futex.c 104.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
12 13 14 15
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
16 17 18 19
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
20 21 22
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
23 24 25 26
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
27 28 29 30 31 32 33
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 */
34
#include <linux/compat.h>
L
Linus Torvalds 已提交
35 36 37 38 39 40 41 42 43 44
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
45
#include <linux/signal.h>
46
#include <linux/export.h>
47
#include <linux/magic.h>
48 49
#include <linux/pid.h>
#include <linux/nsproxy.h>
50
#include <linux/ptrace.h>
51
#include <linux/sched/rt.h>
52
#include <linux/sched/wake_q.h>
53
#include <linux/sched/mm.h>
54
#include <linux/hugetlb.h>
C
Colin Cross 已提交
55
#include <linux/freezer.h>
M
Mike Rapoport 已提交
56
#include <linux/memblock.h>
57
#include <linux/fault-inject.h>
58
#include <linux/refcount.h>
59

60
#include <asm/futex.h>
L
Linus Torvalds 已提交
61

62
#include "locking/rtmutex_common.h"
63

64
/*
65 66 67 68
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
69 70 71 72
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
73 74 75
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
76 77
 *
 * The waker side modifies the user space value of the futex and calls
78 79 80
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
81
 *
82 83 84 85 86
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
108 109 110 111 112
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
113 114 115
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
116
 *
117
 *   waiters++; (a)
118 119 120 121 122 123 124 125 126 127
 *   smp_mb(); (A) <-- paired with -.
 *                                  |
 *   lock(hash_bucket(futex));      |
 *                                  |
 *   uval = *futex;                 |
 *                                  |        *futex = newval;
 *                                  |        sys_futex(WAKE, futex);
 *                                  |          futex_wake(futex);
 *                                  |
 *                                  `--------> smp_mb(); (B)
128
 *   if (uval == val)
129
 *     queue();
130
 *     unlock(hash_bucket(futex));
131 132
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
133 134
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
135
 *
136 137
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
138 139
 * to futex and the waiters read -- this is done by the barriers for both
 * shared and private futexes in get_futex_key_refs().
140 141 142 143 144 145 146 147 148 149 150 151
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
152 153 154 155 156 157 158 159 160 161 162
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
163 164
 */

165 166 167 168
#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
#define futex_cmpxchg_enabled 1
#else
static int  __read_mostly futex_cmpxchg_enabled;
169
#endif
170

171 172 173 174
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
175 176 177 178 179 180 181 182 183
#ifdef CONFIG_MMU
# define FLAGS_SHARED		0x01
#else
/*
 * NOMMU does not have per process address space. Let the compiler optimize
 * code away.
 */
# define FLAGS_SHARED		0x00
#endif
184 185 186
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
203
	refcount_t refcount;
204 205

	union futex_key key;
206
} __randomize_layout;
207

208 209
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
210
 * @list:		priority-sorted list of tasks waiting on this futex
211 212 213 214 215 216 217 218
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
219
 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
L
Linus Torvalds 已提交
220 221 222
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
223
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
224
 * The order of wakeup is always to make the first condition true, then
225 226 227 228
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
229 230
 */
struct futex_q {
P
Pierre Peiffer 已提交
231
	struct plist_node list;
L
Linus Torvalds 已提交
232

233
	struct task_struct *task;
L
Linus Torvalds 已提交
234 235
	spinlock_t *lock_ptr;
	union futex_key key;
236
	struct futex_pi_state *pi_state;
237
	struct rt_mutex_waiter *rt_waiter;
238
	union futex_key *requeue_pi_key;
239
	u32 bitset;
240
} __randomize_layout;
L
Linus Torvalds 已提交
241

242 243 244 245 246 247
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
248
/*
D
Darren Hart 已提交
249 250 251
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
252 253
 */
struct futex_hash_bucket {
254
	atomic_t waiters;
P
Pierre Peiffer 已提交
255 256
	spinlock_t lock;
	struct plist_head chain;
257
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
258

259 260 261 262 263 264 265 266 267 268 269
/*
 * The base of the bucket array and its size are always used together
 * (after initialization only in hash_futex()), so ensure that they
 * reside in the same cacheline.
 */
static struct {
	struct futex_hash_bucket *queues;
	unsigned long            hashsize;
} __futex_data __read_mostly __aligned(2*sizeof(long));
#define futex_queues   (__futex_data.queues)
#define futex_hashsize (__futex_data.hashsize)
270

L
Linus Torvalds 已提交
271

272 273 274 275 276 277 278 279
/*
 * Fault injections for futexes.
 */
#ifdef CONFIG_FAIL_FUTEX

static struct {
	struct fault_attr attr;

280
	bool ignore_private;
281 282
} fail_futex = {
	.attr = FAULT_ATTR_INITIALIZER,
283
	.ignore_private = false,
284 285 286 287 288 289 290 291
};

static int __init setup_fail_futex(char *str)
{
	return setup_fault_attr(&fail_futex.attr, str);
}
__setup("fail_futex=", setup_fail_futex);

292
static bool should_fail_futex(bool fshared)
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
{
	if (fail_futex.ignore_private && !fshared)
		return false;

	return should_fail(&fail_futex.attr, 1);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_futex_debugfs(void)
{
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;

	dir = fault_create_debugfs_attr("fail_futex", NULL,
					&fail_futex.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);

312 313
	debugfs_create_bool("ignore-private", mode, dir,
			    &fail_futex.ignore_private);
314 315 316 317 318 319 320 321 322 323 324 325 326 327
	return 0;
}

late_initcall(fail_futex_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else
static inline bool should_fail_futex(bool fshared)
{
	return false;
}
#endif /* CONFIG_FAIL_FUTEX */

328 329
static inline void futex_get_mm(union futex_key *key)
{
V
Vegard Nossum 已提交
330
	mmgrab(key->private.mm);
331 332 333
	/*
	 * Ensure futex_get_mm() implies a full barrier such that
	 * get_futex_key() implies a full barrier. This is relied upon
334
	 * as smp_mb(); (B), see the ordering comment above.
335
	 */
336
	smp_mb__after_atomic();
337 338
}

339 340 341 342
/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
343 344
{
#ifdef CONFIG_SMP
345
	atomic_inc(&hb->waiters);
346
	/*
347
	 * Full barrier (A), see the ordering comment above.
348
	 */
349
	smp_mb__after_atomic();
350 351 352 353 354 355 356 357 358 359 360 361 362
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}
363

364 365 366 367
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	return atomic_read(&hb->waiters);
368
#else
369
	return 1;
370 371 372
#endif
}

373 374 375 376 377 378
/**
 * hash_futex - Return the hash bucket in the global hash
 * @key:	Pointer to the futex key for which the hash is calculated
 *
 * We hash on the keys returned from get_futex_key (see below) and return the
 * corresponding hash bucket in the global hash.
L
Linus Torvalds 已提交
379 380 381 382 383 384
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
385
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
386 387
}

388 389 390 391 392 393

/**
 * match_futex - Check whether two futex keys are equal
 * @key1:	Pointer to key1
 * @key2:	Pointer to key2
 *
L
Linus Torvalds 已提交
394 395 396 397
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
398 399
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
400 401 402 403
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

404 405 406 407 408 409 410 411 412 413
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

414 415 416 417 418 419 420 421 422 423
	/*
	 * On MMU less systems futexes are always "private" as there is no per
	 * process address space. We need the smp wmb nevertheless - yes,
	 * arch/blackfin has MMU less SMP ...
	 */
	if (!IS_ENABLED(CONFIG_MMU)) {
		smp_mb(); /* explicit smp_mb(); (B) */
		return;
	}

424 425
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
426
		ihold(key->shared.inode); /* implies smp_mb(); (B) */
427 428
		break;
	case FUT_OFF_MMSHARED:
429
		futex_get_mm(key); /* implies smp_mb(); (B) */
430
		break;
431
	default:
432 433 434 435 436
		/*
		 * Private futexes do not hold reference on an inode or
		 * mm, therefore the only purpose of calling get_futex_key_refs
		 * is because we need the barrier for the lockless waiter check.
		 */
437
		smp_mb(); /* explicit smp_mb(); (B) */
438 439 440 441 442
	}
}

/*
 * Drop a reference to the resource addressed by a key.
443 444 445
 * The hash bucket spinlock must not be held. This is
 * a no-op for private futexes, see comment in the get
 * counterpart.
446 447 448
 */
static void drop_futex_key_refs(union futex_key *key)
{
449 450 451
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
452
		return;
453
	}
454

455 456 457
	if (!IS_ENABLED(CONFIG_MMU))
		return;

458 459 460 461 462 463 464 465 466 467
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

468 469 470 471 472
enum futex_access {
	FUTEX_READ,
	FUTEX_WRITE
};

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
/**
 * futex_setup_timer - set up the sleeping hrtimer.
 * @time:	ptr to the given timeout value
 * @timeout:	the hrtimer_sleeper structure to be set up
 * @flags:	futex flags
 * @range_ns:	optional range in ns
 *
 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
 *	   value given
 */
static inline struct hrtimer_sleeper *
futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
		  int flags, u64 range_ns)
{
	if (!time)
		return NULL;

490 491 492
	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
493 494 495 496 497 498 499 500 501
	/*
	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
	 * effectively the same as calling hrtimer_set_expires().
	 */
	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);

	return timeout;
}

E
Eric Dumazet 已提交
502
/**
503 504 505 506
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
507 508
 * @rw:		mapping needs to be read/write (values: FUTEX_READ,
 *              FUTEX_WRITE)
E
Eric Dumazet 已提交
509
 *
510 511
 * Return: a negative error code or 0
 *
512
 * The key words are stored in @key on success.
L
Linus Torvalds 已提交
513
 *
A
Al Viro 已提交
514
 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
L
Linus Torvalds 已提交
515 516 517
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
518
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
519
 */
520
static int
521
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
L
Linus Torvalds 已提交
522
{
523
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
524
	struct mm_struct *mm = current->mm;
525
	struct page *page, *tail;
526
	struct address_space *mapping;
527
	int err, ro = 0;
L
Linus Torvalds 已提交
528 529 530 531

	/*
	 * The futex address must be "naturally" aligned.
	 */
532
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
533
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
534
		return -EINVAL;
535
	address -= key->both.offset;
L
Linus Torvalds 已提交
536

537
	if (unlikely(!access_ok(uaddr, sizeof(u32))))
538 539
		return -EFAULT;

540 541 542
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

E
Eric Dumazet 已提交
543 544 545 546 547 548 549 550 551 552
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
553
		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
E
Eric Dumazet 已提交
554 555
		return 0;
	}
L
Linus Torvalds 已提交
556

557
again:
558 559 560 561
	/* Ignore any VERIFY_READ mapping (futex common case) */
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

562
	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
563 564 565 566
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
567
	if (err == -EFAULT && rw == FUTEX_READ) {
568 569 570
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
571 572
	if (err < 0)
		return err;
573 574
	else
		err = 0;
575

576 577 578 579 580 581 582 583 584 585
	/*
	 * The treatment of mapping from this point on is critical. The page
	 * lock protects many things but in this context the page lock
	 * stabilizes mapping, prevents inode freeing in the shared
	 * file-backed region case and guards against movement to swap cache.
	 *
	 * Strictly speaking the page lock is not needed in all cases being
	 * considered here and page lock forces unnecessarily serialization
	 * From this point on, mapping will be re-verified if necessary and
	 * page lock will be acquired only if it is unavoidable
586 587 588 589 590 591 592
	 *
	 * Mapping checks require the head page for any compound page so the
	 * head page and mapping is looked up now. For anonymous pages, it
	 * does not matter if the page splits in the future as the key is
	 * based on the address. For filesystem-backed pages, the tail is
	 * required as the index of the page determines the key. For
	 * base pages, there is no tail page and tail == page.
593
	 */
594
	tail = page;
595 596 597
	page = compound_head(page);
	mapping = READ_ONCE(page->mapping);

598
	/*
599
	 * If page->mapping is NULL, then it cannot be a PageAnon
600 601 602 603 604 605 606 607 608 609 610
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
611
	 * an unlikely race, but we do need to retry for page->mapping.
612
	 */
613 614 615 616 617 618 619 620 621 622
	if (unlikely(!mapping)) {
		int shmem_swizzled;

		/*
		 * Page lock is required to identify which special case above
		 * applies. If this is really a shmem page then the page lock
		 * will prevent unexpected transitions.
		 */
		lock_page(page);
		shmem_swizzled = PageSwapCache(page) || page->mapping;
623 624
		unlock_page(page);
		put_page(page);
625

626 627
		if (shmem_swizzled)
			goto again;
628

629
		return -EFAULT;
630
	}
L
Linus Torvalds 已提交
631 632 633 634

	/*
	 * Private mappings are handled in a simple way.
	 *
635 636 637
	 * If the futex key is stored on an anonymous page, then the associated
	 * object is the mm which is implicitly pinned by the calling process.
	 *
L
Linus Torvalds 已提交
638 639
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
640
	 * the object not the particular process.
L
Linus Torvalds 已提交
641
	 */
642
	if (PageAnon(page)) {
643 644 645 646
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
647
		if (unlikely(should_fail_futex(fshared)) || ro) {
648 649 650 651
			err = -EFAULT;
			goto out;
		}

652
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
653
		key->private.mm = mm;
654
		key->private.address = address;
655 656 657

		get_futex_key_refs(key); /* implies smp_mb(); (B) */

658
	} else {
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
		struct inode *inode;

		/*
		 * The associated futex object in this case is the inode and
		 * the page->mapping must be traversed. Ordinarily this should
		 * be stabilised under page lock but it's not strictly
		 * necessary in this case as we just want to pin the inode, not
		 * update the radix tree or anything like that.
		 *
		 * The RCU read lock is taken as the inode is finally freed
		 * under RCU. If the mapping still matches expectations then the
		 * mapping->host can be safely accessed as being a valid inode.
		 */
		rcu_read_lock();

		if (READ_ONCE(page->mapping) != mapping) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		inode = READ_ONCE(mapping->host);
		if (!inode) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/*
		 * Take a reference unless it is about to be freed. Previously
		 * this reference was taken by ihold under the page lock
		 * pinning the inode in place so i_lock was unnecessary. The
		 * only way for this check to fail is if the inode was
694 695
		 * truncated in parallel which is almost certainly an
		 * application bug. In such a case, just retry.
696 697 698 699 700
		 *
		 * We are not calling into get_futex_key_refs() in file-backed
		 * cases, therefore a successful atomic_inc return below will
		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
		 */
701
		if (!atomic_inc_not_zero(&inode->i_count)) {
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/* Should be impossible but lets be paranoid for now */
		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
			err = -EFAULT;
			rcu_read_unlock();
			iput(inode);

			goto out;
		}

717
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
718
		key->shared.inode = inode;
719
		key->shared.pgoff = basepage_index(tail);
720
		rcu_read_unlock();
L
Linus Torvalds 已提交
721 722
	}

723
out:
724
	put_page(page);
725
	return err;
L
Linus Torvalds 已提交
726 727
}

728
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
729
{
730
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
731 732
}

733 734
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
735 736 737 738 739
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
740
 * We have no generic implementation of a non-destructive write to the
741 742 743 744 745 746
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
747 748 749 750
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
751
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
752
			       FAULT_FLAG_WRITE, NULL);
753 754
	up_read(&mm->mmap_sem);

755 756 757
	return ret < 0 ? ret : 0;
}

758 759
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
760 761
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

777 778
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
779
{
780
	int ret;
T
Thomas Gleixner 已提交
781 782

	pagefault_disable();
783
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
784 785
	pagefault_enable();

786
	return ret;
T
Thomas Gleixner 已提交
787 788 789
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
790 791 792
{
	int ret;

793
	pagefault_disable();
794
	ret = __get_user(*dest, from);
795
	pagefault_enable();
L
Linus Torvalds 已提交
796 797 798 799

	return ret ? -EFAULT : 0;
}

800 801 802 803 804 805 806 807 808 809 810

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

811
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
812 813 814 815 816 817 818

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
819
	refcount_set(&pi_state->refcount, 1);
820
	pi_state->key = FUTEX_KEY_INIT;
821 822 823 824 825 826

	current->pi_state_cache = pi_state;

	return 0;
}

P
Peter Zijlstra 已提交
827
static struct futex_pi_state *alloc_pi_state(void)
828 829 830 831 832 833 834 835 836
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

P
Peter Zijlstra 已提交
837 838
static void get_pi_state(struct futex_pi_state *pi_state)
{
839
	WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
P
Peter Zijlstra 已提交
840 841
}

842
/*
843 844
 * Drops a reference to the pi_state object and frees or caches it
 * when the last reference is gone.
845
 */
846
static void put_pi_state(struct futex_pi_state *pi_state)
847
{
848 849 850
	if (!pi_state)
		return;

851
	if (!refcount_dec_and_test(&pi_state->refcount))
852 853 854 855 856 857 858
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
859
		struct task_struct *owner;
860

861 862 863 864 865 866 867 868 869
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
		owner = pi_state->owner;
		if (owner) {
			raw_spin_lock(&owner->pi_lock);
			list_del_init(&pi_state->list);
			raw_spin_unlock(&owner->pi_lock);
		}
		rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
870 871
	}

872
	if (current->pi_state_cache) {
873
		kfree(pi_state);
874
	} else {
875 876 877 878 879 880
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
881
		refcount_set(&pi_state->refcount, 1);
882 883 884 885
		current->pi_state_cache = pi_state;
	}
}

886 887
#ifdef CONFIG_FUTEX_PI

888 889 890 891 892 893 894 895 896
/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
897
	struct futex_hash_bucket *hb;
898
	union futex_key key = FUTEX_KEY_INIT;
899

900 901
	if (!futex_cmpxchg_enabled)
		return;
902 903 904
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
905
	 * versus waiters unqueueing themselves:
906
	 */
907
	raw_spin_lock_irq(&curr->pi_lock);
908 909 910 911
	while (!list_empty(head)) {
		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
912
		hb = hash_futex(&key);
913 914 915 916 917 918 919 920 921 922 923

		/*
		 * We can race against put_pi_state() removing itself from the
		 * list (a waiter going away). put_pi_state() will first
		 * decrement the reference count and then modify the list, so
		 * its possible to see the list entry but fail this reference
		 * acquire.
		 *
		 * In that case; drop the locks to let put_pi_state() make
		 * progress and retry the loop.
		 */
924
		if (!refcount_inc_not_zero(&pi_state->refcount)) {
925 926 927 928 929
			raw_spin_unlock_irq(&curr->pi_lock);
			cpu_relax();
			raw_spin_lock_irq(&curr->pi_lock);
			continue;
		}
930
		raw_spin_unlock_irq(&curr->pi_lock);
931 932

		spin_lock(&hb->lock);
933 934
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
		raw_spin_lock(&curr->pi_lock);
935 936 937 938
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
939
		if (head->next != next) {
940
			/* retain curr->pi_lock for the loop invariant */
941
			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
942
			spin_unlock(&hb->lock);
943
			put_pi_state(pi_state);
944 945 946 947
			continue;
		}

		WARN_ON(pi_state->owner != curr);
948 949
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
950 951
		pi_state->owner = NULL;

952
		raw_spin_unlock(&curr->pi_lock);
953
		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
954 955
		spin_unlock(&hb->lock);

956 957 958
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);

959
		raw_spin_lock_irq(&curr->pi_lock);
960
	}
961
	raw_spin_unlock_irq(&curr->pi_lock);
962 963
}

964 965
#endif

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync.
P
Peter Zijlstra 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
 *
 *
 * Serialization and lifetime rules:
 *
 * hb->lock:
 *
 *	hb -> futex_q, relation
 *	futex_q -> pi_state, relation
 *
 *	(cannot be raw because hb can contain arbitrary amount
 *	 of futex_q's)
 *
 * pi_mutex->wait_lock:
 *
 *	{uval, pi_state}
 *
 *	(and pi_mutex 'obviously')
 *
 * p->pi_lock:
 *
 *	p->pi_state_list -> pi_state->list, relation
 *
 * pi_state->refcount:
 *
 *	pi_state lifetime
 *
 *
 * Lock order:
 *
 *   hb->lock
 *     pi_mutex->wait_lock
 *       p->pi_lock
 *
1047
 */
1048 1049 1050 1051 1052 1053

/*
 * Validate that the existing waiter has a pi_state and sanity check
 * the pi_state against the user space value. If correct, attach to
 * it.
 */
P
Peter Zijlstra 已提交
1054 1055
static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
			      struct futex_pi_state *pi_state,
1056
			      struct futex_pi_state **ps)
1057
{
1058
	pid_t pid = uval & FUTEX_TID_MASK;
1059 1060
	u32 uval2;
	int ret;
1061

1062 1063 1064 1065 1066
	/*
	 * Userspace might have messed up non-PI and PI futexes [3]
	 */
	if (unlikely(!pi_state))
		return -EINVAL;
1067

P
Peter Zijlstra 已提交
1068 1069 1070 1071 1072 1073
	/*
	 * We get here with hb->lock held, and having found a
	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
	 * which in turn means that futex_lock_pi() still has a reference on
	 * our pi_state.
1074 1075 1076 1077 1078
	 *
	 * The waiter holding a reference on @pi_state also protects against
	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
	 * free pi_state before we can take a reference ourselves.
P
Peter Zijlstra 已提交
1079
	 */
1080
	WARN_ON(!refcount_read(&pi_state->refcount));
1081

P
Peter Zijlstra 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	/*
	 * Now that we have a pi_state, we can acquire wait_lock
	 * and do the state validation.
	 */
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	/*
	 * Since {uval, pi_state} is serialized by wait_lock, and our current
	 * uval was read without holding it, it can have changed. Verify it
	 * still is what we expect it to be, otherwise retry the entire
	 * operation.
	 */
	if (get_futex_value_locked(&uval2, uaddr))
		goto out_efault;

	if (uval != uval2)
		goto out_eagain;

1100 1101 1102 1103
	/*
	 * Handle the owner died case:
	 */
	if (uval & FUTEX_OWNER_DIED) {
1104
		/*
1105 1106 1107
		 * exit_pi_state_list sets owner to NULL and wakes the
		 * topmost waiter. The task which acquires the
		 * pi_state->rt_mutex will fixup owner.
1108
		 */
1109
		if (!pi_state->owner) {
1110
			/*
1111 1112
			 * No pi state owner, but the user space TID
			 * is not 0. Inconsistent state. [5]
1113
			 */
1114
			if (pid)
P
Peter Zijlstra 已提交
1115
				goto out_einval;
1116
			/*
1117
			 * Take a ref on the state and return success. [4]
1118
			 */
P
Peter Zijlstra 已提交
1119
			goto out_attach;
1120
		}
1121 1122

		/*
1123 1124 1125 1126 1127 1128 1129 1130
		 * If TID is 0, then either the dying owner has not
		 * yet executed exit_pi_state_list() or some waiter
		 * acquired the rtmutex in the pi state, but did not
		 * yet fixup the TID in user space.
		 *
		 * Take a ref on the state and return success. [6]
		 */
		if (!pid)
P
Peter Zijlstra 已提交
1131
			goto out_attach;
1132 1133 1134 1135
	} else {
		/*
		 * If the owner died bit is not set, then the pi_state
		 * must have an owner. [7]
1136
		 */
1137
		if (!pi_state->owner)
P
Peter Zijlstra 已提交
1138
			goto out_einval;
1139 1140
	}

1141 1142 1143 1144 1145 1146
	/*
	 * Bail out if user space manipulated the futex value. If pi
	 * state exists then the owner TID must be the same as the
	 * user space TID. [9/10]
	 */
	if (pid != task_pid_vnr(pi_state->owner))
P
Peter Zijlstra 已提交
1147 1148 1149
		goto out_einval;

out_attach:
P
Peter Zijlstra 已提交
1150
	get_pi_state(pi_state);
P
Peter Zijlstra 已提交
1151
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1152 1153
	*ps = pi_state;
	return 0;
P
Peter Zijlstra 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

out_einval:
	ret = -EINVAL;
	goto out_error;

out_eagain:
	ret = -EAGAIN;
	goto out_error;

out_efault:
	ret = -EFAULT;
	goto out_error;

out_error:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
1170 1171
}

T
Thomas Gleixner 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
static int handle_exit_race(u32 __user *uaddr, u32 uval,
			    struct task_struct *tsk)
{
	u32 uval2;

	/*
	 * If PF_EXITPIDONE is not yet set, then try again.
	 */
	if (tsk && !(tsk->flags & PF_EXITPIDONE))
		return -EAGAIN;

	/*
	 * Reread the user space value to handle the following situation:
	 *
	 * CPU0				CPU1
	 *
	 * sys_exit()			sys_futex()
	 *  do_exit()			 futex_lock_pi()
	 *                                futex_lock_pi_atomic()
	 *   exit_signals(tsk)		    No waiters:
	 *    tsk->flags |= PF_EXITING;	    *uaddr == 0x00000PID
	 *  mm_release(tsk)		    Set waiter bit
	 *   exit_robust_list(tsk) {	    *uaddr = 0x80000PID;
	 *      Set owner died		    attach_to_pi_owner() {
	 *    *uaddr = 0xC0000000;	     tsk = get_task(PID);
	 *   }				     if (!tsk->flags & PF_EXITING) {
	 *  ...				       attach();
	 *  tsk->flags |= PF_EXITPIDONE;     } else {
	 *				       if (!(tsk->flags & PF_EXITPIDONE))
	 *				         return -EAGAIN;
	 *				       return -ESRCH; <--- FAIL
	 *				     }
	 *
	 * Returning ESRCH unconditionally is wrong here because the
	 * user space value has been changed by the exiting task.
	 *
	 * The same logic applies to the case where the exiting task is
	 * already gone.
	 */
	if (get_futex_value_locked(&uval2, uaddr))
		return -EFAULT;

	/* If the user space value has changed, try again. */
	if (uval2 != uval)
		return -EAGAIN;

	/*
	 * The exiting task did not have a robust list, the robust list was
	 * corrupted or the user space value in *uaddr is simply bogus.
	 * Give up and tell user space.
	 */
	return -ESRCH;
}

1226 1227 1228 1229
/*
 * Lookup the task for the TID provided from user space and attach to
 * it after doing proper sanity checks.
 */
T
Thomas Gleixner 已提交
1230
static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1231
			      struct futex_pi_state **ps)
1232 1233
{
	pid_t pid = uval & FUTEX_TID_MASK;
1234 1235
	struct futex_pi_state *pi_state;
	struct task_struct *p;
1236

1237
	/*
1238
	 * We are the first waiter - try to look up the real owner and attach
1239
	 * the new pi_state to it, but bail out when TID = 0 [1]
T
Thomas Gleixner 已提交
1240 1241 1242
	 *
	 * The !pid check is paranoid. None of the call sites should end up
	 * with pid == 0, but better safe than sorry. Let the caller retry
1243
	 */
1244
	if (!pid)
T
Thomas Gleixner 已提交
1245
		return -EAGAIN;
1246
	p = find_get_task_by_vpid(pid);
1247
	if (!p)
T
Thomas Gleixner 已提交
1248
		return handle_exit_race(uaddr, uval, NULL);
1249

1250
	if (unlikely(p->flags & PF_KTHREAD)) {
1251 1252 1253 1254
		put_task_struct(p);
		return -EPERM;
	}

1255 1256 1257 1258 1259 1260
	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
1261
	raw_spin_lock_irq(&p->pi_lock);
1262 1263 1264 1265 1266 1267
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
T
Thomas Gleixner 已提交
1268
		int ret = handle_exit_race(uaddr, uval, p);
1269

1270
		raw_spin_unlock_irq(&p->pi_lock);
1271 1272 1273
		put_task_struct(p);
		return ret;
	}
1274

1275 1276
	/*
	 * No existing pi state. First waiter. [2]
P
Peter Zijlstra 已提交
1277 1278 1279
	 *
	 * This creates pi_state, we have hb->lock held, this means nothing can
	 * observe this state, wait_lock is irrelevant.
1280
	 */
1281 1282 1283
	pi_state = alloc_pi_state();

	/*
1284
	 * Initialize the pi_mutex in locked state and make @p
1285 1286 1287 1288 1289
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
1290
	pi_state->key = *key;
1291

1292
	WARN_ON(!list_empty(&pi_state->list));
1293
	list_add(&pi_state->list, &p->pi_state_list);
1294 1295 1296 1297
	/*
	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
	 * because there is no concurrency as the object is not published yet.
	 */
1298
	pi_state->owner = p;
1299
	raw_spin_unlock_irq(&p->pi_lock);
1300 1301 1302

	put_task_struct(p);

P
Pierre Peiffer 已提交
1303
	*ps = pi_state;
1304 1305 1306 1307

	return 0;
}

P
Peter Zijlstra 已提交
1308 1309
static int lookup_pi_state(u32 __user *uaddr, u32 uval,
			   struct futex_hash_bucket *hb,
1310 1311
			   union futex_key *key, struct futex_pi_state **ps)
{
1312
	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1313 1314 1315 1316 1317

	/*
	 * If there is a waiter on that futex, validate it and
	 * attach to the pi_state when the validation succeeds.
	 */
1318
	if (top_waiter)
P
Peter Zijlstra 已提交
1319
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1320 1321 1322 1323 1324

	/*
	 * We are the first waiter - try to look up the owner based on
	 * @uval and attach to it.
	 */
T
Thomas Gleixner 已提交
1325
	return attach_to_pi_owner(uaddr, uval, key, ps);
1326 1327
}

1328 1329
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
1330
	int err;
1331 1332
	u32 uninitialized_var(curval);

1333 1334 1335
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1336 1337 1338
	err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
	if (unlikely(err))
		return err;
1339

P
Peter Zijlstra 已提交
1340
	/* If user space value changed, let the caller retry */
1341 1342 1343
	return curval != uval ? -EAGAIN : 0;
}

1344
/**
1345
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1346 1347 1348 1349 1350 1351 1352 1353
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1354
 *
1355
 * Return:
1356 1357 1358
 *  -  0 - ready to wait;
 *  -  1 - acquired the lock;
 *  - <0 - error
1359 1360 1361 1362 1363 1364
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
1365
				struct task_struct *task, int set_waiters)
1366
{
1367
	u32 uval, newval, vpid = task_pid_vnr(task);
1368
	struct futex_q *top_waiter;
1369
	int ret;
1370 1371

	/*
1372 1373
	 * Read the user space value first so we can validate a few
	 * things before proceeding further.
1374
	 */
1375
	if (get_futex_value_locked(&uval, uaddr))
1376 1377
		return -EFAULT;

1378 1379 1380
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1381 1382 1383
	/*
	 * Detect deadlocks.
	 */
1384
	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1385 1386
		return -EDEADLK;

1387 1388 1389
	if ((unlikely(should_fail_futex(true))))
		return -EDEADLK;

1390
	/*
1391 1392
	 * Lookup existing state first. If it exists, try to attach to
	 * its pi_state.
1393
	 */
1394 1395
	top_waiter = futex_top_waiter(hb, key);
	if (top_waiter)
P
Peter Zijlstra 已提交
1396
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1397 1398

	/*
1399 1400 1401 1402
	 * No waiter and user TID is 0. We are here because the
	 * waiters or the owner died bit is set or called from
	 * requeue_cmp_pi or for whatever reason something took the
	 * syscall.
1403
	 */
1404
	if (!(uval & FUTEX_TID_MASK)) {
1405
		/*
1406 1407
		 * We take over the futex. No other waiters and the user space
		 * TID is 0. We preserve the owner died bit.
1408
		 */
1409 1410
		newval = uval & FUTEX_OWNER_DIED;
		newval |= vpid;
1411

1412 1413 1414 1415 1416 1417 1418 1419
		/* The futex requeue_pi code can enforce the waiters bit */
		if (set_waiters)
			newval |= FUTEX_WAITERS;

		ret = lock_pi_update_atomic(uaddr, uval, newval);
		/* If the take over worked, return 1 */
		return ret < 0 ? ret : 1;
	}
1420 1421

	/*
1422 1423 1424
	 * First waiter. Set the waiters bit before attaching ourself to
	 * the owner. If owner tries to unlock, it will be forced into
	 * the kernel and blocked on hb->lock.
1425
	 */
1426 1427 1428 1429
	newval = uval | FUTEX_WAITERS;
	ret = lock_pi_update_atomic(uaddr, uval, newval);
	if (ret)
		return ret;
1430
	/*
1431 1432 1433
	 * If the update of the user space value succeeded, we try to
	 * attach to the owner. If that fails, no harm done, we only
	 * set the FUTEX_WAITERS bit in the user space variable.
1434
	 */
T
Thomas Gleixner 已提交
1435
	return attach_to_pi_owner(uaddr, newval, key, ps);
1436 1437
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

1448
	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1449
		return;
1450
	lockdep_assert_held(q->lock_ptr);
1451 1452 1453

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
1454
	hb_waiters_dec(hb);
1455 1456
}

L
Linus Torvalds 已提交
1457 1458
/*
 * The hash bucket lock must be held when this is called.
1459 1460 1461
 * Afterwards, the futex_q must not be accessed. Callers
 * must ensure to later call wake_up_q() for the actual
 * wakeups to occur.
L
Linus Torvalds 已提交
1462
 */
1463
static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
L
Linus Torvalds 已提交
1464
{
T
Thomas Gleixner 已提交
1465 1466
	struct task_struct *p = q->task;

1467 1468 1469
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

1470
	get_task_struct(p);
1471
	__unqueue_futex(q);
L
Linus Torvalds 已提交
1472
	/*
1473 1474 1475 1476 1477
	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
	 * is written, without taking any locks. This is possible in the event
	 * of a spurious wakeup, for example. A memory barrier is required here
	 * to prevent the following store to lock_ptr from getting ahead of the
	 * plist_del in __unqueue_futex().
L
Linus Torvalds 已提交
1478
	 */
1479
	smp_store_release(&q->lock_ptr, NULL);
1480 1481 1482

	/*
	 * Queue the task for later wakeup for after we've released
1483
	 * the hb->lock.
1484
	 */
1485
	wake_q_add_safe(wake_q, p);
L
Linus Torvalds 已提交
1486 1487
}

1488 1489 1490 1491
/*
 * Caller must hold a reference on @pi_state.
 */
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1492
{
1493
	u32 uninitialized_var(curval), newval;
1494
	struct task_struct *new_owner;
P
Peter Zijlstra 已提交
1495
	bool postunlock = false;
1496
	DEFINE_WAKE_Q(wake_q);
1497
	int ret = 0;
1498 1499

	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1500
	if (WARN_ON_ONCE(!new_owner)) {
1501
		/*
1502
		 * As per the comment in futex_unlock_pi() this should not happen.
1503 1504 1505 1506 1507 1508 1509 1510
		 *
		 * When this happens, give up our locks and try again, giving
		 * the futex_lock_pi() instance time to complete, either by
		 * waiting on the rtmutex or removing itself from the futex
		 * queue.
		 */
		ret = -EAGAIN;
		goto out_unlock;
1511
	}
1512 1513

	/*
1514 1515 1516
	 * We pass it to the next owner. The WAITERS bit is always kept
	 * enabled while there is PI state around. We cleanup the owner
	 * died bit, because we are the owner.
1517
	 */
1518
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1519

1520 1521 1522
	if (unlikely(should_fail_futex(true)))
		ret = -EFAULT;

1523 1524
	ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
	if (!ret && (curval != uval)) {
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
		/*
		 * If a unconditional UNLOCK_PI operation (user space did not
		 * try the TID->0 transition) raced with a waiter setting the
		 * FUTEX_WAITERS flag between get_user() and locking the hash
		 * bucket lock, retry the operation.
		 */
		if ((FUTEX_TID_MASK & curval) == uval)
			ret = -EAGAIN;
		else
			ret = -EINVAL;
	}
P
Peter Zijlstra 已提交
1536

1537 1538
	if (ret)
		goto out_unlock;
1539

1540 1541 1542 1543 1544
	/*
	 * This is a point of no return; once we modify the uval there is no
	 * going back and subsequent operations must not fail.
	 */

1545
	raw_spin_lock(&pi_state->owner->pi_lock);
1546 1547
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1548
	raw_spin_unlock(&pi_state->owner->pi_lock);
1549

1550
	raw_spin_lock(&new_owner->pi_lock);
1551
	WARN_ON(!list_empty(&pi_state->list));
1552 1553
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1554
	raw_spin_unlock(&new_owner->pi_lock);
1555

P
Peter Zijlstra 已提交
1556
	postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1557

1558
out_unlock:
1559 1560
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

P
Peter Zijlstra 已提交
1561 1562
	if (postunlock)
		rt_mutex_postunlock(&wake_q);
1563

1564
	return ret;
1565 1566
}

I
Ingo Molnar 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1583 1584 1585
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1586
	spin_unlock(&hb1->lock);
1587 1588
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1589 1590
}

L
Linus Torvalds 已提交
1591
/*
D
Darren Hart 已提交
1592
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1593
 */
1594 1595
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1596
{
1597
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1598
	struct futex_q *this, *next;
1599
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1600
	int ret;
1601
	DEFINE_WAKE_Q(wake_q);
L
Linus Torvalds 已提交
1602

1603 1604 1605
	if (!bitset)
		return -EINVAL;

1606
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
L
Linus Torvalds 已提交
1607 1608 1609
	if (unlikely(ret != 0))
		goto out;

1610
	hb = hash_futex(&key);
1611 1612 1613 1614 1615

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1616
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1617

J
Jason Low 已提交
1618
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1619
		if (match_futex (&this->key, &key)) {
1620
			if (this->pi_state || this->rt_waiter) {
1621 1622 1623
				ret = -EINVAL;
				break;
			}
1624 1625 1626 1627 1628

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

1629
			mark_wake_futex(&wake_q, this);
L
Linus Torvalds 已提交
1630 1631 1632 1633 1634
			if (++ret >= nr_wake)
				break;
		}
	}

1635
	spin_unlock(&hb->lock);
1636
	wake_up_q(&wake_q);
1637
out_put_key:
1638
	put_futex_key(&key);
1639
out:
L
Linus Torvalds 已提交
1640 1641 1642
	return ret;
}

1643 1644 1645 1646
static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
{
	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
1647 1648
	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1649 1650 1651
	int oldval, ret;

	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
		if (oparg < 0 || oparg > 31) {
			char comm[sizeof(current->comm)];
			/*
			 * kill this print and return -EINVAL when userspace
			 * is sane again
			 */
			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
					get_task_comm(comm, current), oparg);
			oparg &= 31;
		}
1662 1663 1664
		oparg = 1 << oparg;
	}

1665
	if (!access_ok(uaddr, sizeof(u32)))
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
		return -EFAULT;

	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
	if (ret)
		return ret;

	switch (cmp) {
	case FUTEX_OP_CMP_EQ:
		return oldval == cmparg;
	case FUTEX_OP_CMP_NE:
		return oldval != cmparg;
	case FUTEX_OP_CMP_LT:
		return oldval < cmparg;
	case FUTEX_OP_CMP_GE:
		return oldval >= cmparg;
	case FUTEX_OP_CMP_LE:
		return oldval <= cmparg;
	case FUTEX_OP_CMP_GT:
		return oldval > cmparg;
	default:
		return -ENOSYS;
	}
}

1690 1691 1692 1693
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1694
static int
1695
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1696
	      int nr_wake, int nr_wake2, int op)
1697
{
1698
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1699
	struct futex_hash_bucket *hb1, *hb2;
1700
	struct futex_q *this, *next;
D
Darren Hart 已提交
1701
	int ret, op_ret;
1702
	DEFINE_WAKE_Q(wake_q);
1703

D
Darren Hart 已提交
1704
retry:
1705
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1706 1707
	if (unlikely(ret != 0))
		goto out;
1708
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1709
	if (unlikely(ret != 0))
1710
		goto out_put_key1;
1711

1712 1713
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1714

D
Darren Hart 已提交
1715
retry_private:
T
Thomas Gleixner 已提交
1716
	double_lock_hb(hb1, hb2);
1717
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1718
	if (unlikely(op_ret < 0)) {
D
Darren Hart 已提交
1719
		double_unlock_hb(hb1, hb2);
1720

1721 1722 1723 1724 1725 1726
		if (!IS_ENABLED(CONFIG_MMU) ||
		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
			/*
			 * we don't get EFAULT from MMU faults if we don't have
			 * an MMU, but we might get them from range checking
			 */
1727
			ret = op_ret;
1728
			goto out_put_keys;
1729 1730
		}

1731 1732 1733 1734 1735
		if (op_ret == -EFAULT) {
			ret = fault_in_user_writeable(uaddr2);
			if (ret)
				goto out_put_keys;
		}
1736

1737 1738
		if (!(flags & FLAGS_SHARED)) {
			cond_resched();
D
Darren Hart 已提交
1739
			goto retry_private;
1740
		}
D
Darren Hart 已提交
1741

1742 1743
		put_futex_key(&key2);
		put_futex_key(&key1);
1744
		cond_resched();
D
Darren Hart 已提交
1745
		goto retry;
1746 1747
	}

J
Jason Low 已提交
1748
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1749
		if (match_futex (&this->key, &key1)) {
1750 1751 1752 1753
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1754
			mark_wake_futex(&wake_q, this);
1755 1756 1757 1758 1759 1760 1761
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1762
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1763
			if (match_futex (&this->key, &key2)) {
1764 1765 1766 1767
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1768
				mark_wake_futex(&wake_q, this);
1769 1770 1771 1772 1773 1774 1775
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1776
out_unlock:
D
Darren Hart 已提交
1777
	double_unlock_hb(hb1, hb2);
1778
	wake_up_q(&wake_q);
1779
out_put_keys:
1780
	put_futex_key(&key2);
1781
out_put_key1:
1782
	put_futex_key(&key1);
1783
out:
1784 1785 1786
	return ret;
}

D
Darren Hart 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
1805 1806
		hb_waiters_dec(hb1);
		hb_waiters_inc(hb2);
1807
		plist_add(&q->list, &hb2->chain);
D
Darren Hart 已提交
1808 1809 1810 1811 1812 1813
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1814 1815
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1816 1817 1818
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1819 1820 1821 1822 1823
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1824 1825 1826
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1827 1828
 */
static inline
1829 1830
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1831 1832 1833 1834
{
	get_futex_key_refs(key);
	q->key = *key;

1835
	__unqueue_futex(q);
1836 1837 1838 1839

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1840 1841
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1842
	wake_up_state(q->task, TASK_NORMAL);
1843 1844 1845 1846
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1847 1848 1849 1850 1851 1852 1853
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1854 1855
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1856 1857 1858
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1859
 *
1860
 * Return:
1861 1862 1863
 *  -  0 - failed to acquire the lock atomically;
 *  - >0 - acquired the lock, return value is vpid of the top_waiter
 *  - <0 - error
1864 1865 1866 1867 1868
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1869
				 struct futex_pi_state **ps, int set_waiters)
1870
{
1871
	struct futex_q *top_waiter = NULL;
1872
	u32 curval;
1873
	int ret, vpid;
1874 1875 1876 1877

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1878 1879 1880
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1881 1882 1883 1884 1885 1886 1887 1888
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1889 1890 1891 1892 1893 1894
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1895 1896 1897 1898
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1899
	/*
1900 1901 1902
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1903
	 */
1904
	vpid = task_pid_vnr(top_waiter->task);
1905 1906
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1907
	if (ret == 1) {
1908
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1909 1910
		return vpid;
	}
1911 1912 1913 1914 1915
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1916
 * @uaddr1:	source futex user address
1917
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1918 1919 1920 1921 1922
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1923
 *		pi futex (pi to pi requeue is not supported)
1924 1925 1926 1927
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1928
 * Return:
1929 1930
 *  - >=0 - on success, the number of tasks requeued or woken;
 *  -  <0 - on error
L
Linus Torvalds 已提交
1931
 */
1932 1933 1934
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1935
{
1936
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1937 1938
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1939
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1940
	struct futex_q *this, *next;
1941
	DEFINE_WAKE_Q(wake_q);
1942

1943 1944 1945
	if (nr_wake < 0 || nr_requeue < 0)
		return -EINVAL;

1946 1947 1948 1949 1950 1951 1952 1953 1954
	/*
	 * When PI not supported: return -ENOSYS if requeue_pi is true,
	 * consequently the compiler knows requeue_pi is always false past
	 * this point which will optimize away all the conditional code
	 * further down.
	 */
	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
		return -ENOSYS;

1955
	if (requeue_pi) {
1956 1957 1958 1959 1960 1961 1962
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1982

1983
retry:
1984
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
L
Linus Torvalds 已提交
1985 1986
	if (unlikely(ret != 0))
		goto out;
1987
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1988
			    requeue_pi ? FUTEX_WRITE : FUTEX_READ);
L
Linus Torvalds 已提交
1989
	if (unlikely(ret != 0))
1990
		goto out_put_key1;
L
Linus Torvalds 已提交
1991

1992 1993 1994 1995 1996 1997 1998 1999 2000
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

2001 2002
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
2003

D
Darren Hart 已提交
2004
retry_private:
2005
	hb_waiters_inc(hb2);
I
Ingo Molnar 已提交
2006
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
2007

2008 2009
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
2010

2011
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
2012 2013

		if (unlikely(ret)) {
D
Darren Hart 已提交
2014
			double_unlock_hb(hb1, hb2);
2015
			hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
2016

2017
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
2018 2019
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
2020

2021
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2022
				goto retry_private;
L
Linus Torvalds 已提交
2023

2024 2025
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
2026
			goto retry;
L
Linus Torvalds 已提交
2027
		}
2028
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
2029 2030 2031 2032 2033
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

2034
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2035 2036 2037 2038 2039 2040
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
2041
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2042
						 &key2, &pi_state, nr_requeue);
2043 2044 2045 2046 2047

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
2048 2049
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
2050 2051
		 * If the lock was not taken, we have pi_state and an initial
		 * refcount on it. In case of an error we have nothing.
2052
		 */
2053
		if (ret > 0) {
2054
			WARN_ON(pi_state);
2055
			drop_count++;
2056
			task_count++;
2057
			/*
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
			 * If we acquired the lock, then the user space value
			 * of uaddr2 should be vpid. It cannot be changed by
			 * the top waiter as it is blocked on hb2 lock if it
			 * tries to do so. If something fiddled with it behind
			 * our back the pi state lookup might unearth it. So
			 * we rather use the known value than rereading and
			 * handing potential crap to lookup_pi_state.
			 *
			 * If that call succeeds then we have pi_state and an
			 * initial refcount on it.
2068
			 */
P
Peter Zijlstra 已提交
2069
			ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2070 2071 2072 2073
		}

		switch (ret) {
		case 0:
2074
			/* We hold a reference on the pi state. */
2075
			break;
2076 2077

			/* If the above failed, then pi_state is NULL */
2078 2079
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
2080
			hb_waiters_dec(hb2);
2081 2082
			put_futex_key(&key2);
			put_futex_key(&key1);
2083
			ret = fault_in_user_writeable(uaddr2);
2084 2085 2086 2087
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
2088 2089 2090 2091 2092 2093
			/*
			 * Two reasons for this:
			 * - Owner is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
			 */
2094
			double_unlock_hb(hb1, hb2);
2095
			hb_waiters_dec(hb2);
2096 2097
			put_futex_key(&key2);
			put_futex_key(&key1);
2098 2099 2100 2101 2102 2103 2104
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
2105
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2106 2107 2108 2109
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
2110
			continue;
2111

2112 2113 2114
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
2115 2116 2117
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
2118 2119
		 */
		if ((requeue_pi && !this->rt_waiter) ||
2120 2121
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
2122 2123 2124
			ret = -EINVAL;
			break;
		}
2125 2126 2127 2128 2129 2130 2131

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
2132
			mark_wake_futex(&wake_q, this);
2133 2134
			continue;
		}
L
Linus Torvalds 已提交
2135

2136 2137 2138 2139 2140 2141
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

2142 2143 2144 2145 2146
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
2147 2148 2149 2150 2151
			/*
			 * Prepare the waiter to take the rt_mutex. Take a
			 * refcount on the pi_state and store the pointer in
			 * the futex_q object of the waiter.
			 */
P
Peter Zijlstra 已提交
2152
			get_pi_state(pi_state);
2153 2154 2155
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
2156
							this->task);
2157
			if (ret == 1) {
2158 2159 2160 2161 2162 2163 2164 2165
				/*
				 * We got the lock. We do neither drop the
				 * refcount on pi_state nor clear
				 * this->pi_state because the waiter needs the
				 * pi_state for cleaning up the user space
				 * value. It will drop the refcount after
				 * doing so.
				 */
2166
				requeue_pi_wake_futex(this, &key2, hb2);
2167
				drop_count++;
2168 2169
				continue;
			} else if (ret) {
2170 2171 2172 2173 2174 2175 2176 2177
				/*
				 * rt_mutex_start_proxy_lock() detected a
				 * potential deadlock when we tried to queue
				 * that waiter. Drop the pi_state reference
				 * which we took above and remove the pointer
				 * to the state from the waiters futex_q
				 * object.
				 */
2178
				this->pi_state = NULL;
2179
				put_pi_state(pi_state);
2180 2181 2182 2183 2184
				/*
				 * We stop queueing more waiters and let user
				 * space deal with the mess.
				 */
				break;
2185
			}
L
Linus Torvalds 已提交
2186
		}
2187 2188
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
2189 2190
	}

2191 2192 2193 2194 2195
	/*
	 * We took an extra initial reference to the pi_state either
	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
	 * need to drop it here again.
	 */
2196
	put_pi_state(pi_state);
2197 2198

out_unlock:
D
Darren Hart 已提交
2199
	double_unlock_hb(hb1, hb2);
2200
	wake_up_q(&wake_q);
2201
	hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
2202

2203 2204 2205 2206 2207 2208
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
2209
	while (--drop_count >= 0)
2210
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
2211

2212
out_put_keys:
2213
	put_futex_key(&key2);
2214
out_put_key1:
2215
	put_futex_key(&key1);
2216
out:
2217
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
2218 2219 2220
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
2221
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2222
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
2223
{
2224
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
2225

2226
	hb = hash_futex(&q->key);
2227 2228 2229 2230 2231 2232 2233 2234 2235

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
D
Davidlohr Bueso 已提交
2236
	hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2237

2238
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
2239

D
Davidlohr Bueso 已提交
2240
	spin_lock(&hb->lock);
2241
	return hb;
L
Linus Torvalds 已提交
2242 2243
}

2244
static inline void
J
Jason Low 已提交
2245
queue_unlock(struct futex_hash_bucket *hb)
2246
	__releases(&hb->lock)
2247 2248
{
	spin_unlock(&hb->lock);
2249
	hb_waiters_dec(hb);
2250 2251
}

2252
static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
2253
{
P
Pierre Peiffer 已提交
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
2268
	q->task = current;
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
	__releases(&hb->lock)
{
	__queue_me(q, hb);
2287
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
2288 2289
}

2290 2291 2292 2293 2294 2295 2296
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
2297
 * Return:
2298 2299
 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
 *  - 0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
2300 2301 2302 2303
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
2304
	int ret = 0;
L
Linus Torvalds 已提交
2305 2306

	/* In the common case we don't take the spinlock, which is nice. */
2307
retry:
2308 2309 2310 2311 2312 2313
	/*
	 * q->lock_ptr can change between this read and the following spin_lock.
	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
	 * optimizing lock_ptr out of the logic below.
	 */
	lock_ptr = READ_ONCE(q->lock_ptr);
2314
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
2333
		__unqueue_futex(q);
2334 2335 2336

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
2337 2338 2339 2340
		spin_unlock(lock_ptr);
		ret = 1;
	}

2341
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
2342 2343 2344
	return ret;
}

2345 2346
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
2347 2348
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
2349
 */
P
Pierre Peiffer 已提交
2350
static void unqueue_me_pi(struct futex_q *q)
2351
	__releases(q->lock_ptr)
2352
{
2353
	__unqueue_futex(q);
2354 2355

	BUG_ON(!q->pi_state);
2356
	put_pi_state(q->pi_state);
2357 2358
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
2359
	spin_unlock(q->lock_ptr);
2360 2361
}

2362
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2363
				struct task_struct *argowner)
P
Pierre Peiffer 已提交
2364 2365
{
	struct futex_pi_state *pi_state = q->pi_state;
2366
	u32 uval, uninitialized_var(curval), newval;
2367 2368
	struct task_struct *oldowner, *newowner;
	u32 newtid;
2369
	int ret, err = 0;
P
Pierre Peiffer 已提交
2370

2371 2372
	lockdep_assert_held(q->lock_ptr);

P
Peter Zijlstra 已提交
2373 2374 2375
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	oldowner = pi_state->owner;
2376 2377

	/*
2378
	 * We are here because either:
2379
	 *
2380 2381 2382 2383 2384 2385 2386 2387 2388
	 *  - we stole the lock and pi_state->owner needs updating to reflect
	 *    that (@argowner == current),
	 *
	 * or:
	 *
	 *  - someone stole our lock and we need to fix things to point to the
	 *    new owner (@argowner == NULL).
	 *
	 * Either way, we have to replace the TID in the user space variable.
2389
	 * This must be atomic as we have to preserve the owner died bit here.
2390
	 *
D
Darren Hart 已提交
2391 2392 2393
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
2394
	 *
P
Peter Zijlstra 已提交
2395 2396 2397 2398
	 * Modifying pi_state _before_ the user space value would leave the
	 * pi_state in an inconsistent state when we fault here, because we
	 * need to drop the locks to handle the fault. This might be observed
	 * in the PID check in lookup_pi_state.
2399 2400
	 */
retry:
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	if (!argowner) {
		if (oldowner != current) {
			/*
			 * We raced against a concurrent self; things are
			 * already fixed up. Nothing to do.
			 */
			ret = 0;
			goto out_unlock;
		}

		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
			/* We got the lock after all, nothing to fix. */
			ret = 0;
			goto out_unlock;
		}

		/*
		 * Since we just failed the trylock; there must be an owner.
		 */
		newowner = rt_mutex_owner(&pi_state->pi_mutex);
		BUG_ON(!newowner);
	} else {
		WARN_ON_ONCE(argowner != current);
		if (oldowner == current) {
			/*
			 * We raced against a concurrent self; things are
			 * already fixed up. Nothing to do.
			 */
			ret = 0;
			goto out_unlock;
		}
		newowner = argowner;
	}

	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Peter Zijlstra 已提交
2436 2437 2438
	/* Owner died? */
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;
2439

2440 2441 2442
	err = get_futex_value_locked(&uval, uaddr);
	if (err)
		goto handle_err;
2443

2444
	for (;;) {
2445 2446
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

2447 2448 2449 2450
		err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
		if (err)
			goto handle_err;

2451 2452 2453 2454 2455 2456 2457 2458 2459
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
2460
	if (pi_state->owner != NULL) {
P
Peter Zijlstra 已提交
2461
		raw_spin_lock(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
2462 2463
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
P
Peter Zijlstra 已提交
2464
		raw_spin_unlock(&pi_state->owner->pi_lock);
2465
	}
P
Pierre Peiffer 已提交
2466

2467
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
2468

P
Peter Zijlstra 已提交
2469
	raw_spin_lock(&newowner->pi_lock);
P
Pierre Peiffer 已提交
2470
	WARN_ON(!list_empty(&pi_state->list));
2471
	list_add(&pi_state->list, &newowner->pi_state_list);
P
Peter Zijlstra 已提交
2472 2473 2474
	raw_spin_unlock(&newowner->pi_lock);
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

2475
	return 0;
P
Pierre Peiffer 已提交
2476 2477

	/*
2478 2479 2480 2481 2482 2483 2484
	 * In order to reschedule or handle a page fault, we need to drop the
	 * locks here. In the case of a fault, this gives the other task
	 * (either the highest priority waiter itself or the task which stole
	 * the rtmutex) the chance to try the fixup of the pi_state. So once we
	 * are back from handling the fault we need to check the pi_state after
	 * reacquiring the locks and before trying to do another fixup. When
	 * the fixup has been done already we simply return.
P
Peter Zijlstra 已提交
2485 2486 2487 2488
	 *
	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
	 * drop hb->lock since the caller owns the hb -> futex_q relation.
	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
P
Pierre Peiffer 已提交
2489
	 */
2490
handle_err:
P
Peter Zijlstra 已提交
2491
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2492
	spin_unlock(q->lock_ptr);
2493

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	switch (err) {
	case -EFAULT:
		ret = fault_in_user_writeable(uaddr);
		break;

	case -EAGAIN:
		cond_resched();
		ret = 0;
		break;

	default:
		WARN_ON_ONCE(1);
		ret = err;
		break;
	}
2509

2510
	spin_lock(q->lock_ptr);
P
Peter Zijlstra 已提交
2511
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2512

2513 2514 2515
	/*
	 * Check if someone else fixed it for us:
	 */
P
Peter Zijlstra 已提交
2516 2517 2518 2519
	if (pi_state->owner != oldowner) {
		ret = 0;
		goto out_unlock;
	}
2520 2521

	if (ret)
P
Peter Zijlstra 已提交
2522
		goto out_unlock;
2523 2524

	goto retry;
P
Peter Zijlstra 已提交
2525 2526 2527 2528

out_unlock:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
P
Pierre Peiffer 已提交
2529 2530
}

N
Nick Piggin 已提交
2531
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
2532

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
2543
 * Return:
2544 2545 2546
 *  -  1 - success, lock taken;
 *  -  0 - success, lock not taken;
 *  - <0 - on error (-EFAULT)
2547
 */
2548
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2549 2550 2551 2552 2553 2554 2555
{
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
2556
		 *
2557 2558 2559
		 * Speculative pi_state->owner read (we don't hold wait_lock);
		 * since we own the lock pi_state->owner == current is the
		 * stable state, anything else needs more attention.
2560 2561
		 */
		if (q->pi_state->owner != current)
2562
			ret = fixup_pi_state_owner(uaddr, q, current);
2563 2564 2565
		goto out;
	}

2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
	/*
	 * If we didn't get the lock; check if anybody stole it from us. In
	 * that case, we need to fix up the uval to point to them instead of
	 * us, otherwise bad things happen. [10]
	 *
	 * Another speculative read; pi_state->owner == current is unstable
	 * but needs our attention.
	 */
	if (q->pi_state->owner == current) {
		ret = fixup_pi_state_owner(uaddr, q, NULL);
		goto out;
	}

2579 2580
	/*
	 * Paranoia check. If we did not take the lock, then we should not be
2581
	 * the owner of the rt_mutex.
2582
	 */
2583
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2584 2585 2586 2587
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);
2588
	}
2589 2590 2591 2592 2593

out:
	return ret ? ret : locked;
}

2594 2595 2596 2597 2598 2599 2600
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
2601
				struct hrtimer_sleeper *timeout)
2602
{
2603 2604
	/*
	 * The task state is guaranteed to be set before another task can
2605
	 * wake it. set_current_state() is implemented using smp_store_mb() and
2606 2607 2608
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
2609
	set_current_state(TASK_INTERRUPTIBLE);
2610
	queue_me(q, hb);
2611 2612

	/* Arm the timer */
2613
	if (timeout)
2614
		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2615 2616

	/*
2617 2618
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
2619 2620 2621 2622 2623 2624 2625 2626
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
2627
			freezable_schedule();
2628 2629 2630 2631
	}
	__set_current_state(TASK_RUNNING);
}

2632 2633 2634 2635
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
2636
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2637 2638 2639 2640 2641 2642 2643 2644
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
2645
 * Return:
2646 2647
 *  -  0 - uaddr contains val and hb has been locked;
 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2648
 */
2649
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2650
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
2651
{
2652 2653
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
2654 2655

	/*
D
Darren Hart 已提交
2656
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
2657 2658 2659 2660 2661 2662 2663
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
2664 2665
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
2666 2667
	 * cond(var) false, which would violate the guarantee.
	 *
2668 2669 2670 2671
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
2672
	 */
2673
retry:
2674
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2675
	if (unlikely(ret != 0))
2676
		return ret;
2677 2678 2679 2680

retry_private:
	*hb = queue_lock(q);

2681
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
2682

2683
	if (ret) {
J
Jason Low 已提交
2684
		queue_unlock(*hb);
L
Linus Torvalds 已提交
2685

2686
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
2687
		if (ret)
2688
			goto out;
L
Linus Torvalds 已提交
2689

2690
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2691 2692
			goto retry_private;

2693
		put_futex_key(&q->key);
D
Darren Hart 已提交
2694
		goto retry;
L
Linus Torvalds 已提交
2695
	}
2696

2697
	if (uval != val) {
J
Jason Low 已提交
2698
		queue_unlock(*hb);
2699
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2700
	}
L
Linus Torvalds 已提交
2701

2702 2703
out:
	if (ret)
2704
		put_futex_key(&q->key);
2705 2706 2707
	return ret;
}

2708 2709
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2710
{
2711
	struct hrtimer_sleeper timeout, *to;
2712 2713
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2714
	struct futex_q q = futex_q_init;
2715 2716 2717 2718 2719 2720
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

2721 2722
	to = futex_setup_timer(abs_time, &timeout, flags,
			       current->timer_slack_ns);
T
Thomas Gleixner 已提交
2723
retry:
2724 2725 2726 2727
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2728
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2729 2730 2731
	if (ret)
		goto out;

2732
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2733
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2734 2735

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2736
	ret = 0;
2737
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2738
	if (!unqueue_me(&q))
2739
		goto out;
P
Peter Zijlstra 已提交
2740
	ret = -ETIMEDOUT;
2741
	if (to && !to->task)
2742
		goto out;
N
Nick Piggin 已提交
2743

2744
	/*
T
Thomas Gleixner 已提交
2745 2746
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2747
	 */
2748
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2749 2750
		goto retry;

P
Peter Zijlstra 已提交
2751
	ret = -ERESTARTSYS;
2752
	if (!abs_time)
2753
		goto out;
L
Linus Torvalds 已提交
2754

2755
	restart = &current->restart_block;
P
Peter Zijlstra 已提交
2756
	restart->fn = futex_wait_restart;
2757
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2758
	restart->futex.val = val;
T
Thomas Gleixner 已提交
2759
	restart->futex.time = *abs_time;
P
Peter Zijlstra 已提交
2760
	restart->futex.bitset = bitset;
2761
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2762

P
Peter Zijlstra 已提交
2763 2764
	ret = -ERESTART_RESTARTBLOCK;

2765
out:
2766 2767 2768 2769
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2770 2771 2772
	return ret;
}

N
Nick Piggin 已提交
2773 2774 2775

static long futex_wait_restart(struct restart_block *restart)
{
2776
	u32 __user *uaddr = restart->futex.uaddr;
2777
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2778

2779
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
T
Thomas Gleixner 已提交
2780
		t = restart->futex.time;
2781 2782
		tp = &t;
	}
N
Nick Piggin 已提交
2783
	restart->fn = do_no_restart_syscall;
2784 2785 2786

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2787 2788 2789
}


2790 2791 2792
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
2793 2794 2795 2796 2797
 * if there are waiters then it will block as a consequence of relying
 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
 * a 0 value of the futex too.).
 *
 * Also serves as futex trylock_pi()'ing, and due semantics.
2798
 */
2799
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2800
			 ktime_t *time, int trylock)
2801
{
2802
	struct hrtimer_sleeper timeout, *to;
2803
	struct futex_pi_state *pi_state = NULL;
2804
	struct rt_mutex_waiter rt_waiter;
2805
	struct futex_hash_bucket *hb;
2806
	struct futex_q q = futex_q_init;
2807
	int res, ret;
2808

2809 2810 2811
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

2812 2813 2814
	if (refill_pi_state_cache())
		return -ENOMEM;

2815
	to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2816

2817
retry:
2818
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2819
	if (unlikely(ret != 0))
2820
		goto out;
2821

D
Darren Hart 已提交
2822
retry_private:
E
Eric Sesterhenn 已提交
2823
	hb = queue_lock(&q);
2824

2825
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2826
	if (unlikely(ret)) {
2827 2828 2829 2830
		/*
		 * Atomic work succeeded and we got the lock,
		 * or failed. Either way, we do _not_ block.
		 */
2831
		switch (ret) {
2832 2833 2834 2835 2836 2837
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2838 2839
		case -EAGAIN:
			/*
2840 2841 2842 2843
			 * Two reasons for this:
			 * - Task is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
2844
			 */
J
Jason Low 已提交
2845
			queue_unlock(hb);
2846
			put_futex_key(&q.key);
2847 2848 2849
			cond_resched();
			goto retry;
		default:
2850
			goto out_unlock_put_key;
2851 2852 2853
		}
	}

2854 2855
	WARN_ON(!q.pi_state);

2856 2857 2858
	/*
	 * Only actually queue now that the atomic ops are done:
	 */
2859
	__queue_me(&q, hb);
2860

2861
	if (trylock) {
2862
		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2863 2864
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
2865
		goto no_block;
2866 2867
	}

2868 2869
	rt_mutex_init_waiter(&rt_waiter);

2870
	/*
2871 2872 2873 2874 2875 2876 2877
	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
	 * hold it while doing rt_mutex_start_proxy(), because then it will
	 * include hb->lock in the blocking chain, even through we'll not in
	 * fact hold it while blocking. This will lead it to report -EDEADLK
	 * and BUG when futex_unlock_pi() interleaves with this.
	 *
	 * Therefore acquire wait_lock while holding hb->lock, but drop the
2878 2879 2880 2881
	 * latter before calling __rt_mutex_start_proxy_lock(). This
	 * interleaves with futex_unlock_pi() -- which does a similar lock
	 * handoff -- such that the latter can observe the futex_q::pi_state
	 * before __rt_mutex_start_proxy_lock() is done.
2882
	 */
2883 2884
	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
	spin_unlock(q.lock_ptr);
2885 2886 2887 2888 2889
	/*
	 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
	 * such that futex_unlock_pi() is guaranteed to observe the waiter when
	 * it sees the futex_q::pi_state.
	 */
2890 2891 2892
	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);

2893 2894 2895
	if (ret) {
		if (ret == 1)
			ret = 0;
2896
		goto cleanup;
2897 2898 2899
	}

	if (unlikely(to))
2900
		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2901 2902 2903

	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);

2904
cleanup:
2905
	spin_lock(q.lock_ptr);
2906
	/*
2907
	 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2908
	 * first acquire the hb->lock before removing the lock from the
2909 2910
	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
	 * lists consistent.
2911 2912 2913
	 *
	 * In particular; it is important that futex_unlock_pi() can not
	 * observe this inconsistency.
2914 2915 2916 2917 2918
	 */
	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
		ret = 0;

no_block:
2919 2920 2921 2922
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2923
	res = fixup_owner(uaddr, &q, !ret);
2924 2925 2926 2927 2928 2929
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2930

2931
	/*
2932 2933
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2934
	 */
2935 2936 2937 2938
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
		pi_state = q.pi_state;
		get_pi_state(pi_state);
	}
2939

2940 2941
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2942

2943 2944 2945 2946 2947
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

2948
	goto out_put_key;
2949

2950
out_unlock_put_key:
J
Jason Low 已提交
2951
	queue_unlock(hb);
2952

2953
out_put_key:
2954
	put_futex_key(&q.key);
2955
out:
2956 2957
	if (to) {
		hrtimer_cancel(&to->timer);
2958
		destroy_hrtimer_on_stack(&to->timer);
2959
	}
2960
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2961

2962
uaddr_faulted:
J
Jason Low 已提交
2963
	queue_unlock(hb);
2964

2965
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2966 2967
	if (ret)
		goto out_put_key;
2968

2969
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2970 2971
		goto retry_private;

2972
	put_futex_key(&q.key);
D
Darren Hart 已提交
2973
	goto retry;
2974 2975 2976 2977 2978 2979 2980
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2981
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2982
{
2983
	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2984
	union futex_key key = FUTEX_KEY_INIT;
2985
	struct futex_hash_bucket *hb;
2986
	struct futex_q *top_waiter;
D
Darren Hart 已提交
2987
	int ret;
2988

2989 2990 2991
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

2992 2993 2994 2995 2996 2997
retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2998
	if ((uval & FUTEX_TID_MASK) != vpid)
2999 3000
		return -EPERM;

3001
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3002 3003
	if (ret)
		return ret;
3004 3005 3006 3007 3008

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
3009 3010 3011
	 * Check waiters first. We do not trust user space values at
	 * all and we at least want to know if user space fiddled
	 * with the futex value instead of blindly unlocking.
3012
	 */
3013 3014
	top_waiter = futex_top_waiter(hb, &key);
	if (top_waiter) {
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
		struct futex_pi_state *pi_state = top_waiter->pi_state;

		ret = -EINVAL;
		if (!pi_state)
			goto out_unlock;

		/*
		 * If current does not own the pi_state then the futex is
		 * inconsistent and user space fiddled with the futex value.
		 */
		if (pi_state->owner != current)
			goto out_unlock;

3028
		get_pi_state(pi_state);
3029
		/*
3030 3031 3032 3033
		 * By taking wait_lock while still holding hb->lock, we ensure
		 * there is no point where we hold neither; and therefore
		 * wake_futex_pi() must observe a state consistent with what we
		 * observed.
3034 3035 3036 3037
		 *
		 * In particular; this forces __rt_mutex_start_proxy() to
		 * complete such that we're guaranteed to observe the
		 * rt_waiter. Also see the WARN in wake_futex_pi().
3038
		 */
3039
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3040 3041
		spin_unlock(&hb->lock);

3042
		/* drops pi_state->pi_mutex.wait_lock */
3043 3044 3045 3046 3047 3048
		ret = wake_futex_pi(uaddr, uval, pi_state);

		put_pi_state(pi_state);

		/*
		 * Success, we're done! No tricky corner cases.
3049 3050 3051
		 */
		if (!ret)
			goto out_putkey;
3052
		/*
3053 3054
		 * The atomic access to the futex value generated a
		 * pagefault, so retry the user-access and the wakeup:
3055 3056 3057
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
3058 3059 3060 3061
		/*
		 * A unconditional UNLOCK_PI op raced against a waiter
		 * setting the FUTEX_WAITERS bit. Try again.
		 */
3062 3063
		if (ret == -EAGAIN)
			goto pi_retry;
3064 3065 3066 3067
		/*
		 * wake_futex_pi has detected invalid state. Tell user
		 * space.
		 */
3068
		goto out_putkey;
3069
	}
3070

3071
	/*
3072 3073 3074 3075 3076
	 * We have no kernel internal state, i.e. no waiters in the
	 * kernel. Waiters which are about to queue themselves are stuck
	 * on hb->lock. So we can safely ignore them. We do neither
	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
	 * owner.
3077
	 */
3078
	if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3079
		spin_unlock(&hb->lock);
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
		switch (ret) {
		case -EFAULT:
			goto pi_faulted;

		case -EAGAIN:
			goto pi_retry;

		default:
			WARN_ON_ONCE(1);
			goto out_putkey;
		}
3091
	}
3092

3093 3094 3095 3096 3097
	/*
	 * If uval has changed, let user space handle it.
	 */
	ret = (curval == uval) ? 0 : -EAGAIN;

3098 3099
out_unlock:
	spin_unlock(&hb->lock);
3100
out_putkey:
3101
	put_futex_key(&key);
3102 3103
	return ret;

3104 3105 3106 3107 3108
pi_retry:
	put_futex_key(&key);
	cond_resched();
	goto retry;

3109
pi_faulted:
3110
	put_futex_key(&key);
3111

3112
	ret = fault_in_user_writeable(uaddr);
3113
	if (!ret)
3114 3115
		goto retry;

L
Linus Torvalds 已提交
3116 3117 3118
	return ret;
}

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
3131
 * Return:
3132 3133
 *  -  0 = no early wakeup detected;
 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
3155
		plist_del(&q->list, &hb->chain);
3156
		hb_waiters_dec(hb);
3157

T
Thomas Gleixner 已提交
3158
		/* Handle spurious wakeups gracefully */
3159
		ret = -EWOULDBLOCK;
3160 3161
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
3162
		else if (signal_pending(current))
3163
			ret = -ERESTARTNOINTR;
3164 3165 3166 3167 3168 3169
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3170
 * @uaddr:	the futex we initially wait on (non-pi)
3171
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3172
 *		the same type, no requeueing from private to shared, etc.
3173 3174
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
3175
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
3176 3177 3178
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3179 3180 3181 3182 3183
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
3184 3185
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3186
 * via the following--
3187
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3188 3189 3190
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
3191
 *
3192
 * If 3, cleanup and return -ERESTARTNOINTR.
3193 3194 3195 3196 3197 3198 3199
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
3200
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3201 3202 3203
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
3204
 * Return:
3205 3206
 *  -  0 - On success;
 *  - <0 - On error
3207
 */
3208
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3209
				 u32 val, ktime_t *abs_time, u32 bitset,
3210
				 u32 __user *uaddr2)
3211
{
3212
	struct hrtimer_sleeper timeout, *to;
3213
	struct futex_pi_state *pi_state = NULL;
3214 3215
	struct rt_mutex_waiter rt_waiter;
	struct futex_hash_bucket *hb;
3216 3217
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
3218 3219
	int res, ret;

3220 3221 3222
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

3223 3224 3225
	if (uaddr == uaddr2)
		return -EINVAL;

3226 3227 3228
	if (!bitset)
		return -EINVAL;

3229 3230
	to = futex_setup_timer(abs_time, &timeout, flags,
			       current->timer_slack_ns);
3231 3232 3233 3234 3235

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
3236
	rt_mutex_init_waiter(&rt_waiter);
3237

3238
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3239 3240 3241
	if (unlikely(ret != 0))
		goto out;

3242 3243 3244 3245
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

3246 3247 3248 3249
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
3250
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
3251 3252
	if (ret)
		goto out_key2;
3253

3254 3255 3256 3257 3258
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
3259
		queue_unlock(hb);
3260 3261 3262 3263
		ret = -EINVAL;
		goto out_put_keys;
	}

3264
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
3265
	futex_wait_queue_me(hb, &q, to);
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
3277 3278 3279
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
3290
			ret = fixup_pi_state_owner(uaddr2, &q, current);
3291 3292 3293 3294
			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
				pi_state = q.pi_state;
				get_pi_state(pi_state);
			}
3295 3296 3297 3298
			/*
			 * Drop the reference to the pi state which
			 * the requeue_pi() code acquired for us.
			 */
3299
			put_pi_state(q.pi_state);
3300 3301 3302
			spin_unlock(q.lock_ptr);
		}
	} else {
3303 3304
		struct rt_mutex *pi_mutex;

3305 3306 3307 3308 3309
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
3310
		WARN_ON(!q.pi_state);
3311
		pi_mutex = &q.pi_state->pi_mutex;
3312
		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3313 3314

		spin_lock(q.lock_ptr);
3315 3316 3317 3318
		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
			ret = 0;

		debug_rt_mutex_free_waiter(&rt_waiter);
3319 3320 3321 3322
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
3323
		res = fixup_owner(uaddr2, &q, !ret);
3324 3325
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
3326
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3327 3328 3329 3330
		 */
		if (res)
			ret = (res < 0) ? res : 0;

3331 3332 3333 3334 3335
		/*
		 * If fixup_pi_state_owner() faulted and was unable to handle
		 * the fault, unlock the rt_mutex and return the fault to
		 * userspace.
		 */
3336 3337 3338 3339
		if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
			pi_state = q.pi_state;
			get_pi_state(pi_state);
		}
3340

3341 3342 3343 3344
		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

3345 3346 3347 3348 3349
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

3350
	if (ret == -EINTR) {
3351
		/*
3352 3353 3354 3355 3356
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
3357
		 */
3358
		ret = -EWOULDBLOCK;
3359 3360 3361
	}

out_put_keys:
3362
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
3363
out_key2:
3364
	put_futex_key(&key2);
3365 3366 3367 3368 3369 3370 3371 3372 3373

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

3374 3375 3376 3377 3378 3379 3380
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
3381
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3382 3383 3384 3385 3386 3387 3388 3389
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
3390 3391 3392
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
3393
 */
3394 3395
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
3396
{
3397 3398
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
3411 3412 3413 3414
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3415
 */
3416 3417 3418
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
3419
{
A
Al Viro 已提交
3420
	struct robust_list_head __user *head;
3421
	unsigned long ret;
3422
	struct task_struct *p;
3423

3424 3425 3426
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

3427 3428 3429
	rcu_read_lock();

	ret = -ESRCH;
3430
	if (!pid)
3431
		p = current;
3432
	else {
3433
		p = find_task_by_vpid(pid);
3434 3435 3436 3437
		if (!p)
			goto err_unlock;
	}

3438
	ret = -EPERM;
3439
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3440 3441 3442 3443 3444
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

3445 3446 3447 3448 3449
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
3450
	rcu_read_unlock();
3451 3452 3453 3454 3455 3456 3457 3458

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
3459
static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3460
{
3461
	u32 uval, uninitialized_var(nval), mval;
3462
	int err;
3463

3464 3465 3466 3467
	/* Futex address must be 32bit aligned */
	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
		return -1;

3468 3469
retry:
	if (get_user(uval, uaddr))
3470 3471
		return -1;

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
		return 0;

	/*
	 * Ok, this dying thread is truly holding a futex
	 * of interest. Set the OWNER_DIED bit atomically
	 * via cmpxchg, and if the value had FUTEX_WAITERS
	 * set, wake up a waiter (if any). (We have to do a
	 * futex_wake() even if OWNER_DIED is already set -
	 * to handle the rare but possible case of recursive
	 * thread-death.) The rest of the cleanup is done in
	 * userspace.
	 */
	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;

	/*
	 * We are not holding a lock here, but we want to have
	 * the pagefault_disable/enable() protection because
	 * we want to handle the fault gracefully. If the
	 * access fails we try to fault in the futex with R/W
	 * verification via get_user_pages. get_user() above
	 * does not guarantee R/W access. If that fails we
	 * give up and leave the futex locked.
	 */
	if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
		switch (err) {
		case -EFAULT:
3499 3500 3501
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
3502 3503 3504

		case -EAGAIN:
			cond_resched();
3505
			goto retry;
3506

3507 3508 3509 3510
		default:
			WARN_ON_ONCE(1);
			return err;
		}
3511
	}
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522

	if (nval != uval)
		goto retry;

	/*
	 * Wake robust non-PI futexes here. The wakeup of
	 * PI futexes happens in exit_pi_state():
	 */
	if (!pi && (uval & FUTEX_WAITERS))
		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);

3523 3524 3525
	return 0;
}

3526 3527 3528 3529
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
3530
				     struct robust_list __user * __user *head,
3531
				     unsigned int *pi)
3532 3533 3534
{
	unsigned long uentry;

A
Al Viro 已提交
3535
	if (get_user(uentry, (unsigned long __user *)head))
3536 3537
		return -EFAULT;

A
Al Viro 已提交
3538
	*entry = (void __user *)(uentry & ~1UL);
3539 3540 3541 3542 3543
	*pi = uentry & 1;

	return 0;
}

3544 3545 3546 3547 3548 3549 3550 3551 3552
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
3553
	struct robust_list __user *entry, *next_entry, *pending;
3554 3555
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
3556
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
3557
	int rc;
3558

3559 3560 3561
	if (!futex_cmpxchg_enabled)
		return;

3562 3563 3564 3565
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
3566
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
3577
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3578
		return;
3579

M
Martin Schwidefsky 已提交
3580
	next_entry = NULL;	/* avoid warning with gcc */
3581
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
3582 3583 3584 3585 3586
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3587 3588
		/*
		 * A pending lock might already be on the list, so
3589
		 * don't process it twice:
3590 3591
		 */
		if (entry != pending)
A
Al Viro 已提交
3592
			if (handle_futex_death((void __user *)entry + futex_offset,
3593
						curr, pi))
3594
				return;
M
Martin Schwidefsky 已提交
3595
		if (rc)
3596
			return;
M
Martin Schwidefsky 已提交
3597 3598
		entry = next_entry;
		pi = next_pi;
3599 3600 3601 3602 3603 3604 3605 3606
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
3607 3608 3609 3610

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
3611 3612
}

3613
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3614
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
3615
{
T
Thomas Gleixner 已提交
3616
	int cmd = op & FUTEX_CMD_MASK;
3617
	unsigned int flags = 0;
E
Eric Dumazet 已提交
3618 3619

	if (!(op & FUTEX_PRIVATE_FLAG))
3620
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
3621

3622 3623
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
3624 3625
		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
		    cmd != FUTEX_WAIT_REQUEUE_PI)
3626 3627
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
3628

3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
3639
	switch (cmd) {
L
Linus Torvalds 已提交
3640
	case FUTEX_WAIT:
3641
		val3 = FUTEX_BITSET_MATCH_ANY;
3642
		/* fall through */
3643
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
3644
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
3645
	case FUTEX_WAKE:
3646
		val3 = FUTEX_BITSET_MATCH_ANY;
3647
		/* fall through */
3648
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
3649
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
3650
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
3651
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
3652
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
3653
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3654
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
3655
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3656
	case FUTEX_LOCK_PI:
3657
		return futex_lock_pi(uaddr, flags, timeout, 0);
3658
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
3659
		return futex_unlock_pi(uaddr, flags);
3660
	case FUTEX_TRYLOCK_PI:
3661
		return futex_lock_pi(uaddr, flags, NULL, 1);
3662 3663
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
3664 3665
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
3666
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
3667
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
3668
	}
T
Thomas Gleixner 已提交
3669
	return -ENOSYS;
L
Linus Torvalds 已提交
3670 3671 3672
}


3673
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3674
		struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3675
		u32, val3)
L
Linus Torvalds 已提交
3676
{
3677
	struct timespec64 ts;
3678
	ktime_t t, *tp = NULL;
3679
	u32 val2 = 0;
E
Eric Dumazet 已提交
3680
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
3681

3682
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3683 3684
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3685 3686
		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
			return -EFAULT;
3687
		if (get_timespec64(&ts, utime))
L
Linus Torvalds 已提交
3688
			return -EFAULT;
3689
		if (!timespec64_valid(&ts))
3690
			return -EINVAL;
3691

3692
		t = timespec64_to_ktime(ts);
E
Eric Dumazet 已提交
3693
		if (cmd == FUTEX_WAIT)
3694
			t = ktime_add_safe(ktime_get(), t);
3695
		tp = &t;
L
Linus Torvalds 已提交
3696 3697
	}
	/*
3698
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3699
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
3700
	 */
3701
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3702
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3703
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
3704

3705
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
3706 3707
}

3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
#ifdef CONFIG_COMPAT
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int
compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
		   compat_uptr_t __user *head, unsigned int *pi)
{
	if (get_user(*uentry, head))
		return -EFAULT;

	*entry = compat_ptr((*uentry) & ~1);
	*pi = (unsigned int)(*uentry) & 1;

	return 0;
}

static void __user *futex_uaddr(struct robust_list __user *entry,
				compat_long_t futex_offset)
{
	compat_uptr_t base = ptr_to_compat(entry);
	void __user *uaddr = compat_ptr(base + futex_offset);

	return uaddr;
}

/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void compat_exit_robust_list(struct task_struct *curr)
{
	struct compat_robust_list_head __user *head = curr->compat_robust_list;
	struct robust_list __user *entry, *next_entry, *pending;
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
	compat_uptr_t uentry, next_uentry, upending;
	compat_long_t futex_offset;
	int rc;

	if (!futex_cmpxchg_enabled)
		return;

	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
	if (compat_fetch_robust_entry(&upending, &pending,
			       &head->list_op_pending, &pip))
		return;

	next_entry = NULL;	/* avoid warning with gcc */
	while (entry != (struct robust_list __user *) &head->list) {
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
			(compat_uptr_t __user *)&entry->next, &next_pi);
		/*
		 * A pending lock might already be on the list, so
		 * dont process it twice:
		 */
		if (entry != pending) {
			void __user *uaddr = futex_uaddr(entry, futex_offset);

			if (handle_futex_death(uaddr, curr, pi))
				return;
		}
		if (rc)
			return;
		uentry = next_uentry;
		entry = next_entry;
		pi = next_pi;
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
	if (pending) {
		void __user *uaddr = futex_uaddr(pending, futex_offset);

		handle_futex_death(uaddr, curr, pip);
	}
}

COMPAT_SYSCALL_DEFINE2(set_robust_list,
		struct compat_robust_list_head __user *, head,
		compat_size_t, len)
{
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->compat_robust_list = head;

	return 0;
}

COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
			compat_uptr_t __user *, head_ptr,
			compat_size_t __user *, len_ptr)
{
	struct compat_robust_list_head __user *head;
	unsigned long ret;
	struct task_struct *p;

	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

	rcu_read_lock();

	ret = -ESRCH;
	if (!pid)
		p = current;
	else {
		p = find_task_by_vpid(pid);
		if (!p)
			goto err_unlock;
	}

	ret = -EPERM;
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
		goto err_unlock;

	head = p->compat_robust_list;
	rcu_read_unlock();

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(ptr_to_compat(head), head_ptr);

err_unlock:
	rcu_read_unlock();

	return ret;
}
3863
#endif /* CONFIG_COMPAT */
3864

3865
#ifdef CONFIG_COMPAT_32BIT_TIME
3866
SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3867 3868 3869
		struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
		u32, val3)
{
3870
	struct timespec64 ts;
3871 3872 3873 3874 3875 3876 3877
	ktime_t t, *tp = NULL;
	int val2 = 0;
	int cmd = op & FUTEX_CMD_MASK;

	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3878
		if (get_old_timespec32(&ts, utime))
3879
			return -EFAULT;
3880
		if (!timespec64_valid(&ts))
3881 3882
			return -EINVAL;

3883
		t = timespec64_to_ktime(ts);
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
		if (cmd == FUTEX_WAIT)
			t = ktime_add_safe(ktime_get(), t);
		tp = &t;
	}
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
		val2 = (int) (unsigned long) utime;

	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
}
3894
#endif /* CONFIG_COMPAT_32BIT_TIME */
3895

3896
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
3897
{
3898
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3899
	u32 curval;
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
3918
	unsigned int futex_shift;
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
3930 3931 3932
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
3933 3934

	futex_detect_cmpxchg();
3935

3936
	for (i = 0; i < futex_hashsize; i++) {
3937
		atomic_set(&futex_queues[i].waiters, 0);
3938
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
3939 3940 3941
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
3942 3943
	return 0;
}
3944
core_initcall(futex_init);