futex.c 97.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/export.h>
59
#include <linux/magic.h>
60 61
#include <linux/pid.h>
#include <linux/nsproxy.h>
62
#include <linux/ptrace.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/wake_q.h>
65
#include <linux/sched/mm.h>
66
#include <linux/hugetlb.h>
C
Colin Cross 已提交
67
#include <linux/freezer.h>
M
Mike Rapoport 已提交
68
#include <linux/memblock.h>
69
#include <linux/fault-inject.h>
70

71
#include <asm/futex.h>
L
Linus Torvalds 已提交
72

73
#include "locking/rtmutex_common.h"
74

75
/*
76 77 78 79
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
80 81 82 83
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
84 85 86
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
87 88
 *
 * The waker side modifies the user space value of the futex and calls
89 90 91
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
92
 *
93 94 95 96 97
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
119 120 121 122 123
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
124 125 126
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
127
 *
128
 *   waiters++; (a)
129 130 131 132 133 134 135 136 137 138
 *   smp_mb(); (A) <-- paired with -.
 *                                  |
 *   lock(hash_bucket(futex));      |
 *                                  |
 *   uval = *futex;                 |
 *                                  |        *futex = newval;
 *                                  |        sys_futex(WAKE, futex);
 *                                  |          futex_wake(futex);
 *                                  |
 *                                  `--------> smp_mb(); (B)
139
 *   if (uval == val)
140
 *     queue();
141
 *     unlock(hash_bucket(futex));
142 143
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
144 145
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
146
 *
147 148
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 150
 * to futex and the waiters read -- this is done by the barriers for both
 * shared and private futexes in get_futex_key_refs().
151 152 153 154 155 156 157 158 159 160 161 162
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
163 164 165 166 167 168 169 170 171 172 173
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
174 175
 */

176
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177
int __read_mostly futex_cmpxchg_enabled;
178
#endif
179

180 181 182 183
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
184 185 186 187 188 189 190 191 192
#ifdef CONFIG_MMU
# define FLAGS_SHARED		0x01
#else
/*
 * NOMMU does not have per process address space. Let the compiler optimize
 * code away.
 */
# define FLAGS_SHARED		0x00
#endif
193 194 195
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
215
} __randomize_layout;
216

217 218
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
219
 * @list:		priority-sorted list of tasks waiting on this futex
220 221 222 223 224 225 226 227
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
228
 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
L
Linus Torvalds 已提交
229 230 231
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
232
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233
 * The order of wakeup is always to make the first condition true, then
234 235 236 237
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
238 239
 */
struct futex_q {
P
Pierre Peiffer 已提交
240
	struct plist_node list;
L
Linus Torvalds 已提交
241

242
	struct task_struct *task;
L
Linus Torvalds 已提交
243 244
	spinlock_t *lock_ptr;
	union futex_key key;
245
	struct futex_pi_state *pi_state;
246
	struct rt_mutex_waiter *rt_waiter;
247
	union futex_key *requeue_pi_key;
248
	u32 bitset;
249
} __randomize_layout;
L
Linus Torvalds 已提交
250

251 252 253 254 255 256
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
257
/*
D
Darren Hart 已提交
258 259 260
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
261 262
 */
struct futex_hash_bucket {
263
	atomic_t waiters;
P
Pierre Peiffer 已提交
264 265
	spinlock_t lock;
	struct plist_head chain;
266
} ____cacheline_aligned_in_smp;
L
Linus Torvalds 已提交
267

268 269 270 271 272 273 274 275 276 277 278
/*
 * The base of the bucket array and its size are always used together
 * (after initialization only in hash_futex()), so ensure that they
 * reside in the same cacheline.
 */
static struct {
	struct futex_hash_bucket *queues;
	unsigned long            hashsize;
} __futex_data __read_mostly __aligned(2*sizeof(long));
#define futex_queues   (__futex_data.queues)
#define futex_hashsize (__futex_data.hashsize)
279

L
Linus Torvalds 已提交
280

281 282 283 284 285 286 287 288
/*
 * Fault injections for futexes.
 */
#ifdef CONFIG_FAIL_FUTEX

static struct {
	struct fault_attr attr;

289
	bool ignore_private;
290 291
} fail_futex = {
	.attr = FAULT_ATTR_INITIALIZER,
292
	.ignore_private = false,
293 294 295 296 297 298 299 300
};

static int __init setup_fail_futex(char *str)
{
	return setup_fault_attr(&fail_futex.attr, str);
}
__setup("fail_futex=", setup_fail_futex);

301
static bool should_fail_futex(bool fshared)
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
{
	if (fail_futex.ignore_private && !fshared)
		return false;

	return should_fail(&fail_futex.attr, 1);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_futex_debugfs(void)
{
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;

	dir = fault_create_debugfs_attr("fail_futex", NULL,
					&fail_futex.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);

	if (!debugfs_create_bool("ignore-private", mode, dir,
				 &fail_futex.ignore_private)) {
		debugfs_remove_recursive(dir);
		return -ENOMEM;
	}

	return 0;
}

late_initcall(fail_futex_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else
static inline bool should_fail_futex(bool fshared)
{
	return false;
}
#endif /* CONFIG_FAIL_FUTEX */

341 342
static inline void futex_get_mm(union futex_key *key)
{
V
Vegard Nossum 已提交
343
	mmgrab(key->private.mm);
344 345 346
	/*
	 * Ensure futex_get_mm() implies a full barrier such that
	 * get_futex_key() implies a full barrier. This is relied upon
347
	 * as smp_mb(); (B), see the ordering comment above.
348
	 */
349
	smp_mb__after_atomic();
350 351
}

352 353 354 355
/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 357
{
#ifdef CONFIG_SMP
358
	atomic_inc(&hb->waiters);
359
	/*
360
	 * Full barrier (A), see the ordering comment above.
361
	 */
362
	smp_mb__after_atomic();
363 364 365 366 367 368 369 370 371 372 373 374 375
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}
376

377 378 379 380
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	return atomic_read(&hb->waiters);
381
#else
382
	return 1;
383 384 385
#endif
}

386 387 388 389 390 391
/**
 * hash_futex - Return the hash bucket in the global hash
 * @key:	Pointer to the futex key for which the hash is calculated
 *
 * We hash on the keys returned from get_futex_key (see below) and return the
 * corresponding hash bucket in the global hash.
L
Linus Torvalds 已提交
392 393 394 395 396 397
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
398
	return &futex_queues[hash & (futex_hashsize - 1)];
L
Linus Torvalds 已提交
399 400
}

401 402 403 404 405 406

/**
 * match_futex - Check whether two futex keys are equal
 * @key1:	Pointer to key1
 * @key2:	Pointer to key2
 *
L
Linus Torvalds 已提交
407 408 409 410
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
411 412
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
413 414 415 416
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

417 418 419 420 421 422 423 424 425 426
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

427 428 429 430 431 432 433 434 435 436
	/*
	 * On MMU less systems futexes are always "private" as there is no per
	 * process address space. We need the smp wmb nevertheless - yes,
	 * arch/blackfin has MMU less SMP ...
	 */
	if (!IS_ENABLED(CONFIG_MMU)) {
		smp_mb(); /* explicit smp_mb(); (B) */
		return;
	}

437 438
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
439
		ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 441
		break;
	case FUT_OFF_MMSHARED:
442
		futex_get_mm(key); /* implies smp_mb(); (B) */
443
		break;
444
	default:
445 446 447 448 449
		/*
		 * Private futexes do not hold reference on an inode or
		 * mm, therefore the only purpose of calling get_futex_key_refs
		 * is because we need the barrier for the lockless waiter check.
		 */
450
		smp_mb(); /* explicit smp_mb(); (B) */
451 452 453 454 455
	}
}

/*
 * Drop a reference to the resource addressed by a key.
456 457 458
 * The hash bucket spinlock must not be held. This is
 * a no-op for private futexes, see comment in the get
 * counterpart.
459 460 461
 */
static void drop_futex_key_refs(union futex_key *key)
{
462 463 464
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
465
		return;
466
	}
467

468 469 470
	if (!IS_ENABLED(CONFIG_MMU))
		return;

471 472 473 474 475 476 477 478 479 480
	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
481
/**
482 483 484 485
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
486 487
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 *              VERIFY_WRITE)
E
Eric Dumazet 已提交
488
 *
489 490
 * Return: a negative error code or 0
 *
491
 * The key words are stored in @key on success.
L
Linus Torvalds 已提交
492
 *
A
Al Viro 已提交
493
 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
L
Linus Torvalds 已提交
494 495 496
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
497
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
498
 */
499
static int
500
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
L
Linus Torvalds 已提交
501
{
502
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
503
	struct mm_struct *mm = current->mm;
504
	struct page *page, *tail;
505
	struct address_space *mapping;
506
	int err, ro = 0;
L
Linus Torvalds 已提交
507 508 509 510

	/*
	 * The futex address must be "naturally" aligned.
	 */
511
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
512
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
513
		return -EINVAL;
514
	address -= key->both.offset;
L
Linus Torvalds 已提交
515

516 517 518
	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
		return -EFAULT;

519 520 521
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

E
Eric Dumazet 已提交
522 523 524 525 526 527 528 529 530 531
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
532
		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
E
Eric Dumazet 已提交
533 534
		return 0;
	}
L
Linus Torvalds 已提交
535

536
again:
537 538 539 540
	/* Ignore any VERIFY_READ mapping (futex common case) */
	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

541
	err = get_user_pages_fast(address, 1, 1, &page);
542 543 544 545 546 547 548 549
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
	if (err == -EFAULT && rw == VERIFY_READ) {
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
550 551
	if (err < 0)
		return err;
552 553
	else
		err = 0;
554

555 556 557 558 559 560 561 562 563 564
	/*
	 * The treatment of mapping from this point on is critical. The page
	 * lock protects many things but in this context the page lock
	 * stabilizes mapping, prevents inode freeing in the shared
	 * file-backed region case and guards against movement to swap cache.
	 *
	 * Strictly speaking the page lock is not needed in all cases being
	 * considered here and page lock forces unnecessarily serialization
	 * From this point on, mapping will be re-verified if necessary and
	 * page lock will be acquired only if it is unavoidable
565 566 567 568 569 570 571
	 *
	 * Mapping checks require the head page for any compound page so the
	 * head page and mapping is looked up now. For anonymous pages, it
	 * does not matter if the page splits in the future as the key is
	 * based on the address. For filesystem-backed pages, the tail is
	 * required as the index of the page determines the key. For
	 * base pages, there is no tail page and tail == page.
572
	 */
573
	tail = page;
574 575 576
	page = compound_head(page);
	mapping = READ_ONCE(page->mapping);

577
	/*
578
	 * If page->mapping is NULL, then it cannot be a PageAnon
579 580 581 582 583 584 585 586 587 588 589
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
590
	 * an unlikely race, but we do need to retry for page->mapping.
591
	 */
592 593 594 595 596 597 598 599 600 601
	if (unlikely(!mapping)) {
		int shmem_swizzled;

		/*
		 * Page lock is required to identify which special case above
		 * applies. If this is really a shmem page then the page lock
		 * will prevent unexpected transitions.
		 */
		lock_page(page);
		shmem_swizzled = PageSwapCache(page) || page->mapping;
602 603
		unlock_page(page);
		put_page(page);
604

605 606
		if (shmem_swizzled)
			goto again;
607

608
		return -EFAULT;
609
	}
L
Linus Torvalds 已提交
610 611 612 613

	/*
	 * Private mappings are handled in a simple way.
	 *
614 615 616
	 * If the futex key is stored on an anonymous page, then the associated
	 * object is the mm which is implicitly pinned by the calling process.
	 *
L
Linus Torvalds 已提交
617 618
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
619
	 * the object not the particular process.
L
Linus Torvalds 已提交
620
	 */
621
	if (PageAnon(page)) {
622 623 624 625
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
626
		if (unlikely(should_fail_futex(fshared)) || ro) {
627 628 629 630
			err = -EFAULT;
			goto out;
		}

631
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
632
		key->private.mm = mm;
633
		key->private.address = address;
634 635 636

		get_futex_key_refs(key); /* implies smp_mb(); (B) */

637
	} else {
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
		struct inode *inode;

		/*
		 * The associated futex object in this case is the inode and
		 * the page->mapping must be traversed. Ordinarily this should
		 * be stabilised under page lock but it's not strictly
		 * necessary in this case as we just want to pin the inode, not
		 * update the radix tree or anything like that.
		 *
		 * The RCU read lock is taken as the inode is finally freed
		 * under RCU. If the mapping still matches expectations then the
		 * mapping->host can be safely accessed as being a valid inode.
		 */
		rcu_read_lock();

		if (READ_ONCE(page->mapping) != mapping) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		inode = READ_ONCE(mapping->host);
		if (!inode) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/*
		 * Take a reference unless it is about to be freed. Previously
		 * this reference was taken by ihold under the page lock
		 * pinning the inode in place so i_lock was unnecessary. The
		 * only way for this check to fail is if the inode was
673 674
		 * truncated in parallel which is almost certainly an
		 * application bug. In such a case, just retry.
675 676 677 678 679
		 *
		 * We are not calling into get_futex_key_refs() in file-backed
		 * cases, therefore a successful atomic_inc return below will
		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
		 */
680
		if (!atomic_inc_not_zero(&inode->i_count)) {
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		/* Should be impossible but lets be paranoid for now */
		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
			err = -EFAULT;
			rcu_read_unlock();
			iput(inode);

			goto out;
		}

696
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697
		key->shared.inode = inode;
698
		key->shared.pgoff = basepage_index(tail);
699
		rcu_read_unlock();
L
Linus Torvalds 已提交
700 701
	}

702
out:
703
	put_page(page);
704
	return err;
L
Linus Torvalds 已提交
705 706
}

707
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
708
{
709
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
710 711
}

712 713
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
714 715 716 717 718
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
719
 * We have no generic implementation of a non-destructive write to the
720 721 722 723 724 725
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
726 727 728 729
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
730
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731
			       FAULT_FLAG_WRITE, NULL);
732 733
	up_read(&mm->mmap_sem);

734 735 736
	return ret < 0 ? ret : 0;
}

737 738
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
739 740
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

756 757
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
758
{
759
	int ret;
T
Thomas Gleixner 已提交
760 761

	pagefault_disable();
762
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
763 764
	pagefault_enable();

765
	return ret;
T
Thomas Gleixner 已提交
766 767 768
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
769 770 771
{
	int ret;

772
	pagefault_disable();
773
	ret = __get_user(*dest, from);
774
	pagefault_enable();
L
Linus Torvalds 已提交
775 776 777 778

	return ret ? -EFAULT : 0;
}

779 780 781 782 783 784 785 786 787 788 789

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

790
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
791 792 793 794 795 796 797 798

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
799
	pi_state->key = FUTEX_KEY_INIT;
800 801 802 803 804 805

	current->pi_state_cache = pi_state;

	return 0;
}

P
Peter Zijlstra 已提交
806
static struct futex_pi_state *alloc_pi_state(void)
807 808 809 810 811 812 813 814 815
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

P
Peter Zijlstra 已提交
816 817 818 819 820
static void get_pi_state(struct futex_pi_state *pi_state)
{
	WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
}

821
/*
822 823
 * Drops a reference to the pi_state object and frees or caches it
 * when the last reference is gone.
824
 */
825
static void put_pi_state(struct futex_pi_state *pi_state)
826
{
827 828 829
	if (!pi_state)
		return;

830 831 832 833 834 835 836 837
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
838
		struct task_struct *owner;
839

840 841 842 843 844 845 846 847 848
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
		owner = pi_state->owner;
		if (owner) {
			raw_spin_lock(&owner->pi_lock);
			list_del_init(&pi_state->list);
			raw_spin_unlock(&owner->pi_lock);
		}
		rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
849 850
	}

851
	if (current->pi_state_cache) {
852
		kfree(pi_state);
853
	} else {
854 855 856 857 858 859 860 861 862 863 864
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

865 866
#ifdef CONFIG_FUTEX_PI

867 868 869 870 871 872 873 874 875
/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
876
	struct futex_hash_bucket *hb;
877
	union futex_key key = FUTEX_KEY_INIT;
878

879 880
	if (!futex_cmpxchg_enabled)
		return;
881 882 883
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
884
	 * versus waiters unqueueing themselves:
885
	 */
886
	raw_spin_lock_irq(&curr->pi_lock);
887 888 889 890
	while (!list_empty(head)) {
		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
891
		hb = hash_futex(&key);
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908

		/*
		 * We can race against put_pi_state() removing itself from the
		 * list (a waiter going away). put_pi_state() will first
		 * decrement the reference count and then modify the list, so
		 * its possible to see the list entry but fail this reference
		 * acquire.
		 *
		 * In that case; drop the locks to let put_pi_state() make
		 * progress and retry the loop.
		 */
		if (!atomic_inc_not_zero(&pi_state->refcount)) {
			raw_spin_unlock_irq(&curr->pi_lock);
			cpu_relax();
			raw_spin_lock_irq(&curr->pi_lock);
			continue;
		}
909
		raw_spin_unlock_irq(&curr->pi_lock);
910 911

		spin_lock(&hb->lock);
912 913
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
		raw_spin_lock(&curr->pi_lock);
914 915 916 917
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
918
		if (head->next != next) {
919
			/* retain curr->pi_lock for the loop invariant */
920
			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
921
			spin_unlock(&hb->lock);
922
			put_pi_state(pi_state);
923 924 925 926
			continue;
		}

		WARN_ON(pi_state->owner != curr);
927 928
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
929 930
		pi_state->owner = NULL;

931
		raw_spin_unlock(&curr->pi_lock);
932
		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
933 934
		spin_unlock(&hb->lock);

935 936 937
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);

938
		raw_spin_lock_irq(&curr->pi_lock);
939
	}
940
	raw_spin_unlock_irq(&curr->pi_lock);
941 942
}

943 944
#endif

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync.
P
Peter Zijlstra 已提交
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
 *
 *
 * Serialization and lifetime rules:
 *
 * hb->lock:
 *
 *	hb -> futex_q, relation
 *	futex_q -> pi_state, relation
 *
 *	(cannot be raw because hb can contain arbitrary amount
 *	 of futex_q's)
 *
 * pi_mutex->wait_lock:
 *
 *	{uval, pi_state}
 *
 *	(and pi_mutex 'obviously')
 *
 * p->pi_lock:
 *
 *	p->pi_state_list -> pi_state->list, relation
 *
 * pi_state->refcount:
 *
 *	pi_state lifetime
 *
 *
 * Lock order:
 *
 *   hb->lock
 *     pi_mutex->wait_lock
 *       p->pi_lock
 *
1026
 */
1027 1028 1029 1030 1031 1032

/*
 * Validate that the existing waiter has a pi_state and sanity check
 * the pi_state against the user space value. If correct, attach to
 * it.
 */
P
Peter Zijlstra 已提交
1033 1034
static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
			      struct futex_pi_state *pi_state,
1035
			      struct futex_pi_state **ps)
1036
{
1037
	pid_t pid = uval & FUTEX_TID_MASK;
1038 1039
	u32 uval2;
	int ret;
1040

1041 1042 1043 1044 1045
	/*
	 * Userspace might have messed up non-PI and PI futexes [3]
	 */
	if (unlikely(!pi_state))
		return -EINVAL;
1046

P
Peter Zijlstra 已提交
1047 1048 1049 1050 1051 1052
	/*
	 * We get here with hb->lock held, and having found a
	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
	 * which in turn means that futex_lock_pi() still has a reference on
	 * our pi_state.
1053 1054 1055 1056 1057
	 *
	 * The waiter holding a reference on @pi_state also protects against
	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
	 * free pi_state before we can take a reference ourselves.
P
Peter Zijlstra 已提交
1058
	 */
1059
	WARN_ON(!atomic_read(&pi_state->refcount));
1060

P
Peter Zijlstra 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	/*
	 * Now that we have a pi_state, we can acquire wait_lock
	 * and do the state validation.
	 */
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	/*
	 * Since {uval, pi_state} is serialized by wait_lock, and our current
	 * uval was read without holding it, it can have changed. Verify it
	 * still is what we expect it to be, otherwise retry the entire
	 * operation.
	 */
	if (get_futex_value_locked(&uval2, uaddr))
		goto out_efault;

	if (uval != uval2)
		goto out_eagain;

1079 1080 1081 1082
	/*
	 * Handle the owner died case:
	 */
	if (uval & FUTEX_OWNER_DIED) {
1083
		/*
1084 1085 1086
		 * exit_pi_state_list sets owner to NULL and wakes the
		 * topmost waiter. The task which acquires the
		 * pi_state->rt_mutex will fixup owner.
1087
		 */
1088
		if (!pi_state->owner) {
1089
			/*
1090 1091
			 * No pi state owner, but the user space TID
			 * is not 0. Inconsistent state. [5]
1092
			 */
1093
			if (pid)
P
Peter Zijlstra 已提交
1094
				goto out_einval;
1095
			/*
1096
			 * Take a ref on the state and return success. [4]
1097
			 */
P
Peter Zijlstra 已提交
1098
			goto out_attach;
1099
		}
1100 1101

		/*
1102 1103 1104 1105 1106 1107 1108 1109
		 * If TID is 0, then either the dying owner has not
		 * yet executed exit_pi_state_list() or some waiter
		 * acquired the rtmutex in the pi state, but did not
		 * yet fixup the TID in user space.
		 *
		 * Take a ref on the state and return success. [6]
		 */
		if (!pid)
P
Peter Zijlstra 已提交
1110
			goto out_attach;
1111 1112 1113 1114
	} else {
		/*
		 * If the owner died bit is not set, then the pi_state
		 * must have an owner. [7]
1115
		 */
1116
		if (!pi_state->owner)
P
Peter Zijlstra 已提交
1117
			goto out_einval;
1118 1119
	}

1120 1121 1122 1123 1124 1125
	/*
	 * Bail out if user space manipulated the futex value. If pi
	 * state exists then the owner TID must be the same as the
	 * user space TID. [9/10]
	 */
	if (pid != task_pid_vnr(pi_state->owner))
P
Peter Zijlstra 已提交
1126 1127 1128
		goto out_einval;

out_attach:
P
Peter Zijlstra 已提交
1129
	get_pi_state(pi_state);
P
Peter Zijlstra 已提交
1130
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1131 1132
	*ps = pi_state;
	return 0;
P
Peter Zijlstra 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

out_einval:
	ret = -EINVAL;
	goto out_error;

out_eagain:
	ret = -EAGAIN;
	goto out_error;

out_efault:
	ret = -EFAULT;
	goto out_error;

out_error:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
1149 1150
}

1151 1152 1153 1154 1155 1156
/*
 * Lookup the task for the TID provided from user space and attach to
 * it after doing proper sanity checks.
 */
static int attach_to_pi_owner(u32 uval, union futex_key *key,
			      struct futex_pi_state **ps)
1157 1158
{
	pid_t pid = uval & FUTEX_TID_MASK;
1159 1160
	struct futex_pi_state *pi_state;
	struct task_struct *p;
1161

1162
	/*
1163
	 * We are the first waiter - try to look up the real owner and attach
1164
	 * the new pi_state to it, but bail out when TID = 0 [1]
1165
	 */
1166
	if (!pid)
1167
		return -ESRCH;
1168
	p = find_get_task_by_vpid(pid);
1169 1170
	if (!p)
		return -ESRCH;
1171

1172
	if (unlikely(p->flags & PF_KTHREAD)) {
1173 1174 1175 1176
		put_task_struct(p);
		return -EPERM;
	}

1177 1178 1179 1180 1181 1182
	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
1183
	raw_spin_lock_irq(&p->pi_lock);
1184 1185 1186 1187 1188 1189 1190 1191
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

1192
		raw_spin_unlock_irq(&p->pi_lock);
1193 1194 1195
		put_task_struct(p);
		return ret;
	}
1196

1197 1198
	/*
	 * No existing pi state. First waiter. [2]
P
Peter Zijlstra 已提交
1199 1200 1201
	 *
	 * This creates pi_state, we have hb->lock held, this means nothing can
	 * observe this state, wait_lock is irrelevant.
1202
	 */
1203 1204 1205
	pi_state = alloc_pi_state();

	/*
1206
	 * Initialize the pi_mutex in locked state and make @p
1207 1208 1209 1210 1211
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
1212
	pi_state->key = *key;
1213

1214
	WARN_ON(!list_empty(&pi_state->list));
1215
	list_add(&pi_state->list, &p->pi_state_list);
1216 1217 1218 1219
	/*
	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
	 * because there is no concurrency as the object is not published yet.
	 */
1220
	pi_state->owner = p;
1221
	raw_spin_unlock_irq(&p->pi_lock);
1222 1223 1224

	put_task_struct(p);

P
Pierre Peiffer 已提交
1225
	*ps = pi_state;
1226 1227 1228 1229

	return 0;
}

P
Peter Zijlstra 已提交
1230 1231
static int lookup_pi_state(u32 __user *uaddr, u32 uval,
			   struct futex_hash_bucket *hb,
1232 1233
			   union futex_key *key, struct futex_pi_state **ps)
{
1234
	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1235 1236 1237 1238 1239

	/*
	 * If there is a waiter on that futex, validate it and
	 * attach to the pi_state when the validation succeeds.
	 */
1240
	if (top_waiter)
P
Peter Zijlstra 已提交
1241
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1242 1243 1244 1245 1246 1247 1248 1249

	/*
	 * We are the first waiter - try to look up the owner based on
	 * @uval and attach to it.
	 */
	return attach_to_pi_owner(uval, key, ps);
}

1250 1251 1252 1253
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
	u32 uninitialized_var(curval);

1254 1255 1256
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1257 1258 1259
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
		return -EFAULT;

P
Peter Zijlstra 已提交
1260
	/* If user space value changed, let the caller retry */
1261 1262 1263
	return curval != uval ? -EAGAIN : 0;
}

1264
/**
1265
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1266 1267 1268 1269 1270 1271 1272 1273
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1274
 *
1275
 * Return:
1276 1277 1278
 *  -  0 - ready to wait;
 *  -  1 - acquired the lock;
 *  - <0 - error
1279 1280 1281 1282 1283 1284
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
1285
				struct task_struct *task, int set_waiters)
1286
{
1287
	u32 uval, newval, vpid = task_pid_vnr(task);
1288
	struct futex_q *top_waiter;
1289
	int ret;
1290 1291

	/*
1292 1293
	 * Read the user space value first so we can validate a few
	 * things before proceeding further.
1294
	 */
1295
	if (get_futex_value_locked(&uval, uaddr))
1296 1297
		return -EFAULT;

1298 1299 1300
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1301 1302 1303
	/*
	 * Detect deadlocks.
	 */
1304
	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1305 1306
		return -EDEADLK;

1307 1308 1309
	if ((unlikely(should_fail_futex(true))))
		return -EDEADLK;

1310
	/*
1311 1312
	 * Lookup existing state first. If it exists, try to attach to
	 * its pi_state.
1313
	 */
1314 1315
	top_waiter = futex_top_waiter(hb, key);
	if (top_waiter)
P
Peter Zijlstra 已提交
1316
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1317 1318

	/*
1319 1320 1321 1322
	 * No waiter and user TID is 0. We are here because the
	 * waiters or the owner died bit is set or called from
	 * requeue_cmp_pi or for whatever reason something took the
	 * syscall.
1323
	 */
1324
	if (!(uval & FUTEX_TID_MASK)) {
1325
		/*
1326 1327
		 * We take over the futex. No other waiters and the user space
		 * TID is 0. We preserve the owner died bit.
1328
		 */
1329 1330
		newval = uval & FUTEX_OWNER_DIED;
		newval |= vpid;
1331

1332 1333 1334 1335 1336 1337 1338 1339
		/* The futex requeue_pi code can enforce the waiters bit */
		if (set_waiters)
			newval |= FUTEX_WAITERS;

		ret = lock_pi_update_atomic(uaddr, uval, newval);
		/* If the take over worked, return 1 */
		return ret < 0 ? ret : 1;
	}
1340 1341

	/*
1342 1343 1344
	 * First waiter. Set the waiters bit before attaching ourself to
	 * the owner. If owner tries to unlock, it will be forced into
	 * the kernel and blocked on hb->lock.
1345
	 */
1346 1347 1348 1349
	newval = uval | FUTEX_WAITERS;
	ret = lock_pi_update_atomic(uaddr, uval, newval);
	if (ret)
		return ret;
1350
	/*
1351 1352 1353
	 * If the update of the user space value succeeded, we try to
	 * attach to the owner. If that fails, no harm done, we only
	 * set the FUTEX_WAITERS bit in the user space variable.
1354
	 */
1355
	return attach_to_pi_owner(uval, key, ps);
1356 1357
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

1368
	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1369
		return;
1370
	lockdep_assert_held(q->lock_ptr);
1371 1372 1373

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
1374
	hb_waiters_dec(hb);
1375 1376
}

L
Linus Torvalds 已提交
1377 1378
/*
 * The hash bucket lock must be held when this is called.
1379 1380 1381
 * Afterwards, the futex_q must not be accessed. Callers
 * must ensure to later call wake_up_q() for the actual
 * wakeups to occur.
L
Linus Torvalds 已提交
1382
 */
1383
static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
L
Linus Torvalds 已提交
1384
{
T
Thomas Gleixner 已提交
1385 1386
	struct task_struct *p = q->task;

1387 1388 1389
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

L
Linus Torvalds 已提交
1390
	/*
1391 1392
	 * Queue the task for later wakeup for after we've released
	 * the hb->lock. wake_q_add() grabs reference to p.
L
Linus Torvalds 已提交
1393
	 */
1394
	wake_q_add(wake_q, p);
1395
	__unqueue_futex(q);
L
Linus Torvalds 已提交
1396
	/*
1397 1398 1399 1400 1401
	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
	 * is written, without taking any locks. This is possible in the event
	 * of a spurious wakeup, for example. A memory barrier is required here
	 * to prevent the following store to lock_ptr from getting ahead of the
	 * plist_del in __unqueue_futex().
L
Linus Torvalds 已提交
1402
	 */
1403
	smp_store_release(&q->lock_ptr, NULL);
L
Linus Torvalds 已提交
1404 1405
}

1406 1407 1408 1409
/*
 * Caller must hold a reference on @pi_state.
 */
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1410
{
1411
	u32 uninitialized_var(curval), newval;
1412
	struct task_struct *new_owner;
P
Peter Zijlstra 已提交
1413
	bool postunlock = false;
1414
	DEFINE_WAKE_Q(wake_q);
1415
	int ret = 0;
1416 1417

	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1418
	if (WARN_ON_ONCE(!new_owner)) {
1419
		/*
1420
		 * As per the comment in futex_unlock_pi() this should not happen.
1421 1422 1423 1424 1425 1426 1427 1428
		 *
		 * When this happens, give up our locks and try again, giving
		 * the futex_lock_pi() instance time to complete, either by
		 * waiting on the rtmutex or removing itself from the futex
		 * queue.
		 */
		ret = -EAGAIN;
		goto out_unlock;
1429
	}
1430 1431

	/*
1432 1433 1434
	 * We pass it to the next owner. The WAITERS bit is always kept
	 * enabled while there is PI state around. We cleanup the owner
	 * died bit, because we are the owner.
1435
	 */
1436
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1437

1438 1439 1440
	if (unlikely(should_fail_futex(true)))
		ret = -EFAULT;

1441
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1442
		ret = -EFAULT;
P
Peter Zijlstra 已提交
1443

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	} else if (curval != uval) {
		/*
		 * If a unconditional UNLOCK_PI operation (user space did not
		 * try the TID->0 transition) raced with a waiter setting the
		 * FUTEX_WAITERS flag between get_user() and locking the hash
		 * bucket lock, retry the operation.
		 */
		if ((FUTEX_TID_MASK & curval) == uval)
			ret = -EAGAIN;
		else
			ret = -EINVAL;
	}
P
Peter Zijlstra 已提交
1456

1457 1458
	if (ret)
		goto out_unlock;
1459

1460 1461 1462 1463 1464
	/*
	 * This is a point of no return; once we modify the uval there is no
	 * going back and subsequent operations must not fail.
	 */

1465
	raw_spin_lock(&pi_state->owner->pi_lock);
1466 1467
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1468
	raw_spin_unlock(&pi_state->owner->pi_lock);
1469

1470
	raw_spin_lock(&new_owner->pi_lock);
1471
	WARN_ON(!list_empty(&pi_state->list));
1472 1473
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1474
	raw_spin_unlock(&new_owner->pi_lock);
1475

P
Peter Zijlstra 已提交
1476
	postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1477

1478
out_unlock:
1479 1480
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

P
Peter Zijlstra 已提交
1481 1482
	if (postunlock)
		rt_mutex_postunlock(&wake_q);
1483

1484
	return ret;
1485 1486
}

I
Ingo Molnar 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
1503 1504 1505
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1506
	spin_unlock(&hb1->lock);
1507 1508
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
1509 1510
}

L
Linus Torvalds 已提交
1511
/*
D
Darren Hart 已提交
1512
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
1513
 */
1514 1515
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
1516
{
1517
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1518
	struct futex_q *this, *next;
1519
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
1520
	int ret;
1521
	DEFINE_WAKE_Q(wake_q);
L
Linus Torvalds 已提交
1522

1523 1524 1525
	if (!bitset)
		return -EINVAL;

1526
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
L
Linus Torvalds 已提交
1527 1528 1529
	if (unlikely(ret != 0))
		goto out;

1530
	hb = hash_futex(&key);
1531 1532 1533 1534 1535

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		goto out_put_key;

1536
	spin_lock(&hb->lock);
L
Linus Torvalds 已提交
1537

J
Jason Low 已提交
1538
	plist_for_each_entry_safe(this, next, &hb->chain, list) {
L
Linus Torvalds 已提交
1539
		if (match_futex (&this->key, &key)) {
1540
			if (this->pi_state || this->rt_waiter) {
1541 1542 1543
				ret = -EINVAL;
				break;
			}
1544 1545 1546 1547 1548

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

1549
			mark_wake_futex(&wake_q, this);
L
Linus Torvalds 已提交
1550 1551 1552 1553 1554
			if (++ret >= nr_wake)
				break;
		}
	}

1555
	spin_unlock(&hb->lock);
1556
	wake_up_q(&wake_q);
1557
out_put_key:
1558
	put_futex_key(&key);
1559
out:
L
Linus Torvalds 已提交
1560 1561 1562
	return ret;
}

1563 1564 1565 1566
static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
{
	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
1567 1568
	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1569 1570 1571
	int oldval, ret;

	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
		if (oparg < 0 || oparg > 31) {
			char comm[sizeof(current->comm)];
			/*
			 * kill this print and return -EINVAL when userspace
			 * is sane again
			 */
			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
					get_task_comm(comm, current), oparg);
			oparg &= 31;
		}
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
		oparg = 1 << oparg;
	}

	if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
		return -EFAULT;

	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
	if (ret)
		return ret;

	switch (cmp) {
	case FUTEX_OP_CMP_EQ:
		return oldval == cmparg;
	case FUTEX_OP_CMP_NE:
		return oldval != cmparg;
	case FUTEX_OP_CMP_LT:
		return oldval < cmparg;
	case FUTEX_OP_CMP_GE:
		return oldval >= cmparg;
	case FUTEX_OP_CMP_LE:
		return oldval <= cmparg;
	case FUTEX_OP_CMP_GT:
		return oldval > cmparg;
	default:
		return -ENOSYS;
	}
}

1610 1611 1612 1613
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1614
static int
1615
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1616
	      int nr_wake, int nr_wake2, int op)
1617
{
1618
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1619
	struct futex_hash_bucket *hb1, *hb2;
1620
	struct futex_q *this, *next;
D
Darren Hart 已提交
1621
	int ret, op_ret;
1622
	DEFINE_WAKE_Q(wake_q);
1623

D
Darren Hart 已提交
1624
retry:
1625
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1626 1627
	if (unlikely(ret != 0))
		goto out;
1628
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1629
	if (unlikely(ret != 0))
1630
		goto out_put_key1;
1631

1632 1633
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1634

D
Darren Hart 已提交
1635
retry_private:
T
Thomas Gleixner 已提交
1636
	double_lock_hb(hb1, hb2);
1637
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1638 1639
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
1640
		double_unlock_hb(hb1, hb2);
1641

1642
#ifndef CONFIG_MMU
1643 1644 1645 1646
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
1647
		ret = op_ret;
1648
		goto out_put_keys;
1649 1650
#endif

1651 1652
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
1653
			goto out_put_keys;
1654 1655
		}

1656
		ret = fault_in_user_writeable(uaddr2);
1657
		if (ret)
1658
			goto out_put_keys;
1659

1660
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1661 1662
			goto retry_private;

1663 1664
		put_futex_key(&key2);
		put_futex_key(&key1);
D
Darren Hart 已提交
1665
		goto retry;
1666 1667
	}

J
Jason Low 已提交
1668
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1669
		if (match_futex (&this->key, &key1)) {
1670 1671 1672 1673
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1674
			mark_wake_futex(&wake_q, this);
1675 1676 1677 1678 1679 1680 1681
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
J
Jason Low 已提交
1682
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1683
			if (match_futex (&this->key, &key2)) {
1684 1685 1686 1687
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1688
				mark_wake_futex(&wake_q, this);
1689 1690 1691 1692 1693 1694 1695
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1696
out_unlock:
D
Darren Hart 已提交
1697
	double_unlock_hb(hb1, hb2);
1698
	wake_up_q(&wake_q);
1699
out_put_keys:
1700
	put_futex_key(&key2);
1701
out_put_key1:
1702
	put_futex_key(&key1);
1703
out:
1704 1705 1706
	return ret;
}

D
Darren Hart 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
1725 1726
		hb_waiters_dec(hb1);
		hb_waiters_inc(hb2);
1727
		plist_add(&q->list, &hb2->chain);
D
Darren Hart 已提交
1728 1729 1730 1731 1732 1733
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1734 1735
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1736 1737 1738
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1739 1740 1741 1742 1743
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1744 1745 1746
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1747 1748
 */
static inline
1749 1750
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1751 1752 1753 1754
{
	get_futex_key_refs(key);
	q->key = *key;

1755
	__unqueue_futex(q);
1756 1757 1758 1759

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1760 1761
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1762
	wake_up_state(q->task, TASK_NORMAL);
1763 1764 1765 1766
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1767 1768 1769 1770 1771 1772 1773
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1774 1775
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1776 1777 1778
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1779
 *
1780
 * Return:
1781 1782 1783
 *  -  0 - failed to acquire the lock atomically;
 *  - >0 - acquired the lock, return value is vpid of the top_waiter
 *  - <0 - error
1784 1785 1786 1787 1788
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1789
				 struct futex_pi_state **ps, int set_waiters)
1790
{
1791
	struct futex_q *top_waiter = NULL;
1792
	u32 curval;
1793
	int ret, vpid;
1794 1795 1796 1797

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1798 1799 1800
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

1801 1802 1803 1804 1805 1806 1807 1808
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1809 1810 1811 1812 1813 1814
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1815 1816 1817 1818
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1819
	/*
1820 1821 1822
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1823
	 */
1824
	vpid = task_pid_vnr(top_waiter->task);
1825 1826
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1827
	if (ret == 1) {
1828
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1829 1830
		return vpid;
	}
1831 1832 1833 1834 1835
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1836
 * @uaddr1:	source futex user address
1837
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1838 1839 1840 1841 1842
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1843
 *		pi futex (pi to pi requeue is not supported)
1844 1845 1846 1847
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
1848
 * Return:
1849 1850
 *  - >=0 - on success, the number of tasks requeued or woken;
 *  -  <0 - on error
L
Linus Torvalds 已提交
1851
 */
1852 1853 1854
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1855
{
1856
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1857 1858
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1859
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
1860
	struct futex_q *this, *next;
1861
	DEFINE_WAKE_Q(wake_q);
1862

1863 1864 1865
	if (nr_wake < 0 || nr_requeue < 0)
		return -EINVAL;

1866 1867 1868 1869 1870 1871 1872 1873 1874
	/*
	 * When PI not supported: return -ENOSYS if requeue_pi is true,
	 * consequently the compiler knows requeue_pi is always false past
	 * this point which will optimize away all the conditional code
	 * further down.
	 */
	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
		return -ENOSYS;

1875
	if (requeue_pi) {
1876 1877 1878 1879 1880 1881 1882
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1902

1903
retry:
1904
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
L
Linus Torvalds 已提交
1905 1906
	if (unlikely(ret != 0))
		goto out;
1907 1908
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
L
Linus Torvalds 已提交
1909
	if (unlikely(ret != 0))
1910
		goto out_put_key1;
L
Linus Torvalds 已提交
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

1921 1922
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1923

D
Darren Hart 已提交
1924
retry_private:
1925
	hb_waiters_inc(hb2);
I
Ingo Molnar 已提交
1926
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1927

1928 1929
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1930

1931
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1932 1933

		if (unlikely(ret)) {
D
Darren Hart 已提交
1934
			double_unlock_hb(hb1, hb2);
1935
			hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
1936

1937
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1938 1939
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1940

1941
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1942
				goto retry_private;
L
Linus Torvalds 已提交
1943

1944 1945
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
1946
			goto retry;
L
Linus Torvalds 已提交
1947
		}
1948
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1949 1950 1951 1952 1953
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1954
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1955 1956 1957 1958 1959 1960
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1961
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1962
						 &key2, &pi_state, nr_requeue);
1963 1964 1965 1966 1967

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
1968 1969
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
1970 1971
		 * If the lock was not taken, we have pi_state and an initial
		 * refcount on it. In case of an error we have nothing.
1972
		 */
1973
		if (ret > 0) {
1974
			WARN_ON(pi_state);
1975
			drop_count++;
1976
			task_count++;
1977
			/*
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
			 * If we acquired the lock, then the user space value
			 * of uaddr2 should be vpid. It cannot be changed by
			 * the top waiter as it is blocked on hb2 lock if it
			 * tries to do so. If something fiddled with it behind
			 * our back the pi state lookup might unearth it. So
			 * we rather use the known value than rereading and
			 * handing potential crap to lookup_pi_state.
			 *
			 * If that call succeeds then we have pi_state and an
			 * initial refcount on it.
1988
			 */
P
Peter Zijlstra 已提交
1989
			ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1990 1991 1992 1993
		}

		switch (ret) {
		case 0:
1994
			/* We hold a reference on the pi state. */
1995
			break;
1996 1997

			/* If the above failed, then pi_state is NULL */
1998 1999
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
2000
			hb_waiters_dec(hb2);
2001 2002
			put_futex_key(&key2);
			put_futex_key(&key1);
2003
			ret = fault_in_user_writeable(uaddr2);
2004 2005 2006 2007
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
2008 2009 2010 2011 2012 2013
			/*
			 * Two reasons for this:
			 * - Owner is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
			 */
2014
			double_unlock_hb(hb1, hb2);
2015
			hb_waiters_dec(hb2);
2016 2017
			put_futex_key(&key2);
			put_futex_key(&key1);
2018 2019 2020 2021 2022 2023 2024
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

J
Jason Low 已提交
2025
	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2026 2027 2028 2029
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
2030
			continue;
2031

2032 2033 2034
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
2035 2036 2037
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
2038 2039
		 */
		if ((requeue_pi && !this->rt_waiter) ||
2040 2041
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
2042 2043 2044
			ret = -EINVAL;
			break;
		}
2045 2046 2047 2048 2049 2050 2051

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
2052
			mark_wake_futex(&wake_q, this);
2053 2054
			continue;
		}
L
Linus Torvalds 已提交
2055

2056 2057 2058 2059 2060 2061
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

2062 2063 2064 2065 2066
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
2067 2068 2069 2070 2071
			/*
			 * Prepare the waiter to take the rt_mutex. Take a
			 * refcount on the pi_state and store the pointer in
			 * the futex_q object of the waiter.
			 */
P
Peter Zijlstra 已提交
2072
			get_pi_state(pi_state);
2073 2074 2075
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
2076
							this->task);
2077
			if (ret == 1) {
2078 2079 2080 2081 2082 2083 2084 2085
				/*
				 * We got the lock. We do neither drop the
				 * refcount on pi_state nor clear
				 * this->pi_state because the waiter needs the
				 * pi_state for cleaning up the user space
				 * value. It will drop the refcount after
				 * doing so.
				 */
2086
				requeue_pi_wake_futex(this, &key2, hb2);
2087
				drop_count++;
2088 2089
				continue;
			} else if (ret) {
2090 2091 2092 2093 2094 2095 2096 2097
				/*
				 * rt_mutex_start_proxy_lock() detected a
				 * potential deadlock when we tried to queue
				 * that waiter. Drop the pi_state reference
				 * which we took above and remove the pointer
				 * to the state from the waiters futex_q
				 * object.
				 */
2098
				this->pi_state = NULL;
2099
				put_pi_state(pi_state);
2100 2101 2102 2103 2104
				/*
				 * We stop queueing more waiters and let user
				 * space deal with the mess.
				 */
				break;
2105
			}
L
Linus Torvalds 已提交
2106
		}
2107 2108
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
2109 2110
	}

2111 2112 2113 2114 2115
	/*
	 * We took an extra initial reference to the pi_state either
	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
	 * need to drop it here again.
	 */
2116
	put_pi_state(pi_state);
2117 2118

out_unlock:
D
Darren Hart 已提交
2119
	double_unlock_hb(hb1, hb2);
2120
	wake_up_q(&wake_q);
2121
	hb_waiters_dec(hb2);
L
Linus Torvalds 已提交
2122

2123 2124 2125 2126 2127 2128
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
2129
	while (--drop_count >= 0)
2130
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
2131

2132
out_put_keys:
2133
	put_futex_key(&key2);
2134
out_put_key1:
2135
	put_futex_key(&key1);
2136
out:
2137
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
2138 2139 2140
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
2141
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2142
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
2143
{
2144
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
2145

2146
	hb = hash_futex(&q->key);
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
	hb_waiters_inc(hb);

2158
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
2159

2160
	spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2161
	return hb;
L
Linus Torvalds 已提交
2162 2163
}

2164
static inline void
J
Jason Low 已提交
2165
queue_unlock(struct futex_hash_bucket *hb)
2166
	__releases(&hb->lock)
2167 2168
{
	spin_unlock(&hb->lock);
2169
	hb_waiters_dec(hb);
2170 2171
}

2172
static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
2173
{
P
Pierre Peiffer 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
2188
	q->task = current;
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
	__releases(&hb->lock)
{
	__queue_me(q, hb);
2207
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
2208 2209
}

2210 2211 2212 2213 2214 2215 2216
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
2217
 * Return:
2218 2219
 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
 *  - 0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
2220 2221 2222 2223
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
2224
	int ret = 0;
L
Linus Torvalds 已提交
2225 2226

	/* In the common case we don't take the spinlock, which is nice. */
2227
retry:
2228 2229 2230 2231 2232 2233
	/*
	 * q->lock_ptr can change between this read and the following spin_lock.
	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
	 * optimizing lock_ptr out of the logic below.
	 */
	lock_ptr = READ_ONCE(q->lock_ptr);
2234
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
2253
		__unqueue_futex(q);
2254 2255 2256

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
2257 2258 2259 2260
		spin_unlock(lock_ptr);
		ret = 1;
	}

2261
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
2262 2263 2264
	return ret;
}

2265 2266
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
2267 2268
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
2269
 */
P
Pierre Peiffer 已提交
2270
static void unqueue_me_pi(struct futex_q *q)
2271
	__releases(q->lock_ptr)
2272
{
2273
	__unqueue_futex(q);
2274 2275

	BUG_ON(!q->pi_state);
2276
	put_pi_state(q->pi_state);
2277 2278
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
2279
	spin_unlock(q->lock_ptr);
2280 2281
}

2282
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2283
				struct task_struct *argowner)
P
Pierre Peiffer 已提交
2284 2285
{
	struct futex_pi_state *pi_state = q->pi_state;
2286
	u32 uval, uninitialized_var(curval), newval;
2287 2288
	struct task_struct *oldowner, *newowner;
	u32 newtid;
D
Darren Hart 已提交
2289
	int ret;
P
Pierre Peiffer 已提交
2290

2291 2292
	lockdep_assert_held(q->lock_ptr);

P
Peter Zijlstra 已提交
2293 2294 2295
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	oldowner = pi_state->owner;
2296 2297

	/*
2298
	 * We are here because either:
2299
	 *
2300 2301 2302 2303 2304 2305 2306 2307 2308
	 *  - we stole the lock and pi_state->owner needs updating to reflect
	 *    that (@argowner == current),
	 *
	 * or:
	 *
	 *  - someone stole our lock and we need to fix things to point to the
	 *    new owner (@argowner == NULL).
	 *
	 * Either way, we have to replace the TID in the user space variable.
2309
	 * This must be atomic as we have to preserve the owner died bit here.
2310
	 *
D
Darren Hart 已提交
2311 2312 2313
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
2314
	 *
P
Peter Zijlstra 已提交
2315 2316 2317 2318
	 * Modifying pi_state _before_ the user space value would leave the
	 * pi_state in an inconsistent state when we fault here, because we
	 * need to drop the locks to handle the fault. This might be observed
	 * in the PID check in lookup_pi_state.
2319 2320
	 */
retry:
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	if (!argowner) {
		if (oldowner != current) {
			/*
			 * We raced against a concurrent self; things are
			 * already fixed up. Nothing to do.
			 */
			ret = 0;
			goto out_unlock;
		}

		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
			/* We got the lock after all, nothing to fix. */
			ret = 0;
			goto out_unlock;
		}

		/*
		 * Since we just failed the trylock; there must be an owner.
		 */
		newowner = rt_mutex_owner(&pi_state->pi_mutex);
		BUG_ON(!newowner);
	} else {
		WARN_ON_ONCE(argowner != current);
		if (oldowner == current) {
			/*
			 * We raced against a concurrent self; things are
			 * already fixed up. Nothing to do.
			 */
			ret = 0;
			goto out_unlock;
		}
		newowner = argowner;
	}

	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Peter Zijlstra 已提交
2356 2357 2358
	/* Owner died? */
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;
2359

2360 2361 2362
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

2363
	for (;;) {
2364 2365
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

2366
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
2377
	if (pi_state->owner != NULL) {
P
Peter Zijlstra 已提交
2378
		raw_spin_lock(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
2379 2380
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
P
Peter Zijlstra 已提交
2381
		raw_spin_unlock(&pi_state->owner->pi_lock);
2382
	}
P
Pierre Peiffer 已提交
2383

2384
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
2385

P
Peter Zijlstra 已提交
2386
	raw_spin_lock(&newowner->pi_lock);
P
Pierre Peiffer 已提交
2387
	WARN_ON(!list_empty(&pi_state->list));
2388
	list_add(&pi_state->list, &newowner->pi_state_list);
P
Peter Zijlstra 已提交
2389 2390 2391
	raw_spin_unlock(&newowner->pi_lock);
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

2392
	return 0;
P
Pierre Peiffer 已提交
2393 2394

	/*
P
Peter Zijlstra 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
	 * To handle the page fault we need to drop the locks here. That gives
	 * the other task (either the highest priority waiter itself or the
	 * task which stole the rtmutex) the chance to try the fixup of the
	 * pi_state. So once we are back from handling the fault we need to
	 * check the pi_state after reacquiring the locks and before trying to
	 * do another fixup. When the fixup has been done already we simply
	 * return.
	 *
	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
	 * drop hb->lock since the caller owns the hb -> futex_q relation.
	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
P
Pierre Peiffer 已提交
2406
	 */
2407
handle_fault:
P
Peter Zijlstra 已提交
2408
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2409
	spin_unlock(q->lock_ptr);
2410

2411
	ret = fault_in_user_writeable(uaddr);
2412

2413
	spin_lock(q->lock_ptr);
P
Peter Zijlstra 已提交
2414
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2415

2416 2417 2418
	/*
	 * Check if someone else fixed it for us:
	 */
P
Peter Zijlstra 已提交
2419 2420 2421 2422
	if (pi_state->owner != oldowner) {
		ret = 0;
		goto out_unlock;
	}
2423 2424

	if (ret)
P
Peter Zijlstra 已提交
2425
		goto out_unlock;
2426 2427

	goto retry;
P
Peter Zijlstra 已提交
2428 2429 2430 2431

out_unlock:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
P
Pierre Peiffer 已提交
2432 2433
}

N
Nick Piggin 已提交
2434
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
2435

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
2446
 * Return:
2447 2448 2449
 *  -  1 - success, lock taken;
 *  -  0 - success, lock not taken;
 *  - <0 - on error (-EFAULT)
2450
 */
2451
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2452 2453 2454 2455 2456 2457 2458
{
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
2459
		 *
2460 2461 2462
		 * Speculative pi_state->owner read (we don't hold wait_lock);
		 * since we own the lock pi_state->owner == current is the
		 * stable state, anything else needs more attention.
2463 2464
		 */
		if (q->pi_state->owner != current)
2465
			ret = fixup_pi_state_owner(uaddr, q, current);
2466 2467 2468
		goto out;
	}

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
	/*
	 * If we didn't get the lock; check if anybody stole it from us. In
	 * that case, we need to fix up the uval to point to them instead of
	 * us, otherwise bad things happen. [10]
	 *
	 * Another speculative read; pi_state->owner == current is unstable
	 * but needs our attention.
	 */
	if (q->pi_state->owner == current) {
		ret = fixup_pi_state_owner(uaddr, q, NULL);
		goto out;
	}

2482 2483
	/*
	 * Paranoia check. If we did not take the lock, then we should not be
2484
	 * the owner of the rt_mutex.
2485
	 */
2486
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2487 2488 2489 2490
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);
2491
	}
2492 2493 2494 2495 2496

out:
	return ret ? ret : locked;
}

2497 2498 2499 2500 2501 2502 2503
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
2504
				struct hrtimer_sleeper *timeout)
2505
{
2506 2507
	/*
	 * The task state is guaranteed to be set before another task can
2508
	 * wake it. set_current_state() is implemented using smp_store_mb() and
2509 2510 2511
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
2512
	set_current_state(TASK_INTERRUPTIBLE);
2513
	queue_me(q, hb);
2514 2515

	/* Arm the timer */
2516
	if (timeout)
2517 2518 2519
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);

	/*
2520 2521
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
2522 2523 2524 2525 2526 2527 2528 2529
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
C
Colin Cross 已提交
2530
			freezable_schedule();
2531 2532 2533 2534
	}
	__set_current_state(TASK_RUNNING);
}

2535 2536 2537 2538
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
2539
 * @flags:	futex flags (FLAGS_SHARED, etc.)
2540 2541 2542 2543 2544 2545 2546 2547
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
2548
 * Return:
2549 2550
 *  -  0 - uaddr contains val and hb has been locked;
 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2551
 */
2552
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2553
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
2554
{
2555 2556
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
2557 2558

	/*
D
Darren Hart 已提交
2559
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
2560 2561 2562 2563 2564 2565 2566
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
2567 2568
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
2569 2570
	 * cond(var) false, which would violate the guarantee.
	 *
2571 2572 2573 2574
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
2575
	 */
2576
retry:
2577
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2578
	if (unlikely(ret != 0))
2579
		return ret;
2580 2581 2582 2583

retry_private:
	*hb = queue_lock(q);

2584
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
2585

2586
	if (ret) {
J
Jason Low 已提交
2587
		queue_unlock(*hb);
L
Linus Torvalds 已提交
2588

2589
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
2590
		if (ret)
2591
			goto out;
L
Linus Torvalds 已提交
2592

2593
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2594 2595
			goto retry_private;

2596
		put_futex_key(&q->key);
D
Darren Hart 已提交
2597
		goto retry;
L
Linus Torvalds 已提交
2598
	}
2599

2600
	if (uval != val) {
J
Jason Low 已提交
2601
		queue_unlock(*hb);
2602
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
2603
	}
L
Linus Torvalds 已提交
2604

2605 2606
out:
	if (ret)
2607
		put_futex_key(&q->key);
2608 2609 2610
	return ret;
}

2611 2612
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2613 2614 2615 2616
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2617
	struct futex_q q = futex_q_init;
2618 2619 2620 2621 2622 2623 2624 2625 2626
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

2627 2628 2629
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2630 2631 2632 2633 2634
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
2635
retry:
2636 2637 2638 2639
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2640
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2641 2642 2643
	if (ret)
		goto out;

2644
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
2645
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
2646 2647

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
2648
	ret = 0;
2649
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
2650
	if (!unqueue_me(&q))
2651
		goto out;
P
Peter Zijlstra 已提交
2652
	ret = -ETIMEDOUT;
2653
	if (to && !to->task)
2654
		goto out;
N
Nick Piggin 已提交
2655

2656
	/*
T
Thomas Gleixner 已提交
2657 2658
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2659
	 */
2660
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
2661 2662
		goto retry;

P
Peter Zijlstra 已提交
2663
	ret = -ERESTARTSYS;
2664
	if (!abs_time)
2665
		goto out;
L
Linus Torvalds 已提交
2666

2667
	restart = &current->restart_block;
P
Peter Zijlstra 已提交
2668
	restart->fn = futex_wait_restart;
2669
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
2670
	restart->futex.val = val;
T
Thomas Gleixner 已提交
2671
	restart->futex.time = *abs_time;
P
Peter Zijlstra 已提交
2672
	restart->futex.bitset = bitset;
2673
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2674

P
Peter Zijlstra 已提交
2675 2676
	ret = -ERESTART_RESTARTBLOCK;

2677
out:
2678 2679 2680 2681
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2682 2683 2684
	return ret;
}

N
Nick Piggin 已提交
2685 2686 2687

static long futex_wait_restart(struct restart_block *restart)
{
2688
	u32 __user *uaddr = restart->futex.uaddr;
2689
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
2690

2691
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
T
Thomas Gleixner 已提交
2692
		t = restart->futex.time;
2693 2694
		tp = &t;
	}
N
Nick Piggin 已提交
2695
	restart->fn = do_no_restart_syscall;
2696 2697 2698

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
2699 2700 2701
}


2702 2703 2704
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
2705 2706 2707 2708 2709
 * if there are waiters then it will block as a consequence of relying
 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
 * a 0 value of the futex too.).
 *
 * Also serves as futex trylock_pi()'ing, and due semantics.
2710
 */
2711
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2712
			 ktime_t *time, int trylock)
2713
{
2714
	struct hrtimer_sleeper timeout, *to = NULL;
2715
	struct futex_pi_state *pi_state = NULL;
2716
	struct rt_mutex_waiter rt_waiter;
2717
	struct futex_hash_bucket *hb;
2718
	struct futex_q q = futex_q_init;
2719
	int res, ret;
2720

2721 2722 2723
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

2724 2725 2726
	if (refill_pi_state_cache())
		return -ENOMEM;

2727
	if (time) {
2728
		to = &timeout;
2729 2730
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
2731
		hrtimer_init_sleeper(to, current);
2732
		hrtimer_set_expires(&to->timer, *time);
2733 2734
	}

2735
retry:
2736
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2737
	if (unlikely(ret != 0))
2738
		goto out;
2739

D
Darren Hart 已提交
2740
retry_private:
E
Eric Sesterhenn 已提交
2741
	hb = queue_lock(&q);
2742

2743
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2744
	if (unlikely(ret)) {
2745 2746 2747 2748
		/*
		 * Atomic work succeeded and we got the lock,
		 * or failed. Either way, we do _not_ block.
		 */
2749
		switch (ret) {
2750 2751 2752 2753 2754 2755
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2756 2757
		case -EAGAIN:
			/*
2758 2759 2760 2761
			 * Two reasons for this:
			 * - Task is exiting and we just wait for the
			 *   exit to complete.
			 * - The user space value changed.
2762
			 */
J
Jason Low 已提交
2763
			queue_unlock(hb);
2764
			put_futex_key(&q.key);
2765 2766 2767
			cond_resched();
			goto retry;
		default:
2768
			goto out_unlock_put_key;
2769 2770 2771
		}
	}

2772 2773
	WARN_ON(!q.pi_state);

2774 2775 2776
	/*
	 * Only actually queue now that the atomic ops are done:
	 */
2777
	__queue_me(&q, hb);
2778

2779
	if (trylock) {
2780
		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2781 2782
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
2783
		goto no_block;
2784 2785
	}

2786 2787
	rt_mutex_init_waiter(&rt_waiter);

2788
	/*
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
	 * hold it while doing rt_mutex_start_proxy(), because then it will
	 * include hb->lock in the blocking chain, even through we'll not in
	 * fact hold it while blocking. This will lead it to report -EDEADLK
	 * and BUG when futex_unlock_pi() interleaves with this.
	 *
	 * Therefore acquire wait_lock while holding hb->lock, but drop the
	 * latter before calling rt_mutex_start_proxy_lock(). This still fully
	 * serializes against futex_unlock_pi() as that does the exact same
	 * lock handoff sequence.
2799
	 */
2800 2801 2802 2803 2804
	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
	spin_unlock(q.lock_ptr);
	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);

2805 2806 2807 2808
	if (ret) {
		if (ret == 1)
			ret = 0;

2809
		spin_lock(q.lock_ptr);
2810 2811 2812 2813 2814 2815 2816 2817 2818
		goto no_block;
	}


	if (unlikely(to))
		hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);

	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);

2819
	spin_lock(q.lock_ptr);
2820 2821 2822 2823 2824
	/*
	 * If we failed to acquire the lock (signal/timeout), we must
	 * first acquire the hb->lock before removing the lock from the
	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
	 * wait lists consistent.
2825 2826 2827
	 *
	 * In particular; it is important that futex_unlock_pi() can not
	 * observe this inconsistency.
2828 2829 2830 2831 2832
	 */
	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
		ret = 0;

no_block:
2833 2834 2835 2836
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2837
	res = fixup_owner(uaddr, &q, !ret);
2838 2839 2840 2841 2842 2843
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2844

2845
	/*
2846 2847
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2848
	 */
2849 2850 2851 2852
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
		pi_state = q.pi_state;
		get_pi_state(pi_state);
	}
2853

2854 2855
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2856

2857 2858 2859 2860 2861
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

2862
	goto out_put_key;
2863

2864
out_unlock_put_key:
J
Jason Low 已提交
2865
	queue_unlock(hb);
2866

2867
out_put_key:
2868
	put_futex_key(&q.key);
2869
out:
2870 2871
	if (to) {
		hrtimer_cancel(&to->timer);
2872
		destroy_hrtimer_on_stack(&to->timer);
2873
	}
2874
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2875

2876
uaddr_faulted:
J
Jason Low 已提交
2877
	queue_unlock(hb);
2878

2879
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2880 2881
	if (ret)
		goto out_put_key;
2882

2883
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2884 2885
		goto retry_private;

2886
	put_futex_key(&q.key);
D
Darren Hart 已提交
2887
	goto retry;
2888 2889 2890 2891 2892 2893 2894
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2895
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2896
{
2897
	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2898
	union futex_key key = FUTEX_KEY_INIT;
2899
	struct futex_hash_bucket *hb;
2900
	struct futex_q *top_waiter;
D
Darren Hart 已提交
2901
	int ret;
2902

2903 2904 2905
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

2906 2907 2908 2909 2910 2911
retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2912
	if ((uval & FUTEX_TID_MASK) != vpid)
2913 2914
		return -EPERM;

2915
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2916 2917
	if (ret)
		return ret;
2918 2919 2920 2921 2922

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
2923 2924 2925
	 * Check waiters first. We do not trust user space values at
	 * all and we at least want to know if user space fiddled
	 * with the futex value instead of blindly unlocking.
2926
	 */
2927 2928
	top_waiter = futex_top_waiter(hb, &key);
	if (top_waiter) {
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
		struct futex_pi_state *pi_state = top_waiter->pi_state;

		ret = -EINVAL;
		if (!pi_state)
			goto out_unlock;

		/*
		 * If current does not own the pi_state then the futex is
		 * inconsistent and user space fiddled with the futex value.
		 */
		if (pi_state->owner != current)
			goto out_unlock;

2942
		get_pi_state(pi_state);
2943
		/*
2944 2945 2946 2947
		 * By taking wait_lock while still holding hb->lock, we ensure
		 * there is no point where we hold neither; and therefore
		 * wake_futex_pi() must observe a state consistent with what we
		 * observed.
2948
		 */
2949
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2950 2951
		spin_unlock(&hb->lock);

2952
		/* drops pi_state->pi_mutex.wait_lock */
2953 2954 2955 2956 2957 2958
		ret = wake_futex_pi(uaddr, uval, pi_state);

		put_pi_state(pi_state);

		/*
		 * Success, we're done! No tricky corner cases.
2959 2960 2961
		 */
		if (!ret)
			goto out_putkey;
2962
		/*
2963 2964
		 * The atomic access to the futex value generated a
		 * pagefault, so retry the user-access and the wakeup:
2965 2966 2967
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
2968 2969 2970 2971 2972 2973 2974 2975
		/*
		 * A unconditional UNLOCK_PI op raced against a waiter
		 * setting the FUTEX_WAITERS bit. Try again.
		 */
		if (ret == -EAGAIN) {
			put_futex_key(&key);
			goto retry;
		}
2976 2977 2978 2979
		/*
		 * wake_futex_pi has detected invalid state. Tell user
		 * space.
		 */
2980
		goto out_putkey;
2981
	}
2982

2983
	/*
2984 2985 2986 2987 2988
	 * We have no kernel internal state, i.e. no waiters in the
	 * kernel. Waiters which are about to queue themselves are stuck
	 * on hb->lock. So we can safely ignore them. We do neither
	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
	 * owner.
2989
	 */
2990 2991
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
		spin_unlock(&hb->lock);
2992
		goto pi_faulted;
2993
	}
2994

2995 2996 2997 2998 2999
	/*
	 * If uval has changed, let user space handle it.
	 */
	ret = (curval == uval) ? 0 : -EAGAIN;

3000 3001
out_unlock:
	spin_unlock(&hb->lock);
3002
out_putkey:
3003
	put_futex_key(&key);
3004 3005 3006
	return ret;

pi_faulted:
3007
	put_futex_key(&key);
3008

3009
	ret = fault_in_user_writeable(uaddr);
3010
	if (!ret)
3011 3012
		goto retry;

L
Linus Torvalds 已提交
3013 3014 3015
	return ret;
}

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
3028
 * Return:
3029 3030
 *  -  0 = no early wakeup detected;
 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
3052
		plist_del(&q->list, &hb->chain);
3053
		hb_waiters_dec(hb);
3054

T
Thomas Gleixner 已提交
3055
		/* Handle spurious wakeups gracefully */
3056
		ret = -EWOULDBLOCK;
3057 3058
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
3059
		else if (signal_pending(current))
3060
			ret = -ERESTARTNOINTR;
3061 3062 3063 3064 3065 3066
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3067
 * @uaddr:	the futex we initially wait on (non-pi)
3068
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3069
 *		the same type, no requeueing from private to shared, etc.
3070 3071
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
3072
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
3073 3074 3075
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3076 3077 3078 3079 3080
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
3081 3082
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3083
 * via the following--
3084
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3085 3086 3087
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
3088
 *
3089
 * If 3, cleanup and return -ERESTARTNOINTR.
3090 3091 3092 3093 3094 3095 3096
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
3097
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3098 3099 3100
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
3101
 * Return:
3102 3103
 *  -  0 - On success;
 *  - <0 - On error
3104
 */
3105
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3106
				 u32 val, ktime_t *abs_time, u32 bitset,
3107
				 u32 __user *uaddr2)
3108 3109
{
	struct hrtimer_sleeper timeout, *to = NULL;
3110
	struct futex_pi_state *pi_state = NULL;
3111 3112
	struct rt_mutex_waiter rt_waiter;
	struct futex_hash_bucket *hb;
3113 3114
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
3115 3116
	int res, ret;

3117 3118 3119
	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

3120 3121 3122
	if (uaddr == uaddr2)
		return -EINVAL;

3123 3124 3125 3126 3127
	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
3128 3129 3130
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
3131 3132 3133 3134 3135 3136 3137 3138 3139
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
3140
	rt_mutex_init_waiter(&rt_waiter);
3141

3142
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3143 3144 3145
	if (unlikely(ret != 0))
		goto out;

3146 3147 3148 3149
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

3150 3151 3152 3153
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
3154
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
3155 3156
	if (ret)
		goto out_key2;
3157

3158 3159 3160 3161 3162
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
3163
		queue_unlock(hb);
3164 3165 3166 3167
		ret = -EINVAL;
		goto out_put_keys;
	}

3168
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
3169
	futex_wait_queue_me(hb, &q, to);
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
3181 3182 3183
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
3194
			ret = fixup_pi_state_owner(uaddr2, &q, current);
3195 3196 3197 3198
			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
				pi_state = q.pi_state;
				get_pi_state(pi_state);
			}
3199 3200 3201 3202
			/*
			 * Drop the reference to the pi state which
			 * the requeue_pi() code acquired for us.
			 */
3203
			put_pi_state(q.pi_state);
3204 3205 3206
			spin_unlock(q.lock_ptr);
		}
	} else {
3207 3208
		struct rt_mutex *pi_mutex;

3209 3210 3211 3212 3213
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
3214
		WARN_ON(!q.pi_state);
3215
		pi_mutex = &q.pi_state->pi_mutex;
3216
		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3217 3218

		spin_lock(q.lock_ptr);
3219 3220 3221 3222
		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
			ret = 0;

		debug_rt_mutex_free_waiter(&rt_waiter);
3223 3224 3225 3226
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
3227
		res = fixup_owner(uaddr2, &q, !ret);
3228 3229
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
3230
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3231 3232 3233 3234
		 */
		if (res)
			ret = (res < 0) ? res : 0;

3235 3236 3237 3238 3239
		/*
		 * If fixup_pi_state_owner() faulted and was unable to handle
		 * the fault, unlock the rt_mutex and return the fault to
		 * userspace.
		 */
3240 3241 3242 3243
		if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
			pi_state = q.pi_state;
			get_pi_state(pi_state);
		}
3244

3245 3246 3247 3248
		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

3249 3250 3251 3252 3253
	if (pi_state) {
		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);
	}

3254
	if (ret == -EINTR) {
3255
		/*
3256 3257 3258 3259 3260
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
3261
		 */
3262
		ret = -EWOULDBLOCK;
3263 3264 3265
	}

out_put_keys:
3266
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
3267
out_key2:
3268
	put_futex_key(&key2);
3269 3270 3271 3272 3273 3274 3275 3276 3277

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

3278 3279 3280 3281 3282 3283 3284
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
3285
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3286 3287 3288 3289 3290 3291 3292 3293
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
3294 3295 3296
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
3297
 */
3298 3299
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
3300
{
3301 3302
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
3315 3316 3317 3318
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3319
 */
3320 3321 3322
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
3323
{
A
Al Viro 已提交
3324
	struct robust_list_head __user *head;
3325
	unsigned long ret;
3326
	struct task_struct *p;
3327

3328 3329 3330
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

3331 3332 3333
	rcu_read_lock();

	ret = -ESRCH;
3334
	if (!pid)
3335
		p = current;
3336
	else {
3337
		p = find_task_by_vpid(pid);
3338 3339 3340 3341
		if (!p)
			goto err_unlock;
	}

3342
	ret = -EPERM;
3343
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3344 3345 3346 3347 3348
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

3349 3350 3351 3352 3353
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
3354
	rcu_read_unlock();
3355 3356 3357 3358 3359 3360 3361 3362

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
3363
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3364
{
3365
	u32 uval, uninitialized_var(nval), mval;
3366

3367 3368
retry:
	if (get_user(uval, uaddr))
3369 3370
		return -1;

3371
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
3382
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
		/*
		 * We are not holding a lock here, but we want to have
		 * the pagefault_disable/enable() protection because
		 * we want to handle the fault gracefully. If the
		 * access fails we try to fault in the futex with R/W
		 * verification via get_user_pages. get_user() above
		 * does not guarantee R/W access. If that fails we
		 * give up and leave the futex locked.
		 */
		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
		}
3397
		if (nval != uval)
3398
			goto retry;
3399

3400 3401 3402 3403
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
3404
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
3405
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3406 3407 3408 3409
	}
	return 0;
}

3410 3411 3412 3413
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
3414
				     struct robust_list __user * __user *head,
3415
				     unsigned int *pi)
3416 3417 3418
{
	unsigned long uentry;

A
Al Viro 已提交
3419
	if (get_user(uentry, (unsigned long __user *)head))
3420 3421
		return -EFAULT;

A
Al Viro 已提交
3422
	*entry = (void __user *)(uentry & ~1UL);
3423 3424 3425 3426 3427
	*pi = uentry & 1;

	return 0;
}

3428 3429 3430 3431 3432 3433 3434 3435 3436
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
3437
	struct robust_list __user *entry, *next_entry, *pending;
3438 3439
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
3440
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
3441
	int rc;
3442

3443 3444 3445
	if (!futex_cmpxchg_enabled)
		return;

3446 3447 3448 3449
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
3450
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
3461
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3462
		return;
3463

M
Martin Schwidefsky 已提交
3464
	next_entry = NULL;	/* avoid warning with gcc */
3465
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
3466 3467 3468 3469 3470
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3471 3472
		/*
		 * A pending lock might already be on the list, so
3473
		 * don't process it twice:
3474 3475
		 */
		if (entry != pending)
A
Al Viro 已提交
3476
			if (handle_futex_death((void __user *)entry + futex_offset,
3477
						curr, pi))
3478
				return;
M
Martin Schwidefsky 已提交
3479
		if (rc)
3480
			return;
M
Martin Schwidefsky 已提交
3481 3482
		entry = next_entry;
		pi = next_pi;
3483 3484 3485 3486 3487 3488 3489 3490
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
3491 3492 3493 3494

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
3495 3496
}

3497
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3498
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
3499
{
T
Thomas Gleixner 已提交
3500
	int cmd = op & FUTEX_CMD_MASK;
3501
	unsigned int flags = 0;
E
Eric Dumazet 已提交
3502 3503

	if (!(op & FUTEX_PRIVATE_FLAG))
3504
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
3505

3506 3507
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
3508 3509
		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
		    cmd != FUTEX_WAIT_REQUEUE_PI)
3510 3511
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
3512

3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

E
Eric Dumazet 已提交
3523
	switch (cmd) {
L
Linus Torvalds 已提交
3524
	case FUTEX_WAIT:
3525
		val3 = FUTEX_BITSET_MATCH_ANY;
3526
		/* fall through */
3527
	case FUTEX_WAIT_BITSET:
T
Thomas Gleixner 已提交
3528
		return futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
3529
	case FUTEX_WAKE:
3530
		val3 = FUTEX_BITSET_MATCH_ANY;
3531
		/* fall through */
3532
	case FUTEX_WAKE_BITSET:
T
Thomas Gleixner 已提交
3533
		return futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
3534
	case FUTEX_REQUEUE:
T
Thomas Gleixner 已提交
3535
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
3536
	case FUTEX_CMP_REQUEUE:
T
Thomas Gleixner 已提交
3537
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3538
	case FUTEX_WAKE_OP:
T
Thomas Gleixner 已提交
3539
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3540
	case FUTEX_LOCK_PI:
3541
		return futex_lock_pi(uaddr, flags, timeout, 0);
3542
	case FUTEX_UNLOCK_PI:
T
Thomas Gleixner 已提交
3543
		return futex_unlock_pi(uaddr, flags);
3544
	case FUTEX_TRYLOCK_PI:
3545
		return futex_lock_pi(uaddr, flags, NULL, 1);
3546 3547
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
T
Thomas Gleixner 已提交
3548 3549
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
3550
	case FUTEX_CMP_REQUEUE_PI:
T
Thomas Gleixner 已提交
3551
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
L
Linus Torvalds 已提交
3552
	}
T
Thomas Gleixner 已提交
3553
	return -ENOSYS;
L
Linus Torvalds 已提交
3554 3555 3556
}


3557 3558 3559
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
3560
{
3561 3562
	struct timespec ts;
	ktime_t t, *tp = NULL;
3563
	u32 val2 = 0;
E
Eric Dumazet 已提交
3564
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
3565

3566
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3567 3568
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3569 3570
		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
			return -EFAULT;
3571
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
3572
			return -EFAULT;
3573
		if (!timespec_valid(&ts))
3574
			return -EINVAL;
3575 3576

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
3577
		if (cmd == FUTEX_WAIT)
3578
			t = ktime_add_safe(ktime_get(), t);
3579
		tp = &t;
L
Linus Torvalds 已提交
3580 3581
	}
	/*
3582
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3583
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
3584
	 */
3585
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3586
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3587
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
3588

3589
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
3590 3591
}

3592
static void __init futex_detect_cmpxchg(void)
L
Linus Torvalds 已提交
3593
{
3594
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3595
	u32 curval;
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
3614
	unsigned int futex_shift;
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
3626 3627 3628
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;
3629 3630

	futex_detect_cmpxchg();
3631

3632
	for (i = 0; i < futex_hashsize; i++) {
3633
		atomic_set(&futex_queues[i].waiters, 0);
3634
		plist_head_init(&futex_queues[i].chain);
T
Thomas Gleixner 已提交
3635 3636 3637
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
3638 3639
	return 0;
}
3640
core_initcall(futex_init);