futex.c 112.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
12 13 14 15
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
16 17 18 19
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
20 21 22
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
23 24 25 26
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
27 28 29 30 31 32 33
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 */
34
#include <linux/compat.h>
L
Linus Torvalds 已提交
35 36 37 38 39 40 41 42 43 44
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
45
#include <linux/signal.h>
46
#include <linux/export.h>
47
#include <linux/magic.h>
48 49
#include <linux/pid.h>
#include <linux/nsproxy.h>
50
#include <linux/ptrace.h>
51
#include <linux/sched/rt.h>
52
#include <linux/sched/wake_q.h>
53
#include <linux/sched/mm.h>
54
#include <linux/hugetlb.h>
C
Colin Cross 已提交
55
#include <linux/freezer.h>
M
Mike Rapoport 已提交
56
#include <linux/memblock.h>
57
#include <linux/fault-inject.h>
58
#include <linux/refcount.h>
59

60
#include <asm/futex.h>
L
Linus Torvalds 已提交
61

62
#include "locking/rtmutex_common.h"
63

64
/*
65 66 67 68
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
69 70 71 72
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
73 74 75
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
76 77
 *
 * The waker side modifies the user space value of the futex and calls
78 79 80
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
81
 *
82 83 84 85 86
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
108 109 110 111 112
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
113 114 115
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
116
 *
117
 *   waiters++; (a)
118 119 120 121 122 123 124 125 126 127
 *   smp_mb(); (A) <-- paired with -.
 *                                  |
 *   lock(hash_bucket(futex));      |
 *                                  |
 *   uval = *futex;                 |
 *                                  |        *futex = newval;
 *                                  |        sys_futex(WAKE, futex);
 *                                  |          futex_wake(futex);
 *                                  |
 *                                  `--------> smp_mb(); (B)
128
 *   if (uval == val)
129
 *     queue();
130
 *     unlock(hash_bucket(futex));
131 132
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
133 134
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
135
 *
136 137
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
138 139
 * to futex and the waiters read -- this is done by the barriers for both
 * shared and private futexes in get_futex_key_refs().
140 141 142 143 144 145 146 147 148 149 150 151
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
152 153 154 155 156 157 158 159 160 161 162
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
163 164
 */

165 166 167 168
#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
#define futex_cmpxchg_enabled 1
#else
static int  __read_mostly futex_cmpxchg_enabled;
169
#endif
170

171 172 173 174
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
175 176 177 178 179 180 181 182 183
#ifdef CONFIG_MMU
# define FLAGS_SHARED		0x01
#else
/*
 * NOMMU does not have per process address space. Let the compiler optimize
 * code away.
 */
# define FLAGS_SHARED		0x00
#endif
184 185 186
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
203
	refcount_t refcount;
204 205

	union futex_key key;
206
} __randomize_layout;
207

208 209
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
210
 * @list:		priority-sorted list of tasks waiting on this futex
211 212 213 214 215 216 217 218
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
219
 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
L
Linus Torvalds 已提交
220 221 222
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
223
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
224
 * The order of wakeup is always to make the first condition true, then
225 226 227 228
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
229 230
 */
struct futex_q {
P
Pierre Peiffer 已提交
231
	struct plist_node list;
L
Linus Torvalds 已提交
232

233
	struct task_struct *task;
L
Linus Torvalds 已提交
234 235
	spinlock_t *lock_ptr;
	union futex_key key;
236
	struct futex_pi_state *pi_state;
237
	struct rt_mutex_waiter *rt_waiter;
238
	union futex_key *requeue_pi_key;
239
	u32 bitset;
240
} __randomize_layout;
L
Linus Torvalds 已提交
241

242 243 244 245 246 247
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
248
/*
D
Darren Hart 已提交
249 250 251
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
252 253
 */
struct futex_hash_bucket {
254
	atomic_t waiters;
P
Pierre Peiffer 已提交
255 256
	spinlock_t lock;
	struct plist_head chain;
257
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
258

259 260 261 262 263 264 265 266 267 268 269
/*
 * The base of the bucket array and its size are always used together
 * (after initialization only in hash_futex()), so ensure that they
 * reside in the same cacheline.
 */
static struct {
	struct futex_hash_bucket *queues;
	unsigned long            hashsize;
} __futex_data __read_mostly __aligned(2*sizeof(long));
#define futex_queues   (__futex_data.queues)
#define futex_hashsize (__futex_data.hashsize)
270

L
Linus Torvalds 已提交
271

272 273 274 275 276 277 278 279
/*
 * Fault injections for futexes.
 */
#ifdef CONFIG_FAIL_FUTEX

static struct {
	struct fault_attr attr;

280
	bool ignore_private;
281 282
} fail_futex = {
	.attr = FAULT_ATTR_INITIALIZER,
283
	.ignore_private = false,
284 285 286 287 288 289 290 291
};

static int __init setup_fail_futex(char *str)
{
	return setup_fault_attr(&fail_futex.attr, str);
}
__setup("fail_futex=", setup_fail_futex);

292
static bool should_fail_futex(bool fshared)
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
{
	if (fail_futex.ignore_private && !fshared)
		return false;

	return should_fail(&fail_futex.attr, 1);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_futex_debugfs(void)
{
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;

	dir = fault_create_debugfs_attr("fail_futex", NULL,
					&fail_futex.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);

312 313
	debugfs_create_bool("ignore-private", mode, dir,
			    &fail_futex.ignore_private);
314 315 316 317 318 319 320 321 322 323 324 325 326 327
	return 0;
}

late_initcall(fail_futex_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else
static inline bool should_fail_futex(bool fshared)
{
	return false;
}
#endif /* CONFIG_FAIL_FUTEX */

328 329 330 331 332 333
#ifdef CONFIG_COMPAT
static void compat_exit_robust_list(struct task_struct *curr);
#else
static inline void compat_exit_robust_list(struct task_struct *curr) { }
#endif

334 335
static inline void futex_get_mm(union futex_key *key)
{
V
Vegard Nossum 已提交
336
	mmgrab(key->private.mm);
337 338 339
	/*
	 * Ensure futex_get_mm() implies a full barrier such that
	 * get_futex_key() implies a full barrier. This is relied upon
340
	 * as smp_mb(); (B), see the ordering comment above.
341
	 */
342
	smp_mb__after_atomic();
343 344
}

345 346 347 348
/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
349 350
{
#ifdef CONFIG_SMP
351
	atomic_inc(&hb->waiters);
352
	/*
353
	 * Full barrier (A), see the ordering comment above.
354
	 */
355
	smp_mb__after_atomic();
356 357 358 359 360 361 362 363 364 365 366 367 368
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}
369

370 371 372 373
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	return atomic_read(&hb->waiters);
374
#else
375
	return 1;
376 377 378
#endif
}

379 380 381 382 383 384
/**
 * hash_futex - Return the hash bucket in the global hash
 * @key:	Pointer to the futex key for which the hash is calculated
 *
 * We hash on the keys returned from get_futex_key (see below) and return the
 * corresponding hash bucket in the global hash.
L
Linus Torvalds 已提交
385 386 387 388 389 390
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
391
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
392 393
}

394 395 396 397 398 399

/**
 * match_futex - Check whether two futex keys are equal
 * @key1:	Pointer to key1
 * @key2:	Pointer to key2
 *
L
Linus Torvalds 已提交
400 401 402 403
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
404 405
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
406 407 408 409
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

410 411 412 413 414 415 416 417 418 419
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

420 421 422 423 424 425 426 427 428 429
	/*
	 * On MMU less systems futexes are always "private" as there is no per
	 * process address space. We need the smp wmb nevertheless - yes,
	 * arch/blackfin has MMU less SMP ...
	 */
	if (!IS_ENABLED(CONFIG_MMU)) {
		smp_mb(); /* explicit smp_mb(); (B) */
		return;
	}

430 431
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
432
		smp_mb();		/* explicit smp_mb(); (B) */
433 434
		break;
	case FUT_OFF_MMSHARED:
435
		futex_get_mm(key); /* implies smp_mb(); (B) */
436
		break;
437
	default:
438 439 440 441 442
		/*
		 * Private futexes do not hold reference on an inode or
		 * mm, therefore the only purpose of calling get_futex_key_refs
		 * is because we need the barrier for the lockless waiter check.
		 */
443
		smp_mb(); /* explicit smp_mb(); (B) */
444 445 446 447 448
	}
}

/*
 * Drop a reference to the resource addressed by a key.
449 450 451
 * The hash bucket spinlock must not be held. This is
 * a no-op for private futexes, see comment in the get
 * counterpart.
452 453 454
 */
static void drop_futex_key_refs(union futex_key *key)
{
455 456 457
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
458
		return;
459
	}
460

461 462 463
	if (!IS_ENABLED(CONFIG_MMU))
		return;

464 465 466 467 468 469 470 471 472
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

473 474 475 476 477
enum futex_access {
	FUTEX_READ,
	FUTEX_WRITE
};

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
/**
 * futex_setup_timer - set up the sleeping hrtimer.
 * @time:	ptr to the given timeout value
 * @timeout:	the hrtimer_sleeper structure to be set up
 * @flags:	futex flags
 * @range_ns:	optional range in ns
 *
 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
 *	   value given
 */
static inline struct hrtimer_sleeper *
futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
		  int flags, u64 range_ns)
{
	if (!time)
		return NULL;

495 496 497
	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
498 499 500 501 502 503 504 505 506
	/*
	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
	 * effectively the same as calling hrtimer_set_expires().
	 */
	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);

	return timeout;
}

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
/*
 * Generate a machine wide unique identifier for this inode.
 *
 * This relies on u64 not wrapping in the life-time of the machine; which with
 * 1ns resolution means almost 585 years.
 *
 * This further relies on the fact that a well formed program will not unmap
 * the file while it has a (shared) futex waiting on it. This mapping will have
 * a file reference which pins the mount and inode.
 *
 * If for some reason an inode gets evicted and read back in again, it will get
 * a new sequence number and will _NOT_ match, even though it is the exact same
 * file.
 *
 * It is important that match_futex() will never have a false-positive, esp.
 * for PI futexes that can mess up the state. The above argues that false-negatives
 * are only possible for malformed programs.
 */
static u64 get_inode_sequence_number(struct inode *inode)
{
	static atomic64_t i_seq;
	u64 old;

	/* Does the inode already have a sequence number? */
	old = atomic64_read(&inode->i_sequence);
	if (likely(old))
		return old;

	for (;;) {
		u64 new = atomic64_add_return(1, &i_seq);
		if (WARN_ON_ONCE(!new))
			continue;

		old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
		if (old)
			return old;
		return new;
	}
}

E
Eric Dumazet 已提交
547
/**
548 549 550 551
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
552 553
 * @rw:		mapping needs to be read/write (values: FUTEX_READ,
 *              FUTEX_WRITE)
E
Eric Dumazet 已提交
554
 *
555 556
 * Return: a negative error code or 0
 *
557
 * The key words are stored in @key on success.
L
Linus Torvalds 已提交
558
 *
559 560 561 562 563 564 565 566 567
 * For shared mappings (when @fshared), the key is:
 *   ( inode->i_sequence, page->index, offset_within_page )
 * [ also see get_inode_sequence_number() ]
 *
 * For private mappings (or when !@fshared), the key is:
 *   ( current->mm, address, 0 )
 *
 * This allows (cross process, where applicable) identification of the futex
 * without keeping the page pinned for the duration of the FUTEX_WAIT.
L
Linus Torvalds 已提交
568
 *
D
Darren Hart 已提交
569
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
570
 */
571
static int
572
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
L
Linus Torvalds 已提交
573
{
574
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
575
	struct mm_struct *mm = current->mm;
576
	struct page *page, *tail;
577
	struct address_space *mapping;
578
	int err, ro = 0;
L
Linus Torvalds 已提交
579 580 581 582

	/*
	 * The futex address must be "naturally" aligned.
	 */
583
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
584
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
585
		return -EINVAL;
586
	address -= key->both.offset;
L
Linus Torvalds 已提交
587

588
	if (unlikely(!access_ok(uaddr, sizeof(u32))))
589 590
		return -EFAULT;

591 592 593
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

E
Eric Dumazet 已提交
594 595 596 597 598 599 600 601 602 603
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
604
		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
E
Eric Dumazet 已提交
605 606
		return 0;
	}
L
Linus Torvalds 已提交
607

608
again:
609 610 611 612
	/* Ignore any VERIFY_READ mapping (futex common case) */
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

613
	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
614 615 616 617
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
618
	if (err == -EFAULT && rw == FUTEX_READ) {
619 620 621
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
622 623
	if (err < 0)
		return err;
624 625
	else
		err = 0;
626

627 628 629 630 631 632 633 634 635 636
	/*
	 * The treatment of mapping from this point on is critical. The page
	 * lock protects many things but in this context the page lock
	 * stabilizes mapping, prevents inode freeing in the shared
	 * file-backed region case and guards against movement to swap cache.
	 *
	 * Strictly speaking the page lock is not needed in all cases being
	 * considered here and page lock forces unnecessarily serialization
	 * From this point on, mapping will be re-verified if necessary and
	 * page lock will be acquired only if it is unavoidable
637 638 639 640 641 642 643
	 *
	 * Mapping checks require the head page for any compound page so the
	 * head page and mapping is looked up now. For anonymous pages, it
	 * does not matter if the page splits in the future as the key is
	 * based on the address. For filesystem-backed pages, the tail is
	 * required as the index of the page determines the key. For
	 * base pages, there is no tail page and tail == page.
644
	 */
645
	tail = page;
646 647 648
	page = compound_head(page);
	mapping = READ_ONCE(page->mapping);

649
	/*
650
	 * If page->mapping is NULL, then it cannot be a PageAnon
651 652 653 654 655 656 657 658 659 660 661
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
662
	 * an unlikely race, but we do need to retry for page->mapping.
663
	 */
664 665 666 667 668 669 670 671 672 673
	if (unlikely(!mapping)) {
		int shmem_swizzled;

		/*
		 * Page lock is required to identify which special case above
		 * applies. If this is really a shmem page then the page lock
		 * will prevent unexpected transitions.
		 */
		lock_page(page);
		shmem_swizzled = PageSwapCache(page) || page->mapping;
674 675
		unlock_page(page);
		put_page(page);
676

677 678
		if (shmem_swizzled)
			goto again;
679

680
		return -EFAULT;
681
	}
L
Linus Torvalds 已提交
682 683 684 685

	/*
	 * Private mappings are handled in a simple way.
	 *
686 687 688
	 * If the futex key is stored on an anonymous page, then the associated
	 * object is the mm which is implicitly pinned by the calling process.
	 *
L
Linus Torvalds 已提交
689 690
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
691
	 * the object not the particular process.
L
Linus Torvalds 已提交
692
	 */
693
	if (PageAnon(page)) {
694 695 696 697
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
698
		if (unlikely(should_fail_futex(fshared)) || ro) {
699 700 701 702
			err = -EFAULT;
			goto out;
		}

703
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
704
		key->private.mm = mm;
705
		key->private.address = address;
706

707
	} else {
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
		struct inode *inode;

		/*
		 * The associated futex object in this case is the inode and
		 * the page->mapping must be traversed. Ordinarily this should
		 * be stabilised under page lock but it's not strictly
		 * necessary in this case as we just want to pin the inode, not
		 * update the radix tree or anything like that.
		 *
		 * The RCU read lock is taken as the inode is finally freed
		 * under RCU. If the mapping still matches expectations then the
		 * mapping->host can be safely accessed as being a valid inode.
		 */
		rcu_read_lock();

		if (READ_ONCE(page->mapping) != mapping) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		inode = READ_ONCE(mapping->host);
		if (!inode) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

738
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
739
		key->shared.i_seq = get_inode_sequence_number(inode);
740
		key->shared.pgoff = basepage_index(tail);
741
		rcu_read_unlock();
L
Linus Torvalds 已提交
742 743
	}

744 745
	get_futex_key_refs(key); /* implies smp_mb(); (B) */

746
out:
747
	put_page(page);
748
	return err;
L
Linus Torvalds 已提交
749 750
}

751
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
752
{
753
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
754 755
}

756 757
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
758 759 760 761 762
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
763
 * We have no generic implementation of a non-destructive write to the
764 765 766 767 768 769
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
770 771 772 773
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
774
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
775
			       FAULT_FLAG_WRITE, NULL);
776 777
	up_read(&mm->mmap_sem);

778 779 780
	return ret < 0 ? ret : 0;
}

781 782
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
783 784
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

800 801
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
802
{
803
	int ret;
T
Thomas Gleixner 已提交
804 805

	pagefault_disable();
806
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
807 808
	pagefault_enable();

809
	return ret;
T
Thomas Gleixner 已提交
810 811 812
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
813 814 815
{
	int ret;

816
	pagefault_disable();
817
	ret = __get_user(*dest, from);
818
	pagefault_enable();
L
Linus Torvalds 已提交
819 820 821 822

	return ret ? -EFAULT : 0;
}

823 824 825 826 827 828 829 830 831 832 833

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

834
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
835 836 837 838 839 840 841

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
842
	refcount_set(&pi_state->refcount, 1);
843
	pi_state->key = FUTEX_KEY_INIT;
844 845 846 847 848 849

	current->pi_state_cache = pi_state;

	return 0;
}

P
Peter Zijlstra 已提交
850
static struct futex_pi_state *alloc_pi_state(void)
851 852 853 854 855 856 857 858 859
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

P
Peter Zijlstra 已提交
860 861
static void get_pi_state(struct futex_pi_state *pi_state)
{
862
	WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
P
Peter Zijlstra 已提交
863 864
}

865
/*
866 867
 * Drops a reference to the pi_state object and frees or caches it
 * when the last reference is gone.
868
 */
869
static void put_pi_state(struct futex_pi_state *pi_state)
870
{
871 872 873
	if (!pi_state)
		return;

874
	if (!refcount_dec_and_test(&pi_state->refcount))
875 876 877 878 879 880 881
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
882
		struct task_struct *owner;
883

884 885 886 887 888 889 890 891 892
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
		owner = pi_state->owner;
		if (owner) {
			raw_spin_lock(&owner->pi_lock);
			list_del_init(&pi_state->list);
			raw_spin_unlock(&owner->pi_lock);
		}
		rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
893 894
	}

895
	if (current->pi_state_cache) {
896
		kfree(pi_state);
897
	} else {
898 899 900 901 902 903
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
904
		refcount_set(&pi_state->refcount, 1);
905 906 907 908
		current->pi_state_cache = pi_state;
	}
}

909 910
#ifdef CONFIG_FUTEX_PI

911 912 913 914 915
/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
916
static void exit_pi_state_list(struct task_struct *curr)
917 918 919
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
920
	struct futex_hash_bucket *hb;
921
	union futex_key key = FUTEX_KEY_INIT;
922

923 924
	if (!futex_cmpxchg_enabled)
		return;
925 926 927
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
928
	 * versus waiters unqueueing themselves:
929
	 */
930
	raw_spin_lock_irq(&curr->pi_lock);
931 932 933 934
	while (!list_empty(head)) {
		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
935
		hb = hash_futex(&key);
936 937 938 939 940 941 942 943 944 945 946

		/*
		 * We can race against put_pi_state() removing itself from the
		 * list (a waiter going away). put_pi_state() will first
		 * decrement the reference count and then modify the list, so
		 * its possible to see the list entry but fail this reference
		 * acquire.
		 *
		 * In that case; drop the locks to let put_pi_state() make
		 * progress and retry the loop.
		 */
947
		if (!refcount_inc_not_zero(&pi_state->refcount)) {
948 949 950 951 952
			raw_spin_unlock_irq(&curr->pi_lock);
			cpu_relax();
			raw_spin_lock_irq(&curr->pi_lock);
			continue;
		}
953
		raw_spin_unlock_irq(&curr->pi_lock);
954 955

		spin_lock(&hb->lock);
956 957
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
		raw_spin_lock(&curr->pi_lock);
958 959 960 961
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
962
		if (head->next != next) {
963
			/* retain curr->pi_lock for the loop invariant */
964
			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
965
			spin_unlock(&hb->lock);
966
			put_pi_state(pi_state);
967 968 969 970
			continue;
		}

		WARN_ON(pi_state->owner != curr);
971 972
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
973 974
		pi_state->owner = NULL;

975
		raw_spin_unlock(&curr->pi_lock);
976
		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
977 978
		spin_unlock(&hb->lock);

979 980 981
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);

982
		raw_spin_lock_irq(&curr->pi_lock);
983
	}
984
	raw_spin_unlock_irq(&curr->pi_lock);
985
}
986 987
#else
static inline void exit_pi_state_list(struct task_struct *curr) { }
988 989
#endif

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync.
P
Peter Zijlstra 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
 *
 *
 * Serialization and lifetime rules:
 *
 * hb->lock:
 *
 *	hb -> futex_q, relation
 *	futex_q -> pi_state, relation
 *
 *	(cannot be raw because hb can contain arbitrary amount
 *	 of futex_q's)
 *
 * pi_mutex->wait_lock:
 *
 *	{uval, pi_state}
 *
 *	(and pi_mutex 'obviously')
 *
 * p->pi_lock:
 *
 *	p->pi_state_list -> pi_state->list, relation
 *
 * pi_state->refcount:
 *
 *	pi_state lifetime
 *
 *
 * Lock order:
 *
 *   hb->lock
 *     pi_mutex->wait_lock
 *       p->pi_lock
 *
1071
 */
1072 1073 1074 1075 1076 1077

/*
 * Validate that the existing waiter has a pi_state and sanity check
 * the pi_state against the user space value. If correct, attach to
 * it.
 */
P
Peter Zijlstra 已提交
1078 1079
static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
			      struct futex_pi_state *pi_state,
1080
			      struct futex_pi_state **ps)
1081
{
1082
	pid_t pid = uval & FUTEX_TID_MASK;
1083 1084
	u32 uval2;
	int ret;
1085

1086 1087 1088 1089 1090
	/*
	 * Userspace might have messed up non-PI and PI futexes [3]
	 */
	if (unlikely(!pi_state))
		return -EINVAL;
1091

P
Peter Zijlstra 已提交
1092 1093 1094 1095 1096 1097
	/*
	 * We get here with hb->lock held, and having found a
	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
	 * which in turn means that futex_lock_pi() still has a reference on
	 * our pi_state.
1098 1099 1100 1101 1102
	 *
	 * The waiter holding a reference on @pi_state also protects against
	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
	 * free pi_state before we can take a reference ourselves.
P
Peter Zijlstra 已提交
1103
	 */
1104
	WARN_ON(!refcount_read(&pi_state->refcount));
1105

P
Peter Zijlstra 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	/*
	 * Now that we have a pi_state, we can acquire wait_lock
	 * and do the state validation.
	 */
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	/*
	 * Since {uval, pi_state} is serialized by wait_lock, and our current
	 * uval was read without holding it, it can have changed. Verify it
	 * still is what we expect it to be, otherwise retry the entire
	 * operation.
	 */
	if (get_futex_value_locked(&uval2, uaddr))
		goto out_efault;

	if (uval != uval2)
		goto out_eagain;

1124 1125 1126 1127
	/*
	 * Handle the owner died case:
	 */
	if (uval & FUTEX_OWNER_DIED) {
1128
		/*
1129 1130 1131
		 * exit_pi_state_list sets owner to NULL and wakes the
		 * topmost waiter. The task which acquires the
		 * pi_state->rt_mutex will fixup owner.
1132
		 */
1133
		if (!pi_state->owner) {
1134
			/*
1135 1136
			 * No pi state owner, but the user space TID
			 * is not 0. Inconsistent state. [5]
1137
			 */
1138
			if (pid)
P
Peter Zijlstra 已提交
1139
				goto out_einval;
1140
			/*
1141
			 * Take a ref on the state and return success. [4]
1142
			 */
P
Peter Zijlstra 已提交
1143
			goto out_attach;
1144
		}
1145 1146

		/*
1147 1148 1149 1150 1151 1152 1153 1154
		 * If TID is 0, then either the dying owner has not
		 * yet executed exit_pi_state_list() or some waiter
		 * acquired the rtmutex in the pi state, but did not
		 * yet fixup the TID in user space.
		 *
		 * Take a ref on the state and return success. [6]
		 */
		if (!pid)
P
Peter Zijlstra 已提交
1155
			goto out_attach;
1156 1157 1158 1159
	} else {
		/*
		 * If the owner died bit is not set, then the pi_state
		 * must have an owner. [7]
1160
		 */
1161
		if (!pi_state->owner)
P
Peter Zijlstra 已提交
1162
			goto out_einval;
1163 1164
	}

1165 1166 1167 1168 1169 1170
	/*
	 * Bail out if user space manipulated the futex value. If pi
	 * state exists then the owner TID must be the same as the
	 * user space TID. [9/10]
	 */
	if (pid != task_pid_vnr(pi_state->owner))
P
Peter Zijlstra 已提交
1171 1172 1173
		goto out_einval;

out_attach:
P
Peter Zijlstra 已提交
1174
	get_pi_state(pi_state);
P
Peter Zijlstra 已提交
1175
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1176 1177
	*ps = pi_state;
	return 0;
P
Peter Zijlstra 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

out_einval:
	ret = -EINVAL;
	goto out_error;

out_eagain:
	ret = -EAGAIN;
	goto out_error;

out_efault:
	ret = -EFAULT;
	goto out_error;

out_error:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
1194 1195
}

T
Thomas Gleixner 已提交
1196 1197
/**
 * wait_for_owner_exiting - Block until the owner has exited
1198
 * @ret: owner's current futex lock status
T
Thomas Gleixner 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
 * @exiting:	Pointer to the exiting task
 *
 * Caller must hold a refcount on @exiting.
 */
static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
{
	if (ret != -EBUSY) {
		WARN_ON_ONCE(exiting);
		return;
	}

	if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
		return;

	mutex_lock(&exiting->futex_exit_mutex);
	/*
	 * No point in doing state checking here. If the waiter got here
	 * while the task was in exec()->exec_futex_release() then it can
	 * have any FUTEX_STATE_* value when the waiter has acquired the
	 * mutex. OK, if running, EXITING or DEAD if it reached exit()
	 * already. Highly unlikely and not a problem. Just one more round
	 * through the futex maze.
	 */
	mutex_unlock(&exiting->futex_exit_mutex);

	put_task_struct(exiting);
}

T
Thomas Gleixner 已提交
1227 1228 1229 1230 1231 1232
static int handle_exit_race(u32 __user *uaddr, u32 uval,
			    struct task_struct *tsk)
{
	u32 uval2;

	/*
1233 1234
	 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
	 * caller that the alleged owner is busy.
T
Thomas Gleixner 已提交
1235
	 */
1236
	if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1237
		return -EBUSY;
T
Thomas Gleixner 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

	/*
	 * Reread the user space value to handle the following situation:
	 *
	 * CPU0				CPU1
	 *
	 * sys_exit()			sys_futex()
	 *  do_exit()			 futex_lock_pi()
	 *                                futex_lock_pi_atomic()
	 *   exit_signals(tsk)		    No waiters:
	 *    tsk->flags |= PF_EXITING;	    *uaddr == 0x00000PID
	 *  mm_release(tsk)		    Set waiter bit
	 *   exit_robust_list(tsk) {	    *uaddr = 0x80000PID;
	 *      Set owner died		    attach_to_pi_owner() {
	 *    *uaddr = 0xC0000000;	     tsk = get_task(PID);
	 *   }				     if (!tsk->flags & PF_EXITING) {
	 *  ...				       attach();
1255 1256 1257
	 *  tsk->futex_state =               } else {
	 *	FUTEX_STATE_DEAD;              if (tsk->futex_state !=
	 *					  FUTEX_STATE_DEAD)
T
Thomas Gleixner 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	 *				         return -EAGAIN;
	 *				       return -ESRCH; <--- FAIL
	 *				     }
	 *
	 * Returning ESRCH unconditionally is wrong here because the
	 * user space value has been changed by the exiting task.
	 *
	 * The same logic applies to the case where the exiting task is
	 * already gone.
	 */
	if (get_futex_value_locked(&uval2, uaddr))
		return -EFAULT;

	/* If the user space value has changed, try again. */
	if (uval2 != uval)
		return -EAGAIN;

	/*
	 * The exiting task did not have a robust list, the robust list was
	 * corrupted or the user space value in *uaddr is simply bogus.
	 * Give up and tell user space.
	 */
	return -ESRCH;
}

1283 1284 1285 1286
/*
 * Lookup the task for the TID provided from user space and attach to
 * it after doing proper sanity checks.
 */
T
Thomas Gleixner 已提交
1287
static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
T
Thomas Gleixner 已提交
1288 1289
			      struct futex_pi_state **ps,
			      struct task_struct **exiting)
1290 1291
{
	pid_t pid = uval & FUTEX_TID_MASK;
1292 1293
	struct futex_pi_state *pi_state;
	struct task_struct *p;
1294

1295
	/*
1296
	 * We are the first waiter - try to look up the real owner and attach
1297
	 * the new pi_state to it, but bail out when TID = 0 [1]
T
Thomas Gleixner 已提交
1298 1299 1300
	 *
	 * The !pid check is paranoid. None of the call sites should end up
	 * with pid == 0, but better safe than sorry. Let the caller retry
1301
	 */
1302
	if (!pid)
T
Thomas Gleixner 已提交
1303
		return -EAGAIN;
1304
	p = find_get_task_by_vpid(pid);
1305
	if (!p)
T
Thomas Gleixner 已提交
1306
		return handle_exit_race(uaddr, uval, NULL);
1307

1308
	if (unlikely(p->flags & PF_KTHREAD)) {
1309 1310 1311 1312
		put_task_struct(p);
		return -EPERM;
	}

1313
	/*
1314 1315 1316
	 * We need to look at the task state to figure out, whether the
	 * task is exiting. To protect against the change of the task state
	 * in futex_exit_release(), we do this protected by p->pi_lock:
1317
	 */
1318
	raw_spin_lock_irq(&p->pi_lock);
1319
	if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1320
		/*
1321 1322 1323
		 * The task is on the way out. When the futex state is
		 * FUTEX_STATE_DEAD, we know that the task has finished
		 * the cleanup:
1324
		 */
T
Thomas Gleixner 已提交
1325
		int ret = handle_exit_race(uaddr, uval, p);
1326

1327
		raw_spin_unlock_irq(&p->pi_lock);
T
Thomas Gleixner 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		/*
		 * If the owner task is between FUTEX_STATE_EXITING and
		 * FUTEX_STATE_DEAD then store the task pointer and keep
		 * the reference on the task struct. The calling code will
		 * drop all locks, wait for the task to reach
		 * FUTEX_STATE_DEAD and then drop the refcount. This is
		 * required to prevent a live lock when the current task
		 * preempted the exiting task between the two states.
		 */
		if (ret == -EBUSY)
			*exiting = p;
		else
			put_task_struct(p);
1341 1342
		return ret;
	}
1343

1344 1345
	/*
	 * No existing pi state. First waiter. [2]
P
Peter Zijlstra 已提交
1346 1347 1348
	 *
	 * This creates pi_state, we have hb->lock held, this means nothing can
	 * observe this state, wait_lock is irrelevant.
1349
	 */
1350 1351 1352
	pi_state = alloc_pi_state();

	/*
1353
	 * Initialize the pi_mutex in locked state and make @p
1354 1355 1356 1357 1358
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
1359
	pi_state->key = *key;
1360

1361
	WARN_ON(!list_empty(&pi_state->list));
1362
	list_add(&pi_state->list, &p->pi_state_list);
1363 1364 1365 1366
	/*
	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
	 * because there is no concurrency as the object is not published yet.
	 */
1367
	pi_state->owner = p;
1368
	raw_spin_unlock_irq(&p->pi_lock);
1369 1370 1371

	put_task_struct(p);

P
Pierre Peiffer 已提交
1372
	*ps = pi_state;
1373 1374 1375 1376

	return 0;
}

P
Peter Zijlstra 已提交
1377 1378
static int lookup_pi_state(u32 __user *uaddr, u32 uval,
			   struct futex_hash_bucket *hb,
T
Thomas Gleixner 已提交
1379 1380
			   union futex_key *key, struct futex_pi_state **ps,
			   struct task_struct **exiting)
1381
{
1382
	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1383 1384 1385 1386 1387

	/*
	 * If there is a waiter on that futex, validate it and
	 * attach to the pi_state when the validation succeeds.
	 */
1388
	if (top_waiter)
P
Peter Zijlstra 已提交
1389
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1390 1391 1392 1393 1394

	/*
	 * We are the first waiter - try to look up the owner based on
	 * @uval and attach to it.
	 */
T
Thomas Gleixner 已提交
1395
	return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1396 1397
}

1398 1399
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
1400
	int err;
1401 1402
	u32 uninitialized_var(curval);

1403 1404 1405
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1406 1407 1408
	err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
	if (unlikely(err))
		return err;
1409

P
Peter Zijlstra 已提交
1410
	/* If user space value changed, let the caller retry */
1411 1412 1413
	return curval != uval ? -EAGAIN : 0;
}

1414
/**
1415
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1416 1417 1418 1419 1420 1421 1422
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
T
Thomas Gleixner 已提交
1423 1424
 * @exiting:		Pointer to store the task pointer of the owner task
 *			which is in the middle of exiting
1425
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1426
 *
1427
 * Return:
1428 1429 1430
 *  -  0 - ready to wait;
 *  -  1 - acquired the lock;
 *  - <0 - error
1431 1432
 *
 * The hb->lock and futex_key refs shall be held by the caller.
T
Thomas Gleixner 已提交
1433 1434 1435 1436
 *
 * @exiting is only set when the return value is -EBUSY. If so, this holds
 * a refcount on the exiting task on return and the caller needs to drop it
 * after waiting for the exit to complete.
1437 1438 1439 1440
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
T
Thomas Gleixner 已提交
1441 1442 1443
				struct task_struct *task,
				struct task_struct **exiting,
				int set_waiters)
1444
{
1445
	u32 uval, newval, vpid = task_pid_vnr(task);
1446
	struct futex_q *top_waiter;
1447
	int ret;
1448 1449

	/*
1450 1451
	 * Read the user space value first so we can validate a few
	 * things before proceeding further.
1452
	 */
1453
	if (get_futex_value_locked(&uval, uaddr))
1454 1455
		return -EFAULT;

1456 1457 1458
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1459 1460 1461
	/*
	 * Detect deadlocks.
	 */
1462
	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1463 1464
		return -EDEADLK;

1465 1466 1467
	if ((unlikely(should_fail_futex(true))))
		return -EDEADLK;

1468
	/*
1469 1470
	 * Lookup existing state first. If it exists, try to attach to
	 * its pi_state.
1471
	 */
1472 1473
	top_waiter = futex_top_waiter(hb, key);
	if (top_waiter)
P
Peter Zijlstra 已提交
1474
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1475 1476

	/*
1477 1478 1479 1480
	 * No waiter and user TID is 0. We are here because the
	 * waiters or the owner died bit is set or called from
	 * requeue_cmp_pi or for whatever reason something took the
	 * syscall.
1481
	 */
1482
	if (!(uval & FUTEX_TID_MASK)) {
1483
		/*
1484 1485
		 * We take over the futex. No other waiters and the user space
		 * TID is 0. We preserve the owner died bit.
1486
		 */
1487 1488
		newval = uval & FUTEX_OWNER_DIED;
		newval |= vpid;
1489

1490 1491 1492 1493 1494 1495 1496 1497
		/* The futex requeue_pi code can enforce the waiters bit */
		if (set_waiters)
			newval |= FUTEX_WAITERS;

		ret = lock_pi_update_atomic(uaddr, uval, newval);
		/* If the take over worked, return 1 */
		return ret < 0 ? ret : 1;
	}
1498 1499

	/*
1500 1501 1502
	 * First waiter. Set the waiters bit before attaching ourself to
	 * the owner. If owner tries to unlock, it will be forced into
	 * the kernel and blocked on hb->lock.
1503
	 */
1504 1505 1506 1507
	newval = uval | FUTEX_WAITERS;
	ret = lock_pi_update_atomic(uaddr, uval, newval);
	if (ret)
		return ret;
1508
	/*
1509 1510 1511
	 * If the update of the user space value succeeded, we try to
	 * attach to the owner. If that fails, no harm done, we only
	 * set the FUTEX_WAITERS bit in the user space variable.
1512
	 */
T
Thomas Gleixner 已提交
1513
	return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1514 1515
}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

1526
	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1527
		return;
1528
	lockdep_assert_held(q->lock_ptr);
1529 1530 1531

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
1532
	hb_waiters_dec(hb);
1533 1534
}

L
Linus Torvalds 已提交
1535 1536
/*
 * The hash bucket lock must be held when this is called.
1537 1538 1539
 * Afterwards, the futex_q must not be accessed. Callers
 * must ensure to later call wake_up_q() for the actual
 * wakeups to occur.
L
Linus Torvalds 已提交
1540
 */
1541
static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
L
Linus Torvalds 已提交
1542
{
T
Thomas Gleixner 已提交
1543 1544
	struct task_struct *p = q->task;

1545 1546 1547
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

1548
	get_task_struct(p);
1549
	__unqueue_futex(q);
L
Linus Torvalds 已提交
1550
	/*
1551 1552 1553 1554 1555
	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
	 * is written, without taking any locks. This is possible in the event
	 * of a spurious wakeup, for example. A memory barrier is required here
	 * to prevent the following store to lock_ptr from getting ahead of the
	 * plist_del in __unqueue_futex().
L
Linus Torvalds 已提交
1556
	 */
1557
	smp_store_release(&q->lock_ptr, NULL);
1558 1559 1560

	/*
	 * Queue the task for later wakeup for after we've released
1561
	 * the hb->lock.
1562
	 */
1563
	wake_q_add_safe(wake_q, p);
L
Linus Torvalds 已提交
1564 1565
}

1566 1567 1568 1569
/*
 * Caller must hold a reference on @pi_state.
 */
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1570
{
1571
	u32 uninitialized_var(curval), newval;
1572
	struct task_struct *new_owner;
P
Peter Zijlstra 已提交
1573
	bool postunlock = false;
1574
	DEFINE_WAKE_Q(wake_q);
1575
	int ret = 0;
1576 1577

	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1578
	if (WARN_ON_ONCE(!new_owner)) {
1579
		/*
1580
		 * As per the comment in futex_unlock_pi() this should not happen.
1581 1582 1583 1584 1585 1586 1587 1588
		 *
		 * When this happens, give up our locks and try again, giving
		 * the futex_lock_pi() instance time to complete, either by
		 * waiting on the rtmutex or removing itself from the futex
		 * queue.
		 */
		ret = -EAGAIN;
		goto out_unlock;
1589
	}
1590 1591

	/*
1592 1593 1594
	 * We pass it to the next owner. The WAITERS bit is always kept
	 * enabled while there is PI state around. We cleanup the owner
	 * died bit, because we are the owner.
1595
	 */
1596
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1597

1598 1599 1600
	if (unlikely(should_fail_futex(true)))
		ret = -EFAULT;

1601 1602
	ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
	if (!ret && (curval != uval)) {
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
		/*
		 * If a unconditional UNLOCK_PI operation (user space did not
		 * try the TID->0 transition) raced with a waiter setting the
		 * FUTEX_WAITERS flag between get_user() and locking the hash
		 * bucket lock, retry the operation.
		 */
		if ((FUTEX_TID_MASK & curval) == uval)
			ret = -EAGAIN;
		else
			ret = -EINVAL;
	}
P
Peter Zijlstra 已提交
1614

1615 1616
	if (ret)
		goto out_unlock;
1617

1618 1619 1620 1621 1622
	/*
	 * This is a point of no return; once we modify the uval there is no
	 * going back and subsequent operations must not fail.
	 */

1623
	raw_spin_lock(&pi_state->owner->pi_lock);
1624 1625
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1626
	raw_spin_unlock(&pi_state->owner->pi_lock);
1627

1628
	raw_spin_lock(&new_owner->pi_lock);
1629
	WARN_ON(!list_empty(&pi_state->list));
1630 1631
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1632
	raw_spin_unlock(&new_owner->pi_lock);
1633

P
Peter Zijlstra 已提交
1634
	postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1635

1636
out_unlock:
1637 1638
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

P
Peter Zijlstra 已提交
1639 1640
	if (postunlock)
		rt_mutex_postunlock(&wake_q);
1641

1642
	return ret;
1643 1644
}

I
Ingo Molnar 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1661 1662 1663
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1664
	spin_unlock(&hb1->lock);
1665 1666
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1667 1668
}

L
Linus Torvalds 已提交
1669
/*
D
Darren Hart 已提交
1670
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1671
 */
1672 1673
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1674
{
1675
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1676
	struct futex_q *this, *next;
1677
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1678
	int ret;
1679
	DEFINE_WAKE_Q(wake_q);
L
Linus Torvalds 已提交
1680

1681 1682 1683
	if (!bitset)
		return -EINVAL;

1684
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
L
Linus Torvalds 已提交
1685 1686 1687
	if (unlikely(ret != 0))
		goto out;

1688
	hb = hash_futex(&key);
1689 1690 1691 1692 1693

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1694
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1695

J
Jason Low 已提交
1696
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1697
		if (match_futex (&this->key, &key)) {
1698
			if (this->pi_state || this->rt_waiter) {
1699 1700 1701
				ret = -EINVAL;
				break;
			}
1702 1703 1704 1705 1706

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

1707
			mark_wake_futex(&wake_q, this);
L
Linus Torvalds 已提交
1708 1709 1710 1711 1712
			if (++ret >= nr_wake)
				break;
		}
	}

1713
	spin_unlock(&hb->lock);
1714
	wake_up_q(&wake_q);
1715
out_put_key:
1716
	put_futex_key(&key);
1717
out:
L
Linus Torvalds 已提交
1718 1719 1720
	return ret;
}

1721 1722 1723 1724
static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
{
	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
1725 1726
	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1727 1728 1729
	int oldval, ret;

	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
		if (oparg < 0 || oparg > 31) {
			char comm[sizeof(current->comm)];
			/*
			 * kill this print and return -EINVAL when userspace
			 * is sane again
			 */
			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
					get_task_comm(comm, current), oparg);
			oparg &= 31;
		}
1740 1741 1742
		oparg = 1 << oparg;
	}

1743
	if (!access_ok(uaddr, sizeof(u32)))
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
		return -EFAULT;

	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
	if (ret)
		return ret;

	switch (cmp) {
	case FUTEX_OP_CMP_EQ:
		return oldval == cmparg;
	case FUTEX_OP_CMP_NE:
		return oldval != cmparg;
	case FUTEX_OP_CMP_LT:
		return oldval < cmparg;
	case FUTEX_OP_CMP_GE:
		return oldval >= cmparg;
	case FUTEX_OP_CMP_LE:
		return oldval <= cmparg;
	case FUTEX_OP_CMP_GT:
		return oldval > cmparg;
	default:
		return -ENOSYS;
	}
}

1768 1769 1770 1771
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1772
static int
1773
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1774
	      int nr_wake, int nr_wake2, int op)
1775
{
1776
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1777
	struct futex_hash_bucket *hb1, *hb2;
1778
	struct futex_q *this, *next;
D
Darren Hart 已提交
1779
	int ret, op_ret;
1780
	DEFINE_WAKE_Q(wake_q);
1781

D
Darren Hart 已提交
1782
retry:
1783
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1784 1785
	if (unlikely(ret != 0))
		goto out;
1786
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1787
	if (unlikely(ret != 0))
1788
		goto out_put_key1;
1789

1790 1791
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1792

D
Darren Hart 已提交
1793
retry_private:
T
Thomas Gleixner 已提交
1794
	double_lock_hb(hb1, hb2);
1795
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1796
	if (unlikely(op_ret < 0)) {
D
Darren Hart 已提交
1797
		double_unlock_hb(hb1, hb2);
1798

1799 1800 1801 1802 1803 1804
		if (!IS_ENABLED(CONFIG_MMU) ||
		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
			/*
			 * we don't get EFAULT from MMU faults if we don't have
			 * an MMU, but we might get them from range checking
			 */
1805
			ret = op_ret;
1806
			goto out_put_keys;
1807 1808
		}

1809 1810 1811 1812 1813
		if (op_ret == -EFAULT) {
			ret = fault_in_user_writeable(uaddr2);
			if (ret)
				goto out_put_keys;
		}
1814

1815 1816
		if (!(flags & FLAGS_SHARED)) {
			cond_resched();
D
Darren Hart 已提交
1817
			goto retry_private;
1818
		}
D
Darren Hart 已提交
1819

1820 1821
		put_futex_key(&key2);
		put_futex_key(&key1);
1822
		cond_resched();
D
Darren Hart 已提交
1823
		goto retry;
1824 1825
	}

J
Jason Low 已提交
1826
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1827
		if (match_futex (&this->key, &key1)) {
1828 1829 1830 1831
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1832
			mark_wake_futex(&wake_q, this);
1833 1834 1835 1836 1837 1838 1839
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1840
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1841
			if (match_futex (&this->key, &key2)) {
1842 1843 1844 1845
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1846
				mark_wake_futex(&wake_q, this);
1847 1848 1849 1850 1851 1852 1853
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1854
out_unlock:
D
Darren Hart 已提交
1855
	double_unlock_hb(hb1, hb2);
1856
	wake_up_q(&wake_q);
1857
out_put_keys:
1858
	put_futex_key(&key2);
1859
out_put_key1:
1860
	put_futex_key(&key1);
1861
out:
1862 1863 1864
	return ret;
}

D
Darren Hart 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
1883 1884
		hb_waiters_dec(hb1);
		hb_waiters_inc(hb2);
1885
		plist_add(&q->list, &hb2->chain);
D
Darren Hart 已提交
1886 1887 1888 1889 1890 1891
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1892 1893
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1894 1895 1896
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1897 1898 1899 1900 1901
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1902 1903 1904
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1905 1906
 */
static inline
1907 1908
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1909 1910 1911 1912
{
	get_futex_key_refs(key);
	q->key = *key;

1913
	__unqueue_futex(q);
1914 1915 1916 1917

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1918 1919
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1920
	wake_up_state(q->task, TASK_NORMAL);
1921 1922 1923 1924
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1925 1926 1927 1928 1929 1930
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
T
Thomas Gleixner 已提交
1931 1932
 * @exiting:		Pointer to store the task pointer of the owner task
 *			which is in the middle of exiting
1933
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1934 1935
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1936 1937 1938
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1939
 *
T
Thomas Gleixner 已提交
1940 1941 1942 1943
 * @exiting is only set when the return value is -EBUSY. If so, this holds
 * a refcount on the exiting task on return and the caller needs to drop it
 * after waiting for the exit to complete.
 *
1944
 * Return:
1945 1946 1947
 *  -  0 - failed to acquire the lock atomically;
 *  - >0 - acquired the lock, return value is vpid of the top_waiter
 *  - <0 - error
1948
 */
T
Thomas Gleixner 已提交
1949 1950 1951 1952 1953
static int
futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
			   struct futex_hash_bucket *hb2, union futex_key *key1,
			   union futex_key *key2, struct futex_pi_state **ps,
			   struct task_struct **exiting, int set_waiters)
1954
{
1955
	struct futex_q *top_waiter = NULL;
1956
	u32 curval;
1957
	int ret, vpid;
1958 1959 1960 1961

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1962 1963 1964
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1965 1966 1967 1968 1969 1970 1971 1972
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1973 1974 1975 1976 1977 1978
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1979 1980 1981 1982
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1983
	/*
1984 1985 1986
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1987
	 */
1988
	vpid = task_pid_vnr(top_waiter->task);
1989
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
T
Thomas Gleixner 已提交
1990
				   exiting, set_waiters);
1991
	if (ret == 1) {
1992
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1993 1994
		return vpid;
	}
1995 1996 1997 1998 1999
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
2000
 * @uaddr1:	source futex user address
2001
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2002 2003 2004 2005 2006
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
2007
 *		pi futex (pi to pi requeue is not supported)
2008 2009 2010 2011
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
2012
 * Return:
2013 2014
 *  - >=0 - on success, the number of tasks requeued or woken;
 *  -  <0 - on error
L
Linus Torvalds 已提交
2015
 */
2016 2017 2018
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
2019
{
2020
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
2021 2022
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
2023
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
2024
	struct futex_q *this, *next;
2025
	DEFINE_WAKE_Q(wake_q);
2026

2027 2028 2029
	if (nr_wake < 0 || nr_requeue < 0)
		return -EINVAL;

2030 2031 2032 2033 2034 2035 2036 2037 2038
	/*
	 * When PI not supported: return -ENOSYS if requeue_pi is true,
	 * consequently the compiler knows requeue_pi is always false past
	 * this point which will optimize away all the conditional code
	 * further down.
	 */
	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
		return -ENOSYS;

2039
	if (requeue_pi) {
2040 2041 2042 2043 2044 2045 2046
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
2066

2067
retry:
2068
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
L
Linus Torvalds 已提交
2069 2070
	if (unlikely(ret != 0))
		goto out;
2071
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2072
			    requeue_pi ? FUTEX_WRITE : FUTEX_READ);
L
Linus Torvalds 已提交
2073
	if (unlikely(ret != 0))
2074
		goto out_put_key1;
L
Linus Torvalds 已提交
2075

2076 2077 2078 2079 2080 2081 2082 2083 2084
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

2085 2086
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
2087

D
Darren Hart 已提交
2088
retry_private:
2089
	hb_waiters_inc(hb2);
I
Ingo Molnar 已提交
2090
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
2091

2092 2093
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
2094

2095
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
2096 2097

		if (unlikely(ret)) {
D
Darren Hart 已提交
2098
			double_unlock_hb(hb1, hb2);
2099
			hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
2100

2101
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
2102 2103
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
2104

2105
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2106
				goto retry_private;
L
Linus Torvalds 已提交
2107

2108 2109
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
2110
			goto retry;
L
Linus Torvalds 已提交
2111
		}
2112
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
2113 2114 2115 2116 2117
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

2118
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
T
Thomas Gleixner 已提交
2119 2120
		struct task_struct *exiting = NULL;

2121 2122 2123 2124 2125 2126
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
2127
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
T
Thomas Gleixner 已提交
2128 2129
						 &key2, &pi_state,
						 &exiting, nr_requeue);
2130 2131 2132 2133 2134

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
2135 2136
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
2137 2138
		 * If the lock was not taken, we have pi_state and an initial
		 * refcount on it. In case of an error we have nothing.
2139
		 */
2140
		if (ret > 0) {
2141
			WARN_ON(pi_state);
2142
			drop_count++;
2143
			task_count++;
2144
			/*
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
			 * If we acquired the lock, then the user space value
			 * of uaddr2 should be vpid. It cannot be changed by
			 * the top waiter as it is blocked on hb2 lock if it
			 * tries to do so. If something fiddled with it behind
			 * our back the pi state lookup might unearth it. So
			 * we rather use the known value than rereading and
			 * handing potential crap to lookup_pi_state.
			 *
			 * If that call succeeds then we have pi_state and an
			 * initial refcount on it.
2155
			 */
T
Thomas Gleixner 已提交
2156 2157
			ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
					      &pi_state, &exiting);
2158 2159 2160 2161
		}

		switch (ret) {
		case 0:
2162
			/* We hold a reference on the pi state. */
2163
			break;
2164 2165

			/* If the above failed, then pi_state is NULL */
2166 2167
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
2168
			hb_waiters_dec(hb2);
2169 2170
			put_futex_key(&key2);
			put_futex_key(&key1);
2171
			ret = fault_in_user_writeable(uaddr2);
2172 2173 2174
			if (!ret)
				goto retry;
			goto out;
2175
		case -EBUSY:
2176
		case -EAGAIN:
2177 2178
			/*
			 * Two reasons for this:
2179
			 * - EBUSY: Owner is exiting and we just wait for the
2180
			 *   exit to complete.
2181
			 * - EAGAIN: The user space value changed.
2182
			 */
2183
			double_unlock_hb(hb1, hb2);
2184
			hb_waiters_dec(hb2);
2185 2186
			put_futex_key(&key2);
			put_futex_key(&key1);
T
Thomas Gleixner 已提交
2187 2188 2189 2190 2191 2192
			/*
			 * Handle the case where the owner is in the middle of
			 * exiting. Wait for the exit to complete otherwise
			 * this task might loop forever, aka. live lock.
			 */
			wait_for_owner_exiting(ret, exiting);
2193 2194 2195 2196 2197 2198 2199
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
2200
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2201 2202 2203 2204
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
2205
			continue;
2206

2207 2208 2209
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
2210 2211 2212
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
2213 2214
		 */
		if ((requeue_pi && !this->rt_waiter) ||
2215 2216
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
2217 2218 2219
			ret = -EINVAL;
			break;
		}
2220 2221 2222 2223 2224 2225 2226

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
2227
			mark_wake_futex(&wake_q, this);
2228 2229
			continue;
		}
L
Linus Torvalds 已提交
2230

2231 2232 2233 2234 2235 2236
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

2237 2238 2239 2240 2241
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
2242 2243 2244 2245 2246
			/*
			 * Prepare the waiter to take the rt_mutex. Take a
			 * refcount on the pi_state and store the pointer in
			 * the futex_q object of the waiter.
			 */
P
Peter Zijlstra 已提交
2247
			get_pi_state(pi_state);
2248 2249 2250
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
2251
							this->task);
2252
			if (ret == 1) {
2253 2254 2255 2256 2257 2258 2259 2260
				/*
				 * We got the lock. We do neither drop the
				 * refcount on pi_state nor clear
				 * this->pi_state because the waiter needs the
				 * pi_state for cleaning up the user space
				 * value. It will drop the refcount after
				 * doing so.
				 */
2261
				requeue_pi_wake_futex(this, &key2, hb2);
2262
				drop_count++;
2263 2264
				continue;
			} else if (ret) {
2265 2266 2267 2268 2269 2270 2271 2272
				/*
				 * rt_mutex_start_proxy_lock() detected a
				 * potential deadlock when we tried to queue
				 * that waiter. Drop the pi_state reference
				 * which we took above and remove the pointer
				 * to the state from the waiters futex_q
				 * object.
				 */
2273
				this->pi_state = NULL;
2274
				put_pi_state(pi_state);
2275 2276 2277 2278 2279
				/*
				 * We stop queueing more waiters and let user
				 * space deal with the mess.
				 */
				break;
2280
			}
L
Linus Torvalds 已提交
2281
		}
2282 2283
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
2284 2285
	}

2286 2287 2288 2289 2290
	/*
	 * We took an extra initial reference to the pi_state either
	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
	 * need to drop it here again.
	 */
2291
	put_pi_state(pi_state);
2292 2293

out_unlock:
D
Darren Hart 已提交
2294
	double_unlock_hb(hb1, hb2);
2295
	wake_up_q(&wake_q);
2296
	hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
2297

2298 2299 2300 2301 2302 2303
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
2304
	while (--drop_count >= 0)
2305
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
2306

2307
out_put_keys:
2308
	put_futex_key(&key2);
2309
out_put_key1:
2310
	put_futex_key(&key1);
2311
out:
2312
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
2313 2314 2315
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
2316
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2317
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
2318
{
2319
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
2320

2321
	hb = hash_futex(&q->key);
2322 2323 2324 2325 2326 2327 2328 2329 2330

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
D
Davidlohr Bueso 已提交
2331
	hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2332

2333
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
2334

D
Davidlohr Bueso 已提交
2335
	spin_lock(&hb->lock);
2336
	return hb;
L
Linus Torvalds 已提交
2337 2338
}

2339
static inline void
J
Jason Low 已提交
2340
queue_unlock(struct futex_hash_bucket *hb)
2341
	__releases(&hb->lock)
2342 2343
{
	spin_unlock(&hb->lock);
2344
	hb_waiters_dec(hb);
2345 2346
}

2347
static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
2348
{
P
Pierre Peiffer 已提交
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
2363
	q->task = current;
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
	__releases(&hb->lock)
{
	__queue_me(q, hb);
2382
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
2383 2384
}

2385 2386 2387 2388 2389 2390 2391
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
2392
 * Return:
2393 2394
 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
 *  - 0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
2395 2396 2397 2398
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
2399
	int ret = 0;
L
Linus Torvalds 已提交
2400 2401

	/* In the common case we don't take the spinlock, which is nice. */
2402
retry:
2403 2404 2405 2406 2407 2408
	/*
	 * q->lock_ptr can change between this read and the following spin_lock.
	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
	 * optimizing lock_ptr out of the logic below.
	 */
	lock_ptr = READ_ONCE(q->lock_ptr);
2409
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
2428
		__unqueue_futex(q);
2429 2430 2431

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
2432 2433 2434 2435
		spin_unlock(lock_ptr);
		ret = 1;
	}

2436
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
2437 2438 2439
	return ret;
}

2440 2441
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
2442 2443
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
2444
 */
P
Pierre Peiffer 已提交
2445
static void unqueue_me_pi(struct futex_q *q)
2446
	__releases(q->lock_ptr)
2447
{
2448
	__unqueue_futex(q);
2449 2450

	BUG_ON(!q->pi_state);
2451
	put_pi_state(q->pi_state);
2452 2453
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
2454
	spin_unlock(q->lock_ptr);
2455 2456
}

2457
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2458
				struct task_struct *argowner)
P
Pierre Peiffer 已提交
2459 2460
{
	struct futex_pi_state *pi_state = q->pi_state;
2461
	u32 uval, uninitialized_var(curval), newval;
2462 2463
	struct task_struct *oldowner, *newowner;
	u32 newtid;
2464
	int ret, err = 0;
P
Pierre Peiffer 已提交
2465

2466 2467
	lockdep_assert_held(q->lock_ptr);

P
Peter Zijlstra 已提交
2468 2469 2470
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	oldowner = pi_state->owner;
2471 2472

	/*
2473
	 * We are here because either:
2474
	 *
2475 2476 2477 2478 2479 2480 2481 2482 2483
	 *  - we stole the lock and pi_state->owner needs updating to reflect
	 *    that (@argowner == current),
	 *
	 * or:
	 *
	 *  - someone stole our lock and we need to fix things to point to the
	 *    new owner (@argowner == NULL).
	 *
	 * Either way, we have to replace the TID in the user space variable.
2484
	 * This must be atomic as we have to preserve the owner died bit here.
2485
	 *
D
Darren Hart 已提交
2486 2487 2488
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
2489
	 *
P
Peter Zijlstra 已提交
2490 2491 2492 2493
	 * Modifying pi_state _before_ the user space value would leave the
	 * pi_state in an inconsistent state when we fault here, because we
	 * need to drop the locks to handle the fault. This might be observed
	 * in the PID check in lookup_pi_state.
2494 2495
	 */
retry:
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
	if (!argowner) {
		if (oldowner != current) {
			/*
			 * We raced against a concurrent self; things are
			 * already fixed up. Nothing to do.
			 */
			ret = 0;
			goto out_unlock;
		}

		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
			/* We got the lock after all, nothing to fix. */
			ret = 0;
			goto out_unlock;
		}

		/*
		 * Since we just failed the trylock; there must be an owner.
		 */
		newowner = rt_mutex_owner(&pi_state->pi_mutex);
		BUG_ON(!newowner);
	} else {
		WARN_ON_ONCE(argowner != current);
		if (oldowner == current) {
			/*
			 * We raced against a concurrent self; things are
			 * already fixed up. Nothing to do.
			 */
			ret = 0;
			goto out_unlock;
		}
		newowner = argowner;
	}

	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Peter Zijlstra 已提交
2531 2532 2533
	/* Owner died? */
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;
2534

2535 2536 2537
	err = get_futex_value_locked(&uval, uaddr);
	if (err)
		goto handle_err;
2538

2539
	for (;;) {
2540 2541
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

2542 2543 2544 2545
		err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
		if (err)
			goto handle_err;

2546 2547 2548 2549 2550 2551 2552 2553 2554
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
2555
	if (pi_state->owner != NULL) {
P
Peter Zijlstra 已提交
2556
		raw_spin_lock(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
2557 2558
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
P
Peter Zijlstra 已提交
2559
		raw_spin_unlock(&pi_state->owner->pi_lock);
2560
	}
P
Pierre Peiffer 已提交
2561

2562
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
2563

P
Peter Zijlstra 已提交
2564
	raw_spin_lock(&newowner->pi_lock);
P
Pierre Peiffer 已提交
2565
	WARN_ON(!list_empty(&pi_state->list));
2566
	list_add(&pi_state->list, &newowner->pi_state_list);
P
Peter Zijlstra 已提交
2567 2568 2569
	raw_spin_unlock(&newowner->pi_lock);
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

2570
	return 0;
P
Pierre Peiffer 已提交
2571 2572

	/*
2573 2574 2575 2576 2577 2578 2579
	 * In order to reschedule or handle a page fault, we need to drop the
	 * locks here. In the case of a fault, this gives the other task
	 * (either the highest priority waiter itself or the task which stole
	 * the rtmutex) the chance to try the fixup of the pi_state. So once we
	 * are back from handling the fault we need to check the pi_state after
	 * reacquiring the locks and before trying to do another fixup. When
	 * the fixup has been done already we simply return.
P
Peter Zijlstra 已提交
2580 2581 2582 2583
	 *
	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
	 * drop hb->lock since the caller owns the hb -> futex_q relation.
	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
P
Pierre Peiffer 已提交
2584
	 */
2585
handle_err:
P
Peter Zijlstra 已提交
2586
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2587
	spin_unlock(q->lock_ptr);
2588

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
	switch (err) {
	case -EFAULT:
		ret = fault_in_user_writeable(uaddr);
		break;

	case -EAGAIN:
		cond_resched();
		ret = 0;
		break;

	default:
		WARN_ON_ONCE(1);
		ret = err;
		break;
	}
2604

2605
	spin_lock(q->lock_ptr);
P
Peter Zijlstra 已提交
2606
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2607

2608 2609 2610
	/*
	 * Check if someone else fixed it for us:
	 */
P
Peter Zijlstra 已提交
2611 2612 2613 2614
	if (pi_state->owner != oldowner) {
		ret = 0;
		goto out_unlock;
	}
2615 2616

	if (ret)
P
Peter Zijlstra 已提交
2617
		goto out_unlock;
2618 2619

	goto retry;
P
Peter Zijlstra 已提交
2620 2621 2622 2623

out_unlock:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
P
Pierre Peiffer 已提交
2624 2625
}

N
Nick Piggin 已提交
2626
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
2627

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
2638
 * Return:
2639 2640 2641
 *  -  1 - success, lock taken;
 *  -  0 - success, lock not taken;
 *  - <0 - on error (-EFAULT)
2642
 */
2643
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2644 2645 2646 2647 2648 2649 2650
{
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
2651
		 *
2652 2653 2654
		 * Speculative pi_state->owner read (we don't hold wait_lock);
		 * since we own the lock pi_state->owner == current is the
		 * stable state, anything else needs more attention.
2655 2656
		 */
		if (q->pi_state->owner != current)
2657
			ret = fixup_pi_state_owner(uaddr, q, current);
2658 2659 2660
		goto out;
	}

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	/*
	 * If we didn't get the lock; check if anybody stole it from us. In
	 * that case, we need to fix up the uval to point to them instead of
	 * us, otherwise bad things happen. [10]
	 *
	 * Another speculative read; pi_state->owner == current is unstable
	 * but needs our attention.
	 */
	if (q->pi_state->owner == current) {
		ret = fixup_pi_state_owner(uaddr, q, NULL);
		goto out;
	}

2674 2675
	/*
	 * Paranoia check. If we did not take the lock, then we should not be
2676
	 * the owner of the rt_mutex.
2677
	 */
2678
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2679 2680 2681 2682
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);
2683
	}
2684 2685 2686 2687 2688

out:
	return ret ? ret : locked;
}

2689 2690 2691 2692 2693 2694 2695
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
2696
				struct hrtimer_sleeper *timeout)
2697
{
2698 2699
	/*
	 * The task state is guaranteed to be set before another task can
2700
	 * wake it. set_current_state() is implemented using smp_store_mb() and
2701 2702 2703
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
2704
	set_current_state(TASK_INTERRUPTIBLE);
2705
	queue_me(q, hb);
2706 2707

	/* Arm the timer */
2708
	if (timeout)
2709
		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2710 2711

	/*
2712 2713
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
2714 2715 2716 2717 2718 2719 2720 2721
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
2722
			freezable_schedule();
2723 2724 2725 2726
	}
	__set_current_state(TASK_RUNNING);
}

2727 2728 2729 2730
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
2731
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2732 2733 2734 2735 2736 2737 2738 2739
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
2740
 * Return:
2741 2742
 *  -  0 - uaddr contains val and hb has been locked;
 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2743
 */
2744
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2745
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
2746
{
2747 2748
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
2749 2750

	/*
D
Darren Hart 已提交
2751
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
2752 2753 2754 2755 2756 2757 2758
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
2759 2760
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
2761 2762
	 * cond(var) false, which would violate the guarantee.
	 *
2763 2764 2765 2766
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
2767
	 */
2768
retry:
2769
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2770
	if (unlikely(ret != 0))
2771
		return ret;
2772 2773 2774 2775

retry_private:
	*hb = queue_lock(q);

2776
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
2777

2778
	if (ret) {
J
Jason Low 已提交
2779
		queue_unlock(*hb);
L
Linus Torvalds 已提交
2780

2781
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
2782
		if (ret)
2783
			goto out;
L
Linus Torvalds 已提交
2784

2785
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2786 2787
			goto retry_private;

2788
		put_futex_key(&q->key);
D
Darren Hart 已提交
2789
		goto retry;
L
Linus Torvalds 已提交
2790
	}
2791

2792
	if (uval != val) {
J
Jason Low 已提交
2793
		queue_unlock(*hb);
2794
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2795
	}
L
Linus Torvalds 已提交
2796

2797 2798
out:
	if (ret)
2799
		put_futex_key(&q->key);
2800 2801 2802
	return ret;
}

2803 2804
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2805
{
2806
	struct hrtimer_sleeper timeout, *to;
2807 2808
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2809
	struct futex_q q = futex_q_init;
2810 2811 2812 2813 2814 2815
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

2816 2817
	to = futex_setup_timer(abs_time, &timeout, flags,
			       current->timer_slack_ns);
T
Thomas Gleixner 已提交
2818
retry:
2819 2820 2821 2822
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2823
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2824 2825 2826
	if (ret)
		goto out;

2827
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2828
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2829 2830

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2831
	ret = 0;
2832
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2833
	if (!unqueue_me(&q))
2834
		goto out;
P
Peter Zijlstra 已提交
2835
	ret = -ETIMEDOUT;
2836
	if (to && !to->task)
2837
		goto out;
N
Nick Piggin 已提交
2838

2839
	/*
T
Thomas Gleixner 已提交
2840 2841
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2842
	 */
2843
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2844 2845
		goto retry;

P
Peter Zijlstra 已提交
2846
	ret = -ERESTARTSYS;
2847
	if (!abs_time)
2848
		goto out;
L
Linus Torvalds 已提交
2849

2850
	restart = &current->restart_block;
P
Peter Zijlstra 已提交
2851
	restart->fn = futex_wait_restart;
2852
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2853
	restart->futex.val = val;
T
Thomas Gleixner 已提交
2854
	restart->futex.time = *abs_time;
P
Peter Zijlstra 已提交
2855
	restart->futex.bitset = bitset;
2856
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2857

P
Peter Zijlstra 已提交
2858 2859
	ret = -ERESTART_RESTARTBLOCK;

2860
out:
2861 2862 2863 2864
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2865 2866 2867
	return ret;
}

N
Nick Piggin 已提交
2868 2869 2870

static long futex_wait_restart(struct restart_block *restart)
{
2871
	u32 __user *uaddr = restart->futex.uaddr;
2872
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2873

2874
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
T
Thomas Gleixner 已提交
2875
		t = restart->futex.time;
2876 2877
		tp = &t;
	}
N
Nick Piggin 已提交
2878
	restart->fn = do_no_restart_syscall;
2879 2880 2881

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2882 2883 2884
}


2885 2886 2887
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
2888 2889 2890 2891 2892
 * if there are waiters then it will block as a consequence of relying
 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
 * a 0 value of the futex too.).
 *
 * Also serves as futex trylock_pi()'ing, and due semantics.
2893
 */
2894
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2895
			 ktime_t *time, int trylock)
2896
{
2897
	struct hrtimer_sleeper timeout, *to;
2898
	struct futex_pi_state *pi_state = NULL;
T
Thomas Gleixner 已提交
2899
	struct task_struct *exiting = NULL;
2900
	struct rt_mutex_waiter rt_waiter;
2901
	struct futex_hash_bucket *hb;
2902
	struct futex_q q = futex_q_init;
2903
	int res, ret;
2904

2905 2906 2907
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

2908 2909 2910
	if (refill_pi_state_cache())
		return -ENOMEM;

2911
	to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2912

2913
retry:
2914
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2915
	if (unlikely(ret != 0))
2916
		goto out;
2917

D
Darren Hart 已提交
2918
retry_private:
E
Eric Sesterhenn 已提交
2919
	hb = queue_lock(&q);
2920

T
Thomas Gleixner 已提交
2921 2922
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
				   &exiting, 0);
2923
	if (unlikely(ret)) {
2924 2925 2926 2927
		/*
		 * Atomic work succeeded and we got the lock,
		 * or failed. Either way, we do _not_ block.
		 */
2928
		switch (ret) {
2929 2930 2931 2932 2933 2934
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2935
		case -EBUSY:
2936 2937
		case -EAGAIN:
			/*
2938
			 * Two reasons for this:
2939
			 * - EBUSY: Task is exiting and we just wait for the
2940
			 *   exit to complete.
2941
			 * - EAGAIN: The user space value changed.
2942
			 */
J
Jason Low 已提交
2943
			queue_unlock(hb);
2944
			put_futex_key(&q.key);
T
Thomas Gleixner 已提交
2945 2946 2947 2948 2949 2950
			/*
			 * Handle the case where the owner is in the middle of
			 * exiting. Wait for the exit to complete otherwise
			 * this task might loop forever, aka. live lock.
			 */
			wait_for_owner_exiting(ret, exiting);
2951 2952 2953
			cond_resched();
			goto retry;
		default:
2954
			goto out_unlock_put_key;
2955 2956 2957
		}
	}

2958 2959
	WARN_ON(!q.pi_state);

2960 2961 2962
	/*
	 * Only actually queue now that the atomic ops are done:
	 */
2963
	__queue_me(&q, hb);
2964

2965
	if (trylock) {
2966
		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2967 2968
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
2969
		goto no_block;
2970 2971
	}

2972 2973
	rt_mutex_init_waiter(&rt_waiter);

2974
	/*
2975 2976 2977 2978 2979 2980 2981
	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
	 * hold it while doing rt_mutex_start_proxy(), because then it will
	 * include hb->lock in the blocking chain, even through we'll not in
	 * fact hold it while blocking. This will lead it to report -EDEADLK
	 * and BUG when futex_unlock_pi() interleaves with this.
	 *
	 * Therefore acquire wait_lock while holding hb->lock, but drop the
2982 2983 2984 2985
	 * latter before calling __rt_mutex_start_proxy_lock(). This
	 * interleaves with futex_unlock_pi() -- which does a similar lock
	 * handoff -- such that the latter can observe the futex_q::pi_state
	 * before __rt_mutex_start_proxy_lock() is done.
2986
	 */
2987 2988
	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
	spin_unlock(q.lock_ptr);
2989 2990 2991 2992 2993
	/*
	 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
	 * such that futex_unlock_pi() is guaranteed to observe the waiter when
	 * it sees the futex_q::pi_state.
	 */
2994 2995 2996
	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);

2997 2998 2999
	if (ret) {
		if (ret == 1)
			ret = 0;
3000
		goto cleanup;
3001 3002 3003
	}

	if (unlikely(to))
3004
		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
3005 3006 3007

	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);

3008
cleanup:
3009
	spin_lock(q.lock_ptr);
3010
	/*
3011
	 * If we failed to acquire the lock (deadlock/signal/timeout), we must
3012
	 * first acquire the hb->lock before removing the lock from the
3013 3014
	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
	 * lists consistent.
3015 3016 3017
	 *
	 * In particular; it is important that futex_unlock_pi() can not
	 * observe this inconsistency.
3018 3019 3020 3021 3022
	 */
	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
		ret = 0;

no_block:
3023 3024 3025 3026
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
3027
	res = fixup_owner(uaddr, &q, !ret);
3028 3029 3030 3031 3032 3033
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
3034

3035
	/*
3036 3037
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
3038
	 */
3039 3040 3041 3042
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
		pi_state = q.pi_state;
		get_pi_state(pi_state);
	}
3043

3044 3045
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
3046

3047 3048 3049 3050 3051
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

3052
	goto out_put_key;
3053

3054
out_unlock_put_key:
J
Jason Low 已提交
3055
	queue_unlock(hb);
3056

3057
out_put_key:
3058
	put_futex_key(&q.key);
3059
out:
3060 3061
	if (to) {
		hrtimer_cancel(&to->timer);
3062
		destroy_hrtimer_on_stack(&to->timer);
3063
	}
3064
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
3065

3066
uaddr_faulted:
J
Jason Low 已提交
3067
	queue_unlock(hb);
3068

3069
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
3070 3071
	if (ret)
		goto out_put_key;
3072

3073
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
3074 3075
		goto retry_private;

3076
	put_futex_key(&q.key);
D
Darren Hart 已提交
3077
	goto retry;
3078 3079 3080 3081 3082 3083 3084
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
3085
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
3086
{
3087
	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
3088
	union futex_key key = FUTEX_KEY_INIT;
3089
	struct futex_hash_bucket *hb;
3090
	struct futex_q *top_waiter;
D
Darren Hart 已提交
3091
	int ret;
3092

3093 3094 3095
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

3096 3097 3098 3099 3100 3101
retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
3102
	if ((uval & FUTEX_TID_MASK) != vpid)
3103 3104
		return -EPERM;

3105
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3106 3107
	if (ret)
		return ret;
3108 3109 3110 3111 3112

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
3113 3114 3115
	 * Check waiters first. We do not trust user space values at
	 * all and we at least want to know if user space fiddled
	 * with the futex value instead of blindly unlocking.
3116
	 */
3117 3118
	top_waiter = futex_top_waiter(hb, &key);
	if (top_waiter) {
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
		struct futex_pi_state *pi_state = top_waiter->pi_state;

		ret = -EINVAL;
		if (!pi_state)
			goto out_unlock;

		/*
		 * If current does not own the pi_state then the futex is
		 * inconsistent and user space fiddled with the futex value.
		 */
		if (pi_state->owner != current)
			goto out_unlock;

3132
		get_pi_state(pi_state);
3133
		/*
3134 3135 3136 3137
		 * By taking wait_lock while still holding hb->lock, we ensure
		 * there is no point where we hold neither; and therefore
		 * wake_futex_pi() must observe a state consistent with what we
		 * observed.
3138 3139 3140 3141
		 *
		 * In particular; this forces __rt_mutex_start_proxy() to
		 * complete such that we're guaranteed to observe the
		 * rt_waiter. Also see the WARN in wake_futex_pi().
3142
		 */
3143
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3144 3145
		spin_unlock(&hb->lock);

3146
		/* drops pi_state->pi_mutex.wait_lock */
3147 3148 3149 3150 3151 3152
		ret = wake_futex_pi(uaddr, uval, pi_state);

		put_pi_state(pi_state);

		/*
		 * Success, we're done! No tricky corner cases.
3153 3154 3155
		 */
		if (!ret)
			goto out_putkey;
3156
		/*
3157 3158
		 * The atomic access to the futex value generated a
		 * pagefault, so retry the user-access and the wakeup:
3159 3160 3161
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
3162 3163 3164 3165
		/*
		 * A unconditional UNLOCK_PI op raced against a waiter
		 * setting the FUTEX_WAITERS bit. Try again.
		 */
3166 3167
		if (ret == -EAGAIN)
			goto pi_retry;
3168 3169 3170 3171
		/*
		 * wake_futex_pi has detected invalid state. Tell user
		 * space.
		 */
3172
		goto out_putkey;
3173
	}
3174

3175
	/*
3176 3177 3178 3179 3180
	 * We have no kernel internal state, i.e. no waiters in the
	 * kernel. Waiters which are about to queue themselves are stuck
	 * on hb->lock. So we can safely ignore them. We do neither
	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
	 * owner.
3181
	 */
3182
	if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3183
		spin_unlock(&hb->lock);
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
		switch (ret) {
		case -EFAULT:
			goto pi_faulted;

		case -EAGAIN:
			goto pi_retry;

		default:
			WARN_ON_ONCE(1);
			goto out_putkey;
		}
3195
	}
3196

3197 3198 3199 3200 3201
	/*
	 * If uval has changed, let user space handle it.
	 */
	ret = (curval == uval) ? 0 : -EAGAIN;

3202 3203
out_unlock:
	spin_unlock(&hb->lock);
3204
out_putkey:
3205
	put_futex_key(&key);
3206 3207
	return ret;

3208 3209 3210 3211 3212
pi_retry:
	put_futex_key(&key);
	cond_resched();
	goto retry;

3213
pi_faulted:
3214
	put_futex_key(&key);
3215

3216
	ret = fault_in_user_writeable(uaddr);
3217
	if (!ret)
3218 3219
		goto retry;

L
Linus Torvalds 已提交
3220 3221 3222
	return ret;
}

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
3235
 * Return:
3236 3237
 *  -  0 = no early wakeup detected;
 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
3259
		plist_del(&q->list, &hb->chain);
3260
		hb_waiters_dec(hb);
3261

T
Thomas Gleixner 已提交
3262
		/* Handle spurious wakeups gracefully */
3263
		ret = -EWOULDBLOCK;
3264 3265
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
3266
		else if (signal_pending(current))
3267
			ret = -ERESTARTNOINTR;
3268 3269 3270 3271 3272 3273
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3274
 * @uaddr:	the futex we initially wait on (non-pi)
3275
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3276
 *		the same type, no requeueing from private to shared, etc.
3277 3278
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
3279
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
3280 3281 3282
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3283 3284 3285 3286 3287
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
3288 3289
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3290
 * via the following--
3291
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3292 3293 3294
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
3295
 *
3296
 * If 3, cleanup and return -ERESTARTNOINTR.
3297 3298 3299 3300 3301 3302 3303
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
3304
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3305 3306 3307
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
3308
 * Return:
3309 3310
 *  -  0 - On success;
 *  - <0 - On error
3311
 */
3312
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3313
				 u32 val, ktime_t *abs_time, u32 bitset,
3314
				 u32 __user *uaddr2)
3315
{
3316
	struct hrtimer_sleeper timeout, *to;
3317
	struct futex_pi_state *pi_state = NULL;
3318 3319
	struct rt_mutex_waiter rt_waiter;
	struct futex_hash_bucket *hb;
3320 3321
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
3322 3323
	int res, ret;

3324 3325 3326
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

3327 3328 3329
	if (uaddr == uaddr2)
		return -EINVAL;

3330 3331 3332
	if (!bitset)
		return -EINVAL;

3333 3334
	to = futex_setup_timer(abs_time, &timeout, flags,
			       current->timer_slack_ns);
3335 3336 3337 3338 3339

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
3340
	rt_mutex_init_waiter(&rt_waiter);
3341

3342
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3343 3344 3345
	if (unlikely(ret != 0))
		goto out;

3346 3347 3348 3349
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

3350 3351 3352 3353
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
3354
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
3355 3356
	if (ret)
		goto out_key2;
3357

3358 3359 3360 3361 3362
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
3363
		queue_unlock(hb);
3364 3365 3366 3367
		ret = -EINVAL;
		goto out_put_keys;
	}

3368
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
3369
	futex_wait_queue_me(hb, &q, to);
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
3381 3382 3383
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
3394
			ret = fixup_pi_state_owner(uaddr2, &q, current);
3395 3396 3397 3398
			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
				pi_state = q.pi_state;
				get_pi_state(pi_state);
			}
3399 3400 3401 3402
			/*
			 * Drop the reference to the pi state which
			 * the requeue_pi() code acquired for us.
			 */
3403
			put_pi_state(q.pi_state);
3404 3405 3406
			spin_unlock(q.lock_ptr);
		}
	} else {
3407 3408
		struct rt_mutex *pi_mutex;

3409 3410 3411 3412 3413
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
3414
		WARN_ON(!q.pi_state);
3415
		pi_mutex = &q.pi_state->pi_mutex;
3416
		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3417 3418

		spin_lock(q.lock_ptr);
3419 3420 3421 3422
		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
			ret = 0;

		debug_rt_mutex_free_waiter(&rt_waiter);
3423 3424 3425 3426
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
3427
		res = fixup_owner(uaddr2, &q, !ret);
3428 3429
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
3430
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3431 3432 3433 3434
		 */
		if (res)
			ret = (res < 0) ? res : 0;

3435 3436 3437 3438 3439
		/*
		 * If fixup_pi_state_owner() faulted and was unable to handle
		 * the fault, unlock the rt_mutex and return the fault to
		 * userspace.
		 */
3440 3441 3442 3443
		if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
			pi_state = q.pi_state;
			get_pi_state(pi_state);
		}
3444

3445 3446 3447 3448
		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

3449 3450 3451 3452 3453
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

3454
	if (ret == -EINTR) {
3455
		/*
3456 3457 3458 3459 3460
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
3461
		 */
3462
		ret = -EWOULDBLOCK;
3463 3464 3465
	}

out_put_keys:
3466
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
3467
out_key2:
3468
	put_futex_key(&key2);
3469 3470 3471 3472 3473 3474 3475 3476 3477

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

3478 3479 3480 3481 3482 3483 3484
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
3485
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3486 3487 3488 3489 3490 3491 3492 3493
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
3494 3495 3496
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
3497
 */
3498 3499
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
3500
{
3501 3502
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
3515 3516 3517 3518
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3519
 */
3520 3521 3522
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
3523
{
A
Al Viro 已提交
3524
	struct robust_list_head __user *head;
3525
	unsigned long ret;
3526
	struct task_struct *p;
3527

3528 3529 3530
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

3531 3532 3533
	rcu_read_lock();

	ret = -ESRCH;
3534
	if (!pid)
3535
		p = current;
3536
	else {
3537
		p = find_task_by_vpid(pid);
3538 3539 3540 3541
		if (!p)
			goto err_unlock;
	}

3542
	ret = -EPERM;
3543
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3544 3545 3546 3547 3548
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

3549 3550 3551 3552 3553
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
3554
	rcu_read_unlock();
3555 3556 3557 3558

	return ret;
}

Y
Yang Tao 已提交
3559 3560 3561 3562
/* Constants for the pending_op argument of handle_futex_death */
#define HANDLE_DEATH_PENDING	true
#define HANDLE_DEATH_LIST	false

3563 3564 3565 3566
/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
Y
Yang Tao 已提交
3567 3568
static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
			      bool pi, bool pending_op)
3569
{
3570
	u32 uval, uninitialized_var(nval), mval;
3571
	int err;
3572

3573 3574 3575 3576
	/* Futex address must be 32bit aligned */
	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
		return -1;

3577 3578
retry:
	if (get_user(uval, uaddr))
3579 3580
		return -1;

Y
Yang Tao 已提交
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
	/*
	 * Special case for regular (non PI) futexes. The unlock path in
	 * user space has two race scenarios:
	 *
	 * 1. The unlock path releases the user space futex value and
	 *    before it can execute the futex() syscall to wake up
	 *    waiters it is killed.
	 *
	 * 2. A woken up waiter is killed before it can acquire the
	 *    futex in user space.
	 *
	 * In both cases the TID validation below prevents a wakeup of
	 * potential waiters which can cause these waiters to block
	 * forever.
	 *
	 * In both cases the following conditions are met:
	 *
	 *	1) task->robust_list->list_op_pending != NULL
	 *	   @pending_op == true
	 *	2) User space futex value == 0
	 *	3) Regular futex: @pi == false
	 *
	 * If these conditions are met, it is safe to attempt waking up a
	 * potential waiter without touching the user space futex value and
	 * trying to set the OWNER_DIED bit. The user space futex value is
	 * uncontended and the rest of the user space mutex state is
	 * consistent, so a woken waiter will just take over the
	 * uncontended futex. Setting the OWNER_DIED bit would create
	 * inconsistent state and malfunction of the user space owner died
	 * handling.
	 */
	if (pending_op && !pi && !uval) {
		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
		return 0;
	}

3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
		return 0;

	/*
	 * Ok, this dying thread is truly holding a futex
	 * of interest. Set the OWNER_DIED bit atomically
	 * via cmpxchg, and if the value had FUTEX_WAITERS
	 * set, wake up a waiter (if any). (We have to do a
	 * futex_wake() even if OWNER_DIED is already set -
	 * to handle the rare but possible case of recursive
	 * thread-death.) The rest of the cleanup is done in
	 * userspace.
	 */
	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;

	/*
	 * We are not holding a lock here, but we want to have
	 * the pagefault_disable/enable() protection because
	 * we want to handle the fault gracefully. If the
	 * access fails we try to fault in the futex with R/W
	 * verification via get_user_pages. get_user() above
	 * does not guarantee R/W access. If that fails we
	 * give up and leave the futex locked.
	 */
	if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
		switch (err) {
		case -EFAULT:
3644 3645 3646
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
3647 3648 3649

		case -EAGAIN:
			cond_resched();
3650
			goto retry;
3651

3652 3653 3654 3655
		default:
			WARN_ON_ONCE(1);
			return err;
		}
3656
	}
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667

	if (nval != uval)
		goto retry;

	/*
	 * Wake robust non-PI futexes here. The wakeup of
	 * PI futexes happens in exit_pi_state():
	 */
	if (!pi && (uval & FUTEX_WAITERS))
		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);

3668 3669 3670
	return 0;
}

3671 3672 3673 3674
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
3675
				     struct robust_list __user * __user *head,
3676
				     unsigned int *pi)
3677 3678 3679
{
	unsigned long uentry;

A
Al Viro 已提交
3680
	if (get_user(uentry, (unsigned long __user *)head))
3681 3682
		return -EFAULT;

A
Al Viro 已提交
3683
	*entry = (void __user *)(uentry & ~1UL);
3684 3685 3686 3687 3688
	*pi = uentry & 1;

	return 0;
}

3689 3690 3691 3692 3693 3694
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
3695
static void exit_robust_list(struct task_struct *curr)
3696 3697
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
3698
	struct robust_list __user *entry, *next_entry, *pending;
3699 3700
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
3701
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
3702
	int rc;
3703

3704 3705 3706
	if (!futex_cmpxchg_enabled)
		return;

3707 3708 3709 3710
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
3711
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
3722
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3723
		return;
3724

M
Martin Schwidefsky 已提交
3725
	next_entry = NULL;	/* avoid warning with gcc */
3726
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
3727 3728 3729 3730 3731
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3732 3733
		/*
		 * A pending lock might already be on the list, so
3734
		 * don't process it twice:
3735
		 */
Y
Yang Tao 已提交
3736
		if (entry != pending) {
A
Al Viro 已提交
3737
			if (handle_futex_death((void __user *)entry + futex_offset,
Y
Yang Tao 已提交
3738
						curr, pi, HANDLE_DEATH_LIST))
3739
				return;
Y
Yang Tao 已提交
3740
		}
M
Martin Schwidefsky 已提交
3741
		if (rc)
3742
			return;
M
Martin Schwidefsky 已提交
3743 3744
		entry = next_entry;
		pi = next_pi;
3745 3746 3747 3748 3749 3750 3751 3752
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
3753

Y
Yang Tao 已提交
3754
	if (pending) {
M
Martin Schwidefsky 已提交
3755
		handle_futex_death((void __user *)pending + futex_offset,
Y
Yang Tao 已提交
3756 3757
				   curr, pip, HANDLE_DEATH_PENDING);
	}
3758 3759
}

3760
static void futex_cleanup(struct task_struct *tsk)
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
{
	if (unlikely(tsk->robust_list)) {
		exit_robust_list(tsk);
		tsk->robust_list = NULL;
	}

#ifdef CONFIG_COMPAT
	if (unlikely(tsk->compat_robust_list)) {
		compat_exit_robust_list(tsk);
		tsk->compat_robust_list = NULL;
	}
#endif

	if (unlikely(!list_empty(&tsk->pi_state_list)))
		exit_pi_state_list(tsk);
}

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
/**
 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
 * @tsk:	task to set the state on
 *
 * Set the futex exit state of the task lockless. The futex waiter code
 * observes that state when a task is exiting and loops until the task has
 * actually finished the futex cleanup. The worst case for this is that the
 * waiter runs through the wait loop until the state becomes visible.
 *
 * This is called from the recursive fault handling path in do_exit().
 *
 * This is best effort. Either the futex exit code has run already or
 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
 * take it over. If not, the problem is pushed back to user space. If the
 * futex exit code did not run yet, then an already queued waiter might
 * block forever, but there is nothing which can be done about that.
 */
void futex_exit_recursive(struct task_struct *tsk)
{
3797 3798 3799
	/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
	if (tsk->futex_state == FUTEX_STATE_EXITING)
		mutex_unlock(&tsk->futex_exit_mutex);
3800 3801 3802
	tsk->futex_state = FUTEX_STATE_DEAD;
}

3803
static void futex_cleanup_begin(struct task_struct *tsk)
3804
{
3805 3806 3807 3808 3809 3810 3811 3812
	/*
	 * Prevent various race issues against a concurrent incoming waiter
	 * including live locks by forcing the waiter to block on
	 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
	 * attach_to_pi_owner().
	 */
	mutex_lock(&tsk->futex_exit_mutex);

3813
	/*
3814 3815 3816 3817 3818 3819 3820 3821 3822
	 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
	 *
	 * This ensures that all subsequent checks of tsk->futex_state in
	 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
	 * tsk->pi_lock held.
	 *
	 * It guarantees also that a pi_state which was queued right before
	 * the state change under tsk->pi_lock by a concurrent waiter must
	 * be observed in exit_pi_state_list().
3823 3824
	 */
	raw_spin_lock_irq(&tsk->pi_lock);
3825
	tsk->futex_state = FUTEX_STATE_EXITING;
3826
	raw_spin_unlock_irq(&tsk->pi_lock);
3827
}
3828

3829 3830 3831 3832 3833 3834 3835
static void futex_cleanup_end(struct task_struct *tsk, int state)
{
	/*
	 * Lockless store. The only side effect is that an observer might
	 * take another loop until it becomes visible.
	 */
	tsk->futex_state = state;
3836 3837 3838 3839 3840
	/*
	 * Drop the exit protection. This unblocks waiters which observed
	 * FUTEX_STATE_EXITING to reevaluate the state.
	 */
	mutex_unlock(&tsk->futex_exit_mutex);
3841
}
3842

3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
void futex_exec_release(struct task_struct *tsk)
{
	/*
	 * The state handling is done for consistency, but in the case of
	 * exec() there is no way to prevent futher damage as the PID stays
	 * the same. But for the unlikely and arguably buggy case that a
	 * futex is held on exec(), this provides at least as much state
	 * consistency protection which is possible.
	 */
	futex_cleanup_begin(tsk);
	futex_cleanup(tsk);
	/*
	 * Reset the state to FUTEX_STATE_OK. The task is alive and about
	 * exec a new binary.
	 */
	futex_cleanup_end(tsk, FUTEX_STATE_OK);
}

void futex_exit_release(struct task_struct *tsk)
{
	futex_cleanup_begin(tsk);
	futex_cleanup(tsk);
	futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3866 3867
}

3868
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3869
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
3870
{
T
Thomas Gleixner 已提交
3871
	int cmd = op & FUTEX_CMD_MASK;
3872
	unsigned int flags = 0;
E
Eric Dumazet 已提交
3873 3874

	if (!(op & FUTEX_PRIVATE_FLAG))
3875
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
3876

3877 3878
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
3879 3880
		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
		    cmd != FUTEX_WAIT_REQUEUE_PI)
3881 3882
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
3883

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
3894
	switch (cmd) {
L
Linus Torvalds 已提交
3895
	case FUTEX_WAIT:
3896
		val3 = FUTEX_BITSET_MATCH_ANY;
3897
		/* fall through */
3898
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
3899
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
3900
	case FUTEX_WAKE:
3901
		val3 = FUTEX_BITSET_MATCH_ANY;
3902
		/* fall through */
3903
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
3904
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
3905
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
3906
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
3907
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
3908
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3909
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
3910
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3911
	case FUTEX_LOCK_PI:
3912
		return futex_lock_pi(uaddr, flags, timeout, 0);
3913
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
3914
		return futex_unlock_pi(uaddr, flags);
3915
	case FUTEX_TRYLOCK_PI:
3916
		return futex_lock_pi(uaddr, flags, NULL, 1);
3917 3918
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
3919 3920
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
3921
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
3922
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
3923
	}
T
Thomas Gleixner 已提交
3924
	return -ENOSYS;
L
Linus Torvalds 已提交
3925 3926 3927
}


3928
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3929
		struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3930
		u32, val3)
L
Linus Torvalds 已提交
3931
{
3932
	struct timespec64 ts;
3933
	ktime_t t, *tp = NULL;
3934
	u32 val2 = 0;
E
Eric Dumazet 已提交
3935
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
3936

3937
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3938 3939
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3940 3941
		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
			return -EFAULT;
3942
		if (get_timespec64(&ts, utime))
L
Linus Torvalds 已提交
3943
			return -EFAULT;
3944
		if (!timespec64_valid(&ts))
3945
			return -EINVAL;
3946

3947
		t = timespec64_to_ktime(ts);
E
Eric Dumazet 已提交
3948
		if (cmd == FUTEX_WAIT)
3949
			t = ktime_add_safe(ktime_get(), t);
3950
		tp = &t;
L
Linus Torvalds 已提交
3951 3952
	}
	/*
3953
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3954
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
3955
	 */
3956
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3957
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3958
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
3959

3960
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
3961 3962
}

3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
#ifdef CONFIG_COMPAT
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int
compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
		   compat_uptr_t __user *head, unsigned int *pi)
{
	if (get_user(*uentry, head))
		return -EFAULT;

	*entry = compat_ptr((*uentry) & ~1);
	*pi = (unsigned int)(*uentry) & 1;

	return 0;
}

static void __user *futex_uaddr(struct robust_list __user *entry,
				compat_long_t futex_offset)
{
	compat_uptr_t base = ptr_to_compat(entry);
	void __user *uaddr = compat_ptr(base + futex_offset);

	return uaddr;
}

/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
3995
static void compat_exit_robust_list(struct task_struct *curr)
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
{
	struct compat_robust_list_head __user *head = curr->compat_robust_list;
	struct robust_list __user *entry, *next_entry, *pending;
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
	compat_uptr_t uentry, next_uentry, upending;
	compat_long_t futex_offset;
	int rc;

	if (!futex_cmpxchg_enabled)
		return;

	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
	if (compat_fetch_robust_entry(&upending, &pending,
			       &head->list_op_pending, &pip))
		return;

	next_entry = NULL;	/* avoid warning with gcc */
	while (entry != (struct robust_list __user *) &head->list) {
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
			(compat_uptr_t __user *)&entry->next, &next_pi);
		/*
		 * A pending lock might already be on the list, so
		 * dont process it twice:
		 */
		if (entry != pending) {
			void __user *uaddr = futex_uaddr(entry, futex_offset);

Y
Yang Tao 已提交
4042 4043
			if (handle_futex_death(uaddr, curr, pi,
					       HANDLE_DEATH_LIST))
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
				return;
		}
		if (rc)
			return;
		uentry = next_uentry;
		entry = next_entry;
		pi = next_pi;
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
	if (pending) {
		void __user *uaddr = futex_uaddr(pending, futex_offset);

Y
Yang Tao 已提交
4062
		handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
	}
}

COMPAT_SYSCALL_DEFINE2(set_robust_list,
		struct compat_robust_list_head __user *, head,
		compat_size_t, len)
{
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->compat_robust_list = head;

	return 0;
}

COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
			compat_uptr_t __user *, head_ptr,
			compat_size_t __user *, len_ptr)
{
	struct compat_robust_list_head __user *head;
	unsigned long ret;
	struct task_struct *p;

	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

	rcu_read_lock();

	ret = -ESRCH;
	if (!pid)
		p = current;
	else {
		p = find_task_by_vpid(pid);
		if (!p)
			goto err_unlock;
	}

	ret = -EPERM;
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
		goto err_unlock;

	head = p->compat_robust_list;
	rcu_read_unlock();

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(ptr_to_compat(head), head_ptr);

err_unlock:
	rcu_read_unlock();

	return ret;
}
4119
#endif /* CONFIG_COMPAT */
4120

4121
#ifdef CONFIG_COMPAT_32BIT_TIME
4122
SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4123 4124 4125
		struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
		u32, val3)
{
4126
	struct timespec64 ts;
4127 4128 4129 4130 4131 4132 4133
	ktime_t t, *tp = NULL;
	int val2 = 0;
	int cmd = op & FUTEX_CMD_MASK;

	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
4134
		if (get_old_timespec32(&ts, utime))
4135
			return -EFAULT;
4136
		if (!timespec64_valid(&ts))
4137 4138
			return -EINVAL;

4139
		t = timespec64_to_ktime(ts);
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
		if (cmd == FUTEX_WAIT)
			t = ktime_add_safe(ktime_get(), t);
		tp = &t;
	}
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
		val2 = (int) (unsigned long) utime;

	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
}
4150
#endif /* CONFIG_COMPAT_32BIT_TIME */
4151

4152
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
4153
{
4154
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4155
	u32 curval;
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
4174
	unsigned int futex_shift;
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
4186 4187 4188
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
4189 4190

	futex_detect_cmpxchg();
4191

4192
	for (i = 0; i < futex_hashsize; i++) {
4193
		atomic_set(&futex_queues[i].waiters, 0);
4194
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
4195 4196 4197
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
4198 4199
	return 0;
}
4200
core_initcall(futex_init);