
2521
		ret = -EWOULDBLOCK;
2522 2523 2524
	}

out_put_keys:
2525
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
2526
out_key2:
2527
	put_futex_key(&key2);
2528 2529 2530 2531 2532 2533 2534 2535 2536

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2537 2538 2539 2540 2541 2542 2543
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2544
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2545 2546 2547 2548 2549 2550 2551 2552
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
2553 2554 2555
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
2556
 */
2557 2558
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2559
{
2560 2561
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
2574 2575 2576 2577
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2578
 */
2579 2580 2581
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2582
{
A
Al Viro 已提交
2583
	struct robust_list_head __user *head;
2584
	unsigned long ret;
2585
	struct task_struct *p;
2586

2587 2588 2589
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2590 2591 2592
	rcu_read_lock();

	ret = -ESRCH;
2593
	if (!pid)
2594
		p = current;
2595
	else {
2596
		p = find_task_by_vpid(pid);
2597 2598 2599 2600
		if (!p)
			goto err_unlock;
	}

2601 2602 2603 2604 2605 2606 2607
	ret = -EPERM;
	if (!ptrace_may_access(p, PTRACE_MODE_READ))
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

2608 2609 2610 2611 2612
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2613
	rcu_read_unlock();
2614 2615 2616 2617 2618 2619 2620 2621

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2622
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2623
{
2624
	u32 uval, uninitialized_var(nval), mval;
2625

2626 2627
retry:
	if (get_user(uval, uaddr))
2628 2629
		return -1;

2630
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2641
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
		/*
		 * We are not holding a lock here, but we want to have
		 * the pagefault_disable/enable() protection because
		 * we want to handle the fault gracefully. If the
		 * access fails we try to fault in the futex with R/W
		 * verification via get_user_pages. get_user() above
		 * does not guarantee R/W access. If that fails we
		 * give up and leave the futex locked.
		 */
		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
		}
2656
		if (nval != uval)
2657
			goto retry;
2658

2659 2660 2661 2662
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
2663
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
2664
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2665 2666 2667 2668
	}
	return 0;
}

2669 2670 2671 2672
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
2673
				     struct robust_list __user * __user *head,
2674
				     unsigned int *pi)
2675 2676 2677
{
	unsigned long uentry;

A
Al Viro 已提交
2678
	if (get_user(uentry, (unsigned long __user *)head))
2679 2680
		return -EFAULT;

A
Al Viro 已提交
2681
	*entry = (void __user *)(uentry & ~1UL);
2682 2683 2684 2685 2686
	*pi = uentry & 1;

	return 0;
}

2687 2688 2689 2690 2691 2692 2693 2694 2695
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
2696
	struct robust_list __user *entry, *next_entry, *pending;
2697 2698
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
2699
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
2700
	int rc;
2701

2702 2703 2704
	if (!futex_cmpxchg_enabled)
		return;

2705 2706 2707 2708
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2709
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
2720
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2721
		return;
2722

M
Martin Schwidefsky 已提交
2723
	next_entry = NULL;	/* avoid warning with gcc */
2724
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
2725 2726 2727 2728 2729
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2730 2731
		/*
		 * A pending lock might already be on the list, so
2732
		 * don't process it twice:
2733 2734
		 */
		if (entry != pending)
A
Al Viro 已提交
2735
			if (handle_futex_death((void __user *)entry + futex_offset,
2736
						curr, pi))
2737
				return;
M
Martin Schwidefsky 已提交
2738
		if (rc)
2739
			return;
M
Martin Schwidefsky 已提交
2740 2741
		entry = next_entry;
		pi = next_pi;
2742 2743 2744 2745 2746 2747 2748 2749
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
2750 2751 2752 2753

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
2754 2755
}

2756
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2757
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
2758
{
T
Thomas Gleixner 已提交
2759
	int cmd = op & FUTEX_CMD_MASK;
2760
	unsigned int flags = 0;
E
Eric Dumazet 已提交
2761 2762

	if (!(op & FUTEX_PRIVATE_FLAG))
2763
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
2764

2765 2766 2767 2768 2769
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
2770

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
2781
	switch (cmd) {
L
Linus Torvalds 已提交
2782
	case FUTEX_WAIT:
2783 2784
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
2785
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
2786
	case FUTEX_WAKE:
2787 2788
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
2789
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
2790
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
2791
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
2792
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
2793
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2794
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
2795
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2796
	case FUTEX_LOCK_PI:
T
Thomas Gleixner 已提交
2797
		return futex_lock_pi(uaddr, flags, val, timeout, 0);
2798
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
2799
		return futex_unlock_pi(uaddr, flags);
2800
	case FUTEX_TRYLOCK_PI:
T
Thomas Gleixner 已提交
2801
		return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2802 2803
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
2804 2805
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
2806
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
2807
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
2808
	}
T
Thomas Gleixner 已提交
2809
	return -ENOSYS;
L
Linus Torvalds 已提交
2810 2811 2812
}


2813 2814 2815
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
2816
{
2817 2818
	struct timespec ts;
	ktime_t t, *tp = NULL;
2819
	u32 val2 = 0;
E
Eric Dumazet 已提交
2820
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
2821

2822
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2823 2824
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2825
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
2826
			return -EFAULT;
2827
		if (!timespec_valid(&ts))
2828
			return -EINVAL;
2829 2830

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
2831
		if (cmd == FUTEX_WAIT)
2832
			t = ktime_add_safe(ktime_get(), t);
2833
		tp = &t;
L
Linus Torvalds 已提交
2834 2835
	}
	/*
2836
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2837
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
2838
	 */
2839
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2840
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2841
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
2842

2843
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
2844 2845
}

2846
static int __init futex_init(void)
L
Linus Torvalds 已提交
2847
{
2848
	u32 curval;
2849
	unsigned int futex_shift;
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
2861 2862 2863
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
2864 2865 2866 2867 2868 2869 2870
	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
2871
	 * implementation, the non-functional ones will return
2872 2873
	 * -ENOSYS.
	 */
2874
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2875 2876
		futex_cmpxchg_enabled = 1;

2877
	for (i = 0; i < futex_hashsize; i++) {
2878
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
2879 2880 2881
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
2882 2883
	return 0;
}
2884
__initcall(futex_init);