nn.py 370.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
95
    'group_norm',
X
Xin Pan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
109
    'roi_align',
X
Xin Pan 已提交
110 111 112 113
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
114
    'resize_nearest',
X
Xin Pan 已提交
115 116 117 118 119 120
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
121
    'selu',
X
Xin Pan 已提交
122 123 124
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
125
    'margin_rank_loss',
X
Xin Pan 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
169
    'space_to_depth',
W
whs 已提交
170
    'affine_grid',
S
sneaxiy 已提交
171
    'sequence_reverse',
172
    'affine_channel',
B
barrierye 已提交
173
    'similarity_focus',
M
minqiyang 已提交
174
    'hash',
D
dengkaipeng 已提交
175
    'grid_sampler',
G
gmcather 已提交
176 177
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
178
    'bilinear_tensor_product',
C
chengduo 已提交
179 180
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
181
    'lstm',
S
shippingwang 已提交
182
    'shuffle_channel',
S
sneaxiy 已提交
183
    'py_func',
184
    'psroi_pool',
H
heqiaozhi 已提交
185
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
186
    'huber_loss',
Z
zhaozhehao 已提交
187
    'tree_conv',
Y
Yu Yang 已提交
188 189
]

J
jerrywgz 已提交
190 191
kIgnoreIndex = -100

Y
Yu Yang 已提交
192 193 194 195 196 197 198

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
199
       is_test=False,
200
       name=None):
Y
Yu Yang 已提交
201
    """
202
    **Fully Connected Layer**
Y
Yu Yang 已提交
203

204 205 206 207 208 209 210 211
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
212
    to the output as well.
C
caoying03 已提交
213

C
caoying03 已提交
214
    This process can be formulated as follows:
215 216 217

    .. math::

218
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
219 220 221

    In the above equation:

C
caoying03 已提交
222 223 224 225
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
226
    * :math:`Act`: The activation function.
C
caoying03 已提交
227
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
228 229

    Args:
R
ranqiu 已提交
230 231 232 233 234 235 236 237 238 239
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
240
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
241 242 243 244
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
245 246
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
247
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
248
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
249
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
250

251
    Returns:
F
fengjiayi 已提交
252
        Variable: The transformation result.
253 254

    Raises:
C
caoying03 已提交
255
        ValueError: If rank of the input tensor is less than 2.
256 257 258 259

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
260
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
261
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
262
    """
C
caoying03 已提交
263

C
caoying03 已提交
264
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
265 266 267 268

    dtype = helper.input_dtype()

    mul_results = []
269 270
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
271 272 273
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
274

Y
Yu Yang 已提交
275
        w = helper.create_parameter(
276
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
277
        tmp = helper.create_variable_for_type_inference(dtype)
278
        helper.append_op(
279 280 281
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
282
            outputs={"Out": tmp},
M
mozga-intel 已提交
283 284
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
285 286 287 288
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
289
    else:
X
Xin Pan 已提交
290
        pre_bias = helper.create_variable_for_type_inference(dtype)
291
        helper.append_op(
292 293 294
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
295
            attrs={"use_mkldnn": False})
296 297 298 299
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
300 301


302 303 304
def embedding(input,
              size,
              is_sparse=False,
305
              is_distributed=False,
306 307 308
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
309
    """
310 311
    **Embedding Layer**

312
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
313 314
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
315 316 317

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
318 319

    Args:
320 321 322 323 324
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
325
        is_distributed(bool): Whether to run lookup table from remote parameter server.
326 327
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
328
            with zeros whenever lookup encounters it in :attr:`input`. If
329
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
330 331
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
332
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
333

334 335 336
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
337

338 339
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
340

C
chengduoZH 已提交
341
          dict_size = len(dataset.ids)
342
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
343
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
344 345 346
    """

    helper = LayerHelper('embedding', **locals())
347
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
348 349
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
350 351
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
352
    tmp = helper.create_variable_for_type_inference(dtype)
353 354
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
355 356 357 358 359
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
360 361 362
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
363
            'remote_prefetch': remote_prefetch,
364 365
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
366 367 368
    return tmp


W
wopeizl 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
385

W
wopeizl 已提交
386 387 388 389 390 391 392 393 394 395 396
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
397

W
wopeizl 已提交
398 399 400 401
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
402

W
wopeizl 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
489 490


P
phlrain 已提交
491 492 493 494 495 496
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
497
         dropout_prob=0.0,
P
phlrain 已提交
498 499 500 501 502
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
503
    """
P
phlrain 已提交
504
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
505 506

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
507
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
508 509
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
510
    .. math::
M
minqiyang 已提交
511 512 513 514 515 516 517

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
518
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
519 520 521 522

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
523 524

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
525 526 527 528 529 530
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
531 532 533
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
534
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
535

M
minqiyang 已提交
536
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
537 538 539 540 541
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
542
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
543 544 545 546 547
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
548
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
549 550
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
551 552
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
553 554 555 556 557 558
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
559
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
560

L
liuhongyu 已提交
561 562

    Returns:
M
minqiyang 已提交
563 564
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
565
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
566

H
haowang101779990 已提交
567 568 569 570
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
571
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
572 573
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
574
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
590
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
591 592 593 594 595 596
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
597 598 599
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
659 660 661 662 663 664 665 666 667 668 669
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
670 671
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
672 673 674
    """
    **Dynamic LSTMP Layer**

675 676 677 678 679 680
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
681 682 683 684 685

    The formula is as follows:

    .. math::

686
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
687

688
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
689

690
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
691

692
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
693

694
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
695

696
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
697

698
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
699

Y
Yibing Liu 已提交
700 701 702 703 704 705
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
706
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
707
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
708
          bias vector).
Y
Yibing Liu 已提交
709 710 711
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
712
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
713
    * :math:`h`: The hidden state.
714
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
715 716
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
717
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
718
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
719
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
720 721
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
722 723 724 725

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
726

Y
Yibing Liu 已提交
727 728 729 730 731 732 733 734 735 736 737 738
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
739
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
740 741
                               hidden-hidden weight and projection weight.

742 743
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
744 745
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
746 747
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
748
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
749 750 751 752 753

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
754
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
755 756 757 758 759 760
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
761
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
762 763 764
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
765
                                - The shape is (1 x 7D).
C
chengduo 已提交
766 767 768 769 770

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
771 772 773 774 775 776 777 778 779
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
780
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
781 782
                              default "tanh".
        proj_activation(str): The activation for projection output.
783
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
784 785
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
786 787
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
788 789

    Returns:
790 791 792 793
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
794 795

    Examples:
796

Y
Yibing Liu 已提交
797 798
        .. code-block:: python

799 800 801 802
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
803
            hidden_dim, proj_dim = 512, 256
804
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
805
                                     act=None, bias_attr=None)
806 807 808
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
809 810 811 812
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
813
    """
814

C
chengduo 已提交
815
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
816
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
817
    size = size // 4
Y
Yibing Liu 已提交
818 819 820 821 822 823 824 825 826 827
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
828 829 830 831 832 833
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
862 863 864 865 866 867 868
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
869 870
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
871
    """
872
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
873

874 875 876
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
877

G
guosheng 已提交
878 879 880 881 882 883 884 885 886
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
887

G
guosheng 已提交
888
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
889

Q
Qiao Longfei 已提交
890 891 892

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
893 894 895 896 897 898 899 900 901 902 903 904
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
905
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
906 907
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
908 909 910 911
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
912
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
913 914

    Args:
915 916
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
917
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
918
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
919 920
            is the hidden size.
        size(int): The dimension of the gru cell.
921
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
922 923
            hidden-hidden weight matrix. Note:

924
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
925
              :math:`D` is the hidden size.
926
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
927
              The first part are weights of the update gate and reset gate with
928
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
929
              candidate hidden state with shape :math:`(D \\times D)`.
930 931 932 933 934

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
935
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
936
            the bias in the update gate, reset gate and candidate calculations.
937 938 939
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
940 941
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
942
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
943 944 945
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
946
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
947
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
948 949 950 951
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
952 953

    Returns:
G
guosheng 已提交
954
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
955
            and sequence length is the same with the input.
956

G
guosheng 已提交
957
    Examples:
958

G
guosheng 已提交
959 960
        .. code-block:: python

961 962 963 964
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
965
            hidden_dim = 512
966
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
967
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
968 969 970 971 972 973 974 975 976
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
977
    batch_size = input.shape[0]
G
guosheng 已提交
978
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
979
    if h_0:
G
guosheng 已提交
980
        assert h_0.shape == (
Y
Yancey 已提交
981 982 983
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
984

X
Xin Pan 已提交
985 986 987 988
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1002 1003
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1004 1005 1006 1007
        })
    return hidden


Y
Yu Yang 已提交
1008 1009 1010
def gru_unit(input,
             hidden,
             size,
1011 1012
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1013
             activation='tanh',
Q
Qiao Longfei 已提交
1014 1015
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1016
    """
1017 1018 1019
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1020
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1021
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1022

1023 1024
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1025

1026
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1027

1028
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1045 1046

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1047 1048 1049
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1050 1051
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1052 1053
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1054 1055 1056
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1057 1058 1059

    Args:
        input (Variable): The fc transformed input value of current step.
1060
        hidden (Variable): The hidden value of gru unit from previous step.
1061
        size (integer): The input dimension value.
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1076
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1077
            the bias in the update gate, reset gate and candidate calculations.
1078 1079 1080
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1081 1082
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1083 1084 1085 1086
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1087

1088 1089 1090 1091 1092 1093
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1094

1095
             # assuming we have x_t_data and prev_hidden of size=10
1096
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1097 1098
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1111
    size = size // 3
Y
Yu Yang 已提交
1112 1113

    # create weight
1114 1115
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1116

X
Xin Pan 已提交
1117 1118 1119
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1120
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1121
    # create bias
1122
    if helper.bias_attr:
Y
Yu Yang 已提交
1123 1124 1125
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1126
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1127 1128 1129

    helper.append_op(
        type='gru_unit',
1130
        inputs=inputs,
Y
Yu Yang 已提交
1131 1132 1133 1134 1135 1136
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1137 1138
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1139 1140 1141 1142 1143
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1144
@templatedoc()
1145
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1146 1147 1148 1149 1150 1151 1152
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1153
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1154 1155 1156 1157
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1158 1159 1160
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1161 1162

    """
Y
Yu Yang 已提交
1163 1164 1165 1166 1167 1168
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1169 1170 1171 1172 1173 1174 1175 1176
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1192 1193 1194 1195
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1196

W
wopeizl 已提交
1197 1198
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1199

W
wopeizl 已提交
1200
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1201

W
wopeizl 已提交
1202
        label(${label_type}): ${label_comment}
1203

W
wopeizl 已提交
1204 1205
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1206

W
wopeizl 已提交
1207 1208
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1209

W
wopeizl 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1220
                "Transition": transition,
W
wopeizl 已提交
1221 1222
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1223

W
wopeizl 已提交
1224
    return viterbi_path
Y
Yu Yang 已提交
1225 1226


Y
yi.wu 已提交
1227
@templatedoc()
F
fengjiayi 已提交
1228
def cos_sim(X, Y):
Y
Yu Yang 已提交
1229
    """
Y
yi.wu 已提交
1230 1231 1232
    ${comment}

    Args:
1233 1234
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1235

Y
yi.wu 已提交
1236
    Returns:
1237
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1238
    """
F
fengjiayi 已提交
1239
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1240 1241 1242
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1253 1254 1255 1256 1257
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1258
            dropout_implementation="downgrade_in_infer"):
1259 1260 1261 1262 1263
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1264
    training. The dropout operator randomly sets (according to the given dropout
1265 1266 1267
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1268 1269
    dropout op can be removed from the program to make the program more efficient.

1270
    Args:
1271 1272
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1273 1274 1275 1276 1277 1278 1279
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1280 1281
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1282
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1283 1284 1285 1286 1287 1288

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1289
                                        2. upscale_in_train, upscale the outcome at training time
1290

H
haowang101779990 已提交
1291 1292
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1293

H
haowang101779990 已提交
1294 1295
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1296

M
minqiyang 已提交
1297

1298
    Returns:
1299
        Variable: A tensor variable is the shape with `x`.
1300 1301

    Examples:
1302

1303 1304
        .. code-block:: python

1305 1306
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1307 1308
    """

F
fengjiayi 已提交
1309
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1310 1311 1312
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1313 1314 1315 1316

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1317 1318 1319 1320 1321
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1322 1323 1324 1325
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1326 1327
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1328
        })
1329 1330 1331
    return out


J
jerrywgz 已提交
1332
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1333
    """
Y
Yibing Liu 已提交
1334 1335
    **Cross Entropy Layer**

1336 1337 1338
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1339 1340

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1341
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1342

Y
Yibing Liu 已提交
1343
        .. math::
Y
yangyaming 已提交
1344

Y
Yibing Liu 已提交
1345 1346 1347
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1348 1349
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1350 1351 1352 1353 1354

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1355
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1356 1357 1358
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1359 1360
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1361
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1362

Y
Yibing Liu 已提交
1363
    Args:
Y
yangyaming 已提交
1364
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1365 1366 1367 1368
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1369
        label (Variable|list): the ground truth which is a 2-D tensor. When
1370 1371 1372 1373
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1374
        soft_label (bool): a flag indicating whether to
1375
                                           interpretate the given labels as soft
1376
                                           labels. Default: `False`.
M
minqiyang 已提交
1377 1378
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1379
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1380 1381 1382 1383 1384

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1385 1386 1387
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1388

H
haowang101779990 已提交
1389 1390
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1391

H
haowang101779990 已提交
1392 1393
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1394 1395 1396 1397 1398 1399

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1400
    """
S
sneaxiy 已提交
1401 1402
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1403
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1404
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1405 1406 1407 1408 1409
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1410 1411
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1412 1413 1414
    return out


S
sneaxiy 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
                 'MatchX': [match_x],
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1431
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1432 1433 1434
    """
    Bayesian Personalized Ranking Loss Operator.

1435
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1436 1437 1438 1439 1440 1441
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1442 1443 1444 1445 1446 1447
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1448 1449
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1450 1451 1452
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1453 1454 1455
    Examples:
        .. code-block:: python

1456
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1457
    """
1458 1459 1460 1461 1462 1463

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1464
                'Label': [label]},
1465 1466 1467 1468
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1469
def square_error_cost(input, label):
Y
Yu Yang 已提交
1470
    """
1471 1472
    **Square error cost layer**

1473 1474
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1475

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1489 1490
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1491 1492

    Returns:
G
guosheng 已提交
1493
        Variable: The tensor variable storing the element-wise squared error \
1494
                  difference of input and label.
1495 1496 1497 1498 1499 1500 1501 1502

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1503
    """
F
fengjiayi 已提交
1504
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1505
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1506 1507 1508 1509 1510 1511
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1512
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1513
    helper.append_op(
F
fengjiayi 已提交
1514 1515
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1516 1517 1518
    return square_out


Y
yi.wu 已提交
1519
@templatedoc()
Y
Yu Yang 已提交
1520 1521 1522 1523
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1524
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1525
    """
Y
yi.wu 已提交
1526
    **Chunk Evaluator**
Y
yi.wu 已提交
1527

Y
yangyaming 已提交
1528
    This function computes and outputs the precision, recall and
1529
    F1-score of chunk detection.
Y
yi.wu 已提交
1530

M
minqiyang 已提交
1531
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1532
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1533 1534 1535 1536 1537 1538

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1539

Y
yi.wu 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1565

Y
yi.wu 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1590
    Args:
1591 1592 1593 1594 1595
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1596

Y
yi.wu 已提交
1597
    Returns:
Y
update  
yi.wu 已提交
1598 1599 1600
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1601

Y
yi.wu 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1614
    """
F
fengjiayi 已提交
1615
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1616 1617

    # prepare output
X
Xin Pan 已提交
1618 1619 1620 1621 1622 1623 1624
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1625 1626 1627 1628 1629 1630 1631 1632

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1633 1634 1635 1636
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1637 1638 1639
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1640 1641
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1642
        })
1643 1644
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1645 1646


1647
@templatedoc()
Y
Yu Yang 已提交
1648 1649 1650 1651 1652 1653 1654
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1655 1656
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1657 1658 1659 1660
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1661 1662 1663 1664 1665 1666 1667

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1681

1682 1683
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1684 1685 1686 1687 1688 1689 1690
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1691
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1702
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1703 1704 1705 1706 1707 1708
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1709
def sequence_softmax(input, use_cudnn=False, name=None):
1710 1711 1712
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1713
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1730 1731 1732
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1733

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1745 1746
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1747
    softmax_out = helper.create_variable_for_type_inference(dtype)
1748 1749 1750 1751 1752 1753 1754 1755
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1756
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1757
    """
1758
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1759
    has the same shape as the input.
Q
qiaolongfei 已提交
1760

1761 1762 1763 1764 1765 1766
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1767
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1768 1769 1770 1771 1772 1773 1774

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1775
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1776 1777 1778 1779 1780 1781 1782 1783

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1784 1785 1786
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1799 1800
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1801
    softmax_out = helper.create_variable_for_type_inference(dtype)
1802 1803 1804 1805 1806 1807 1808 1809
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1810 1811 1812
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1813 1814
           stride=1,
           padding=0,
1815
           dilation=1,
Y
Yu Yang 已提交
1816 1817 1818
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1819
           use_cudnn=True,
1820 1821
           act=None,
           name=None):
Y
Yu Yang 已提交
1822
    """
C
chengduoZH 已提交
1823
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1824 1825
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1826
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1827 1828 1829 1830 1831 1832 1833
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1834 1835 1836
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1837

1838
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1839

C
chengduoZH 已提交
1840 1841
    .. math::

C
refine  
chengduoZH 已提交
1842
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1843

T
tensor-tang 已提交
1844
    Where:
C
chengduoZH 已提交
1845

1846 1847 1848 1849 1850
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1851
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1852 1853 1854

    Example:

1855 1856
        - Input:

W
weixing02 已提交
1857
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1858

W
weixing02 已提交
1859
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1860

1861
        - Output:
T
tensor-tang 已提交
1862

W
weixing02 已提交
1863
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1864

C
chengduoZH 已提交
1865
        Where
1866 1867

        .. math::
C
chengduoZH 已提交
1868

W
weixing02 已提交
1869 1870
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1871 1872

    Args:
1873
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1874
        num_filters(int): The number of filter. It is as same as the output
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1892 1893 1894 1895 1896
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1897
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1898 1899 1900 1901 1902
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1903 1904
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1905 1906
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1907
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1908
            will be named automatically. Default: None
C
chengduoZH 已提交
1909 1910

    Returns:
G
guosheng 已提交
1911
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1912 1913
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1914
    Raises:
1915 1916
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1917

C
chengduoZH 已提交
1918 1919 1920
    Examples:
        .. code-block:: python

1921 1922
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1923 1924 1925
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1926
    assert param_attr is not False, "param_attr should not be False here."
1927
    l_type = 'conv2d'
X
xzl 已提交
1928 1929
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1930
        l_type = 'depthwise_conv2d'
1931 1932 1933 1934

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1935 1936 1937 1938 1939
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1940
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1941

C
chengduoZH 已提交
1942 1943 1944
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1945
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1946

C
chengduoZH 已提交
1947 1948
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1949 1950

    input_shape = input.shape
M
minqiyang 已提交
1951
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1952 1953

    def _get_default_param_initializer():
C
chengduo 已提交
1954 1955
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1956 1957 1958 1959 1960 1961 1962 1963
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1964
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1980
    helper.append_op(
1981
        type=l_type,
Y
Yu Yang 已提交
1982 1983 1984 1985 1986
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1987 1988 1989
        attrs={
            'strides': stride,
            'paddings': padding,
1990
            'dilations': dilation,
C
chengduoZH 已提交
1991
            'groups': groups,
1992
            'use_cudnn': use_cudnn,
1993
            'use_mkldnn': False,
1994
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
1995
        })
Y
Yu Yang 已提交
1996 1997 1998 1999 2000 2001

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2019 2020 2021 2022 2023 2024
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2034 2035
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2036 2037 2038
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2039
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2065
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2066 2067
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2068
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2069 2070
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2071
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2072 2073
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2074
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2075 2076 2077 2078 2079 2080
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2091 2092
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2093 2094
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2095
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2096
            will be named automatically. Default: None.
C
chengduoZH 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2109 2110
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2111 2112 2113
    """

    l_type = 'conv3d'
C
chengduo 已提交
2114
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2125
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2139 2140 2141
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2142 2143 2144 2145 2146 2147 2148 2149
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2150
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2165
            'use_mkldnn': False
C
chengduoZH 已提交
2166 2167
        })

2168
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2169 2170 2171 2172

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2173
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2174
    """
Y
yangyaming 已提交
2175 2176 2177
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2189
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2190 2191 2192 2193 2194
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2195
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2196 2197 2198 2199 2200 2201 2202

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2203 2204
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2205

L
Luo Tao 已提交
2206 2207
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2208
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2209
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2210
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2211 2212 2213 2214 2215 2216 2217

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2218

Y
yangyaming 已提交
2219
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2220 2221 2222 2223 2224
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2225 2226
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2227
    """
F
fengjiayi 已提交
2228
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2229
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2230 2231
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2232 2233 2234 2235 2236 2237

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2238 2239
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2240

Y
yangyaming 已提交
2241 2242 2243 2244 2245
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2246 2247 2248
    return pool_out


C
add doc  
chengduoZH 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2268
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2269 2270 2271 2272 2273
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2274
def sequence_first_step(input):
L
Luo Tao 已提交
2275
    """
L
Luo Tao 已提交
2276
    This function gets the first step of sequence.
L
Luo Tao 已提交
2277 2278 2279 2280

    .. code-block:: text

       x is a 1-level LoDTensor:
2281
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2282 2283 2284 2285 2286
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2287
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2288
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2289

L
Luo Tao 已提交
2290 2291 2292 2293 2294 2295 2296 2297 2298
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2299

Y
yangyaming 已提交
2300
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2301 2302 2303
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2304 2305 2306
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2307
def sequence_last_step(input):
L
Luo Tao 已提交
2308
    """
L
Luo Tao 已提交
2309
    This function gets the last step of sequence.
L
Luo Tao 已提交
2310 2311 2312 2313

    .. code-block:: text

       x is a 1-level LoDTensor:
2314
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2315 2316 2317 2318 2319
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2320
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2321
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2322

L
Luo Tao 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2332

Y
yangyaming 已提交
2333
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2334 2335 2336
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2337 2338 2339
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2340 2341 2342 2343
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2344
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2345 2346 2347 2348 2349
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2350

H
haowang101779990 已提交
2351
              - Case:
Y
Yibing Liu 已提交
2352

2353
            Given the input Variable **input**:
2354

2355 2356 2357
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2358

2359
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2360

2361
            the output Variable will be
2362

2363 2364 2365
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2366

M
minqiyang 已提交
2367
    Note:
H
haowang101779990 已提交
2368
          The first dimension size of **input**, **offset** and **length**
2369
          should be equal. The **offset** should start from 0.
2370

Y
Yibing Liu 已提交
2371
    Args:
2372
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2373
                         sequences.
Y
Yibing Liu 已提交
2374 2375 2376 2377 2378 2379
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2380
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2391
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2392 2393 2394 2395
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2396
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2411
@templatedoc()
Y
Yu Yang 已提交
2412
def pool2d(input,
C
chengduoZH 已提交
2413 2414
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2415 2416
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2417
           global_pooling=False,
C
chengduoZH 已提交
2418
           use_cudnn=True,
2419
           ceil_mode=False,
2420 2421
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2422
    """
F
fengjiayi 已提交
2423
    ${comment}
2424 2425

    Args:
2426 2427 2428
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2429
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2430
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2431 2432
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2433
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2434 2435 2436 2437 2438 2439
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2440 2441 2442
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2443
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2444
                        layer will be named automatically.
2445
        exclusive (bool): Whether to exclude padding points in average pooling
2446
                          mode, default is true
F
fengjiayi 已提交
2447

2448
    Returns:
F
fengjiayi 已提交
2449
        Variable: The pooling result.
F
fengjiayi 已提交
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2462
          pool2d = fluid.layers.pool2d(
2463 2464 2465 2466
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2467
                            global_pooling=False)
Y
Yu Yang 已提交
2468 2469 2470 2471 2472
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2473

C
chengduoZH 已提交
2474 2475 2476 2477 2478
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2479 2480 2481 2482
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2483 2484
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2485

C
Add doc  
chengduoZH 已提交
2486
    l_type = 'pool2d'
2487 2488

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2489
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2490
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2491 2492

    helper.append_op(
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2504 2505
            "use_mkldnn": False,
            "exclusive": exclusive,
2506 2507 2508 2509 2510
        })

    return pool_out


D
dengkaipeng 已提交
2511
@templatedoc()
2512 2513 2514 2515 2516 2517 2518 2519
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2520 2521
           name=None,
           exclusive=True):
2522
    """
D
dengkaipeng 已提交
2523
    ${comment}
2524 2525

    Args:
D
dengkaipeng 已提交
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2536 2537 2538 2539 2540 2541 2542
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2543
        exclusive (bool): Whether to exclude padding points in average pooling
2544
                          mode, default is true
2545

2546
    Returns:
2547
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2561 2562 2563 2564 2565
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2566

C
chengduoZH 已提交
2567 2568 2569 2570 2571
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2572 2573 2574
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2575

C
chengduoZH 已提交
2576 2577
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2578

2579 2580
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2581
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2582
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2583 2584

    helper.append_op(
2585
        type=l_type,
Y
Yu Yang 已提交
2586 2587 2588 2589 2590 2591 2592
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2593
            "paddings": pool_padding,
2594
            "use_cudnn": use_cudnn,
2595
            "ceil_mode": ceil_mode,
2596 2597
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2598 2599 2600 2601 2602
        })

    return pool_out


2603 2604 2605 2606 2607 2608 2609
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).

    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2631 2632 2633 2634 2635 2636 2637 2638 2639

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2640 2641
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2656
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2657
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2658
          # of input data into m * n grids averagely and performs poolings in each
2659 2660
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2661
          #
2662 2663 2664 2665 2666 2667 2668 2669
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2670 2671
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2672
          pool_out = fluid.layers.adaptive_pool2d(
2673 2674
                            input=data,
                            pool_size=[3, 3],
2675
                            pool_type='avg')
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2686
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2712
    return (pool_out, mask) if require_index else pool_out
2713 2714 2715 2716 2717 2718 2719 2720 2721


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).

    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2747 2748 2749

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2750 2751 2752
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2753
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2754
            it must contain three integers, (Depth, Height, Width).
2755
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2756 2757
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2772 2773
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2774
          # of input data into l * m * n grids averagely and performs poolings in each
2775 2776
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2777
          #
2778 2779 2780 2781 2782 2783 2784 2785 2786
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2787
          #                 output[:, :, i, j, k] =
2788 2789
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2790 2791
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2792
          pool_out, mask = fluid.layers.adaptive_pool3d(
2793
                            input=data,
D
dengkaipeng 已提交
2794
                            pool_size=[3, 3, 3],
2795
                            pool_type='avg')
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2806
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2832
    return (pool_out, mask) if require_index else pool_out
2833 2834


Y
Yu Yang 已提交
2835 2836 2837 2838 2839 2840 2841
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2842
               data_layout='NCHW',
Y
Yang Yang 已提交
2843
               in_place=False,
2844 2845
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2846
               moving_variance_name=None,
2847
               do_model_average_for_mean_and_var=False,
2848 2849
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2850
    """
Q
qiaolongfei 已提交
2851 2852 2853 2854
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2855

Q
qiaolongfei 已提交
2856
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2857

Q
qiaolongfei 已提交
2858 2859
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2860 2861 2862
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2875

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2889
    Args:
Q
qiaolongfei 已提交
2890
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2891
        act(string, Default None): Activation type, linear|relu|prelu|...
C
ceci3 已提交
2892
        is_test(bool, Default False): Used for training or testing.
Q
qiaolongfei 已提交
2893 2894
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2895 2896 2897 2898 2899 2900 2901 2902
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2903
        data_layout(string, default NCHW): NCHW|NHWC
2904
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2905 2906 2907 2908
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2909
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2910
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2911 2912 2913 2914 2915
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2916 2917

    Returns:
Q
qiaolongfei 已提交
2918
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2919 2920 2921 2922 2923 2924 2925

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2926
    """
C
chengduo 已提交
2927
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2928 2929 2930
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2931 2932 2933 2934
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2952 2953 2954
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2955 2956

    bias = helper.create_parameter(
2957
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2958 2959
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
M
minqiyang 已提交
2960
        bias.stop_gradient = True
Y
Yu Yang 已提交
2961

2962 2963
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2964 2965 2966
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2967
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2968
        shape=param_shape,
W
Wu Yi 已提交
2969
        dtype=dtype)
2970 2971 2972 2973 2974 2975
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2976
            trainable=False,
W
wanghaoshuang 已提交
2977
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2978
        shape=param_shape,
W
Wu Yi 已提交
2979
        dtype=dtype)
2980
    variance.stop_gradient = True
Y
Yu Yang 已提交
2981 2982 2983 2984 2985 2986

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2987 2988 2989 2990
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2991

X
Xin Pan 已提交
2992 2993
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3011 3012 3013 3014
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3015
            "data_layout": data_layout,
X
Xin Pan 已提交
3016
            "use_mkldnn": False,
3017 3018
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3019
        })
Y
Yu Yang 已提交
3020 3021 3022 3023

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              use_mkldnn=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
        attrs={"epsilon": epsilon,
               "use_mkldnn": use_mkldnn})

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3151
@templatedoc()
G
guosheng 已提交
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3162
    ${comment}
G
guosheng 已提交
3163 3164 3165

    The formula is as follows:

Y
yuyang18 已提交
3166
    ..  math::
G
guosheng 已提交
3167 3168 3169 3170 3171 3172 3173

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3174 3175 3176 3177 3178 3179 3180 3181
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3182

G
guosheng 已提交
3183 3184
    Args:
        input(Variable): The input tensor variable.
3185
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3186
            normalization. Default True.
3187
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3188 3189
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3190
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3191
            Default 1.
3192
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3193
            division by zero. Default 1e-05.
G
guosheng 已提交
3194
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3195 3196
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3197 3198
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3199
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3200 3201
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3202
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3203
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3204
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3205 3206 3207
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3208 3209

    Returns:
Y
yuyang18 已提交
3210
        ${y_comment}
G
guosheng 已提交
3211 3212 3213

    Examples:

Y
yuyang18 已提交
3214 3215 3216
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3232
    if shift:
G
guosheng 已提交
3233 3234 3235 3236 3237 3238
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3239 3240 3241 3242 3243
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3271
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3319 3320
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
Dun 已提交
3321
    group_norm_out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3337 3338 3339 3340
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3341 3342 3343
                     padding=0,
                     stride=1,
                     dilation=1,
3344
                     groups=None,
C
caoying03 已提交
3345
                     param_attr=None,
3346
                     bias_attr=None,
C
chengduoZH 已提交
3347
                     use_cudnn=True,
3348
                     act=None,
C
caoying03 已提交
3349
                     name=None):
Y
Yu Yang 已提交
3350
    """
3351 3352 3353 3354 3355 3356 3357 3358
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3359 3360
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3361 3362 3363
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3364 3365 3366 3367 3368

    For each input :math:`X`, the equation is:

    .. math::

3369
        Out = \sigma (W \\ast X + b)
3370

3371
    Where:
3372 3373 3374

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3375 3376 3377 3378
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3379

3380 3381 3382 3383
    Example:

        - Input:

3384
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3385

3386
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3387 3388 3389

        - Output:

3390
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3391 3392

        Where
Y
Yu Yang 已提交
3393

3394 3395
        .. math::

3396 3397
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3398 3399
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3400 3401

    Args:
3402 3403 3404 3405
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3406 3407 3408 3409
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3438
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3439 3440 3441
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3442
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3443
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3444 3445

    Returns:
3446
        Variable: The tensor variable storing the convolution transpose result.
3447 3448

    Raises:
3449 3450
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3451 3452 3453 3454

    Examples:
       .. code-block:: python

3455 3456
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3457
    """
C
chengduo 已提交
3458
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3459 3460 3461 3462 3463 3464 3465 3466
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3467 3468 3469
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3470 3471 3472
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3473

C
chengduoZH 已提交
3474 3475
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3476

Y
Yu Yang 已提交
3477 3478 3479 3480 3481
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3482

Y
Yu Yang 已提交
3483 3484
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3485

C
chengduoZH 已提交
3486
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3487
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3488
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3489
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3490
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3491 3492 3493
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3494

3495 3496 3497 3498 3499 3500 3501
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3502
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3503
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3504

Y
Yu Yang 已提交
3505 3506 3507
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3508
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3509
    helper.append_op(
3510
        type=op_type,
Y
Yu Yang 已提交
3511 3512
        inputs={'Input': [input],
                'Filter': [img_filter]},
3513
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3514
        attrs={
3515
            'output_size': output_size,
3516 3517 3518 3519 3520
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3521 3522
        })

3523 3524 3525
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3526 3527


3528
def conv3d_transpose(input,
Y
Yu Yang 已提交
3529 3530 3531
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3532 3533 3534
                     padding=0,
                     stride=1,
                     dilation=1,
3535
                     groups=None,
C
caoying03 已提交
3536
                     param_attr=None,
3537
                     bias_attr=None,
C
chengduoZH 已提交
3538
                     use_cudnn=True,
3539
                     act=None,
C
caoying03 已提交
3540
                     name=None):
Y
Yu Yang 已提交
3541
    """
3542
    **Convlution3D transpose layer**
3543

3544
    The convolution3D transpose layer calculates the output based on the input,
3545
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3546 3547 3548 3549 3550 3551
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3552 3553 3554
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3555 3556 3557 3558 3559

    For each input :math:`X`, the equation is:

    .. math::

3560
        Out = \sigma (W \\ast X + b)
3561 3562 3563

    In the above equation:

3564 3565
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3566 3567 3568 3569
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3570

3571 3572 3573 3574
    Example:

        - Input:

3575
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3576

3577
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3578 3579 3580

        - Output:

3581
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3582 3583

        Where
Y
Yu Yang 已提交
3584

3585 3586
        .. math::

3587 3588 3589
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3590 3591

    Args:
3592
        input(Variable): The input image with [N, C, D, H, W] format.
3593 3594 3595
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3596
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3597 3598
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3599
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3600 3601 3602
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3603 3604
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3605
        stride(int|tuple): The stride size. If stride is a tuple, it must
3606 3607
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3608
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3609 3610 3611
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3612 3613 3614 3615 3616
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3617 3618 3619 3620 3621 3622 3623 3624 3625
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3626 3627
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3628 3629
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3630 3631
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3632 3633

    Returns:
3634
        Variable: The tensor variable storing the convolution transpose result.
3635 3636

    Raises:
3637 3638
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3639 3640 3641 3642

    Examples:
       .. code-block:: python

3643 3644
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3645
    """
C
chengduo 已提交
3646
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3647 3648
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3649
    if not isinstance(input, Variable):
3650
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3651 3652
    input_channel = input.shape[1]

3653 3654 3655
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3656

C
chengduoZH 已提交
3657 3658 3659
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3660 3661 3662 3663 3664 3665
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3666 3667 3668
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3669

3670
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3671
                         padding[0] - 1) // dilation[0] + 1
3672
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3673
                         padding[1] - 1) // dilation[1] + 1
3674
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3675
                         padding[2] - 1) // dilation[2] + 1
3676
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3677
    else:
3678 3679
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3680

3681
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3682
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3683 3684 3685
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3686
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3687
    helper.append_op(
3688
        type=l_type,
Y
Yu Yang 已提交
3689 3690
        inputs={'Input': [input],
                'Filter': [img_filter]},
3691
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3692 3693 3694 3695
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3696
            'groups': groups,
C
chengduoZH 已提交
3697 3698
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3699

3700 3701
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3702
    return out
Y
yangyaming 已提交
3703 3704


Y
yangyaming 已提交
3705
def sequence_expand(x, y, ref_level=-1, name=None):
3706
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3707 3708 3709 3710
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3711 3712 3713 3714 3715

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3716
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3717
                x.data = [[a], [b], [c], [d]]
3718 3719 3720
                x.dims = [4, 1]

            y is a LoDTensor:
3721 3722
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3723

Y
yangyaming 已提交
3724
            ref_level: 0
3725

Y
yangyaming 已提交
3726
            then output is a 1-level LoDTensor:
3727
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3728
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3729 3730 3731 3732
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3733
                x.data = [[a], [b], [c]]
3734 3735 3736
                x.dims = [3, 1]

            y is a LoDTensor:
3737
                y.lod = [[2, 0, 3]]
3738

Y
yangyaming 已提交
3739
            ref_level: -1
3740

Y
yangyaming 已提交
3741 3742 3743
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3744 3745 3746
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3747 3748
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3749
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3750
                        will be named automatically.
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3761
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3762
    """
Y
yangyaming 已提交
3763
    helper = LayerHelper('sequence_expand', input=x, **locals())
3764
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3765
    tmp = helper.create_variable_for_type_inference(dtype)
3766
    helper.append_op(
Y
yangyaming 已提交
3767 3768 3769 3770 3771
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3772
    return tmp
3773 3774


C
chengduo 已提交
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3831
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3832 3833 3834 3835 3836 3837 3838 3839
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3840
@templatedoc()
3841
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3842 3843 3844 3845 3846
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3847 3848 3849
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3850
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3851 3852 3853 3854
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3855 3856 3857
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3858

F
fengjiayi 已提交
3859
    Returns:
M
minqiyang 已提交
3860
        Variable: The padded sequence batch and the original lengths before
3861
                  padding. All sequences has the same length.
M
minqiyang 已提交
3862

F
fengjiayi 已提交
3863 3864 3865 3866 3867 3868 3869
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3870
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3871
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3872 3873 3874 3875 3876
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3877 3878
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3879 3880 3881 3882

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3883 3884 3885 3886 3887 3888
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3889 3890
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3891
        attrs={'padded_length': maxlen})
3892
    return out, length
F
fengjiayi 已提交
3893 3894


3895
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3896
    """
3897
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3898

3899 3900
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3901 3902 3903 3904 3905 3906 3907 3908 3909
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3910 3911 3912
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3913
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3914 3915 3916 3917 3918 3919

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3920
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3921 3922 3923 3924 3925 3926

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3927 3928
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3943
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3955 3956 3957 3958 3959 3960 3961
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
3962
                is_accumulated=True,
3963 3964
                name=None,
                return_parent_idx=False):
3965
    """
3966 3967
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3968 3969 3970

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3971 3972

    This layer does the search in beams for one time step. Specifically, it
3973 3974 3975
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
3987 3988 3989 3990

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3991

3992
    Args:
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4016 4017
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4018 4019
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4020 4021 4022 4023
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4024

4025
    Returns:
4026 4027 4028 4029
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4030 4031 4032 4033

    Examples:
        .. code-block:: python

4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4051
    helper = LayerHelper('beam_search', **locals())
4052 4053 4054 4055 4056 4057
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4058

X
Xin Pan 已提交
4059 4060 4061
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4062 4063 4064 4065 4066
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4067 4068 4069

    helper.append_op(
        type='beam_search',
4070
        inputs=inputs,
Q
Qiao Longfei 已提交
4071 4072 4073
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4074
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4075 4076 4077 4078 4079 4080
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4081
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4082
        })
4083 4084 4085 4086
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4087 4088


4089 4090 4091 4092 4093 4094 4095
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4096

4097 4098 4099 4100 4101 4102 4103 4104 4105
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4106

4107 4108 4109 4110 4111 4112
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4113

4114 4115
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4116

4117 4118 4119 4120 4121 4122
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4123 4124
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4140 4141 4142 4143
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4144
              param_attr=None,
C
caoying03 已提交
4145 4146
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4147 4148 4149 4150
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4151
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4152

4153
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4154

4155
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4156

4157
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4158 4159 4160

            h_t & = o_t tanh(c_t)

4161 4162 4163 4164 4165 4166
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4167 4168 4169

        .. math::

4170
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4171 4172 4173 4174 4175 4176 4177 4178

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4179
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4180 4181

    Args:
Y
yangyaming 已提交
4182 4183 4184 4185 4186 4187
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4188
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4201 4202
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4203 4204

    Returns:
Y
yangyaming 已提交
4205
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4206 4207

    Raises:
4208 4209 4210 4211
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4212 4213 4214 4215 4216 4217

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4218
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4219
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4220
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4237
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4238 4239 4240 4241
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4242 4243
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4244 4245 4246
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4247
    size = cell_t_prev.shape[1]
4248
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4249 4250
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4251
                param_attr=param_attr,
4252
                bias_attr=bias_attr)
Y
yangyaming 已提交
4253
    dtype = x_t.dtype
X
Xin Pan 已提交
4254 4255
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4265
    return h, c
G
guosheng 已提交
4266 4267


C
caoying03 已提交
4268
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4269
    """
Y
yangyaming 已提交
4270
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4271 4272 4273

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4274
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4275 4276
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4277 4278
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4279
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4280
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4281
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4282 4283
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4284 4285 4286

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4287

G
guosheng 已提交
4288 4289 4290 4291 4292 4293
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4294
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4295 4296 4297 4298
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4299 4300 4301 4302

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4303
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4304 4305 4306
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4307 4308
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4309
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4310 4311
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4312 4313 4314 4315 4316
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4317
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4318 4319 4320 4321
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4322 4323


C
caoying03 已提交
4324
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4325
    """
Y
Yibing Liu 已提交
4326
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4327 4328 4329

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4330 4331 4332
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4333
            must be in the range :math:`[-rank(input), rank(input))`. If
4334
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4335
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4336 4337
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4338
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4339
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4340
                       will be named automatically.
G
guosheng 已提交
4341 4342

    Returns:
Y
Yibing Liu 已提交
4343
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4344

G
guosheng 已提交
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4355 4356
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4357 4358 4359 4360 4361 4362 4363

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4364 4365
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4366
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4367 4368
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4369 4370 4371 4372 4373
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4374
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4375 4376 4377 4378
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4379 4380


C
caoying03 已提交
4381
def reduce_max(input, dim=None, keep_dim=False, name=None):
4382
    """
Y
yangyaming 已提交
4383
    Computes the maximum of tensor elements over the given dimension.
4384 4385 4386

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4387
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4388 4389 4390
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4391
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4392 4393
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4394
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4395 4396
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4397 4398 4399

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4400

4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4412 4413 4414 4415 4416 4417 4418

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4419 4420
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4421
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4422 4423
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4424 4425 4426 4427 4428
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4429
            'dim': dim if dim != None else [0],
4430 4431 4432 4433 4434 4435
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4436
def reduce_min(input, dim=None, keep_dim=False, name=None):
4437
    """
Y
yangyaming 已提交
4438
    Computes the minimum of tensor elements over the given dimension.
4439 4440 4441

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4442
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4443 4444 4445
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4446
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4447 4448
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4449
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4450 4451
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4452 4453 4454

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4455

4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4467 4468 4469 4470 4471 4472 4473

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4474 4475
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4476
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4477 4478
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4479 4480 4481 4482 4483
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4484
            'dim': dim if dim != None else [0],
4485 4486 4487 4488
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4489 4490


4491 4492 4493 4494 4495 4496
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4497
        dim (list|int|None): The dimensions along which the product is performed. If
4498 4499
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4500 4501
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4502 4503 4504
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4505
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4506
            layer will be named automatically.
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4521
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4522
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4523 4524 4525 4526 4527 4528 4529

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4530 4531
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4532
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4533 4534
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4535 4536 4537 4538 4539
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4540
            'dim': dim if dim != None else [0],
4541 4542 4543 4544 4545 4546
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4547
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4548
    """
C
caoying03 已提交
4549
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4550 4551 4552

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4553 4554 4555 4556 4557
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4558
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4559
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4560
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4561 4562
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4563 4564

    Returns:
D
dzhwinter 已提交
4565
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4566 4567 4568 4569 4570 4571 4572 4573 4574

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4575 4576
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4592
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4606 4607 4608 4609 4610 4611 4612 4613 4614


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4615
    .. math::
4616 4617

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4618 4619 4620 4621 4622

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4623
        x(Variable|list): The input tensor to l2_normalize layer.
4624
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4625 4626
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4627
        epsilon(float): The epsilon value is used to avoid division by zero, \
4628
            the defalut value is 1e-10.
4629
        name(str|None): A name for this layer(optional). If set None, the layer \
4630
            will be named automatically.
C
caoying03 已提交
4631 4632

    Returns:
4633
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4634 4635

    Examples:
4636

C
caoying03 已提交
4637 4638
        .. code-block:: python

4639 4640 4641 4642
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4643 4644
    """

F
fengjiayi 已提交
4645 4646
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4647 4648
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4649 4650
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4651
    helper.append_op(
4652 4653 4654 4655
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4656
        attrs={
4657 4658
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4659 4660
        })
    return out
4661 4662


S
sneaxiy 已提交
4663
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4664
    """
Y
ying 已提交
4665 4666 4667 4668
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4669

C
chengduoZH 已提交
4670
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4671
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4672

4673 4674 4675 4676 4677
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4678
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4679

C
chengduoZH 已提交
4680
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4681
      performs in the following way.
G
guosheng 已提交
4682

4683
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4684
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4685
        last two dimensions and a batched matrix multiply supporting broadcast
4686
        applies on the two tensors.
G
guosheng 已提交
4687

Y
ying 已提交
4688 4689
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4690
    removed after matrix multiplication.
G
guosheng 已提交
4691 4692 4693

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4694 4695 4696
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4697
        alpha (float): The scale of output. Default 1.0.
4698
        name(str|None): A name for this layer(optional). If set None, the layer
4699
            will be named automatically.
G
guosheng 已提交
4700 4701

    Returns:
4702
        Variable: The product Tensor variable.
G
guosheng 已提交
4703

G
guosheng 已提交
4704 4705 4706
    Examples:
        .. code-block:: python

4707
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4708 4709
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4710

4711 4712
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4713

4714 4715
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4716

4717 4718
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4719 4720 4721 4722

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4723 4724
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4725

Y
ying 已提交
4726
            # x: [M], y: [N]
4727
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4728
    """
Y
ying 已提交
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4741
            y_shape = y_shape + [1]
Y
ying 已提交
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
4753 4754 4755
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
4756 4757 4758 4759 4760
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4761
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4762
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4763
    helper.append_op(
4764 4765 4766 4767
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4768 4769 4770
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4771
            'alpha': float(alpha),
S
sneaxiy 已提交
4772
        })
4773
    return out
4774 4775


4776
def topk(input, k, name=None):
Q
qingqing01 已提交
4777 4778 4779 4780
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4781
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4782 4783 4784 4785 4786 4787
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4809 4810 4811
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4812
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4813
                 of input.
4814
        name(str|None): A name for this layer(optional). If set None, the layer
4815
                       will be named automatically.
F
fengjiayi 已提交
4816
                       Default: None
Q
qingqing01 已提交
4817 4818

    Returns:
4819 4820 4821
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4822
        within the last dimension of input.
Q
qingqing01 已提交
4823

F
fengjiayi 已提交
4824 4825
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4826 4827 4828 4829 4830 4831 4832

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4833 4834
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4835 4836 4837 4838 4839 4840
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4841 4842
    helper.append_op(
        type="top_k",
W
whs 已提交
4843
        inputs=inputs,
Q
qingqing01 已提交
4844 4845
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4846
        attrs=attrs)
Q
qingqing01 已提交
4847 4848 4849 4850 4851
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4852
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4853
    """
Y
ying 已提交
4854 4855 4856 4857 4858 4859 4860 4861 4862
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4863

Y
ying 已提交
4864
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4865

4866
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4867 4868
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4869
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4870

4871
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4872 4873
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4874

4875 4876 4877
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4878
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4879
                          the length of reference string.
4880
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4881
                                     calculating edit distance.
4882
        name (str): The name of this layer. It is optional.
4883

W
wanghaoshuang 已提交
4884
    Returns:
W
wanghaoshuang 已提交
4885
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4886 4887 4888 4889

    Examples:
        .. code-block:: python

T
tink2123 已提交
4890 4891
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4892
            cost = fluid.layers.edit_distance(input=x,label=y)
4893
    """
4894
    helper = LayerHelper("edit_distance", **locals())
4895

4896
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4897
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4898 4899
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4900 4901 4902 4903 4904

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4905
            attrs={"tokens": ignored_tokens})
4906 4907 4908 4909 4910
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4911
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4912
            attrs={"tokens": ignored_tokens})
4913 4914
        label = erased_label

4915
    # edit distance op
X
Xin Pan 已提交
4916 4917
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4918 4919 4920 4921
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4922 4923
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4924 4925
        attrs={"normalized": normalized})

4926
    return edit_distance_out, sequence_num
4927 4928 4929 4930 4931


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4932

Y
ying 已提交
4933 4934 4935 4936
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4954
        input.lod = [[4, 4]]
M
minqiyang 已提交
4955

W
whs 已提交
4956
        Computation:
4957

W
whs 已提交
4958 4959 4960 4961 4962 4963
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4964 4965 4966 4967 4968

        output.data = [[2],
                       [1],
                       [3]]

4969
        output.lod = [[2, 1]]
4970

W
whs 已提交
4971

4972 4973
    Args:

Y
ying 已提交
4974 4975 4976 4977 4978 4979 4980 4981 4982
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4983
        name (str): The name of this layer. It is optional.
4984 4985

    Returns:
H
haowang101779990 已提交
4986 4987 4988
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
4989
                  LoD [[]] and dims [1, 1].
4990 4991 4992 4993 4994

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4995

4996
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4997
    """
4998
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4999
    _, topk_indices = topk(input, k=1)
5000 5001

    # ctc align op
X
Xin Pan 已提交
5002
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5003 5004 5005
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5006
        outputs={"Output": [ctc_out]},
5007 5008
        attrs={"merge_repeated": True,
               "blank": blank})
5009
    return ctc_out
5010 5011


W
Wu Yi 已提交
5012
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5013
    """
5014 5015
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5016
    to compute Connectionist Temporal Classification (CTC) loss.
5017 5018
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5019 5020 5021
    input tensor.

    Args:
5022
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5023 5024 5025 5026
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5027
       label (Variable): The ground truth of variable-length sequence,
5028 5029 5030
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5031 5032
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5033 5034 5035
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5036
         follewed by a mean_op.
W
Wu Yi 已提交
5037
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5038 5039

    Returns:
5040 5041
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5042 5043

    Examples:
5044

W
wanghaoshuang 已提交
5045
        .. code-block:: python
5046

5047 5048 5049
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5050 5051

    """
F
fengjiayi 已提交
5052
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5053 5054
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5055 5056 5057 5058 5059 5060
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5061 5062 5063 5064 5065
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5066
    return loss_out
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5082 5083 5084
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5085 5086 5087 5088 5089
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5090

5091
            out.lod  = [[0, 1, 3]]
5092 5093 5094 5095

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5096 5097 5098 5099 5100 5101 5102
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5103 5104 5105

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5106 5107

    Returns:
5108

5109 5110 5111 5112 5113
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5114
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5115
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5116 5117
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5118
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5119 5120 5121 5122 5123 5124
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5125 5126


5127 5128 5129 5130
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5131 5132 5133 5134 5135 5136
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5137
        num_neg_samples=None,
5138 5139 5140
        name=None,
        sampler="uniform",
        custom_dist=None,
5141 5142
        seed=0,
        is_sparse=False):
5143 5144 5145 5146 5147 5148 5149
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5150 5151
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5152
            sample is 1.0.
C
chengduo 已提交
5153 5154 5155 5156 5157 5158 5159 5160 5161
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5162
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5163 5164
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5165 5166 5167
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5168
        custom_dist (float[]): A float[] with size=num_total_classes.
5169 5170 5171 5172
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5173
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5174

5175
    Returns:
Y
Yibing Liu 已提交
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5203 5204 5205 5206 5207 5208 5209 5210 5211

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5212

5213
    """
Y
Yang Yu 已提交
5214 5215 5216
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5217 5218

    dim = input.shape[1]
Y
Yang Yu 已提交
5219 5220 5221 5222 5223 5224
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5225
    inputs = {}
C
chengduo 已提交
5226 5227 5228 5229 5230 5231 5232
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5233 5234 5235
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5236

5237 5238 5239 5240
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5241 5242 5243 5244 5245 5246 5247

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5248 5249 5250 5251 5252 5253 5254 5255 5256
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5257
            if normal_prob - 1.0 > 0:
5258
                bigs.append((i, normal_prob))
5259
            elif 1.0 - normal_prob > 0:
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5275
            if big_left - 1.0 > 0:
5276
                bigs.append((big_idx, big_left))
5277
            elif 1.0 - big_left > 0:
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5307 5308 5309 5310
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5311 5312 5313 5314 5315
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5316 5317 5318 5319
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5320

Y
Yang Yu 已提交
5321 5322
    attrs = {
        'num_total_classes': int(num_total_classes),
5323 5324
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5325
        'sampler': sampler,
5326 5327
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5328
    }
Y
Yang Yu 已提交
5329 5330 5331

    helper.append_op(
        type='nce',
C
chengduo 已提交
5332
        inputs=inputs,
Y
Yang Yu 已提交
5333 5334 5335 5336 5337 5338
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5339
    return cost / (num_neg_samples + 1)
5340 5341


C
chengduo 已提交
5342 5343
def hsigmoid(input,
             label,
5344
             num_classes,
C
chengduo 已提交
5345 5346
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5347
             name=None,
5348 5349 5350
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5351
             is_sparse=False):
W
weixing02 已提交
5352 5353
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5354
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5355
    complete binary tree, or you can use is_custom to pass your own tree to
5356
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5357 5358 5359 5360 5361 5362
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5363
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5364
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5365

5366 5367
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5368 5369 5370 5371
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5372
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5373
       related to the same batch of inputs.
5374

W
weixing02 已提交
5375
    Args:
M
minqiyang 已提交
5376
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5377 5378 5379 5380
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5381 5382
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5383
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5395
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5396
            it should be in leaf -> root order
M
minqiyang 已提交
5397 5398 5399
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5400
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5401
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5402
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5403
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5404
             of W and input will be sparse.
W
weixing02 已提交
5405 5406

    Returns:
J
JiabinYang 已提交
5407
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5408 5409 5410 5411 5412

    Examples:

        .. code-block:: python

G
guosheng 已提交
5413 5414 5415
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5416 5417 5418 5419
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5420 5421
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5422
    dim = input.shape[1]
5423
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5424 5425 5426
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5427 5428 5429 5430
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5431 5432
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5433 5434 5435
    else:
        pass

J
JiabinYang 已提交
5436
    weights = None
5437 5438 5439 5440
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5441
    if not is_custom:
J
JiabinYang 已提交
5442 5443 5444 5445 5446 5447 5448 5449
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5450
            shape=[num_classes, dim],
J
JiabinYang 已提交
5451 5452
            is_bias=False,
            dtype=input.dtype)
5453 5454 5455
    inputs = {
        "X": input,
        "W": weights,
5456
        "PathTable": path_table,
5457
        "PathCode": path_code,
5458 5459
        "Label": label
    }
W
weixing02 已提交
5460
    if helper.bias_attr:
5461
        if not is_custom:
J
JiabinYang 已提交
5462 5463
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5464
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5465 5466 5467 5468 5469 5470
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5471
                shape=[num_classes, 1],
J
JiabinYang 已提交
5472 5473 5474
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5475 5476
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5477
        inputs=inputs,
W
weixing02 已提交
5478
        outputs={"Out": out,
5479 5480 5481 5482 5483 5484 5485
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5486 5487 5488
    return out


Y
fix ci.  
ying 已提交
5489
def transpose(x, perm, name=None):
Y
ying 已提交
5490 5491 5492 5493 5494 5495 5496
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5497 5498 5499
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5500 5501 5502 5503 5504 5505 5506

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5507
            # use append_batch_size=False to avoid prepending extra
5508
            # batch size in shape
5509
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5510
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5511
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5512 5513
    """

Y
fix ci.  
ying 已提交
5514
    if len(perm) != len(x.shape):
Y
ying 已提交
5515 5516 5517
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5518 5519 5520 5521 5522 5523
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5524 5525

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5526 5527
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5528
    helper.append_op(
5529
        type='transpose2',
Y
fix ci.  
ying 已提交
5530
        inputs={'X': [x]},
5531 5532
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5533 5534
        attrs={'axis': perm})
    return out
5535 5536


5537 5538 5539 5540 5541 5542 5543
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5544
    """
5545 5546 5547 5548 5549 5550 5551
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5580 5581 5582 5583 5584 5585 5586 5587 5588
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5589 5590 5591
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5592 5593 5594 5595 5596
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5624 5625 5626
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5639
            output.dims = {8, 8}
5640

5641
            output.lod = [[4, 4]]
5642

T
Tink_Y 已提交
5643
    Examples:
5644 5645 5646

        .. code-block:: python

5647 5648
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5649 5650

    """
W
wanghaoshuang 已提交
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5661 5662 5663 5664 5665 5666 5667
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5668
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5669
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5670
    helper.append_op(
5671
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5672
    return out
5673 5674


Y
yuyang18 已提交
5675
@templatedoc()
5676
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5677 5678
    """
    ${comment}
5679 5680

    Args:
Y
yuyang18 已提交
5681
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5682 5683
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5684 5685 5686 5687 5688
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5689
        ${out_comment}.
5690 5691

    Examples:
Y
yuyang18 已提交
5692 5693 5694 5695
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5696 5697 5698 5699 5700 5701
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5702
    out = helper.create_variable_for_type_inference(dtype)
5703 5704 5705 5706 5707
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5708
    return helper.append_activation(out)
5709 5710


Y
yuyang18 已提交
5711
@templatedoc()
5712 5713
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5714 5715 5716 5717 5718 5719 5720
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5721 5722

    Args:
Y
yuyang18 已提交
5723 5724
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5725 5726

    Returns:
Y
yuyang18 已提交
5727
        ${out_comment}.
5728 5729
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5730 5731 5732 5733 5734

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5735
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5736 5737 5738 5739 5740 5741
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5742 5743


5744 5745 5746
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5747
                               ignore_index=kIgnoreIndex,
5748 5749
                               numeric_stable_mode=False,
                               return_softmax=False):
5750 5751
    """
    **Softmax With Cross Entropy Operator.**
5752

5753 5754 5755 5756
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5757

5758 5759 5760
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5761

5762 5763 5764
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5765

5766
    The equation is as follows:
5767

5768
    1) Hard label (one-hot label, so every sample has exactly one class)
5769

5770 5771 5772 5773
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5774

5775 5776 5777
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5778

5779 5780 5781 5782
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5783 5784 5785
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5786

H
haowang101779990 已提交
5787
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5788

H
haowang101779990 已提交
5789
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5790

H
haowang101779990 已提交
5791
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5792 5793 5794

    and then cross entropy loss is calculated by softmax and label.

5795 5796 5797 5798 5799 5800 5801 5802
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5803 5804
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5805
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5806 5807 5808
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5809 5810 5811
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5812
                                    stable algorithm. Default: False
5813
        return_softmax (bool): A flag indicating whether to return the softmax
5814
                               along with the cross entropy loss. Default: False
5815

5816
    Returns:
H
haowang101779990 已提交
5817 5818 5819 5820 5821
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5822 5823 5824 5825 5826 5827 5828

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5829 5830
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5831 5832
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5833 5834
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5835 5836 5837 5838 5839 5840
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5841 5842 5843 5844 5845
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5846 5847 5848 5849

    if return_softmax:
        return loss, softmax

5850 5851 5852 5853 5854
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5855 5856
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5857
    For each instance, it computes the smooth L1 loss element by element first
5858
    and then sums all the losses. So the shape of ouput Variable is
5859
    [batch_size, 1].
5860

5861 5862
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5863
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5864
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5865
            L1 loss op with same shape as :attr:`x`.
5866
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5867 5868
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5869
            by this tensor element by element.
5870
        outside_weight (Variable|None): A tensor with rank at least 2. This
5871 5872
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5873
            element by element.
5874
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5875 5876
           scalar with default value 1.0.

5877
    Returns:
5878
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5879 5880 5881 5882 5883

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5884 5885
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5886
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5887
            out = fluid.layers.smooth_l1(x=fc, y=label)
5888
    """
5889

5890
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5891 5892
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5905 5906 5907 5908


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5909
    This layer creates the one-hot representations for input indices.
5910 5911

    Args:
Y
Yibing Liu 已提交
5912 5913
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5914 5915

    Returns:
Y
Yibing Liu 已提交
5916
        Variable: The one-hot representations of input.
5917 5918

    Examples:
C
caoying03 已提交
5919
        .. code-block:: python
5920

Y
Yibing Liu 已提交
5921 5922
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5923 5924
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5925
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5926 5927 5928 5929 5930 5931
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5932 5933


Y
Yu Yang 已提交
5934
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5935
    """
Y
yi.wu 已提交
5936 5937 5938
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5939 5940 5941 5942 5943 5944

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5945 5946
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5947 5948 5949 5950 5951 5952

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5953 5954
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5955 5956
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5957 5958 5959 5960 5961
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5962
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5963
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5964 5965
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5966
            outputs={'Out': [counter]},
M
minqiyang 已提交
5967 5968
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
5969 5970 5971
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5972 5973


5974
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5975
    """
C
caoying03 已提交
5976 5977
    Gives a new shape to the input Tensor without changing its data.

5978 5979 5980 5981 5982
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5983

5984
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5985

5986 5987 5988 5989
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5990
    2. 0 means the actual dimension value is going to be copied from the
5991 5992 5993 5994
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5995 5996

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5997
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5998
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5999

6000
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6001 6002
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6003 6004
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6005
    dimensions.
C
caoying03 已提交
6006

6007
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6008 6009 6010 6011
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6012 6013

    Args:
6014
        x(variable): The input tensor.
C
caoying03 已提交
6015 6016
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6017 6018 6019 6020 6021
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6022 6023
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
6024
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
6025 6026 6027 6028 6029 6030
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
6031
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6032

6033
    Returns:
G
guosheng 已提交
6034 6035 6036 6037
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6038

X
Xin Pan 已提交
6039 6040 6041
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6042 6043
    Examples:
        .. code-block:: python
G
guosheng 已提交
6044

6045
            data = fluid.layers.data(
6046
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6047
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6048
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6049 6050 6051
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6052
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6053 6054 6055 6056 6057
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6058

6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6074
    helper = LayerHelper("reshape2", **locals())
6075 6076
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6077
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6078
    helper.append_op(
6079
        type="reshape2",
X
Xin Pan 已提交
6080
        inputs=inputs,
D
dzhwinter 已提交
6081
        attrs={"shape": shape},
6082 6083
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6084

D
dzhwinter 已提交
6085
    return helper.append_activation(out)
6086

6087

6088
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6089
    """
M
minqiyang 已提交
6090 6091 6092
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6093
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6094

H
haowang101779990 已提交
6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6116

Y
Yibing Liu 已提交
6117
    Args:
6118
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6119
        axes (list): List of integers, indicating the dimensions to be squeezed.
6120
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6121 6122 6123 6124 6125 6126 6127 6128

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6129
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6130 6131
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6132 6133
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6134
    helper.append_op(
6135
        type="squeeze2",
6136
        inputs={"X": input},
Y
Yibing Liu 已提交
6137
        attrs={"axes": axes},
6138 6139
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6140

6141 6142 6143
    return out


6144
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6145
    """
M
minqiyang 已提交
6146 6147 6148
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6149

M
minqiyang 已提交
6150
    For example:
H
haowang101779990 已提交
6151 6152 6153

    .. code-block:: text

M
minqiyang 已提交
6154
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6155
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6156

Y
Yibing Liu 已提交
6157
    Args:
6158
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6159
        axes (list): List of integers, indicating the dimensions to be inserted.
6160
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6161 6162 6163 6164 6165 6166 6167 6168

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6169
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6170 6171
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6172 6173
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6174
    helper.append_op(
6175
        type="unsqueeze2",
6176
        inputs={"X": input},
Y
Yibing Liu 已提交
6177
        attrs={"axes": axes},
6178 6179
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6180

6181 6182
    return out

6183

Y
yangyaming 已提交
6184
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6185
    """
Y
Yibing Liu 已提交
6186
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6187 6188 6189 6190
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6191
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6192 6193 6194 6195 6196 6197

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6198
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6199 6200 6201
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6202
            target_lod: [4, 2]
Y
yangyaming 已提交
6203 6204

            then we get a 1-level LoDTensor:
6205
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6206 6207 6208 6209 6210 6211
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6212
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6213 6214 6215 6216
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6217
                y.data = [[2, 4]]
Y
yangyaming 已提交
6218 6219 6220
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6221
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6222 6223 6224 6225 6226 6227
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6228
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6229 6230 6231 6232
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6233
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6234 6235 6236 6237
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6238
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6239 6240 6241 6242 6243
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6244
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6245
                           from :attr:`y`.
Y
yangyaming 已提交
6246
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6247
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6248 6249

    Returns:
Y
Yibing Liu 已提交
6250
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6251 6252

    Raises:
Y
Yibing Liu 已提交
6253
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6254 6255 6256 6257 6258 6259 6260 6261 6262

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6263
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6289
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6318 6319
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6332 6333 6334
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6348 6349 6350 6351


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6352
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6353
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6354

G
guosheng 已提交
6355 6356 6357 6358
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6381
                         The length of :attr:paddings must be
G
guosheng 已提交
6382 6383 6384 6385 6386 6387 6388 6389 6390 6391
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6392

G
guosheng 已提交
6393 6394 6395 6396 6397 6398
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6399
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6400 6401 6402 6403 6404 6405 6406
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6407 6408


C
chengduo 已提交
6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6440 6441
		And
            pad_value = -1,
C
chengduo 已提交
6442

T
Tink_Y 已提交
6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6478
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6479 6480 6481 6482 6483 6484 6485 6486 6487
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6488 6489 6490 6491 6492 6493 6494
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6495 6496
    called label-smoothing regularization (LSR).

6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6520
                              be :math:`(1, class\_num)`.
6521 6522
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6523
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6543
    smooth_label = helper.create_variable_for_type_inference(dtype)
6544 6545 6546 6547 6548 6549 6550
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6551 6552


W
wopeizl 已提交
6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6589 6590


J
jerrywgz 已提交
6591 6592 6593 6594 6595 6596
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6597 6598
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6615 6616 6617
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6618 6619 6620 6621 6622 6623
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6624
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6665 6666
        .. code-block:: python

W
whs 已提交
6667 6668 6669 6670
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6671
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6672 6673 6674 6675 6676 6677
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6678 6679


6680 6681 6682 6683
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6684
                 resample='BILINEAR',
6685 6686
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
6687
                 align_mode=1):
6688
    """
Q
qiaolongfei 已提交
6689
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6690

6691
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6692 6693 6694
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6695

6696
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6697

6698
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6699

6700 6701 6702 6703 6704 6705 6706 6707 6708 6709
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
6710
    Align_corners and align_mode are optinal parameters,the calculation method 
6711 6712 6713 6714
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
6715
      For scale:
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
6728
      if:
6729 6730 6731 6732 6733 6734 6735 6736
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
6737
      else:
6738 6739 6740 6741 6742 6743 6744 6745 6746 6747
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})

      Bilinear interpolation:

T
tink2123 已提交
6748
      if:
6749 6750 6751 6752 6753 6754 6755 6756 6757
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
6758
      else:
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773
       
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



6774
    Args:
6775
        input (Variable): The input tensor of image resize layer,
6776 6777
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6778
        out_shape(list|tuple|Variable|None): Output shape of image resize
6779 6780
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6781
        scale(float|None): The multiplier for the input height or width.
6782 6783 6784
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6785 6786
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6787
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6788
                       currently.
6789
                       Default: 'BILINEAR'
6790 6791 6792
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6793
                                :attr:`out_shape` and :attr:`scale` specifying
6794 6795 6796 6797 6798 6799 6800
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6801 6802
                                constructing stage.
                                Default: None
6803 6804 6805 6806
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6807
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6808 6809
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
6810 6811

    Returns:
Q
update  
qiaolongfei 已提交
6812 6813
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6814

6815 6816 6817
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6818
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6819 6820 6821
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
6822 6823
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
6824

6825 6826 6827
    Examples:
        .. code-block:: python

6828
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6829
    """
6830 6831 6832 6833
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6834 6835
    if resample not in resample_methods:
        raise ValueError(
6836
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6837
        )
6838
    resample_type = resample_methods[resample]
6839 6840 6841 6842 6843 6844

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

6845
    if out_shape is None and scale is None:
6846
        raise ValueError("One of out_shape and scale must not be None.")
6847
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6848
    dtype = helper.input_dtype()
6849 6850 6851 6852

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6853 6854 6855
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6856
    if out_shape is not None:
6857 6858 6859 6860
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6861
            inputs['OutSize'] = out_shape
6862 6863 6864 6865 6866 6867 6868 6869
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6870 6871 6872 6873
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6874 6875 6876 6877 6878
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6879
    out = helper.create_variable_for_type_inference(dtype)
6880
    helper.append_op(
6881
        type='{}_interp'.format(resample_type),
6882
        inputs=inputs,
6883
        outputs={"Out": out},
6884 6885 6886 6887 6888 6889 6890
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
6891
    return out
F
stash  
fengjiayi 已提交
6892 6893


6894
@templatedoc(op_type="bilinear_interp")
6895 6896 6897 6898
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
6899 6900
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
6901
                    align_mode=1):
6902
    """
6903 6904
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6905 6906
    in priority order.

6907 6908 6909 6910
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6911 6912
    again in the other direction.

6913
    For details of bilinear interpolation, please refer to Wikipedia:
6914
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6915

T
tink2123 已提交
6916
    Align_corners and align_mode are optinal parameters,the calculation 
6917 6918 6919
    method of interpolation can be selected by them.


T
tink2123 已提交
6920
    Align_corners and align_mode are optinal parameters,the calculation method 
6921 6922 6923 6924
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
6925
      For scale:
6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)     

    Bilinear interpolation:

T
tink2123 已提交
6937
      if:
6938 6939 6940 6941 6942 6943 6944 6945 6946
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
6947 6948
      else:

6949 6950 6951 6952 6953 6954 6955 6956
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}



Y
yuyang18 已提交
6957 6958 6959 6960
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6961

Y
yuyang18 已提交
6962 6963 6964 6965 6966
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6967 6968 6969
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6970
                                :attr:`out_shape` and :attr:`scale` specifying
6971 6972 6973 6974 6975 6976 6977
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6978 6979
                                constructing stage.
                                Default: None
6980 6981
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
6982 6983 6984

    Returns:
        ${out_comment}.
6985 6986 6987 6988 6989

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6990 6991
    """

6992 6993
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
6994 6995


6996
@templatedoc(op_type="nearest_interp")
6997 6998 6999 7000
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7001 7002
                   actual_shape=None,
                   align_corners=True):
7003
    """
7004
    Resize input by performing nearest neighbor interpolation in both the
7005 7006
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
7007 7008
    out_shape and scale in priority order.

7009 7010
    Example:

T
tink2123 已提交
7011
      For scale:
7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
7024
      if:
7025 7026 7027 7028 7029 7030 7031 7032
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
7033
      else:
7034 7035 7036 7037 7038 7039 7040 7041 7042
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})


7043
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7044
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7045 7046 7047 7048 7049

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7050

Y
yuyang18 已提交
7051 7052 7053 7054 7055
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7056 7057 7058
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7059
                                :attr:`out_shape` and :attr:`scale` specifying
7060 7061 7062 7063 7064 7065 7066
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7067 7068
                                constructing stage.
                                Default: None
7069
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7070 7071 7072

    Returns:
        ${out_comment}.
7073 7074 7075 7076 7077

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7078 7079
    """

7080 7081
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7082 7083 7084 7085


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7086 7087 7088
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7089 7090 7091 7092 7093 7094 7095
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7096
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7097

7098
    Returns:
Q
update  
qiaolongfei 已提交
7099
        Variable: The output is a 4-D tensor of the shape
7100
        (num_batches, channls, out_h, out_w).
7101 7102 7103 7104 7105 7106 7107 7108 7109 7110
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7111 7112 7113
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7114 7115 7116
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7117 7118
def gather(input, index):
    """
Q
qiaolongfei 已提交
7119 7120
    **Gather Layer**

7121
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7122 7123 7124 7125
    of X indexed by `index` and concatenate them together.

    .. math::

7126
        Out = X[Index]
W
whs 已提交
7127 7128 7129 7130 7131 7132 7133


    .. code-block:: text


                Given:

7134 7135
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7136 7137 7138 7139 7140 7141 7142 7143 7144 7145
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7146
        input (Variable): The source input with rank>=1.
W
whs 已提交
7147 7148 7149 7150 7151 7152
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7153

W
whs 已提交
7154 7155 7156 7157 7158 7159
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7160
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7161 7162 7163 7164 7165 7166 7167 7168
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7200
    out = helper.create_variable_for_type_inference(dtype)
7201 7202 7203 7204 7205 7206 7207 7208 7209
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7210 7211 7212 7213 7214 7215 7216 7217 7218
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7219

Q
Qingsheng Li 已提交
7220
    Given the following input:
H
haowang101779990 已提交
7221

Q
Qingsheng Li 已提交
7222
    .. code-block:: text
H
haowang101779990 已提交
7223

Q
Qingsheng Li 已提交
7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7236

Q
Qingsheng Li 已提交
7237
    .. code-block:: text
H
haowang101779990 已提交
7238

Q
Qingsheng Li 已提交
7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7254
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7265
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7266 7267 7268 7269 7270 7271 7272 7273 7274
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7288

7289 7290 7291
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7292
    """
F
stash  
fengjiayi 已提交
7293
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7294
    dtype = x.dtype
X
Xin Pan 已提交
7295
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7296
    if seed is None:
7297
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7298
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7299
    if isinstance(seed, int):
F
fengjiayi 已提交
7300 7301 7302 7303 7304
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7305 7306 7307 7308
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7309
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7310 7311
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7312 7313
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7314
    return out
W
whs 已提交
7315 7316


7317
def log(x, name=None):
W
wanghaoshuang 已提交
7318 7319 7320 7321 7322
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7323
        Out = \\ln(x)
W
wanghaoshuang 已提交
7324 7325

    Args:
7326
        x (Variable): Input tensor.
7327 7328
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7329 7330 7331 7332 7333 7334 7335 7336

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7337
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7338 7339
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7340
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7341
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7342
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7343 7344 7345
    return out


7346
def relu(x, name=None):
W
wanghaoshuang 已提交
7347 7348
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7349
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7350 7351 7352 7353
    the tensor elementwise.

    .. math::

7354
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7355 7356

    Args:
7357
        x (Variable): The input tensor.
7358 7359
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7360 7361 7362 7363 7364 7365 7366 7367

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7368
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7369 7370
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7371
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7372
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7373 7374
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7375
    return out
7376 7377


C
chengduo 已提交
7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7419 7420 7421
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7422 7423 7424 7425
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7426
    .. math::
7427

H
haowang101779990 已提交
7428
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7429

7430
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7431 7432 7433 7434 7435
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7436
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7437
                           Its shape should be the same as input.
7438
        num_classes (int): The possible number of labels.
W
whs 已提交
7439 7440

    Returns:
M
minqiyang 已提交
7441 7442
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7443
                     Three variables:
M
minqiyang 已提交
7444

H
haowang101779990 已提交
7445 7446 7447
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7448 7449 7450 7451

    Examples:

        .. code-block:: python
7452

W
whs 已提交
7453 7454 7455 7456
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7457 7458 7459
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7460 7461
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7462 7463
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7464
        outputs={
W
whs 已提交
7465 7466 7467
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7468 7469 7470
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7539
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7540 7541 7542 7543 7544

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7545
            isinstance(shape, Variable)):
7546 7547 7548 7549 7550
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7551
    out = helper.create_variable_for_type_inference(x.dtype)
7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7569 7570


W
whs 已提交
7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7588

W
whs 已提交
7589
              out_shape = [2, 3, 5, 5]
7590

W
whs 已提交
7591
          Step 1:
7592

W
whs 已提交
7593 7594 7595
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7596

W
whs 已提交
7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7642
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7643
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7656

W
whs 已提交
7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7668
            isinstance(out_shape, Variable)):
W
whs 已提交
7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7690 7691
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7692

7693 7694
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7695
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7696 7697 7698
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7699

7700 7701
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7702

H
haowang101779990 已提交
7703 7704
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7705 7706
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7707

H
haowang101779990 已提交
7708 7709 7710 7711 7712 7713 7714 7715
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7716 7717 7718

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7753
    out = helper.create_variable_for_type_inference("float32")
7754 7755 7756 7757 7758 7759 7760 7761

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7762 7763


M
minqiyang 已提交
7764 7765
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7766
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7767
    which compares left score and right score passed in.
M
minqiyang 已提交
7768
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7769 7770 7771

    .. math::

H
haowang101779990 已提交
7772
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7773 7774

    Args:
M
minqiyang 已提交
7775
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7776 7777
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7778
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7779 7780
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
7781

M
minqiyang 已提交
7782
    Returns:
M
minqiyang 已提交
7783
       Variable: The ranking loss.
H
haowang101779990 已提交
7784

M
minqiyang 已提交
7785
    Raises:
M
minqiyang 已提交
7786
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
7787

M
minqiyang 已提交
7788
    Examples:
H
haowang101779990 已提交
7789

M
minqiyang 已提交
7790
        .. code-block:: python
H
haowang101779990 已提交
7791

M
minqiyang 已提交
7792 7793 7794 7795 7796
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7797
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7798 7799 7800 7801 7802 7803
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7804 7805
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7829
        .. code-block:: text
W
whs 已提交
7830

T
Tink_Y 已提交
7831
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7832

T
Tink_Y 已提交
7833 7834
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7835

T
Tink_Y 已提交
7836
	      Case 0:
M
minqiyang 已提交
7837

T
Tink_Y 已提交
7838 7839 7840
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7841

T
Tink_Y 已提交
7842 7843 7844
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7845

T
Tink_Y 已提交
7846
	      Case 1:
M
minqiyang 已提交
7847

T
Tink_Y 已提交
7848 7849
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7850

T
Tink_Y 已提交
7851 7852 7853
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7854

T
Tink_Y 已提交
7855
	      Case 2:
M
minqiyang 已提交
7856

T
Tink_Y 已提交
7857 7858
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7859

T
Tink_Y 已提交
7860 7861 7862
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7863 7864


W
whs 已提交
7865 7866
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7867
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7891
    out = helper.create_variable_for_type_inference(dtype)
7892 7893 7894 7895 7896 7897 7898 7899 7900
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7901
    helper.append_op(
7902
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7903 7904 7905 7906

    return out


7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7919 7920 7921 7922 7923

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7924 7925
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7926 7927
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7928
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7949 7950 7951 7952 7953

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7954 7955
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7956 7957
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7958
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7979 7980 7981 7982 7983

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7984 7985
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7986 7987
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7988
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8010 8011 8012 8013 8014

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8015
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8016
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8017 8018
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8019
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8042 8043 8044 8045 8046

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8047 8048
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8049 8050
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8051
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8073 8074 8075 8076 8077

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8078 8079
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8080 8081
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8082
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8083 8084 8085 8086 8087 8088 8089 8090
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8091 8092 8093 8094
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8095 8096
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8097 8098 8099

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8100
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8101
          weight (alpha).
J
jerrywgz 已提交
8102
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8103 8104 8105
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8106
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8107
          will be named automatically.
J
jerrywgz 已提交
8108 8109 8110 8111 8112 8113 8114 8115

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8116
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8130
        attr=helper.param_attr,
J
jerrywgz 已提交
8131 8132 8133 8134
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8135
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8136 8137 8138 8139 8140 8141 8142 8143 8144
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8145 8146 8147 8148 8149 8150 8151 8152 8153 8154
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8155
    Returns:
8156
        output(${out_type}): ${out_comment}
8157 8158 8159

    Examples:

8160
    .. code-block:: python
8161

H
haowang101779990 已提交
8162 8163
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8164 8165
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8166
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8185
    Returns:
8186
        output(${out_type}): ${out_comment}
8187 8188 8189 8190 8191

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8192 8193
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8194 8195
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8196
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8214
    Returns:
8215
        output(${out_type}): ${out_comment}
8216 8217 8218 8219 8220

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8221 8222
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8223 8224
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8225
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8226 8227 8228 8229 8230 8231 8232 8233
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8234 8235 8236 8237
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8238

H
haowang101779990 已提交
8239
    For Example:
M
minqiyang 已提交
8240

H
haowang101779990 已提交
8241
    .. code-block:: text
8242

H
haowang101779990 已提交
8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8264 8265 8266

    Args:
        x (Variable): A tensor of rank >= axis.
8267 8268
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8269 8270 8271 8272 8273 8274 8275 8276
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8277 8278 8279
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8280 8281 8282 8283
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8284
        ValueError: If axis is not in range [0, rank(x)].
8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8301 8302
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8303
    helper.append_op(
8304
        type='flatten2',
8305
        inputs={"X": x},
8306 8307
        outputs={'Out': out,
                 'XShape': x_shape},
8308 8309
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8310 8311


C
chenweihang 已提交
8312
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8313
    """
C
chenweihang 已提交
8314
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8315
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8316 8317
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8318

H
haowang101779990 已提交
8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8336 8337

    Args:
C
chenweihang 已提交
8338 8339 8340
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8352 8353
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8354 8355 8356 8357 8358 8359
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8360
    return out
8361

8362

S
sneaxiy 已提交
8363 8364 8365 8366 8367 8368 8369 8370 8371
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8372

S
sneaxiy 已提交
8373
    .. math::
8374

S
sneaxiy 已提交
8375 8376 8377
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8378
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8379 8380 8381 8382
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8383 8384 8385
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8386 8387
    Returns:
        Variable: The output sequence mask.
8388

S
sneaxiy 已提交
8389 8390
    """

Q
qingqing01 已提交
8391
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8392
    if name is None:
X
Xin Pan 已提交
8393
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8394
    else:
X
Xin Pan 已提交
8395
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8396

Q
qingqing01 已提交
8397 8398 8399
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8400 8401
        outputs={'Y': out},
        attrs={
8402
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8403 8404 8405
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8406 8407


X
Xin Pan 已提交
8408
def stack(x, axis=0):
S
sneaxiy 已提交
8409 8410 8411 8412
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8413 8414 8415 8416 8417 8418 8419

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8420
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8421
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8422 8423

    Args:
8424
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8425
        axis (int|None): The axis along which all inputs are stacked.
8426

S
sneaxiy 已提交
8427 8428
    Returns:
        Variable: The stacked variable.
8429

S
sneaxiy 已提交
8430 8431
    """

X
Xin Pan 已提交
8432 8433 8434 8435 8436 8437
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8438
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8439
    helper.append_op(
S
sneaxiy 已提交
8440 8441
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8442

X
Xin Pan 已提交
8443
    return out
D
dzhwinter 已提交
8444 8445 8446 8447 8448 8449 8450


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8451

D
dzhwinter 已提交
8452 8453 8454
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8455
    raised.
D
dzhwinter 已提交
8456 8457

    Args:
M
minqiyang 已提交
8458
        x (Variable): Input variable.
D
dzhwinter 已提交
8459 8460
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8461

D
dzhwinter 已提交
8462 8463
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8464

D
dzhwinter 已提交
8465 8466 8467 8468 8469 8470 8471 8472 8473 8474
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8475
    for _ in range(num):
X
Xin Pan 已提交
8476
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8477 8478 8479 8480 8481 8482 8483 8484

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8497

W
whs 已提交
8498 8499 8500 8501
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8502

W
whs 已提交
8503
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8504

W
whs 已提交
8505
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8506

W
whs 已提交
8507 8508 8509 8510
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8511

W
whs 已提交
8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8528
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8529 8530 8531 8532 8533 8534
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8535 8536


G
fix  
gongweibao 已提交
8537 8538 8539
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8540
@templatedoc()
G
fix  
gongweibao 已提交
8541 8542 8543 8544 8545 8546 8547 8548 8549
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8550
    ${comment}
G
fix  
gongweibao 已提交
8551 8552

    Args:
G
gongweibao 已提交
8553 8554 8555
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8556
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8557 8558 8559
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8560 8561
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8562
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8563

8564 8565 8566 8567 8568
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8569 8570 8571
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8572
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8589 8590


G
gongweibao 已提交
8591
@templatedoc()
X
Xin Pan 已提交
8592
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8593
    """
G
gongweibao 已提交
8594
    ${comment}
G
fix  
gongweibao 已提交
8595 8596

    Args:
G
gongweibao 已提交
8597 8598 8599 8600
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8601 8602 8603
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8604
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8605

8606 8607 8608 8609
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8610 8611 8612
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8613
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8614 8615 8616 8617 8618 8619 8620 8621 8622 8623
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8624
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8625 8626 8627 8628 8629
        })

    return out


G
gongweibao 已提交
8630
@templatedoc()
G
fix  
gongweibao 已提交
8631
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8632
    """
G
gongweibao 已提交
8633
    ${comment}
G
fix  
gongweibao 已提交
8634 8635

    Args:
G
gongweibao 已提交
8636 8637 8638 8639
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8640
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8641 8642

    Returns:
G
gongweibao 已提交
8643
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8644

8645 8646 8647 8648 8649 8650 8651 8652 8653 8654
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8655 8656 8657
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8658
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8670
@templatedoc()
G
fix  
gongweibao 已提交
8671 8672 8673 8674 8675 8676 8677 8678 8679
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8680
    ${comment}
G
fix  
gongweibao 已提交
8681 8682

    Args:
G
gongweibao 已提交
8683 8684
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8685
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8686 8687 8688 8689
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8690
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8691 8692

    Returns:
G
gongweibao 已提交
8693
        out (Variable): ${out_comment}
8694 8695 8696 8697 8698 8699 8700 8701

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8702 8703 8704
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8705
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8724
@templatedoc()
X
Xin Pan 已提交
8725
def sum(x):
G
fix  
gongweibao 已提交
8726
    """
G
gongweibao 已提交
8727
    ${comment}
G
fix  
gongweibao 已提交
8728 8729

    Args:
G
gongweibao 已提交
8730
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8731 8732

    Returns:
G
gongweibao 已提交
8733
        out (Variable): ${out_comment}
8734 8735 8736 8737 8738 8739

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8740 8741 8742
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8743 8744
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8745 8746 8747 8748
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8749
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8750 8751 8752 8753

    return out


G
gongweibao 已提交
8754
@templatedoc()
G
fix  
gongweibao 已提交
8755 8756
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8757
    ${comment}
G
fix  
gongweibao 已提交
8758 8759

    Args:
G
gongweibao 已提交
8760 8761 8762 8763
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8764 8765

    Returns:
G
gongweibao 已提交
8766
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8767

8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8779 8780 8781
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8782 8783
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8795
@templatedoc()
G
fix  
gongweibao 已提交
8796 8797
def shape(input):
    """
G
gongweibao 已提交
8798
    ${comment}
G
fix  
gongweibao 已提交
8799 8800

    Args:
G
gongweibao 已提交
8801
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8802 8803

    Returns:
G
gongweibao 已提交
8804
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8805

8806 8807 8808 8809 8810 8811
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8812 8813 8814
    """

    helper = LayerHelper('shape', **locals())
8815
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
8816
    helper.append_op(
G
fix  
gongweibao 已提交
8817
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8818 8819

    return out
G
merge  
gongweibao 已提交
8820 8821


S
sneaxiy 已提交
8822 8823 8824 8825 8826 8827 8828 8829
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8830 8831
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8832
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8833 8834 8835
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8836

S
sneaxiy 已提交
8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8848
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8849 8850 8851 8852 8853 8854 8855 8856
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8857
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8858
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8859 8860 8861 8862 8863 8864

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8865
    if name is None:
X
Xin Pan 已提交
8866
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8867 8868 8869
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8870 8871 8872 8873 8874 8875 8876 8877 8878 8879

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8880
    return helper.append_activation(out)
S
sneaxiy 已提交
8881 8882


X
Xin Pan 已提交
8883
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8884 8885 8886
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8887
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8888 8889 8890
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8891
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8892 8893 8894
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8895
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8896 8897 8898
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8899
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8900 8901 8902
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8903
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8904 8905 8906
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8907
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8908 8909 8910
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


8911 8912 8913 8914 8915 8916 8917 8918
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
8919
for func in [
8920 8921 8922 8923 8924 8925 8926 8927 8928
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
8929 8930 8931 8932 8933
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8934 8935
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8936
        ])
M
minqiyang 已提交
8937 8938


8939
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8940 8941
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8942 8943
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8944 8945 8946

    if out is None:
        if name is None:
X
Xin Pan 已提交
8947
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8963
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8975 8976 8977 8978 8979 8980 8981 8982 8983

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8984 8985 8986 8987 8988 8989 8990
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8991
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9003 9004 9005 9006 9007 9008 9009 9010 9011

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9012 9013 9014 9015 9016 9017 9018
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9019
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9031 9032 9033 9034 9035 9036 9037 9038 9039

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9040 9041 9042 9043 9044 9045 9046
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9047
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9048 9049 9050 9051 9052 9053 9054 9055 9056 9057
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9058 9059 9060 9061 9062 9063 9064

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9065 9066 9067 9068
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9084 9085 9086 9087 9088 9089 9090

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9091 9092 9093 9094 9095
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9096 9097 9098 9099
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9123 9124 9125 9126 9127 9128 9129

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9130 9131 9132 9133 9134
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9135 9136 9137 9138
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9139 9140 9141 9142 9143 9144 9145 9146

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9165
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9166 9167 9168 9169 9170 9171 9172 9173 9174 9175
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9218
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9219 9220 9221 9222 9223 9224 9225 9226 9227
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9228 9229
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9230 9231 9232 9233 9234 9235
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9236 9237 9238
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9239 9240
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9241 9242 9243 9244 9245 9246
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9247
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9248
        name(basestring|None): Name of the output.
9249 9250
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9251 9252 9253

    Returns:
        out(${out_type}): ${out_comment}
9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9268 9269 9270 9271 9272
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9273
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9274 9275 9276 9277 9278 9279 9280 9281
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9282 9283
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9304
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9305 9306 9307 9308 9309 9310 9311 9312 9313 9314
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9315 9316


J
JiabinYang 已提交
9317
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9318
    """
J
JiabinYang 已提交
9319
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9320 9321 9322

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9323
    The attr blocksize indicates the input block size.
9324 9325

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9326
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9327 9328

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9329
    (but keeping all data)
J
JiabinYang 已提交
9330

J
JiabinYang 已提交
9331
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9332
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9333 9334 9335 9336 9337
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9338
    Args:
J
JiabinYang 已提交
9339
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9340
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9341 9342

    Returns:
J
JiabinYang 已提交
9343
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9344 9345

    Raises:
J
JiabinYang 已提交
9346
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9347 9348 9349 9350 9351 9352

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9353
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9354
                x=data, blocksize=2)
J
JiabinYang 已提交
9355 9356
    """

J
JiabinYang 已提交
9357
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9358

J
JiabinYang 已提交
9359 9360
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9361 9362

    if name is None:
J
JiabinYang 已提交
9363 9364
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9365 9366 9367 9368 9369
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9370
        type="space_to_depth",
J
JiabinYang 已提交
9371
        inputs={"X": x},
J
JiabinYang 已提交
9372
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9373
        outputs={"Out": out})
J
JiabinYang 已提交
9374 9375
    return out

J
JiabinYang 已提交
9376

S
sneaxiy 已提交
9377 9378
@templatedoc()
def sequence_reverse(x, name=None):
9379
    """
S
sneaxiy 已提交
9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9391
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9392 9393 9394 9395 9396 9397 9398 9399 9400 9401
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9402 9403


9404 9405 9406 9407 9408 9409
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9410

9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9430
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9443 9444


B
barrierye 已提交
9445
def similarity_focus(input, axis, indexes, name=None):
9446
    """
B
barrierye 已提交
9447
    SimilarityFocus Operator
B
barrierye 已提交
9448 9449

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9450

9451 9452 9453
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9454
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9455 9456 9457 9458 9459 9460 9461
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9462
       each index.
B
barrierye 已提交
9463 9464 9465 9466
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9516
    Args:
9517
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9518
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9519
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9520
            1, 2 or 3.
B
barrierye 已提交
9521
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9522 9523

    Returns:
H
haowang101779990 已提交
9524 9525
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9526

B
barrierye 已提交
9527 9528
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9529

B
barrierye 已提交
9530
            data = fluid.layers.data(
B
barrierye 已提交
9531 9532
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9533

B
barrierye 已提交
9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9546 9547 9548 9549 9550
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9551 9552 9553 9554 9555 9556 9557
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9558 9559


M
minqiyang 已提交
9560 9561
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9562 9563
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9564 9565
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9604
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9605
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9606 9607 9608 9609 9610 9611

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9612

M
minqiyang 已提交
9613 9614 9615
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9616 9617
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9618 9619
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9620 9621 9622 9623 9624 9625 9626
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9627 9628


D
dengkaipeng 已提交
9629
@templatedoc()
9630 9631
def grid_sampler(x, grid, name=None):
    """
9632
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9633
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9634 9635 9636 9637
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9638
    interpolation value of 4 nearest corner points.
9639

H
haowang101779990 已提交
9640
    .. code-block:: text
9641

H
haowang101779990 已提交
9642 9643
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9644

H
haowang101779990 已提交
9645 9646
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9647

H
haowang101779990 已提交
9648 9649 9650
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9651

H
haowang101779990 已提交
9652 9653 9654 9655 9656 9657 9658 9659 9660
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9661

H
haowang101779990 已提交
9662 9663 9664 9665
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9666

H
haowang101779990 已提交
9667 9668 9669 9670
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9671

H
haowang101779990 已提交
9672 9673 9674 9675
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9676

H
haowang101779990 已提交
9677 9678
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9679 9680

    Args:
9681 9682 9683
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9684 9685

    Returns:
H
haowang101779990 已提交
9686
        Variable: Output of shape [N, C, H, W] data samples input X
9687 9688
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9689 9690 9691 9692 9693 9694 9695 9696
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9697

D
dengkaipeng 已提交
9698 9699 9700 9701 9702 9703 9704 9705 9706
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9707
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9708 9709
    ipts = {'X': x, 'Grid': grid}

9710
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9711 9712 9713
    return out


G
gmcather 已提交
9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
9780
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
9802 9803 9804 9805
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
9806
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
9807 9808
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
9809
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
9810 9811

    .. math::
H
haowang101779990 已提交
9812 9813 9814
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
9815 9816

    Where:
H
haowang101779990 已提交
9817 9818
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
9833

G
gmcather 已提交
9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9850 9851 9852 9853 9854 9855 9856 9857 9858 9859


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9860
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9861

Q
Qiao Longfei 已提交
9862
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9863 9864 9865
    For example:

    .. math::
H
haowang101779990 已提交
9866
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9867

Q
Qiao Longfei 已提交
9868
    In this formula:
9869 9870
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9871
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
9872
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9873 9874 9875
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9876 9877
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9878 9879 9880
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9881
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9882
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9883
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9884 9885 9886 9887
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9888
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9889 9890 9891 9892

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9893
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9894 9895
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9896
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9897 9898 9899 9900

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9901
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9942 9943


S
shippingwang 已提交
9944
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
9945 9946
    """
    **Shuffle Channel Operator**
9947

S
shippingwang 已提交
9948 9949 9950 9951 9952 9953
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
9954
    
S
shippingwang 已提交
9955
    .. code-block:: text
9956

S
shippingwang 已提交
9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
9985
    Args: 
S
shippingwang 已提交
9986 9987
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
9988 9989

    Returns:
S
shippingwang 已提交
9990 9991
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
9992 9993

    Raises:
S
shippingwang 已提交
9994
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
9995 9996 9997

    Examples:
        .. code-block:: python
9998 9999

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10000
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10001 10002 10003
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10004
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10005 10006 10007 10008 10009 10010 10011 10012 10013

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10014
    return out
S
Add  
shippingwang 已提交
10015 10016


S
sneaxiy 已提交
10017
class PyFuncRegistry(object):
S
sneaxiy 已提交
10018 10019 10020
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10021
        if func is None or not callable(func):
S
sneaxiy 已提交
10022 10023 10024
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10025
        # find named args using reflection
S
sneaxiy 已提交
10026 10027 10028 10029 10030 10031 10032
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10033 10034 10035
        '''
        Why record self here?

M
minqiyang 已提交
10036 10037
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10038
           to find the registered function corresponding
M
minqiyang 已提交
10039
           to :code:`idx`.
S
sneaxiy 已提交
10040

M
minqiyang 已提交
10041 10042
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10043
           whose reference count is 1 would cause
M
minqiyang 已提交
10044
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10045 10046
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10047
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10062 10063 10064 10065 10066 10067 10068 10069 10070
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10071

S
sneaxiy 已提交
10072 10073
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10074 10075

        ret = []
S
sneaxiy 已提交
10076 10077 10078
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10079 10080
                continue

S
sneaxiy 已提交
10081 10082
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10083

S
sneaxiy 已提交
10084 10085 10086
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10087

S
sneaxiy 已提交
10088
        return tuple(ret)
S
sneaxiy 已提交
10089 10090


S
sneaxiy 已提交
10091 10092 10093 10094
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10095

S
sneaxiy 已提交
10096 10097 10098 10099 10100 10101 10102 10103
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10104
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10105

S
sneaxiy 已提交
10106 10107
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10108 10109 10110 10111
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10112
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10113
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10114 10115
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10116 10117 10118 10119 10120
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10121
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10122
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10123
                                       None means no backward. Default None.
S
sneaxiy 已提交
10124
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10125
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10126 10127
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10128
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10129 10130 10131

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10132 10133

    Examples:
M
minqiyang 已提交
10134

S
sneaxiy 已提交
10135 10136 10137 10138 10139
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10140
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10141 10142
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10143
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10144 10145 10146
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10147
        >>>
S
sneaxiy 已提交
10148 10149 10150 10151 10152
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10153
        >>>     print(x)
S
sneaxiy 已提交
10154 10155 10156 10157 10158 10159
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10160
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10161 10162
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10163 10164
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10165 10166 10167 10168 10169 10170 10171 10172
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10173
    """
S
sneaxiy 已提交
10174
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10175 10176 10177
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10178
        x = [x]
S
sneaxiy 已提交
10179 10180
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10181

S
sneaxiy 已提交
10182 10183 10184
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10185
        out_list = [out]
S
sneaxiy 已提交
10186
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10187
        out_list = out
S
sneaxiy 已提交
10188 10189 10190
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10191

S
sneaxiy 已提交
10192 10193
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10194
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10195 10196

    for each_out in out_list:
S
sneaxiy 已提交
10197 10198
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10199 10200
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10201

S
sneaxiy 已提交
10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10217 10218 10219 10220

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10221 10222
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10223 10224 10225
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10226
        })
S
sneaxiy 已提交
10227
    return out
S
sneaxiy 已提交
10228 10229 10230


# For debug usage
S
sneaxiy 已提交
10231 10232 10233 10234
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10287

M
minqiyang 已提交
10288

M
minqiyang 已提交
10289
def huber_loss(input, label, delta):
10290
    """
M
minqiyang 已提交
10291 10292 10293
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10294 10295 10296 10297

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10298
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10299 10300 10301 10302

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10303
        huber\_loss = 0.5 * (label - input) * (label - input)
10304 10305 10306 10307 10308 10309 10310


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10311
        delta (float): The parameter of huber loss, which controls
10312 10313 10314
                       the range of outliers

    Returns:
M
minqiyang 已提交
10315
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10316 10317 10318 10319 10320

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10321
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10322
    """
M
minqiyang 已提交
10323
    helper = LayerHelper('huber_loss', **locals())
10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)