futex.c 93.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/export.h>
59
#include <linux/magic.h>
60 61
#include <linux/pid.h>
#include <linux/nsproxy.h>
62
#include <linux/ptrace.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/wake_q.h>
65
#include <linux/sched/mm.h>
66
#include <linux/hugetlb.h>
C
Colin Cross 已提交
67
#include <linux/freezer.h>
68
#include <linux/bootmem.h>
69
#include <linux/fault-inject.h>
70

71
#include <asm/futex.h>
L
Linus Torvalds 已提交
72

73
#include "locking/rtmutex_common.h"
74

75
/*
76 77 78 79
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
80 81 82 83
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
84 85 86
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
87 88
 *
 * The waker side modifies the user space value of the futex and calls
89 90 91
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
92
 *
93 94 95 96 97
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
119 120 121 122 123
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
124 125 126
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
127
 *
128
 *   waiters++; (a)
129 130 131 132 133 134 135 136 137 138
 *   smp_mb(); (A) <-- paired with -.
 *                                  |
 *   lock(hash_bucket(futex));      |
 *                                  |
 *   uval = *futex;                 |
 *                                  |        *futex = newval;
 *                                  |        sys_futex(WAKE, futex);
 *                                  |          futex_wake(futex);
 *                                  |
 *                                  `--------> smp_mb(); (B)
139
 *   if (uval == val)
140
 *     queue();
141
 *     unlock(hash_bucket(futex));
142 143
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
144 145
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
146
 *
147 148
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 150
 * to futex and the waiters read -- this is done by the barriers for both
 * shared and private futexes in get_futex_key_refs().
151 152 153 154 155 156 157 158 159 160 161 162
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
163 164 165 166 167 168 169 170 171 172 173
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
174 175
 */

176
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177
int __read_mostly futex_cmpxchg_enabled;
178
#endif
179

180 181 182 183
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
184 185 186 187 188 189 190 191 192
#ifdef CONFIG_MMU
# define FLAGS_SHARED		0x01
#else
/*
 * NOMMU does not have per process address space. Let the compiler optimize
 * code away.
 */
# define FLAGS_SHARED		0x00
#endif
193 194 195
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

217 218
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
219
 * @list:		priority-sorted list of tasks waiting on this futex
220 221 222 223 224 225 226 227 228
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
229 230 231
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
232
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233
 * The order of wakeup is always to make the first condition true, then
234 235 236 237
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
238 239
 */
struct futex_q {
P
Pierre Peiffer 已提交
240
	struct plist_node list;
L
Linus Torvalds 已提交
241

242
	struct task_struct *task;
L
Linus Torvalds 已提交
243 244
	spinlock_t *lock_ptr;
	union futex_key key;
245
	struct futex_pi_state *pi_state;
246
	struct rt_mutex_waiter *rt_waiter;
247
	union futex_key *requeue_pi_key;
248
	u32 bitset;
L
Linus Torvalds 已提交
249 250
};

251 252 253 254 255 256
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
257
/*
D
Darren Hart 已提交
258 259 260
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
261 262
 */
struct futex_hash_bucket {
263
	atomic_t waiters;
P
Pierre Peiffer 已提交
264 265
	spinlock_t lock;
	struct plist_head chain;
266
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
267

268 269 270 271 272 273 274 275 276 277 278
/*
 * The base of the bucket array and its size are always used together
 * (after initialization only in hash_futex()), so ensure that they
 * reside in the same cacheline.
 */
static struct {
	struct futex_hash_bucket *queues;
	unsigned long            hashsize;
} __futex_data __read_mostly __aligned(2*sizeof(long));
#define futex_queues   (__futex_data.queues)
#define futex_hashsize (__futex_data.hashsize)
279

L
Linus Torvalds 已提交
280

281 282 283 284 285 286 287 288
/*
 * Fault injections for futexes.
 */
#ifdef CONFIG_FAIL_FUTEX

static struct {
	struct fault_attr attr;

289
	bool ignore_private;
290 291
} fail_futex = {
	.attr = FAULT_ATTR_INITIALIZER,
292
	.ignore_private = false,
293 294 295 296 297 298 299 300
};

static int __init setup_fail_futex(char *str)
{
	return setup_fault_attr(&fail_futex.attr, str);
}
__setup("fail_futex=", setup_fail_futex);

301
static bool should_fail_futex(bool fshared)
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
{
	if (fail_futex.ignore_private && !fshared)
		return false;

	return should_fail(&fail_futex.attr, 1);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_futex_debugfs(void)
{
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;

	dir = fault_create_debugfs_attr("fail_futex", NULL,
					&fail_futex.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);

	if (!debugfs_create_bool("ignore-private", mode, dir,
				 &fail_futex.ignore_private)) {
		debugfs_remove_recursive(dir);
		return -ENOMEM;
	}

	return 0;
}

late_initcall(fail_futex_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else
static inline bool should_fail_futex(bool fshared)
{
	return false;
}
#endif /* CONFIG_FAIL_FUTEX */

341 342
static inline void futex_get_mm(union futex_key *key)
{
V
Vegard Nossum 已提交
343
	mmgrab(key->private.mm);
344 345 346
	/*
	 * Ensure futex_get_mm() implies a full barrier such that
	 * get_futex_key() implies a full barrier. This is relied upon
347
	 * as smp_mb(); (B), see the ordering comment above.
348
	 */
349
	smp_mb__after_atomic();
350 351
}

352 353 354 355
/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 357
{
#ifdef CONFIG_SMP
358
	atomic_inc(&hb->waiters);
359
	/*
360
	 * Full barrier (A), see the ordering comment above.
361
	 */
362
	smp_mb__after_atomic();
363 364 365 366 367 368 369 370 371 372 373 374 375
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}
376

377 378 379 380
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	return atomic_read(&hb->waiters);
381
#else
382
	return 1;
383 384 385
#endif
}

386 387 388 389 390 391
/**
 * hash_futex - Return the hash bucket in the global hash
 * @key:	Pointer to the futex key for which the hash is calculated
 *
 * We hash on the keys returned from get_futex_key (see below) and return the
 * corresponding hash bucket in the global hash.
L
Linus Torvalds 已提交
392 393 394 395 396 397
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
398
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
399 400
}

401 402 403 404 405 406

/**
 * match_futex - Check whether two futex keys are equal
 * @key1:	Pointer to key1
 * @key2:	Pointer to key2
 *
L
Linus Torvalds 已提交
407 408 409 410
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
411 412
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
413 414 415 416
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

417 418 419 420 421 422 423 424 425 426
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

427 428 429 430 431 432 433 434 435 436
	/*
	 * On MMU less systems futexes are always "private" as there is no per
	 * process address space. We need the smp wmb nevertheless - yes,
	 * arch/blackfin has MMU less SMP ...
	 */
	if (!IS_ENABLED(CONFIG_MMU)) {
		smp_mb(); /* explicit smp_mb(); (B) */
		return;
	}

437 438
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
439
		ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 441
		break;
	case FUT_OFF_MMSHARED:
442
		futex_get_mm(key); /* implies smp_mb(); (B) */
443
		break;
444
	default:
445 446 447 448 449
		/*
		 * Private futexes do not hold reference on an inode or
		 * mm, therefore the only purpose of calling get_futex_key_refs
		 * is because we need the barrier for the lockless waiter check.
		 */
450
		smp_mb(); /* explicit smp_mb(); (B) */
451 452 453 454 455
	}
}

/*
 * Drop a reference to the resource addressed by a key.
456 457 458
 * The hash bucket spinlock must not be held. This is
 * a no-op for private futexes, see comment in the get
 * counterpart.
459 460 461
 */
static void drop_futex_key_refs(union futex_key *key)
{
462 463 464
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
465
		return;
466
	}
467

468 469 470
	if (!IS_ENABLED(CONFIG_MMU))
		return;

471 472 473 474 475 476 477 478 479 480
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
481
/**
482 483 484 485
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
486 487
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 *              VERIFY_WRITE)
E
Eric Dumazet 已提交
488
 *
489 490
 * Return: a negative error code or 0
 *
E
Eric Dumazet 已提交
491
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
492
 *
A
Al Viro 已提交
493
 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
L
Linus Torvalds 已提交
494 495 496
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
497
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
498
 */
499
static int
500
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
501
{
502
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
503
	struct mm_struct *mm = current->mm;
504
	struct page *page, *tail;
505
	struct address_space *mapping;
506
	int err, ro = 0;
L
Linus Torvalds 已提交
507 508 509 510

	/*
	 * The futex address must be "naturally" aligned.
	 */
511
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
512
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
513
		return -EINVAL;
514
	address -= key->both.offset;
L
Linus Torvalds 已提交
515

516 517 518
	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
		return -EFAULT;

519 520 521
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

E
Eric Dumazet 已提交
522 523 524 525 526 527 528 529 530 531
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
532
		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
E
Eric Dumazet 已提交
533 534
		return 0;
	}
L
Linus Torvalds 已提交
535

536
again:
537 538 539 540
	/* Ignore any VERIFY_READ mapping (futex common case) */
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

541
	err = get_user_pages_fast(address, 1, 1, &page);
542 543 544 545 546 547 548 549
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
	if (err == -EFAULT && rw == VERIFY_READ) {
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
550 551
	if (err < 0)
		return err;
552 553
	else
		err = 0;
554

555 556 557 558 559 560 561 562 563 564
	/*
	 * The treatment of mapping from this point on is critical. The page
	 * lock protects many things but in this context the page lock
	 * stabilizes mapping, prevents inode freeing in the shared
	 * file-backed region case and guards against movement to swap cache.
	 *
	 * Strictly speaking the page lock is not needed in all cases being
	 * considered here and page lock forces unnecessarily serialization
	 * From this point on, mapping will be re-verified if necessary and
	 * page lock will be acquired only if it is unavoidable
565 566 567 568 569 570 571
	 *
	 * Mapping checks require the head page for any compound page so the
	 * head page and mapping is looked up now. For anonymous pages, it
	 * does not matter if the page splits in the future as the key is
	 * based on the address. For filesystem-backed pages, the tail is
	 * required as the index of the page determines the key. For
	 * base pages, there is no tail page and tail == page.
572
	 */
573
	tail = page;
574 575 576
	page = compound_head(page);
	mapping = READ_ONCE(page->mapping);

577
	/*
578
	 * If page->mapping is NULL, then it cannot be a PageAnon
579 580 581 582 583 584 585 586 587 588 589
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
590
	 * an unlikely race, but we do need to retry for page->mapping.
591
	 */
592 593 594 595 596 597 598 599 600 601
	if (unlikely(!mapping)) {
		int shmem_swizzled;

		/*
		 * Page lock is required to identify which special case above
		 * applies. If this is really a shmem page then the page lock
		 * will prevent unexpected transitions.
		 */
		lock_page(page);
		shmem_swizzled = PageSwapCache(page) || page->mapping;
602 603
		unlock_page(page);
		put_page(page);
604

605 606
		if (shmem_swizzled)
			goto again;
607

608
		return -EFAULT;
609
	}
L
Linus Torvalds 已提交
610 611 612 613

	/*
	 * Private mappings are handled in a simple way.
	 *
614 615 616
	 * If the futex key is stored on an anonymous page, then the associated
	 * object is the mm which is implicitly pinned by the calling process.
	 *
L
Linus Torvalds 已提交
617 618
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
619
	 * the object not the particular process.
L
Linus Torvalds 已提交
620
	 */
621
	if (PageAnon(page)) {
622 623 624 625
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
626
		if (unlikely(should_fail_futex(fshared)) || ro) {
627 628 629 630
			err = -EFAULT;
			goto out;
		}

631
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
632
		key->private.mm = mm;
633
		key->private.address = address;
634 635 636

		get_futex_key_refs(key); /* implies smp_mb(); (B) */

637
	} else {
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
		struct inode *inode;

		/*
		 * The associated futex object in this case is the inode and
		 * the page->mapping must be traversed. Ordinarily this should
		 * be stabilised under page lock but it's not strictly
		 * necessary in this case as we just want to pin the inode, not
		 * update the radix tree or anything like that.
		 *
		 * The RCU read lock is taken as the inode is finally freed
		 * under RCU. If the mapping still matches expectations then the
		 * mapping->host can be safely accessed as being a valid inode.
		 */
		rcu_read_lock();

		if (READ_ONCE(page->mapping) != mapping) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		inode = READ_ONCE(mapping->host);
		if (!inode) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/*
		 * Take a reference unless it is about to be freed. Previously
		 * this reference was taken by ihold under the page lock
		 * pinning the inode in place so i_lock was unnecessary. The
		 * only way for this check to fail is if the inode was
		 * truncated in parallel so warn for now if this happens.
		 *
		 * We are not calling into get_futex_key_refs() in file-backed
		 * cases, therefore a successful atomic_inc return below will
		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
		 */
		if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/* Should be impossible but lets be paranoid for now */
		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
			err = -EFAULT;
			rcu_read_unlock();
			iput(inode);

			goto out;
		}

695
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
696
		key->shared.inode = inode;
697
		key->shared.pgoff = basepage_index(tail);
698
		rcu_read_unlock();
L
Linus Torvalds 已提交
699 700
	}

701
out:
702
	put_page(page);
703
	return err;
L
Linus Torvalds 已提交
704 705
}

706
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
707
{
708
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
709 710
}

711 712
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
713 714 715 716 717
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
718
 * We have no generic implementation of a non-destructive write to the
719 720 721 722 723 724
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
725 726 727 728
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
729
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
730
			       FAULT_FLAG_WRITE, NULL);
731 732
	up_read(&mm->mmap_sem);

733 734 735
	return ret < 0 ? ret : 0;
}

736 737
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
738 739
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

755 756
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
757
{
758
	int ret;
T
Thomas Gleixner 已提交
759 760

	pagefault_disable();
761
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
762 763
	pagefault_enable();

764
	return ret;
T
Thomas Gleixner 已提交
765 766 767
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
768 769 770
{
	int ret;

771
	pagefault_disable();
772
	ret = __get_user(*dest, from);
773
	pagefault_enable();
L
Linus Torvalds 已提交
774 775 776 777

	return ret ? -EFAULT : 0;
}

778 779 780 781 782 783 784 785 786 787 788

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

789
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
790 791 792 793 794 795 796 797

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
798
	pi_state->key = FUTEX_KEY_INIT;
799 800 801 802 803 804

	current->pi_state_cache = pi_state;

	return 0;
}

P
Peter Zijlstra 已提交
805
static struct futex_pi_state *alloc_pi_state(void)
806 807 808 809 810 811 812 813 814
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

P
Peter Zijlstra 已提交
815 816 817 818 819
static void get_pi_state(struct futex_pi_state *pi_state)
{
	WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
}

820
/*
821 822 823
 * Drops a reference to the pi_state object and frees or caches it
 * when the last reference is gone.
 *
824 825
 * Must be called with the hb lock held.
 */
826
static void put_pi_state(struct futex_pi_state *pi_state)
827
{
828 829 830
	if (!pi_state)
		return;

831 832 833 834 835 836 837 838
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
839
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
840
		list_del_init(&pi_state->list);
841
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
P
Peter Zijlstra 已提交
864
static struct task_struct *futex_find_get_task(pid_t pid)
865 866 867
{
	struct task_struct *p;

868
	rcu_read_lock();
869
	p = find_task_by_vpid(pid);
870 871
	if (p)
		get_task_struct(p);
872

873
	rcu_read_unlock();
874 875 876 877 878 879 880 881 882 883 884 885 886

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
887
	struct futex_hash_bucket *hb;
888
	union futex_key key = FUTEX_KEY_INIT;
889

890 891
	if (!futex_cmpxchg_enabled)
		return;
892 893 894
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
895
	 * versus waiters unqueueing themselves:
896
	 */
897
	raw_spin_lock_irq(&curr->pi_lock);
898 899 900 901 902
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
903
		hb = hash_futex(&key);
904
		raw_spin_unlock_irq(&curr->pi_lock);
905 906 907

		spin_lock(&hb->lock);

908
		raw_spin_lock_irq(&curr->pi_lock);
909 910 911 912
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
913 914 915 916 917 918
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
919 920
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
921
		pi_state->owner = NULL;
922
		raw_spin_unlock_irq(&curr->pi_lock);
923

924
		get_pi_state(pi_state);
925 926
		spin_unlock(&hb->lock);

927 928 929
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);

930
		raw_spin_lock_irq(&curr->pi_lock);
931
	}
932
	raw_spin_unlock_irq(&curr->pi_lock);
933 934
}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync.
P
Peter Zijlstra 已提交
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
 *
 *
 * Serialization and lifetime rules:
 *
 * hb->lock:
 *
 *	hb -> futex_q, relation
 *	futex_q -> pi_state, relation
 *
 *	(cannot be raw because hb can contain arbitrary amount
 *	 of futex_q's)
 *
 * pi_mutex->wait_lock:
 *
 *	{uval, pi_state}
 *
 *	(and pi_mutex 'obviously')
 *
 * p->pi_lock:
 *
 *	p->pi_state_list -> pi_state->list, relation
 *
 * pi_state->refcount:
 *
 *	pi_state lifetime
 *
 *
 * Lock order:
 *
 *   hb->lock
 *     pi_mutex->wait_lock
 *       p->pi_lock
 *
1016
 */
1017 1018 1019 1020 1021 1022

/*
 * Validate that the existing waiter has a pi_state and sanity check
 * the pi_state against the user space value. If correct, attach to
 * it.
 */
P
Peter Zijlstra 已提交
1023 1024
static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
			      struct futex_pi_state *pi_state,
1025
			      struct futex_pi_state **ps)
1026
{
1027
	pid_t pid = uval & FUTEX_TID_MASK;
1028 1029
	u32 uval2;
	int ret;
1030

1031 1032 1033 1034 1035
	/*
	 * Userspace might have messed up non-PI and PI futexes [3]
	 */
	if (unlikely(!pi_state))
		return -EINVAL;
1036

P
Peter Zijlstra 已提交
1037 1038 1039 1040 1041 1042
	/*
	 * We get here with hb->lock held, and having found a
	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
	 * which in turn means that futex_lock_pi() still has a reference on
	 * our pi_state.
1043 1044 1045 1046 1047
	 *
	 * The waiter holding a reference on @pi_state also protects against
	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
	 * free pi_state before we can take a reference ourselves.
P
Peter Zijlstra 已提交
1048
	 */
1049
	WARN_ON(!atomic_read(&pi_state->refcount));
1050

P
Peter Zijlstra 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	/*
	 * Now that we have a pi_state, we can acquire wait_lock
	 * and do the state validation.
	 */
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	/*
	 * Since {uval, pi_state} is serialized by wait_lock, and our current
	 * uval was read without holding it, it can have changed. Verify it
	 * still is what we expect it to be, otherwise retry the entire
	 * operation.
	 */
	if (get_futex_value_locked(&uval2, uaddr))
		goto out_efault;

	if (uval != uval2)
		goto out_eagain;

1069 1070 1071 1072
	/*
	 * Handle the owner died case:
	 */
	if (uval & FUTEX_OWNER_DIED) {
1073
		/*
1074 1075 1076
		 * exit_pi_state_list sets owner to NULL and wakes the
		 * topmost waiter. The task which acquires the
		 * pi_state->rt_mutex will fixup owner.
1077
		 */
1078
		if (!pi_state->owner) {
1079
			/*
1080 1081
			 * No pi state owner, but the user space TID
			 * is not 0. Inconsistent state. [5]
1082
			 */
1083
			if (pid)
P
Peter Zijlstra 已提交
1084
				goto out_einval;
1085
			/*
1086
			 * Take a ref on the state and return success. [4]
1087
			 */
P
Peter Zijlstra 已提交
1088
			goto out_attach;
1089
		}
1090 1091

		/*
1092 1093 1094 1095 1096 1097 1098 1099
		 * If TID is 0, then either the dying owner has not
		 * yet executed exit_pi_state_list() or some waiter
		 * acquired the rtmutex in the pi state, but did not
		 * yet fixup the TID in user space.
		 *
		 * Take a ref on the state and return success. [6]
		 */
		if (!pid)
P
Peter Zijlstra 已提交
1100
			goto out_attach;
1101 1102 1103 1104
	} else {
		/*
		 * If the owner died bit is not set, then the pi_state
		 * must have an owner. [7]
1105
		 */
1106
		if (!pi_state->owner)
P
Peter Zijlstra 已提交
1107
			goto out_einval;
1108 1109
	}

1110 1111 1112 1113 1114 1115
	/*
	 * Bail out if user space manipulated the futex value. If pi
	 * state exists then the owner TID must be the same as the
	 * user space TID. [9/10]
	 */
	if (pid != task_pid_vnr(pi_state->owner))
P
Peter Zijlstra 已提交
1116 1117 1118
		goto out_einval;

out_attach:
P
Peter Zijlstra 已提交
1119
	get_pi_state(pi_state);
P
Peter Zijlstra 已提交
1120
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1121 1122
	*ps = pi_state;
	return 0;
P
Peter Zijlstra 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

out_einval:
	ret = -EINVAL;
	goto out_error;

out_eagain:
	ret = -EAGAIN;
	goto out_error;

out_efault:
	ret = -EFAULT;
	goto out_error;

out_error:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
1139 1140
}

1141 1142 1143 1144 1145 1146
/*
 * Lookup the task for the TID provided from user space and attach to
 * it after doing proper sanity checks.
 */
static int attach_to_pi_owner(u32 uval, union futex_key *key,
			      struct futex_pi_state **ps)
1147 1148
{
	pid_t pid = uval & FUTEX_TID_MASK;
1149 1150
	struct futex_pi_state *pi_state;
	struct task_struct *p;
1151

1152
	/*
1153
	 * We are the first waiter - try to look up the real owner and attach
1154
	 * the new pi_state to it, but bail out when TID = 0 [1]
1155
	 */
1156
	if (!pid)
1157
		return -ESRCH;
1158
	p = futex_find_get_task(pid);
1159 1160
	if (!p)
		return -ESRCH;
1161

1162
	if (unlikely(p->flags & PF_KTHREAD)) {
1163 1164 1165 1166
		put_task_struct(p);
		return -EPERM;
	}

1167 1168 1169 1170 1171 1172
	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
1173
	raw_spin_lock_irq(&p->pi_lock);
1174 1175 1176 1177 1178 1179 1180 1181
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

1182
		raw_spin_unlock_irq(&p->pi_lock);
1183 1184 1185
		put_task_struct(p);
		return ret;
	}
1186

1187 1188
	/*
	 * No existing pi state. First waiter. [2]
P
Peter Zijlstra 已提交
1189 1190 1191
	 *
	 * This creates pi_state, we have hb->lock held, this means nothing can
	 * observe this state, wait_lock is irrelevant.
1192
	 */
1193 1194 1195
	pi_state = alloc_pi_state();

	/*
1196
	 * Initialize the pi_mutex in locked state and make @p
1197 1198 1199 1200 1201
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
1202
	pi_state->key = *key;
1203

1204
	WARN_ON(!list_empty(&pi_state->list));
1205 1206
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
1207
	raw_spin_unlock_irq(&p->pi_lock);
1208 1209 1210

	put_task_struct(p);

P
Pierre Peiffer 已提交
1211
	*ps = pi_state;
1212 1213 1214 1215

	return 0;
}

P
Peter Zijlstra 已提交
1216 1217
static int lookup_pi_state(u32 __user *uaddr, u32 uval,
			   struct futex_hash_bucket *hb,
1218 1219
			   union futex_key *key, struct futex_pi_state **ps)
{
1220
	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1221 1222 1223 1224 1225

	/*
	 * If there is a waiter on that futex, validate it and
	 * attach to the pi_state when the validation succeeds.
	 */
1226
	if (top_waiter)
P
Peter Zijlstra 已提交
1227
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1228 1229 1230 1231 1232 1233 1234 1235

	/*
	 * We are the first waiter - try to look up the owner based on
	 * @uval and attach to it.
	 */
	return attach_to_pi_owner(uval, key, ps);
}

1236 1237 1238 1239
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 uninitialized_var(curval);

1240 1241 1242
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1243 1244 1245
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
		return -EFAULT;

P
Peter Zijlstra 已提交
1246
	/* If user space value changed, let the caller retry */
1247 1248 1249
	return curval != uval ? -EAGAIN : 0;
}

1250
/**
1251
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1252 1253 1254 1255 1256 1257 1258 1259
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1260
 *
1261 1262 1263
 * Return:
 *  0 - ready to wait;
 *  1 - acquired the lock;
1264 1265 1266 1267 1268 1269 1270
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
1271
				struct task_struct *task, int set_waiters)
1272
{
1273
	u32 uval, newval, vpid = task_pid_vnr(task);
1274
	struct futex_q *top_waiter;
1275
	int ret;
1276 1277

	/*
1278 1279
	 * Read the user space value first so we can validate a few
	 * things before proceeding further.
1280
	 */
1281
	if (get_futex_value_locked(&uval, uaddr))
1282 1283
		return -EFAULT;

1284 1285 1286
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1287 1288 1289
	/*
	 * Detect deadlocks.
	 */
1290
	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1291 1292
		return -EDEADLK;

1293 1294 1295
	if ((unlikely(should_fail_futex(true))))
		return -EDEADLK;

1296
	/*
1297 1298
	 * Lookup existing state first. If it exists, try to attach to
	 * its pi_state.
1299
	 */
1300 1301
	top_waiter = futex_top_waiter(hb, key);
	if (top_waiter)
P
Peter Zijlstra 已提交
1302
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1303 1304

	/*
1305 1306 1307 1308
	 * No waiter and user TID is 0. We are here because the
	 * waiters or the owner died bit is set or called from
	 * requeue_cmp_pi or for whatever reason something took the
	 * syscall.
1309
	 */
1310
	if (!(uval & FUTEX_TID_MASK)) {
1311
		/*
1312 1313
		 * We take over the futex. No other waiters and the user space
		 * TID is 0. We preserve the owner died bit.
1314
		 */
1315 1316
		newval = uval & FUTEX_OWNER_DIED;
		newval |= vpid;
1317

1318 1319 1320 1321 1322 1323 1324 1325
		/* The futex requeue_pi code can enforce the waiters bit */
		if (set_waiters)
			newval |= FUTEX_WAITERS;

		ret = lock_pi_update_atomic(uaddr, uval, newval);
		/* If the take over worked, return 1 */
		return ret < 0 ? ret : 1;
	}
1326 1327

	/*
1328 1329 1330
	 * First waiter. Set the waiters bit before attaching ourself to
	 * the owner. If owner tries to unlock, it will be forced into
	 * the kernel and blocked on hb->lock.
1331
	 */
1332 1333 1334 1335
	newval = uval | FUTEX_WAITERS;
	ret = lock_pi_update_atomic(uaddr, uval, newval);
	if (ret)
		return ret;
1336
	/*
1337 1338 1339
	 * If the update of the user space value succeeded, we try to
	 * attach to the owner. If that fails, no harm done, we only
	 * set the FUTEX_WAITERS bit in the user space variable.
1340
	 */
1341
	return attach_to_pi_owner(uval, key, ps);
1342 1343
}

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

1354 1355
	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
	    || WARN_ON(plist_node_empty(&q->list)))
1356 1357 1358 1359
		return;

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
1360
	hb_waiters_dec(hb);
1361 1362
}

L
Linus Torvalds 已提交
1363 1364
/*
 * The hash bucket lock must be held when this is called.
1365 1366 1367
 * Afterwards, the futex_q must not be accessed. Callers
 * must ensure to later call wake_up_q() for the actual
 * wakeups to occur.
L
Linus Torvalds 已提交
1368
 */
1369
static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
L
Linus Torvalds 已提交
1370
{
T
Thomas Gleixner 已提交
1371 1372
	struct task_struct *p = q->task;

1373 1374 1375
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

L
Linus Torvalds 已提交
1376
	/*
1377 1378
	 * Queue the task for later wakeup for after we've released
	 * the hb->lock. wake_q_add() grabs reference to p.
L
Linus Torvalds 已提交
1379
	 */
1380
	wake_q_add(wake_q, p);
1381
	__unqueue_futex(q);
L
Linus Torvalds 已提交
1382
	/*
T
Thomas Gleixner 已提交
1383 1384 1385 1386
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
1387
	 */
1388
	smp_store_release(&q->lock_ptr, NULL);
L
Linus Torvalds 已提交
1389 1390
}

1391 1392 1393 1394
/*
 * Caller must hold a reference on @pi_state.
 */
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1395
{
1396
	u32 uninitialized_var(curval), newval;
1397
	struct task_struct *new_owner;
P
Peter Zijlstra 已提交
1398
	bool postunlock = false;
1399
	DEFINE_WAKE_Q(wake_q);
1400
	int ret = 0;
1401 1402

	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1403
	if (WARN_ON_ONCE(!new_owner)) {
1404
		/*
1405
		 * As per the comment in futex_unlock_pi() this should not happen.
1406 1407 1408 1409 1410 1411 1412 1413
		 *
		 * When this happens, give up our locks and try again, giving
		 * the futex_lock_pi() instance time to complete, either by
		 * waiting on the rtmutex or removing itself from the futex
		 * queue.
		 */
		ret = -EAGAIN;
		goto out_unlock;
1414
	}
1415 1416

	/*
1417 1418 1419
	 * We pass it to the next owner. The WAITERS bit is always kept
	 * enabled while there is PI state around. We cleanup the owner
	 * died bit, because we are the owner.
1420
	 */
1421
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1422

1423 1424 1425
	if (unlikely(should_fail_futex(true)))
		ret = -EFAULT;

1426
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1427
		ret = -EFAULT;
P
Peter Zijlstra 已提交
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	} else if (curval != uval) {
		/*
		 * If a unconditional UNLOCK_PI operation (user space did not
		 * try the TID->0 transition) raced with a waiter setting the
		 * FUTEX_WAITERS flag between get_user() and locking the hash
		 * bucket lock, retry the operation.
		 */
		if ((FUTEX_TID_MASK & curval) == uval)
			ret = -EAGAIN;
		else
			ret = -EINVAL;
	}
P
Peter Zijlstra 已提交
1441

1442 1443
	if (ret)
		goto out_unlock;
1444

1445 1446 1447 1448 1449
	/*
	 * This is a point of no return; once we modify the uval there is no
	 * going back and subsequent operations must not fail.
	 */

1450
	raw_spin_lock(&pi_state->owner->pi_lock);
1451 1452
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1453
	raw_spin_unlock(&pi_state->owner->pi_lock);
1454

1455
	raw_spin_lock(&new_owner->pi_lock);
1456
	WARN_ON(!list_empty(&pi_state->list));
1457 1458
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1459
	raw_spin_unlock(&new_owner->pi_lock);
1460

P
Peter Zijlstra 已提交
1461
	postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1462

1463
out_unlock:
1464 1465
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

P
Peter Zijlstra 已提交
1466 1467
	if (postunlock)
		rt_mutex_postunlock(&wake_q);
1468

1469
	return ret;
1470 1471
}

I
Ingo Molnar 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1488 1489 1490
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1491
	spin_unlock(&hb1->lock);
1492 1493
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1494 1495
}

L
Linus Torvalds 已提交
1496
/*
D
Darren Hart 已提交
1497
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1498
 */
1499 1500
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1501
{
1502
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1503
	struct futex_q *this, *next;
1504
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1505
	int ret;
1506
	DEFINE_WAKE_Q(wake_q);
L
Linus Torvalds 已提交
1507

1508 1509 1510
	if (!bitset)
		return -EINVAL;

1511
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
L
Linus Torvalds 已提交
1512 1513 1514
	if (unlikely(ret != 0))
		goto out;

1515
	hb = hash_futex(&key);
1516 1517 1518 1519 1520

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1521
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1522

J
Jason Low 已提交
1523
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1524
		if (match_futex (&this->key, &key)) {
1525
			if (this->pi_state || this->rt_waiter) {
1526 1527 1528
				ret = -EINVAL;
				break;
			}
1529 1530 1531 1532 1533

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

1534
			mark_wake_futex(&wake_q, this);
L
Linus Torvalds 已提交
1535 1536 1537 1538 1539
			if (++ret >= nr_wake)
				break;
		}
	}

1540
	spin_unlock(&hb->lock);
1541
	wake_up_q(&wake_q);
1542
out_put_key:
1543
	put_futex_key(&key);
1544
out:
L
Linus Torvalds 已提交
1545 1546 1547
	return ret;
}

1548 1549 1550 1551
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1552
static int
1553
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1554
	      int nr_wake, int nr_wake2, int op)
1555
{
1556
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1557
	struct futex_hash_bucket *hb1, *hb2;
1558
	struct futex_q *this, *next;
D
Darren Hart 已提交
1559
	int ret, op_ret;
1560
	DEFINE_WAKE_Q(wake_q);
1561

D
Darren Hart 已提交
1562
retry:
1563
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1564 1565
	if (unlikely(ret != 0))
		goto out;
1566
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1567
	if (unlikely(ret != 0))
1568
		goto out_put_key1;
1569

1570 1571
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1572

D
Darren Hart 已提交
1573
retry_private:
T
Thomas Gleixner 已提交
1574
	double_lock_hb(hb1, hb2);
1575
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1576 1577
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
1578
		double_unlock_hb(hb1, hb2);
1579

1580
#ifndef CONFIG_MMU
1581 1582 1583 1584
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
1585
		ret = op_ret;
1586
		goto out_put_keys;
1587 1588
#endif

1589 1590
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
1591
			goto out_put_keys;
1592 1593
		}

1594
		ret = fault_in_user_writeable(uaddr2);
1595
		if (ret)
1596
			goto out_put_keys;
1597

1598
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1599 1600
			goto retry_private;

1601 1602
		put_futex_key(&key2);
		put_futex_key(&key1);
D
Darren Hart 已提交
1603
		goto retry;
1604 1605
	}

J
Jason Low 已提交
1606
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1607
		if (match_futex (&this->key, &key1)) {
1608 1609 1610 1611
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1612
			mark_wake_futex(&wake_q, this);
1613 1614 1615 1616 1617 1618 1619
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1620
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1621
			if (match_futex (&this->key, &key2)) {
1622 1623 1624 1625
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1626
				mark_wake_futex(&wake_q, this);
1627 1628 1629 1630 1631 1632 1633
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1634
out_unlock:
D
Darren Hart 已提交
1635
	double_unlock_hb(hb1, hb2);
1636
	wake_up_q(&wake_q);
1637
out_put_keys:
1638
	put_futex_key(&key2);
1639
out_put_key1:
1640
	put_futex_key(&key1);
1641
out:
1642 1643 1644
	return ret;
}

D
Darren Hart 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
1663 1664
		hb_waiters_dec(hb1);
		hb_waiters_inc(hb2);
1665
		plist_add(&q->list, &hb2->chain);
D
Darren Hart 已提交
1666 1667 1668 1669 1670 1671
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1672 1673
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1674 1675 1676
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1677 1678 1679 1680 1681
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1682 1683 1684
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1685 1686
 */
static inline
1687 1688
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1689 1690 1691 1692
{
	get_futex_key_refs(key);
	q->key = *key;

1693
	__unqueue_futex(q);
1694 1695 1696 1697

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1698 1699
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1700
	wake_up_state(q->task, TASK_NORMAL);
1701 1702 1703 1704
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1705 1706 1707 1708 1709 1710 1711
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1712 1713
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1714 1715 1716
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1717
 *
1718 1719
 * Return:
 *  0 - failed to acquire the lock atomically;
1720
 * >0 - acquired the lock, return value is vpid of the top_waiter
1721 1722 1723 1724 1725 1726
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1727
				 struct futex_pi_state **ps, int set_waiters)
1728
{
1729
	struct futex_q *top_waiter = NULL;
1730
	u32 curval;
1731
	int ret, vpid;
1732 1733 1734 1735

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1736 1737 1738
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1739 1740 1741 1742 1743 1744 1745 1746
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1747 1748 1749 1750 1751 1752
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1753 1754 1755 1756
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1757
	/*
1758 1759 1760
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1761
	 */
1762
	vpid = task_pid_vnr(top_waiter->task);
1763 1764
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1765
	if (ret == 1) {
1766
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1767 1768
		return vpid;
	}
1769 1770 1771 1772 1773
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1774
 * @uaddr1:	source futex user address
1775
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1776 1777 1778 1779 1780
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1781
 *		pi futex (pi to pi requeue is not supported)
1782 1783 1784 1785
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1786 1787
 * Return:
 * >=0 - on success, the number of tasks requeued or woken;
1788
 *  <0 - on error
L
Linus Torvalds 已提交
1789
 */
1790 1791 1792
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1793
{
1794
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1795 1796
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1797
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1798
	struct futex_q *this, *next;
1799
	DEFINE_WAKE_Q(wake_q);
1800 1801

	if (requeue_pi) {
1802 1803 1804 1805 1806 1807 1808
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1828

1829
retry:
1830
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1831 1832
	if (unlikely(ret != 0))
		goto out;
1833 1834
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1835
	if (unlikely(ret != 0))
1836
		goto out_put_key1;
L
Linus Torvalds 已提交
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

1847 1848
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1849

D
Darren Hart 已提交
1850
retry_private:
1851
	hb_waiters_inc(hb2);
I
Ingo Molnar 已提交
1852
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1853

1854 1855
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1856

1857
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1858 1859

		if (unlikely(ret)) {
D
Darren Hart 已提交
1860
			double_unlock_hb(hb1, hb2);
1861
			hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1862

1863
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1864 1865
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1866

1867
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1868
				goto retry_private;
L
Linus Torvalds 已提交
1869

1870 1871
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
1872
			goto retry;
L
Linus Torvalds 已提交
1873
		}
1874
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1875 1876 1877 1878 1879
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1880
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1881 1882 1883 1884 1885 1886
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1887
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1888
						 &key2, &pi_state, nr_requeue);
1889 1890 1891 1892 1893

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
1894 1895
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
1896 1897
		 * If the lock was not taken, we have pi_state and an initial
		 * refcount on it. In case of an error we have nothing.
1898
		 */
1899
		if (ret > 0) {
1900
			WARN_ON(pi_state);
1901
			drop_count++;
1902
			task_count++;
1903
			/*
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
			 * If we acquired the lock, then the user space value
			 * of uaddr2 should be vpid. It cannot be changed by
			 * the top waiter as it is blocked on hb2 lock if it
			 * tries to do so. If something fiddled with it behind
			 * our back the pi state lookup might unearth it. So
			 * we rather use the known value than rereading and
			 * handing potential crap to lookup_pi_state.
			 *
			 * If that call succeeds then we have pi_state and an
			 * initial refcount on it.
1914
			 */
P
Peter Zijlstra 已提交
1915
			ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1916 1917 1918 1919
		}

		switch (ret) {
		case 0:
1920
			/* We hold a reference on the pi state. */
1921
			break;
1922 1923

			/* If the above failed, then pi_state is NULL */
1924 1925
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
1926
			hb_waiters_dec(hb2);
1927 1928
			put_futex_key(&key2);
			put_futex_key(&key1);
1929
			ret = fault_in_user_writeable(uaddr2);
1930 1931 1932 1933
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
1934 1935 1936 1937 1938 1939
			/*
			 * Two reasons for this:
			 * - Owner is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
			 */
1940
			double_unlock_hb(hb1, hb2);
1941
			hb_waiters_dec(hb2);
1942 1943
			put_futex_key(&key2);
			put_futex_key(&key1);
1944 1945 1946 1947 1948 1949 1950
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
1951
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1952 1953 1954 1955
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1956
			continue;
1957

1958 1959 1960
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
1961 1962 1963
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
1964 1965
		 */
		if ((requeue_pi && !this->rt_waiter) ||
1966 1967
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
1968 1969 1970
			ret = -EINVAL;
			break;
		}
1971 1972 1973 1974 1975 1976 1977

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
1978
			mark_wake_futex(&wake_q, this);
1979 1980
			continue;
		}
L
Linus Torvalds 已提交
1981

1982 1983 1984 1985 1986 1987
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1988 1989 1990 1991 1992
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
1993 1994 1995 1996 1997
			/*
			 * Prepare the waiter to take the rt_mutex. Take a
			 * refcount on the pi_state and store the pointer in
			 * the futex_q object of the waiter.
			 */
P
Peter Zijlstra 已提交
1998
			get_pi_state(pi_state);
1999 2000 2001
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
2002
							this->task);
2003
			if (ret == 1) {
2004 2005 2006 2007 2008 2009 2010 2011
				/*
				 * We got the lock. We do neither drop the
				 * refcount on pi_state nor clear
				 * this->pi_state because the waiter needs the
				 * pi_state for cleaning up the user space
				 * value. It will drop the refcount after
				 * doing so.
				 */
2012
				requeue_pi_wake_futex(this, &key2, hb2);
2013
				drop_count++;
2014 2015
				continue;
			} else if (ret) {
2016 2017 2018 2019 2020 2021 2022 2023
				/*
				 * rt_mutex_start_proxy_lock() detected a
				 * potential deadlock when we tried to queue
				 * that waiter. Drop the pi_state reference
				 * which we took above and remove the pointer
				 * to the state from the waiters futex_q
				 * object.
				 */
2024
				this->pi_state = NULL;
2025
				put_pi_state(pi_state);
2026 2027 2028 2029 2030
				/*
				 * We stop queueing more waiters and let user
				 * space deal with the mess.
				 */
				break;
2031
			}
L
Linus Torvalds 已提交
2032
		}
2033 2034
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
2035 2036
	}

2037 2038 2039 2040 2041
	/*
	 * We took an extra initial reference to the pi_state either
	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
	 * need to drop it here again.
	 */
2042
	put_pi_state(pi_state);
2043 2044

out_unlock:
D
Darren Hart 已提交
2045
	double_unlock_hb(hb1, hb2);
2046
	wake_up_q(&wake_q);
2047
	hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
2048

2049 2050 2051 2052 2053 2054
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
2055
	while (--drop_count >= 0)
2056
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
2057

2058
out_put_keys:
2059
	put_futex_key(&key2);
2060
out_put_key1:
2061
	put_futex_key(&key1);
2062
out:
2063
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
2064 2065 2066
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
2067
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2068
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
2069
{
2070
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
2071

2072
	hb = hash_futex(&q->key);
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
	hb_waiters_inc(hb);

2084
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
2085

2086
	spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2087
	return hb;
L
Linus Torvalds 已提交
2088 2089
}

2090
static inline void
J
Jason Low 已提交
2091
queue_unlock(struct futex_hash_bucket *hb)
2092
	__releases(&hb->lock)
2093 2094
{
	spin_unlock(&hb->lock);
2095
	hb_waiters_dec(hb);
2096 2097
}

2098
static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
2099
{
P
Pierre Peiffer 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
2114
	q->task = current;
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
	__releases(&hb->lock)
{
	__queue_me(q, hb);
2133
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
2134 2135
}

2136 2137 2138 2139 2140 2141 2142
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
2143 2144
 * Return:
 *   1 - if the futex_q was still queued (and we removed unqueued it);
2145
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
2146 2147 2148 2149
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
2150
	int ret = 0;
L
Linus Torvalds 已提交
2151 2152

	/* In the common case we don't take the spinlock, which is nice. */
2153
retry:
2154 2155 2156 2157 2158 2159
	/*
	 * q->lock_ptr can change between this read and the following spin_lock.
	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
	 * optimizing lock_ptr out of the logic below.
	 */
	lock_ptr = READ_ONCE(q->lock_ptr);
2160
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
2179
		__unqueue_futex(q);
2180 2181 2182

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
2183 2184 2185 2186
		spin_unlock(lock_ptr);
		ret = 1;
	}

2187
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
2188 2189 2190
	return ret;
}

2191 2192
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
2193 2194
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
2195
 */
P
Pierre Peiffer 已提交
2196
static void unqueue_me_pi(struct futex_q *q)
2197
	__releases(q->lock_ptr)
2198
{
2199
	__unqueue_futex(q);
2200 2201

	BUG_ON(!q->pi_state);
2202
	put_pi_state(q->pi_state);
2203 2204
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
2205
	spin_unlock(q->lock_ptr);
2206 2207
}

P
Pierre Peiffer 已提交
2208
/*
2209
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
2210
 *
2211 2212
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
2213
 */
2214
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2215
				struct task_struct *newowner)
P
Pierre Peiffer 已提交
2216
{
2217
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
2218
	struct futex_pi_state *pi_state = q->pi_state;
2219
	u32 uval, uninitialized_var(curval), newval;
P
Peter Zijlstra 已提交
2220
	struct task_struct *oldowner;
D
Darren Hart 已提交
2221
	int ret;
P
Pierre Peiffer 已提交
2222

P
Peter Zijlstra 已提交
2223 2224 2225
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	oldowner = pi_state->owner;
P
Pierre Peiffer 已提交
2226
	/* Owner died? */
2227 2228 2229 2230 2231
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
2232
	 * previous highest priority waiter or we are the highest priority
2233 2234
	 * waiter but have failed to get the rtmutex the first time.
	 *
2235 2236
	 * We have to replace the newowner TID in the user space variable.
	 * This must be atomic as we have to preserve the owner died bit here.
2237
	 *
D
Darren Hart 已提交
2238 2239 2240
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
2241
	 *
P
Peter Zijlstra 已提交
2242 2243 2244 2245
	 * Modifying pi_state _before_ the user space value would leave the
	 * pi_state in an inconsistent state when we fault here, because we
	 * need to drop the locks to handle the fault. This might be observed
	 * in the PID check in lookup_pi_state.
2246 2247 2248 2249 2250
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

2251
	for (;;) {
2252 2253
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

2254
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
2265
	if (pi_state->owner != NULL) {
P
Peter Zijlstra 已提交
2266
		raw_spin_lock(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
2267 2268
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
P
Peter Zijlstra 已提交
2269
		raw_spin_unlock(&pi_state->owner->pi_lock);
2270
	}
P
Pierre Peiffer 已提交
2271

2272
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
2273

P
Peter Zijlstra 已提交
2274
	raw_spin_lock(&newowner->pi_lock);
P
Pierre Peiffer 已提交
2275
	WARN_ON(!list_empty(&pi_state->list));
2276
	list_add(&pi_state->list, &newowner->pi_state_list);
P
Peter Zijlstra 已提交
2277 2278 2279
	raw_spin_unlock(&newowner->pi_lock);
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

2280
	return 0;
P
Pierre Peiffer 已提交
2281 2282

	/*
P
Peter Zijlstra 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	 * To handle the page fault we need to drop the locks here. That gives
	 * the other task (either the highest priority waiter itself or the
	 * task which stole the rtmutex) the chance to try the fixup of the
	 * pi_state. So once we are back from handling the fault we need to
	 * check the pi_state after reacquiring the locks and before trying to
	 * do another fixup. When the fixup has been done already we simply
	 * return.
	 *
	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
	 * drop hb->lock since the caller owns the hb -> futex_q relation.
	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
P
Pierre Peiffer 已提交
2294
	 */
2295
handle_fault:
P
Peter Zijlstra 已提交
2296
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2297
	spin_unlock(q->lock_ptr);
2298

2299
	ret = fault_in_user_writeable(uaddr);
2300

2301
	spin_lock(q->lock_ptr);
P
Peter Zijlstra 已提交
2302
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2303

2304 2305 2306
	/*
	 * Check if someone else fixed it for us:
	 */
P
Peter Zijlstra 已提交
2307 2308 2309 2310
	if (pi_state->owner != oldowner) {
		ret = 0;
		goto out_unlock;
	}
2311 2312

	if (ret)
P
Peter Zijlstra 已提交
2313
		goto out_unlock;
2314 2315

	goto retry;
P
Peter Zijlstra 已提交
2316 2317 2318 2319

out_unlock:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
P
Pierre Peiffer 已提交
2320 2321
}

N
Nick Piggin 已提交
2322
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
2323

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
2334 2335 2336
 * Return:
 *  1 - success, lock taken;
 *  0 - success, lock not taken;
2337 2338
 * <0 - on error (-EFAULT)
 */
2339
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2340 2341 2342 2343 2344 2345 2346
{
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
2347 2348 2349 2350
		 *
		 * We can safely read pi_state->owner without holding wait_lock
		 * because we now own the rt_mutex, only the owner will attempt
		 * to change it.
2351 2352
		 */
		if (q->pi_state->owner != current)
2353
			ret = fixup_pi_state_owner(uaddr, q, current);
2354 2355 2356 2357 2358
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
2359
	 * the owner of the rt_mutex.
2360
	 */
2361
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2362 2363 2364 2365
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);
2366
	}
2367 2368 2369 2370 2371

out:
	return ret ? ret : locked;
}

2372 2373 2374 2375 2376 2377 2378
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
2379
				struct hrtimer_sleeper *timeout)
2380
{
2381 2382
	/*
	 * The task state is guaranteed to be set before another task can
2383
	 * wake it. set_current_state() is implemented using smp_store_mb() and
2384 2385 2386
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
2387
	set_current_state(TASK_INTERRUPTIBLE);
2388
	queue_me(q, hb);
2389 2390

	/* Arm the timer */
2391
	if (timeout)
2392 2393 2394
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);

	/*
2395 2396
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
2397 2398 2399 2400 2401 2402 2403 2404
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
2405
			freezable_schedule();
2406 2407 2408 2409
	}
	__set_current_state(TASK_RUNNING);
}

2410 2411 2412 2413
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
2414
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2415 2416 2417 2418 2419 2420 2421 2422
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
2423 2424
 * Return:
 *  0 - uaddr contains val and hb has been locked;
2425
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2426
 */
2427
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2428
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
2429
{
2430 2431
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
2432 2433

	/*
D
Darren Hart 已提交
2434
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
2435 2436 2437 2438 2439 2440 2441
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
2442 2443
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
2444 2445
	 * cond(var) false, which would violate the guarantee.
	 *
2446 2447 2448 2449
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
2450
	 */
2451
retry:
2452
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2453
	if (unlikely(ret != 0))
2454
		return ret;
2455 2456 2457 2458

retry_private:
	*hb = queue_lock(q);

2459
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
2460

2461
	if (ret) {
J
Jason Low 已提交
2462
		queue_unlock(*hb);
L
Linus Torvalds 已提交
2463

2464
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
2465
		if (ret)
2466
			goto out;
L
Linus Torvalds 已提交
2467

2468
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2469 2470
			goto retry_private;

2471
		put_futex_key(&q->key);
D
Darren Hart 已提交
2472
		goto retry;
L
Linus Torvalds 已提交
2473
	}
2474

2475
	if (uval != val) {
J
Jason Low 已提交
2476
		queue_unlock(*hb);
2477
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2478
	}
L
Linus Torvalds 已提交
2479

2480 2481
out:
	if (ret)
2482
		put_futex_key(&q->key);
2483 2484 2485
	return ret;
}

2486 2487
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2488 2489 2490 2491
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2492
	struct futex_q q = futex_q_init;
2493 2494 2495 2496 2497 2498 2499 2500 2501
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

2502 2503 2504
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2505 2506 2507 2508 2509
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
2510
retry:
2511 2512 2513 2514
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2515
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2516 2517 2518
	if (ret)
		goto out;

2519
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2520
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2521 2522

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2523
	ret = 0;
2524
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2525
	if (!unqueue_me(&q))
2526
		goto out;
P
Peter Zijlstra 已提交
2527
	ret = -ETIMEDOUT;
2528
	if (to && !to->task)
2529
		goto out;
N
Nick Piggin 已提交
2530

2531
	/*
T
Thomas Gleixner 已提交
2532 2533
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2534
	 */
2535
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2536 2537
		goto retry;

P
Peter Zijlstra 已提交
2538
	ret = -ERESTARTSYS;
2539
	if (!abs_time)
2540
		goto out;
L
Linus Torvalds 已提交
2541

2542
	restart = &current->restart_block;
P
Peter Zijlstra 已提交
2543
	restart->fn = futex_wait_restart;
2544
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2545
	restart->futex.val = val;
T
Thomas Gleixner 已提交
2546
	restart->futex.time = *abs_time;
P
Peter Zijlstra 已提交
2547
	restart->futex.bitset = bitset;
2548
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2549

P
Peter Zijlstra 已提交
2550 2551
	ret = -ERESTART_RESTARTBLOCK;

2552
out:
2553 2554 2555 2556
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2557 2558 2559
	return ret;
}

N
Nick Piggin 已提交
2560 2561 2562

static long futex_wait_restart(struct restart_block *restart)
{
2563
	u32 __user *uaddr = restart->futex.uaddr;
2564
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2565

2566
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
T
Thomas Gleixner 已提交
2567
		t = restart->futex.time;
2568 2569
		tp = &t;
	}
N
Nick Piggin 已提交
2570
	restart->fn = do_no_restart_syscall;
2571 2572 2573

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2574 2575 2576
}


2577 2578 2579
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
2580 2581 2582 2583 2584
 * if there are waiters then it will block as a consequence of relying
 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
 * a 0 value of the futex too.).
 *
 * Also serves as futex trylock_pi()'ing, and due semantics.
2585
 */
2586
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2587
			 ktime_t *time, int trylock)
2588
{
2589
	struct hrtimer_sleeper timeout, *to = NULL;
2590
	struct futex_pi_state *pi_state = NULL;
2591
	struct rt_mutex_waiter rt_waiter;
2592
	struct futex_hash_bucket *hb;
2593
	struct futex_q q = futex_q_init;
2594
	int res, ret;
2595 2596 2597 2598

	if (refill_pi_state_cache())
		return -ENOMEM;

2599
	if (time) {
2600
		to = &timeout;
2601 2602
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
2603
		hrtimer_init_sleeper(to, current);
2604
		hrtimer_set_expires(&to->timer, *time);
2605 2606
	}

2607
retry:
2608
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2609
	if (unlikely(ret != 0))
2610
		goto out;
2611

D
Darren Hart 已提交
2612
retry_private:
E
Eric Sesterhenn 已提交
2613
	hb = queue_lock(&q);
2614

2615
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2616
	if (unlikely(ret)) {
2617 2618 2619 2620
		/*
		 * Atomic work succeeded and we got the lock,
		 * or failed. Either way, we do _not_ block.
		 */
2621
		switch (ret) {
2622 2623 2624 2625 2626 2627
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2628 2629
		case -EAGAIN:
			/*
2630 2631 2632 2633
			 * Two reasons for this:
			 * - Task is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
2634
			 */
J
Jason Low 已提交
2635
			queue_unlock(hb);
2636
			put_futex_key(&q.key);
2637 2638 2639
			cond_resched();
			goto retry;
		default:
2640
			goto out_unlock_put_key;
2641 2642 2643
		}
	}

2644 2645
	WARN_ON(!q.pi_state);

2646 2647 2648
	/*
	 * Only actually queue now that the atomic ops are done:
	 */
2649
	__queue_me(&q, hb);
2650

2651
	if (trylock) {
2652
		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2653 2654
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
2655
		goto no_block;
2656 2657
	}

2658 2659
	rt_mutex_init_waiter(&rt_waiter);

2660
	/*
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
	 * hold it while doing rt_mutex_start_proxy(), because then it will
	 * include hb->lock in the blocking chain, even through we'll not in
	 * fact hold it while blocking. This will lead it to report -EDEADLK
	 * and BUG when futex_unlock_pi() interleaves with this.
	 *
	 * Therefore acquire wait_lock while holding hb->lock, but drop the
	 * latter before calling rt_mutex_start_proxy_lock(). This still fully
	 * serializes against futex_unlock_pi() as that does the exact same
	 * lock handoff sequence.
2671
	 */
2672 2673 2674 2675 2676
	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
	spin_unlock(q.lock_ptr);
	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);

2677 2678 2679 2680
	if (ret) {
		if (ret == 1)
			ret = 0;

2681
		spin_lock(q.lock_ptr);
2682 2683 2684 2685 2686 2687 2688 2689 2690
		goto no_block;
	}


	if (unlikely(to))
		hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);

	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);

2691
	spin_lock(q.lock_ptr);
2692 2693 2694 2695 2696
	/*
	 * If we failed to acquire the lock (signal/timeout), we must
	 * first acquire the hb->lock before removing the lock from the
	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
	 * wait lists consistent.
2697 2698 2699
	 *
	 * In particular; it is important that futex_unlock_pi() can not
	 * observe this inconsistency.
2700 2701 2702 2703 2704
	 */
	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
		ret = 0;

no_block:
2705 2706 2707 2708
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2709
	res = fixup_owner(uaddr, &q, !ret);
2710 2711 2712 2713 2714 2715
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2716

2717
	/*
2718 2719
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2720
	 */
2721 2722 2723 2724
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
		pi_state = q.pi_state;
		get_pi_state(pi_state);
	}
2725

2726 2727
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2728

2729 2730 2731 2732 2733
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

2734
	goto out_put_key;
2735

2736
out_unlock_put_key:
J
Jason Low 已提交
2737
	queue_unlock(hb);
2738

2739
out_put_key:
2740
	put_futex_key(&q.key);
2741
out:
2742 2743
	if (to) {
		hrtimer_cancel(&to->timer);
2744
		destroy_hrtimer_on_stack(&to->timer);
2745
	}
2746
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2747

2748
uaddr_faulted:
J
Jason Low 已提交
2749
	queue_unlock(hb);
2750

2751
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2752 2753
	if (ret)
		goto out_put_key;
2754

2755
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2756 2757
		goto retry_private;

2758
	put_futex_key(&q.key);
D
Darren Hart 已提交
2759
	goto retry;
2760 2761 2762 2763 2764 2765 2766
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2767
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2768
{
2769
	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2770
	union futex_key key = FUTEX_KEY_INIT;
2771
	struct futex_hash_bucket *hb;
2772
	struct futex_q *top_waiter;
D
Darren Hart 已提交
2773
	int ret;
2774 2775 2776 2777 2778 2779 2780

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2781
	if ((uval & FUTEX_TID_MASK) != vpid)
2782 2783
		return -EPERM;

2784
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2785 2786
	if (ret)
		return ret;
2787 2788 2789 2790 2791

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
2792 2793 2794
	 * Check waiters first. We do not trust user space values at
	 * all and we at least want to know if user space fiddled
	 * with the futex value instead of blindly unlocking.
2795
	 */
2796 2797
	top_waiter = futex_top_waiter(hb, &key);
	if (top_waiter) {
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
		struct futex_pi_state *pi_state = top_waiter->pi_state;

		ret = -EINVAL;
		if (!pi_state)
			goto out_unlock;

		/*
		 * If current does not own the pi_state then the futex is
		 * inconsistent and user space fiddled with the futex value.
		 */
		if (pi_state->owner != current)
			goto out_unlock;

2811
		get_pi_state(pi_state);
2812
		/*
2813 2814 2815 2816
		 * By taking wait_lock while still holding hb->lock, we ensure
		 * there is no point where we hold neither; and therefore
		 * wake_futex_pi() must observe a state consistent with what we
		 * observed.
2817
		 */
2818
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2819 2820 2821 2822 2823 2824 2825 2826
		spin_unlock(&hb->lock);

		ret = wake_futex_pi(uaddr, uval, pi_state);

		put_pi_state(pi_state);

		/*
		 * Success, we're done! No tricky corner cases.
2827 2828 2829
		 */
		if (!ret)
			goto out_putkey;
2830
		/*
2831 2832
		 * The atomic access to the futex value generated a
		 * pagefault, so retry the user-access and the wakeup:
2833 2834 2835
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
2836 2837 2838 2839 2840 2841 2842 2843
		/*
		 * A unconditional UNLOCK_PI op raced against a waiter
		 * setting the FUTEX_WAITERS bit. Try again.
		 */
		if (ret == -EAGAIN) {
			put_futex_key(&key);
			goto retry;
		}
2844 2845 2846 2847
		/*
		 * wake_futex_pi has detected invalid state. Tell user
		 * space.
		 */
2848
		goto out_putkey;
2849
	}
2850

2851
	/*
2852 2853 2854 2855 2856
	 * We have no kernel internal state, i.e. no waiters in the
	 * kernel. Waiters which are about to queue themselves are stuck
	 * on hb->lock. So we can safely ignore them. We do neither
	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
	 * owner.
2857
	 */
2858 2859
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
		spin_unlock(&hb->lock);
2860
		goto pi_faulted;
2861
	}
2862

2863 2864 2865 2866 2867
	/*
	 * If uval has changed, let user space handle it.
	 */
	ret = (curval == uval) ? 0 : -EAGAIN;

2868 2869
out_unlock:
	spin_unlock(&hb->lock);
2870
out_putkey:
2871
	put_futex_key(&key);
2872 2873 2874
	return ret;

pi_faulted:
2875
	put_futex_key(&key);
2876

2877
	ret = fault_in_user_writeable(uaddr);
2878
	if (!ret)
2879 2880
		goto retry;

L
Linus Torvalds 已提交
2881 2882 2883
	return ret;
}

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
2896 2897 2898
 * Return:
 *  0 = no early wakeup detected;
 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
2920
		plist_del(&q->list, &hb->chain);
2921
		hb_waiters_dec(hb);
2922

T
Thomas Gleixner 已提交
2923
		/* Handle spurious wakeups gracefully */
2924
		ret = -EWOULDBLOCK;
2925 2926
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2927
		else if (signal_pending(current))
2928
			ret = -ERESTARTNOINTR;
2929 2930 2931 2932 2933 2934
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2935
 * @uaddr:	the futex we initially wait on (non-pi)
2936
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2937
 *		the same type, no requeueing from private to shared, etc.
2938 2939
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2940
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2941 2942 2943
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2944 2945 2946 2947 2948
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
2949 2950
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2951
 * via the following--
2952
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2953 2954 2955
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2956
 *
2957
 * If 3, cleanup and return -ERESTARTNOINTR.
2958 2959 2960 2961 2962 2963 2964
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2965
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2966 2967 2968
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
2969 2970
 * Return:
 *  0 - On success;
2971 2972
 * <0 - On error
 */
2973
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2974
				 u32 val, ktime_t *abs_time, u32 bitset,
2975
				 u32 __user *uaddr2)
2976 2977
{
	struct hrtimer_sleeper timeout, *to = NULL;
2978
	struct futex_pi_state *pi_state = NULL;
2979 2980
	struct rt_mutex_waiter rt_waiter;
	struct futex_hash_bucket *hb;
2981 2982
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
2983 2984
	int res, ret;

2985 2986 2987
	if (uaddr == uaddr2)
		return -EINVAL;

2988 2989 2990 2991 2992
	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
2993 2994 2995
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2996 2997 2998 2999 3000 3001 3002 3003 3004
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
3005
	rt_mutex_init_waiter(&rt_waiter);
3006

3007
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3008 3009 3010
	if (unlikely(ret != 0))
		goto out;

3011 3012 3013 3014
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

3015 3016 3017 3018
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
3019
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
3020 3021
	if (ret)
		goto out_key2;
3022

3023 3024 3025 3026 3027
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
3028
		queue_unlock(hb);
3029 3030 3031 3032
		ret = -EINVAL;
		goto out_put_keys;
	}

3033
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
3034
	futex_wait_queue_me(hb, &q, to);
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
3046 3047 3048
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
3059
			ret = fixup_pi_state_owner(uaddr2, &q, current);
3060 3061 3062 3063
			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
				pi_state = q.pi_state;
				get_pi_state(pi_state);
			}
3064 3065 3066 3067
			/*
			 * Drop the reference to the pi state which
			 * the requeue_pi() code acquired for us.
			 */
3068
			put_pi_state(q.pi_state);
3069 3070 3071
			spin_unlock(q.lock_ptr);
		}
	} else {
3072 3073
		struct rt_mutex *pi_mutex;

3074 3075 3076 3077 3078
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
3079
		WARN_ON(!q.pi_state);
3080
		pi_mutex = &q.pi_state->pi_mutex;
3081
		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3082 3083

		spin_lock(q.lock_ptr);
3084 3085 3086 3087
		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
			ret = 0;

		debug_rt_mutex_free_waiter(&rt_waiter);
3088 3089 3090 3091
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
3092
		res = fixup_owner(uaddr2, &q, !ret);
3093 3094
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
3095
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3096 3097 3098 3099
		 */
		if (res)
			ret = (res < 0) ? res : 0;

3100 3101 3102 3103 3104
		/*
		 * If fixup_pi_state_owner() faulted and was unable to handle
		 * the fault, unlock the rt_mutex and return the fault to
		 * userspace.
		 */
3105 3106 3107 3108
		if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
			pi_state = q.pi_state;
			get_pi_state(pi_state);
		}
3109

3110 3111 3112 3113
		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

3114 3115 3116 3117 3118
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

3119
	if (ret == -EINTR) {
3120
		/*
3121 3122 3123 3124 3125
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
3126
		 */
3127
		ret = -EWOULDBLOCK;
3128 3129 3130
	}

out_put_keys:
3131
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
3132
out_key2:
3133
	put_futex_key(&key2);
3134 3135 3136 3137 3138 3139 3140 3141 3142

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

3143 3144 3145 3146 3147 3148 3149
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
3150
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3151 3152 3153 3154 3155 3156 3157 3158
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
3159 3160 3161
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
3162
 */
3163 3164
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
3165
{
3166 3167
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
3180 3181 3182 3183
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3184
 */
3185 3186 3187
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
3188
{
A
Al Viro 已提交
3189
	struct robust_list_head __user *head;
3190
	unsigned long ret;
3191
	struct task_struct *p;
3192

3193 3194 3195
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

3196 3197 3198
	rcu_read_lock();

	ret = -ESRCH;
3199
	if (!pid)
3200
		p = current;
3201
	else {
3202
		p = find_task_by_vpid(pid);
3203 3204 3205 3206
		if (!p)
			goto err_unlock;
	}

3207
	ret = -EPERM;
3208
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3209 3210 3211 3212 3213
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

3214 3215 3216 3217 3218
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
3219
	rcu_read_unlock();
3220 3221 3222 3223 3224 3225 3226 3227

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
3228
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3229
{
3230
	u32 uval, uninitialized_var(nval), mval;
3231

3232 3233
retry:
	if (get_user(uval, uaddr))
3234 3235
		return -1;

3236
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
3247
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
		/*
		 * We are not holding a lock here, but we want to have
		 * the pagefault_disable/enable() protection because
		 * we want to handle the fault gracefully. If the
		 * access fails we try to fault in the futex with R/W
		 * verification via get_user_pages. get_user() above
		 * does not guarantee R/W access. If that fails we
		 * give up and leave the futex locked.
		 */
		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
		}
3262
		if (nval != uval)
3263
			goto retry;
3264

3265 3266 3267 3268
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
3269
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
3270
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3271 3272 3273 3274
	}
	return 0;
}

3275 3276 3277 3278
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
3279
				     struct robust_list __user * __user *head,
3280
				     unsigned int *pi)
3281 3282 3283
{
	unsigned long uentry;

A
Al Viro 已提交
3284
	if (get_user(uentry, (unsigned long __user *)head))
3285 3286
		return -EFAULT;

A
Al Viro 已提交
3287
	*entry = (void __user *)(uentry & ~1UL);
3288 3289 3290 3291 3292
	*pi = uentry & 1;

	return 0;
}

3293 3294 3295 3296 3297 3298 3299 3300 3301
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
3302
	struct robust_list __user *entry, *next_entry, *pending;
3303 3304
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
3305
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
3306
	int rc;
3307

3308 3309 3310
	if (!futex_cmpxchg_enabled)
		return;

3311 3312 3313 3314
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
3315
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
3326
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3327
		return;
3328

M
Martin Schwidefsky 已提交
3329
	next_entry = NULL;	/* avoid warning with gcc */
3330
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
3331 3332 3333 3334 3335
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3336 3337
		/*
		 * A pending lock might already be on the list, so
3338
		 * don't process it twice:
3339 3340
		 */
		if (entry != pending)
A
Al Viro 已提交
3341
			if (handle_futex_death((void __user *)entry + futex_offset,
3342
						curr, pi))
3343
				return;
M
Martin Schwidefsky 已提交
3344
		if (rc)
3345
			return;
M
Martin Schwidefsky 已提交
3346 3347
		entry = next_entry;
		pi = next_pi;
3348 3349 3350 3351 3352 3353 3354 3355
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
3356 3357 3358 3359

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
3360 3361
}

3362
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3363
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
3364
{
T
Thomas Gleixner 已提交
3365
	int cmd = op & FUTEX_CMD_MASK;
3366
	unsigned int flags = 0;
E
Eric Dumazet 已提交
3367 3368

	if (!(op & FUTEX_PRIVATE_FLAG))
3369
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
3370

3371 3372
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
3373 3374
		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
		    cmd != FUTEX_WAIT_REQUEUE_PI)
3375 3376
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
3377

3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
3388
	switch (cmd) {
L
Linus Torvalds 已提交
3389
	case FUTEX_WAIT:
3390 3391
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
3392
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
3393
	case FUTEX_WAKE:
3394 3395
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
3396
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
3397
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
3398
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
3399
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
3400
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3401
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
3402
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3403
	case FUTEX_LOCK_PI:
3404
		return futex_lock_pi(uaddr, flags, timeout, 0);
3405
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
3406
		return futex_unlock_pi(uaddr, flags);
3407
	case FUTEX_TRYLOCK_PI:
3408
		return futex_lock_pi(uaddr, flags, NULL, 1);
3409 3410
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
3411 3412
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
3413
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
3414
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
3415
	}
T
Thomas Gleixner 已提交
3416
	return -ENOSYS;
L
Linus Torvalds 已提交
3417 3418 3419
}


3420 3421 3422
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
3423
{
3424 3425
	struct timespec ts;
	ktime_t t, *tp = NULL;
3426
	u32 val2 = 0;
E
Eric Dumazet 已提交
3427
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
3428

3429
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3430 3431
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3432 3433
		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
			return -EFAULT;
3434
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
3435
			return -EFAULT;
3436
		if (!timespec_valid(&ts))
3437
			return -EINVAL;
3438 3439

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
3440
		if (cmd == FUTEX_WAIT)
3441
			t = ktime_add_safe(ktime_get(), t);
3442
		tp = &t;
L
Linus Torvalds 已提交
3443 3444
	}
	/*
3445
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3446
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
3447
	 */
3448
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3449
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3450
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
3451

3452
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
3453 3454
}

3455
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
3456
{
3457
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3458
	u32 curval;
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
3477
	unsigned int futex_shift;
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
3489 3490 3491
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
3492 3493

	futex_detect_cmpxchg();
3494

3495
	for (i = 0; i < futex_hashsize; i++) {
3496
		atomic_set(&futex_queues[i].waiters, 0);
3497
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
3498 3499 3500
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
3501 3502
	return 0;
}
3503
core_initcall(futex_init);