nn.py 388.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
26
from ..framework import Variable, OpProtoHolder, _in_imperative_mode
X
Xin Pan 已提交
27
from ..imperative import base
Y
yangyaming 已提交
28
from ..param_attr import ParamAttr
S
sneaxiy 已提交
29
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
30
from .tensor import concat, assign
31
from . import utils
F
fengjiayi 已提交
32
from .. import unique_name
33
from functools import reduce
34
from .. import core
X
Xin Pan 已提交
35
from ..imperative import layers
Y
Yu Yang 已提交
36 37

__all__ = [
X
Xin Pan 已提交
38 39 40 41 42 43 44 45 46 47
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
48
    'bpr_loss',
X
Xin Pan 已提交
49 50 51 52 53 54 55 56 57 58
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
59 60
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
61
    'batch_norm',
H
heqiaozhi 已提交
62
    'data_norm',
X
Xin Pan 已提交
63 64 65 66 67 68
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
69
    'sequence_unpad',
X
Xin Pan 已提交
70 71 72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
78
    'sequence_slice',
X
Xin Pan 已提交
79 80 81 82 83 84 85 86 87 88 89 90
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
91
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
92 93 94 95 96
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
97
    'group_norm',
D
dengkaipeng 已提交
98
    'spectral_norm',
X
Xin Pan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
112
    'roi_align',
X
Xin Pan 已提交
113 114 115 116
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
117
    'resize_nearest',
X
Xin Pan 已提交
118 119 120 121 122 123
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
124
    'selu',
X
Xin Pan 已提交
125 126 127
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
128
    'margin_rank_loss',
X
Xin Pan 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
162
    'rank',
X
Xin Pan 已提交
163 164 165 166 167 168 169 170 171 172
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
173
    'space_to_depth',
W
whs 已提交
174
    'affine_grid',
S
sneaxiy 已提交
175
    'sequence_reverse',
176
    'affine_channel',
B
barrierye 已提交
177
    'similarity_focus',
M
minqiyang 已提交
178
    'hash',
D
dengkaipeng 已提交
179
    'grid_sampler',
G
gmcather 已提交
180 181
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
182
    'bilinear_tensor_product',
C
chengduo 已提交
183 184
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
185
    'lstm',
S
shippingwang 已提交
186
    'shuffle_channel',
S
sneaxiy 已提交
187
    'py_func',
188
    'psroi_pool',
H
heqiaozhi 已提交
189
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
190
    'huber_loss',
Z
zhaozhehao 已提交
191
    'tree_conv',
C
ceci3 已提交
192
    'npair_loss',
193
    'fsp_matrix',
Y
Yu Yang 已提交
194 195
]

J
jerrywgz 已提交
196 197
kIgnoreIndex = -100

Y
Yu Yang 已提交
198 199 200 201 202 203 204

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
205
       is_test=False,
206
       name=None):
Y
Yu Yang 已提交
207
    """
208
    **Fully Connected Layer**
Y
Yu Yang 已提交
209

210
    This function creates a fully connected layer in the network. It can take
211
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
212
    Args in detail). It creates a variable called weights for each input tensor,
213 214 215 216
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
217
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
218 219
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
220

221
    When the input is single tensor:
C
caoying03 已提交
222

223 224 225 226 227
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
228 229 230

    .. math::

231
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
232 233 234

    In the above equation:

235 236 237
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
238
    * :math:`b`: The bias parameter created by this layer (if needed).
239
    * :math:`Act`: The activation function.
C
caoying03 已提交
240
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
241

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
260
    Args:
R
ranqiu 已提交
261 262 263 264 265 266 267 268 269 270
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
271
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
272 273 274 275
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
276 277
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
278
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
279
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
280
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
281

282
    Returns:
F
fengjiayi 已提交
283
        Variable: The transformation result.
284 285

    Raises:
C
caoying03 已提交
286
        ValueError: If rank of the input tensor is less than 2.
287 288 289 290

    Examples:
        .. code-block:: python

291
          # when input is single tensor
F
fengjiayi 已提交
292
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
293
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
294 295 296 297 298

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
299
    """
C
caoying03 已提交
300

C
caoying03 已提交
301
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
302 303 304 305

    dtype = helper.input_dtype()

    mul_results = []
306 307
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
308 309 310
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
311

Y
Yu Yang 已提交
312
        w = helper.create_parameter(
313
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
314
        tmp = helper.create_variable_for_type_inference(dtype)
315
        helper.append_op(
316 317 318
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
319
            outputs={"Out": tmp},
M
mozga-intel 已提交
320 321
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
322 323 324 325
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
326
    else:
X
Xin Pan 已提交
327
        pre_bias = helper.create_variable_for_type_inference(dtype)
328
        helper.append_op(
329 330 331
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
332
            attrs={"use_mkldnn": False})
333 334 335 336
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
337 338


339 340 341
def embedding(input,
              size,
              is_sparse=False,
342
              is_distributed=False,
343 344 345
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
346
    """
347 348
    **Embedding Layer**

349
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
350 351
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
352 353 354

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
355 356

    Args:
357 358 359 360 361
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
362
        is_distributed(bool): Whether to run lookup table from remote parameter server.
363 364
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
365
            with zeros whenever lookup encounters it in :attr:`input`. If
366
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
367 368
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
369
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
370

371 372 373
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
374

375 376
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
377

C
chengduoZH 已提交
378
          dict_size = len(dataset.ids)
379
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
380
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
381 382 383
    """

    helper = LayerHelper('embedding', **locals())
384
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
385 386
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
387 388
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
389
    tmp = helper.create_variable_for_type_inference(dtype)
390 391
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
392 393 394 395 396
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
397 398 399
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
400
            'remote_prefetch': remote_prefetch,
401 402
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
403 404 405
    return tmp


W
wopeizl 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
422

W
wopeizl 已提交
423 424 425 426 427 428 429 430 431 432 433
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
434

W
wopeizl 已提交
435 436 437 438
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
439

W
wopeizl 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
526 527


P
phlrain 已提交
528 529 530 531 532 533
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
534
         dropout_prob=0.0,
P
phlrain 已提交
535 536 537 538 539
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
540
    """
P
phlrain 已提交
541
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
542 543

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
544
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
545 546
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
547
    .. math::
M
minqiyang 已提交
548 549 550 551 552 553 554

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
555
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
556 557 558 559

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
560 561

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
562 563 564 565 566 567
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
568 569 570
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
571
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
572

M
minqiyang 已提交
573
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
574 575 576 577 578
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
579
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
580 581 582 583 584
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
585
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
586 587
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
588 589
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
590 591 592 593 594 595
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
596
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
597

L
liuhongyu 已提交
598 599

    Returns:
M
minqiyang 已提交
600 601
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
602
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
603

H
haowang101779990 已提交
604 605 606 607
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
608
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
609 610
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
611
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
627
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
628 629 630 631 632 633
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
634 635 636
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
696 697 698 699 700 701 702 703 704 705
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
706
                  proj_activation='tanh',
707
                  dtype='float32',
X
xuezhong 已提交
708 709 710 711 712
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
713 714 715
    """
    **Dynamic LSTMP Layer**

716 717 718 719 720 721
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
722 723 724 725 726

    The formula is as follows:

    .. math::

727
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
728

729
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
730

731
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
732

733
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
734

735
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
736

737
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
738

739
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
740

Y
Yibing Liu 已提交
741 742 743 744 745 746
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
747
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
748
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
749
          bias vector).
Y
Yibing Liu 已提交
750 751 752
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
753
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
754
    * :math:`h`: The hidden state.
755
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
756 757
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
758
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
759
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
760
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
761 762
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
763 764 765 766

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
767

Y
Yibing Liu 已提交
768 769 770 771 772 773 774 775 776 777 778 779
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
780
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
781 782
                               hidden-hidden weight and projection weight.

783 784
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
785 786
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
787 788
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
789
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
790 791 792 793 794

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
795
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
796 797 798 799 800 801
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
802
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
803 804 805
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
806
                                - The shape is (1 x 7D).
C
chengduo 已提交
807 808 809 810 811

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
812 813 814 815 816 817 818 819 820
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
821
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
822 823
                              default "tanh".
        proj_activation(str): The activation for projection output.
824
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
825
                              default "tanh".
Y
Yibing Liu 已提交
826
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
827 828
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
829 830 831 832 833 834 835 836 837 838 839
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
840 841

    Returns:
842 843 844 845
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
846 847

    Examples:
848

Y
Yibing Liu 已提交
849 850
        .. code-block:: python

851 852 853 854
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
855
            hidden_dim, proj_dim = 512, 256
856
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
857
                                     act=None, bias_attr=None)
858 859 860
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
861 862 863 864
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
865
    """
866

C
chengduo 已提交
867
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
868
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
869
    size = size // 4
Y
Yibing Liu 已提交
870 871 872 873 874 875 876 877 878 879
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
880 881 882 883 884 885
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
901

X
xuezhong 已提交
902 903 904 905 906
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
907 908
    helper.append_op(
        type='lstmp',
909
        inputs=inputs,
Y
Yibing Liu 已提交
910 911 912 913 914 915 916 917 918
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
919 920
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
921 922 923 924 925 926 927 928 929
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
930 931 932 933 934 935 936
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
937 938
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
939
    """
940
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
941

942 943 944
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
945

G
guosheng 已提交
946 947 948 949 950 951 952 953 954
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
955

G
guosheng 已提交
956
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
957

Q
Qiao Longfei 已提交
958 959 960

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
961 962 963 964 965 966 967 968 969 970 971 972
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
973
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
974 975
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
976 977 978 979
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
980
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
981 982

    Args:
983 984
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
985
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
986
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
987 988
            is the hidden size.
        size(int): The dimension of the gru cell.
989
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
990 991
            hidden-hidden weight matrix. Note:

992
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
993
              :math:`D` is the hidden size.
994
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
995
              The first part are weights of the update gate and reset gate with
996
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
997
              candidate hidden state with shape :math:`(D \\times D)`.
998 999 1000 1001 1002

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1003
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1004
            the bias in the update gate, reset gate and candidate calculations.
1005 1006 1007
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1008 1009
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1010
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1011 1012 1013
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1014
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1015
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1016 1017 1018 1019
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1020 1021

    Returns:
G
guosheng 已提交
1022
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1023
            and sequence length is the same with the input.
1024

G
guosheng 已提交
1025
    Examples:
1026

G
guosheng 已提交
1027 1028
        .. code-block:: python

1029 1030 1031 1032
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1033
            hidden_dim = 512
1034
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1035
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1045
    batch_size = input.shape[0]
G
guosheng 已提交
1046
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1047
    if h_0:
G
guosheng 已提交
1048
        assert h_0.shape == (
Y
Yancey 已提交
1049 1050 1051
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1052

X
Xin Pan 已提交
1053 1054 1055 1056
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1070 1071
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1072 1073 1074 1075
        })
    return hidden


Y
Yu Yang 已提交
1076 1077 1078
def gru_unit(input,
             hidden,
             size,
1079 1080
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1081
             activation='tanh',
Q
Qiao Longfei 已提交
1082 1083
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1084
    """
1085 1086 1087
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1088
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1089
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1090

1091 1092
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1093

1094
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1095

1096
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1113 1114

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1115 1116 1117
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1118 1119
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1120 1121
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1122 1123 1124
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1125 1126 1127

    Args:
        input (Variable): The fc transformed input value of current step.
1128
        hidden (Variable): The hidden value of gru unit from previous step.
1129
        size (integer): The input dimension value.
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1144
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1145
            the bias in the update gate, reset gate and candidate calculations.
1146 1147 1148
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1149 1150
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1151 1152 1153 1154
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1155

1156 1157 1158 1159 1160 1161
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1162

1163
             # assuming we have x_t_data and prev_hidden of size=10
1164
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1165 1166
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1179
    size = size // 3
Y
Yu Yang 已提交
1180 1181

    # create weight
1182 1183
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1184

X
Xin Pan 已提交
1185 1186 1187
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1188
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1189
    # create bias
1190
    if helper.bias_attr:
Y
Yu Yang 已提交
1191 1192 1193
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1194
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1195 1196 1197

    helper.append_op(
        type='gru_unit',
1198
        inputs=inputs,
Y
Yu Yang 已提交
1199 1200 1201 1202 1203 1204
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1205 1206
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1207 1208 1209 1210 1211
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1212
@templatedoc()
1213
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1214 1215 1216 1217 1218 1219 1220
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1221
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1222 1223 1224 1225
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1226 1227 1228
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1229 1230

    """
Y
Yu Yang 已提交
1231 1232 1233 1234 1235 1236
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1237 1238 1239 1240 1241 1242 1243 1244
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1260 1261 1262 1263
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1264

W
wopeizl 已提交
1265 1266
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1267

W
wopeizl 已提交
1268
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1269

W
wopeizl 已提交
1270
        label(${label_type}): ${label_comment}
1271

W
wopeizl 已提交
1272 1273
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1274

W
wopeizl 已提交
1275 1276
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1277

W
wopeizl 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1288
                "Transition": transition,
W
wopeizl 已提交
1289 1290
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1291

W
wopeizl 已提交
1292
    return viterbi_path
Y
Yu Yang 已提交
1293 1294


Y
yi.wu 已提交
1295
@templatedoc()
F
fengjiayi 已提交
1296
def cos_sim(X, Y):
Y
Yu Yang 已提交
1297
    """
Y
yi.wu 已提交
1298 1299 1300
    ${comment}

    Args:
1301 1302
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1303

Y
yi.wu 已提交
1304
    Returns:
1305
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1306
    """
F
fengjiayi 已提交
1307
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1308 1309 1310
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1321 1322 1323 1324 1325
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1326
            dropout_implementation="downgrade_in_infer"):
1327 1328 1329 1330 1331
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1332
    training. The dropout operator randomly sets (according to the given dropout
1333 1334 1335
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1336 1337
    dropout op can be removed from the program to make the program more efficient.

1338
    Args:
1339 1340
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1341 1342 1343 1344 1345 1346 1347
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1348 1349
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1350
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1351 1352

                                           - train: out = input * mask
C
ceci3 已提交
1353
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1354 1355 1356

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1357
                                        2. upscale_in_train, upscale the outcome at training time
1358

H
haowang101779990 已提交
1359 1360
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1361

H
haowang101779990 已提交
1362 1363
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1364

M
minqiyang 已提交
1365

1366
    Returns:
1367
        Variable: A tensor variable is the shape with `x`.
1368 1369

    Examples:
1370

1371 1372
        .. code-block:: python

1373 1374
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1375 1376
    """

F
fengjiayi 已提交
1377
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1378 1379 1380
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1381 1382 1383 1384

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1385 1386 1387 1388 1389
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1390 1391 1392 1393
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1394 1395
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1396
        })
1397 1398 1399
    return out


J
jerrywgz 已提交
1400
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1401
    """
Y
Yibing Liu 已提交
1402 1403
    **Cross Entropy Layer**

1404 1405 1406
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1407 1408

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1409
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1410

Y
Yibing Liu 已提交
1411
        .. math::
Y
yangyaming 已提交
1412

Y
Yibing Liu 已提交
1413 1414 1415
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1416 1417
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1418 1419 1420 1421 1422

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1423
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1424 1425 1426
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1427 1428
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1429
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1430

Y
Yibing Liu 已提交
1431
    Args:
Y
yangyaming 已提交
1432
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1433 1434 1435 1436
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1437
        label (Variable|list): the ground truth which is a 2-D tensor. When
1438 1439 1440 1441
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1442
        soft_label (bool): a flag indicating whether to
1443
                                           interpretate the given labels as soft
1444
                                           labels. Default: `False`.
M
minqiyang 已提交
1445 1446
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1447
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1448 1449 1450 1451 1452

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1453 1454 1455
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1456

H
haowang101779990 已提交
1457 1458
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1459

H
haowang101779990 已提交
1460 1461
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1462 1463 1464 1465 1466 1467

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1468
    """
S
sneaxiy 已提交
1469 1470
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1471
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1472
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1473 1474 1475 1476 1477
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1478 1479
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1480 1481 1482
    return out


S
sneaxiy 已提交
1483 1484 1485 1486
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1487
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1488 1489 1490 1491 1492
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1493
                 'MatchX': [match_x],
S
sneaxiy 已提交
1494 1495 1496 1497 1498
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1499
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1500 1501 1502
    """
    Bayesian Personalized Ranking Loss Operator.

1503
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1504 1505 1506 1507 1508 1509
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1510 1511 1512 1513 1514 1515
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1516 1517
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1518 1519 1520
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1521 1522 1523
    Examples:
        .. code-block:: python

1524
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1525
    """
1526 1527 1528 1529 1530 1531

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1532
                'Label': [label]},
1533 1534 1535 1536
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1537
def square_error_cost(input, label):
Y
Yu Yang 已提交
1538
    """
1539 1540
    **Square error cost layer**

1541 1542
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1557 1558
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1559 1560

    Returns:
G
guosheng 已提交
1561
        Variable: The tensor variable storing the element-wise squared error \
1562
                  difference of input and label.
1563 1564 1565 1566 1567 1568 1569 1570

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1571
    """
F
fengjiayi 已提交
1572
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1573
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1574 1575 1576 1577 1578 1579
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1580
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1581
    helper.append_op(
F
fengjiayi 已提交
1582 1583
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1584 1585 1586
    return square_out


Y
yi.wu 已提交
1587
@templatedoc()
Y
Yu Yang 已提交
1588 1589 1590 1591
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1592
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1593
    """
Y
yi.wu 已提交
1594
    **Chunk Evaluator**
Y
yi.wu 已提交
1595

Y
yangyaming 已提交
1596
    This function computes and outputs the precision, recall and
1597
    F1-score of chunk detection.
Y
yi.wu 已提交
1598

M
minqiyang 已提交
1599
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1600
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1601 1602 1603 1604 1605 1606

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1607

Y
yi.wu 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1633

Y
yi.wu 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1658
    Args:
1659 1660 1661 1662 1663
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1664

Y
yi.wu 已提交
1665
    Returns:
Y
update  
yi.wu 已提交
1666 1667 1668
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1669

Y
yi.wu 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1682
    """
F
fengjiayi 已提交
1683
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1684 1685

    # prepare output
X
Xin Pan 已提交
1686 1687 1688 1689 1690 1691 1692
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1693 1694 1695 1696 1697 1698 1699 1700

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1701 1702 1703 1704
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1705 1706 1707
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1708 1709
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1710
        })
1711 1712
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1713 1714


1715
@templatedoc()
Y
Yu Yang 已提交
1716 1717 1718 1719 1720 1721 1722
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1723 1724
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1725 1726 1727 1728
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1729 1730 1731 1732 1733 1734 1735

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1749

1750 1751
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1752 1753 1754 1755 1756 1757 1758
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1759
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1770
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1771 1772 1773 1774 1775 1776
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1777
def sequence_softmax(input, use_cudnn=False, name=None):
1778 1779 1780
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1781
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1798 1799 1800
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1813 1814
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1815
    softmax_out = helper.create_variable_for_type_inference(dtype)
1816 1817 1818 1819 1820 1821 1822 1823
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1824
def softmax(input, use_cudnn=False, name=None):
Q
qiaolongfei 已提交
1825
    """
1826
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1827
    has the same shape as the input.
Q
qiaolongfei 已提交
1828

1829 1830 1831 1832 1833 1834
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1835
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1836 1837 1838 1839 1840 1841 1842

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1843
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1844 1845 1846 1847 1848 1849 1850 1851

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1852 1853
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1854 1855
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1868 1869
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1870
    softmax_out = helper.create_variable_for_type_inference(dtype)
1871 1872 1873 1874 1875 1876 1877 1878
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1879 1880 1881
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1882 1883
           stride=1,
           padding=0,
1884
           dilation=1,
Y
Yu Yang 已提交
1885 1886 1887
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1888
           use_cudnn=True,
1889 1890
           act=None,
           name=None):
Y
Yu Yang 已提交
1891
    """
C
chengduoZH 已提交
1892
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1893 1894
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1895
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1896 1897 1898 1899 1900 1901 1902
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1903 1904 1905
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1906

1907
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1908

C
chengduoZH 已提交
1909 1910
    .. math::

C
refine  
chengduoZH 已提交
1911
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1912

T
tensor-tang 已提交
1913
    Where:
C
chengduoZH 已提交
1914

1915 1916 1917 1918 1919
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1920
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1921 1922 1923

    Example:

1924 1925
        - Input:

W
weixing02 已提交
1926
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1927

W
weixing02 已提交
1928
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1929

1930
        - Output:
T
tensor-tang 已提交
1931

W
weixing02 已提交
1932
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1933

C
chengduoZH 已提交
1934
        Where
1935 1936

        .. math::
C
chengduoZH 已提交
1937

W
weixing02 已提交
1938 1939
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1940 1941

    Args:
1942
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1943
        num_filters(int): The number of filter. It is as same as the output
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1961 1962 1963 1964 1965
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1966
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1967 1968 1969 1970 1971
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1972 1973
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1974 1975
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1976
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1977
            will be named automatically. Default: None
C
chengduoZH 已提交
1978 1979

    Returns:
G
guosheng 已提交
1980
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1981 1982
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1983
    Raises:
1984 1985
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1986

C
chengduoZH 已提交
1987 1988 1989
    Examples:
        .. code-block:: python

1990 1991
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1992 1993 1994
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1995
    assert param_attr is not False, "param_attr should not be False here."
1996
    l_type = 'conv2d'
X
xzl 已提交
1997 1998
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1999
        l_type = 'depthwise_conv2d'
2000 2001 2002 2003

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2004 2005 2006 2007 2008
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2009
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2010

C
chengduoZH 已提交
2011 2012 2013
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2014
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2015

C
chengduoZH 已提交
2016 2017
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2018 2019

    input_shape = input.shape
M
minqiyang 已提交
2020
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2021 2022

    def _get_default_param_initializer():
C
chengduo 已提交
2023 2024
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2025 2026 2027 2028 2029 2030 2031 2032
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2033
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2034

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2049
    helper.append_op(
2050
        type=l_type,
Y
Yu Yang 已提交
2051 2052 2053 2054 2055
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2056 2057 2058
        attrs={
            'strides': stride,
            'paddings': padding,
2059
            'dilations': dilation,
C
chengduoZH 已提交
2060
            'groups': groups,
2061
            'use_cudnn': use_cudnn,
2062
            'use_mkldnn': False,
2063
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2064
        })
Y
Yu Yang 已提交
2065 2066 2067 2068 2069 2070

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2088 2089 2090 2091 2092 2093
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2103 2104
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2105 2106 2107
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2108
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2134
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2135 2136
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2137
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2138 2139
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2140
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2141 2142
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2143
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2144 2145 2146 2147 2148 2149
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2160 2161
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2162 2163
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2164
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2165
            will be named automatically. Default: None.
C
chengduoZH 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2178 2179
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2180 2181 2182
    """

    l_type = 'conv3d'
C
chengduo 已提交
2183
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2194
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2208 2209 2210
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2211 2212 2213 2214 2215 2216 2217 2218
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2219
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2234
            'use_mkldnn': False
C
chengduoZH 已提交
2235 2236
        })

2237
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2238 2239 2240 2241

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2242
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2243
    """
Y
yangyaming 已提交
2244 2245 2246
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2258
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2259 2260 2261 2262 2263
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2264
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2265 2266 2267 2268 2269 2270 2271

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2272 2273
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2274

L
Luo Tao 已提交
2275 2276
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2277
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2278
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2279
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2280 2281 2282 2283 2284 2285 2286

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2287

Y
yangyaming 已提交
2288
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2289 2290 2291 2292 2293
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2294 2295
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2296
    """
F
fengjiayi 已提交
2297
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2298
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2299 2300
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2301 2302 2303 2304 2305 2306

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2307 2308
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2309

Y
yangyaming 已提交
2310 2311 2312 2313 2314
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2315 2316 2317
    return pool_out


C
add doc  
chengduoZH 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2337
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2338 2339 2340 2341 2342
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2343
def sequence_first_step(input):
L
Luo Tao 已提交
2344
    """
L
Luo Tao 已提交
2345
    This function gets the first step of sequence.
L
Luo Tao 已提交
2346 2347 2348 2349

    .. code-block:: text

       x is a 1-level LoDTensor:
2350
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2351 2352 2353 2354 2355
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2356
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2357
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2358

L
Luo Tao 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2368

Y
yangyaming 已提交
2369
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2370 2371 2372
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2373 2374 2375
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2376
def sequence_last_step(input):
L
Luo Tao 已提交
2377
    """
L
Luo Tao 已提交
2378
    This function gets the last step of sequence.
L
Luo Tao 已提交
2379 2380 2381 2382

    .. code-block:: text

       x is a 1-level LoDTensor:
2383
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2384 2385 2386 2387 2388
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2389
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2390
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2391

L
Luo Tao 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2401

Y
yangyaming 已提交
2402
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2403 2404 2405
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2406 2407 2408
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2409 2410 2411 2412
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2413
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2414 2415 2416 2417 2418
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2419

H
haowang101779990 已提交
2420
              - Case:
Y
Yibing Liu 已提交
2421

2422
            Given the input Variable **input**:
2423

2424 2425 2426
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2427

2428
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2429

2430
            the output Variable will be
2431

2432 2433 2434
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2435

M
minqiyang 已提交
2436
    Note:
H
haowang101779990 已提交
2437
          The first dimension size of **input**, **offset** and **length**
2438
          should be equal. The **offset** should start from 0.
2439

Y
Yibing Liu 已提交
2440
    Args:
2441
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2442
                         sequences.
Y
Yibing Liu 已提交
2443 2444 2445 2446 2447 2448
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2449
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2460
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2461 2462 2463 2464
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2465
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2480
@templatedoc()
Y
Yu Yang 已提交
2481
def pool2d(input,
C
chengduoZH 已提交
2482 2483
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2484 2485
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2486
           global_pooling=False,
C
chengduoZH 已提交
2487
           use_cudnn=True,
2488
           ceil_mode=False,
2489 2490
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2491
    """
F
fengjiayi 已提交
2492
    ${comment}
2493 2494

    Args:
2495 2496 2497
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2498
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2499
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2500 2501
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2502
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2503 2504 2505 2506 2507 2508
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2509 2510 2511
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2512
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2513
                        layer will be named automatically.
2514
        exclusive (bool): Whether to exclude padding points in average pooling
2515
                          mode, default is true
F
fengjiayi 已提交
2516

2517
    Returns:
F
fengjiayi 已提交
2518
        Variable: The pooling result.
F
fengjiayi 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2531
          pool2d = fluid.layers.pool2d(
2532 2533 2534 2535
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2536
                            global_pooling=False)
Y
Yu Yang 已提交
2537 2538 2539 2540 2541
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2542

C
chengduoZH 已提交
2543 2544 2545 2546 2547
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2548 2549 2550 2551
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2552 2553
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2554

C
Add doc  
chengduoZH 已提交
2555
    l_type = 'pool2d'
2556 2557

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2558
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2559
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2560 2561

    helper.append_op(
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2573 2574
            "use_mkldnn": False,
            "exclusive": exclusive,
2575 2576 2577 2578 2579
        })

    return pool_out


D
dengkaipeng 已提交
2580
@templatedoc()
2581 2582 2583 2584 2585 2586 2587 2588
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2589 2590
           name=None,
           exclusive=True):
2591
    """
2592
    ${comment}
2593 2594

    Args:
D
dengkaipeng 已提交
2595 2596 2597 2598 2599
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2600 2601 2602 2603 2604
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2605 2606 2607 2608 2609 2610 2611
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2612
        exclusive (bool): Whether to exclude padding points in average pooling
2613
                          mode, default is true
2614

2615
    Returns:
2616
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2630 2631 2632 2633 2634
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2635

C
chengduoZH 已提交
2636 2637 2638 2639 2640
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2641 2642 2643
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2644

C
chengduoZH 已提交
2645 2646
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2647

2648 2649
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2650
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2651
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2652 2653

    helper.append_op(
2654
        type=l_type,
Y
Yu Yang 已提交
2655 2656 2657 2658 2659 2660 2661
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2662
            "paddings": pool_padding,
2663
            "use_cudnn": use_cudnn,
2664
            "ceil_mode": ceil_mode,
2665 2666
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2667 2668 2669 2670 2671
        })

    return pool_out


2672 2673 2674 2675 2676 2677 2678
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2679 2680 2681 2682 2683 2684 2685
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2686

2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2700 2701 2702 2703 2704 2705 2706 2707 2708

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2709 2710
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2725
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2726
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2727
          # of input data into m * n grids averagely and performs poolings in each
2728 2729
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2730
          #
2731 2732 2733 2734 2735 2736 2737 2738
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2739 2740
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2741
          pool_out = fluid.layers.adaptive_pool2d(
2742 2743
                            input=data,
                            pool_size=[3, 3],
2744
                            pool_type='avg')
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2755
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2781
    return (pool_out, mask) if require_index else pool_out
2782 2783 2784 2785 2786 2787 2788 2789 2790


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2791 2792 2793 2794 2795 2796 2797
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2798

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2816 2817 2818

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2819 2820 2821
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2822
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2823
            it must contain three integers, (Depth, Height, Width).
2824
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2825 2826
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2841 2842
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2843
          # of input data into l * m * n grids averagely and performs poolings in each
2844 2845
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2846
          #
2847 2848 2849 2850 2851 2852 2853 2854 2855
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2856
          #                 output[:, :, i, j, k] =
2857 2858
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2859 2860
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2861
          pool_out, mask = fluid.layers.adaptive_pool3d(
2862
                            input=data,
D
dengkaipeng 已提交
2863
                            pool_size=[3, 3, 3],
2864
                            pool_type='avg')
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2875
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2901
    return (pool_out, mask) if require_index else pool_out
2902 2903


Y
Yu Yang 已提交
2904 2905 2906 2907 2908 2909 2910
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2911
               data_layout='NCHW',
Y
Yang Yang 已提交
2912
               in_place=False,
2913 2914
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2915
               moving_variance_name=None,
2916
               do_model_average_for_mean_and_var=False,
2917 2918
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2919
    """
Q
qiaolongfei 已提交
2920 2921 2922 2923
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2924

Q
qiaolongfei 已提交
2925
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2926

Q
qiaolongfei 已提交
2927 2928
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2929 2930 2931
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2944

2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2958
    Args:
Q
qingqing01 已提交
2959
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
2960
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2961 2962 2963 2964 2965 2966 2967 2968 2969
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2970 2971 2972 2973 2974 2975 2976 2977
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2978
        data_layout(string, default NCHW): NCHW|NHWC
2979
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2980 2981 2982 2983
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2984
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2985
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2986 2987 2988 2989 2990
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2991 2992

    Returns:
Q
qiaolongfei 已提交
2993
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2994 2995 2996 2997 2998 2999 3000

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3001
    """
C
chengduo 已提交
3002
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3003 3004 3005
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3006 3007 3008 3009
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3028
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3029

3030 3031
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3032 3033 3034
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3035
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3036
        shape=param_shape,
W
Wu Yi 已提交
3037
        dtype=dtype)
3038 3039 3040 3041 3042 3043
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3044
            trainable=False,
W
wanghaoshuang 已提交
3045
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3046
        shape=param_shape,
W
Wu Yi 已提交
3047
        dtype=dtype)
3048
    variance.stop_gradient = True
Y
Yu Yang 已提交
3049 3050 3051 3052 3053 3054

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3055 3056 3057 3058
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3059

X
Xin Pan 已提交
3060 3061
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3079 3080 3081 3082
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3083
            "data_layout": data_layout,
X
Xin Pan 已提交
3084
            "use_mkldnn": False,
3085 3086
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3087
        })
Y
Yu Yang 已提交
3088 3089 3090 3091

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3211
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3212 3213 3214 3215

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3216
@templatedoc()
G
guosheng 已提交
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3227
    ${comment}
G
guosheng 已提交
3228 3229 3230

    The formula is as follows:

Y
yuyang18 已提交
3231
    ..  math::
G
guosheng 已提交
3232 3233 3234 3235 3236 3237 3238

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3239 3240 3241 3242 3243 3244 3245 3246
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3247

G
guosheng 已提交
3248 3249
    Args:
        input(Variable): The input tensor variable.
3250
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3251
            normalization. Default True.
3252
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3253 3254
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3255
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3256
            Default 1.
3257
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3258
            division by zero. Default 1e-05.
G
guosheng 已提交
3259
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3260 3261
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3262 3263
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3264
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3265 3266
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3267
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3268
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3269
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3270 3271 3272
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3273 3274

    Returns:
Y
yuyang18 已提交
3275
        ${y_comment}
G
guosheng 已提交
3276 3277 3278

    Examples:

Y
yuyang18 已提交
3279 3280 3281
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3297
    if shift:
G
guosheng 已提交
3298 3299 3300 3301 3302 3303
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3304 3305 3306 3307 3308
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3336
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3384 3385
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3403
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3404 3405 3406
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3407
    This layer calculates the spectral normalization value of weight parameters of
3408
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3409
    Parameters. Calculations are showed as follows.
3410

D
dengkaipeng 已提交
3411 3412 3413
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3414
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3427
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3428 3429 3430 3431

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3432

D
dengkaipeng 已提交
3433
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3434 3435
                

D
dengkaipeng 已提交
3436 3437 3438 3439
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3440 3441 3442
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3443 3444 3445
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3446
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3447 3448 3449 3450 3451 3452 3453 3454

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3455
    dtype = weight.dtype
D
dengkaipeng 已提交
3456 3457 3458

    # create intput and parameters
    inputs = {'Weight': weight}
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3477 3478

    # create output
3479
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3480 3481

    helper.append_op(
3482
        type="spectral_norm",
D
Dun 已提交
3483
        inputs=inputs,
3484 3485 3486 3487 3488 3489
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3490

3491
    return out
D
Dun 已提交
3492 3493


Y
Yu Yang 已提交
3494 3495 3496 3497
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3498 3499 3500
                     padding=0,
                     stride=1,
                     dilation=1,
3501
                     groups=None,
C
caoying03 已提交
3502
                     param_attr=None,
3503
                     bias_attr=None,
C
chengduoZH 已提交
3504
                     use_cudnn=True,
3505
                     act=None,
C
caoying03 已提交
3506
                     name=None):
Y
Yu Yang 已提交
3507
    """
3508 3509 3510 3511 3512 3513 3514 3515
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3516 3517
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3518 3519 3520
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3521 3522 3523 3524 3525

    For each input :math:`X`, the equation is:

    .. math::

3526
        Out = \sigma (W \\ast X + b)
3527

3528
    Where:
3529 3530 3531

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3532 3533 3534 3535
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3536

3537 3538 3539 3540
    Example:

        - Input:

3541
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3542

3543
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3544 3545 3546

        - Output:

3547
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3548 3549

        Where
Y
Yu Yang 已提交
3550

3551 3552
        .. math::

3553 3554
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3555 3556
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3557 3558

    Args:
3559 3560 3561 3562
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3563 3564 3565 3566
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3595
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3596 3597 3598
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3599
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3600
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3601 3602

    Returns:
3603
        Variable: The tensor variable storing the convolution transpose result.
3604 3605

    Raises:
3606 3607
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3608 3609 3610 3611

    Examples:
       .. code-block:: python

3612 3613
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3614
    """
C
chengduo 已提交
3615
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3616 3617 3618 3619 3620 3621 3622 3623
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3624 3625 3626
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3627 3628 3629
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3630

C
chengduoZH 已提交
3631 3632
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3633

Y
Yu Yang 已提交
3634 3635 3636 3637 3638
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3639

Y
Yu Yang 已提交
3640 3641
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3642

C
chengduoZH 已提交
3643
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3644
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3645
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3646
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3647
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3648 3649 3650
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3651

3652 3653 3654 3655 3656 3657 3658
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3659
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3660
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3661

Y
Yu Yang 已提交
3662 3663 3664
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3665
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3666
    helper.append_op(
3667
        type=op_type,
Y
Yu Yang 已提交
3668 3669
        inputs={'Input': [input],
                'Filter': [img_filter]},
3670
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3671
        attrs={
3672
            'output_size': output_size,
3673 3674 3675 3676 3677
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3678 3679
        })

3680 3681 3682
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3683 3684


3685
def conv3d_transpose(input,
Y
Yu Yang 已提交
3686 3687 3688
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3689 3690 3691
                     padding=0,
                     stride=1,
                     dilation=1,
3692
                     groups=None,
C
caoying03 已提交
3693
                     param_attr=None,
3694
                     bias_attr=None,
C
chengduoZH 已提交
3695
                     use_cudnn=True,
3696
                     act=None,
C
caoying03 已提交
3697
                     name=None):
Y
Yu Yang 已提交
3698
    """
3699
    **Convlution3D transpose layer**
3700

3701
    The convolution3D transpose layer calculates the output based on the input,
3702
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3703 3704 3705 3706 3707 3708
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3709 3710 3711
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3712 3713 3714 3715 3716

    For each input :math:`X`, the equation is:

    .. math::

3717
        Out = \sigma (W \\ast X + b)
3718 3719 3720

    In the above equation:

3721 3722
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3723 3724 3725 3726
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3727

3728 3729 3730 3731
    Example:

        - Input:

3732
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3733

3734
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3735 3736 3737

        - Output:

3738
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3739 3740

        Where
Y
Yu Yang 已提交
3741

3742 3743
        .. math::

3744 3745 3746
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3747 3748

    Args:
3749
        input(Variable): The input image with [N, C, D, H, W] format.
3750 3751 3752
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3753
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3754 3755
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3756
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3757 3758 3759
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3760 3761
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3762
        stride(int|tuple): The stride size. If stride is a tuple, it must
3763 3764
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3765
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3766 3767 3768
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3769 3770 3771 3772 3773
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3774 3775 3776 3777 3778 3779 3780 3781 3782
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3783 3784
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3785 3786
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3787 3788
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3789 3790

    Returns:
3791
        Variable: The tensor variable storing the convolution transpose result.
3792 3793

    Raises:
3794 3795
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3796 3797 3798 3799

    Examples:
       .. code-block:: python

3800 3801
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3802
    """
C
chengduo 已提交
3803
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3804 3805
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3806
    if not isinstance(input, Variable):
3807
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3808 3809
    input_channel = input.shape[1]

3810 3811 3812
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3813

C
chengduoZH 已提交
3814 3815 3816
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3817 3818 3819 3820 3821 3822
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3823 3824 3825
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3826

3827
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3828
                         padding[0] - 1) // dilation[0] + 1
3829
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3830
                         padding[1] - 1) // dilation[1] + 1
3831
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3832
                         padding[2] - 1) // dilation[2] + 1
3833
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3834
    else:
3835 3836
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3837

3838
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3839
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3840 3841 3842
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3843
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3844
    helper.append_op(
3845
        type=l_type,
Y
Yu Yang 已提交
3846 3847
        inputs={'Input': [input],
                'Filter': [img_filter]},
3848
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3849 3850 3851 3852
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3853
            'groups': groups,
C
chengduoZH 已提交
3854 3855
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3856

3857 3858
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3859
    return out
Y
yangyaming 已提交
3860 3861


Y
yangyaming 已提交
3862
def sequence_expand(x, y, ref_level=-1, name=None):
3863
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3864 3865 3866 3867
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3868 3869 3870 3871 3872

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3873
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3874
                x.data = [[a], [b], [c], [d]]
3875 3876 3877
                x.dims = [4, 1]

            y is a LoDTensor:
3878 3879
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3880

Y
yangyaming 已提交
3881
            ref_level: 0
3882

Y
yangyaming 已提交
3883
            then output is a 1-level LoDTensor:
3884
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3885
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3886 3887 3888 3889
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3890
                x.data = [[a], [b], [c]]
3891 3892 3893
                x.dims = [3, 1]

            y is a LoDTensor:
3894
                y.lod = [[2, 0, 3]]
3895

Y
yangyaming 已提交
3896
            ref_level: -1
3897

Y
yangyaming 已提交
3898 3899 3900
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3901 3902 3903
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3904 3905
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3906
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3907
                        will be named automatically.
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3918
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3919
    """
Y
yangyaming 已提交
3920
    helper = LayerHelper('sequence_expand', input=x, **locals())
3921
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3922
    tmp = helper.create_variable_for_type_inference(dtype)
3923
    helper.append_op(
Y
yangyaming 已提交
3924 3925 3926 3927 3928
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3929
    return tmp
3930 3931


C
chengduo 已提交
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3988
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3989 3990 3991 3992 3993 3994 3995 3996
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3997
@templatedoc()
3998
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3999 4000 4001 4002 4003
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4004 4005 4006
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4007
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4008 4009 4010 4011
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4012 4013 4014
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4015

F
fengjiayi 已提交
4016
    Returns:
M
minqiyang 已提交
4017
        Variable: The padded sequence batch and the original lengths before
4018
                  padding. All sequences has the same length.
M
minqiyang 已提交
4019

F
fengjiayi 已提交
4020 4021 4022 4023 4024 4025 4026
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4027
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4028
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4029 4030 4031 4032 4033
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4034 4035
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4036 4037 4038 4039

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4040 4041 4042 4043 4044 4045
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4046 4047
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4048
        attrs={'padded_length': maxlen})
4049
    return out, length
F
fengjiayi 已提交
4050 4051


4052
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4053
    """
4054
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4055

4056 4057
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4058 4059 4060 4061 4062 4063 4064 4065 4066
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4067 4068 4069
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4070
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4071 4072 4073 4074 4075 4076

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4077
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4078 4079 4080 4081 4082 4083

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4084 4085
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4100
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4112 4113 4114 4115 4116 4117 4118
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4119
                is_accumulated=True,
4120 4121
                name=None,
                return_parent_idx=False):
4122
    """
4123 4124
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4125 4126 4127

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4128 4129

    This layer does the search in beams for one time step. Specifically, it
4130 4131 4132
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4144 4145 4146 4147

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4148

4149
    Args:
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4173 4174
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4175 4176
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4177 4178 4179 4180
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4181

4182
    Returns:
4183 4184 4185 4186
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4187 4188 4189 4190

    Examples:
        .. code-block:: python

4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4208
    helper = LayerHelper('beam_search', **locals())
4209 4210 4211 4212 4213 4214
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4215

X
Xin Pan 已提交
4216 4217 4218
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4219 4220 4221 4222 4223
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4224 4225 4226

    helper.append_op(
        type='beam_search',
4227
        inputs=inputs,
Q
Qiao Longfei 已提交
4228 4229 4230
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4231
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4232 4233 4234 4235 4236 4237
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4238
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4239
        })
4240 4241 4242 4243
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4244 4245


4246 4247 4248 4249 4250 4251 4252
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4253

4254 4255 4256 4257 4258 4259 4260 4261 4262
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4263

4264 4265 4266 4267 4268 4269
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4270

4271 4272
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4273

4274 4275 4276 4277 4278 4279
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4280 4281
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4297 4298 4299 4300
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4301
              param_attr=None,
C
caoying03 已提交
4302 4303
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4304 4305 4306 4307
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4308
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4309

4310
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4311

4312
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4313

4314
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4315 4316 4317

            h_t & = o_t tanh(c_t)

4318 4319 4320 4321 4322 4323
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4324 4325 4326

        .. math::

4327
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4328 4329 4330 4331 4332 4333 4334 4335

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4336
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4337 4338

    Args:
Y
yangyaming 已提交
4339 4340 4341 4342 4343 4344
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4345
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4358 4359
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4360 4361

    Returns:
Y
yangyaming 已提交
4362
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4363 4364

    Raises:
4365 4366 4367 4368
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4369 4370 4371 4372 4373 4374

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4375
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4376
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4377
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4394
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4395 4396 4397 4398
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4399 4400
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4401 4402 4403
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4404
    size = cell_t_prev.shape[1]
4405
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4406 4407
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4408
                param_attr=param_attr,
4409
                bias_attr=bias_attr)
Y
yangyaming 已提交
4410
    dtype = x_t.dtype
X
Xin Pan 已提交
4411 4412
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4413 4414 4415 4416 4417 4418 4419 4420 4421

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4422
    return h, c
G
guosheng 已提交
4423 4424


C
caoying03 已提交
4425
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4426
    """
Y
yangyaming 已提交
4427
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4428 4429 4430

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4431
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4432 4433
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4434 4435
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4436
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4437
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4438
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4439 4440
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4441 4442 4443

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4444

G
guosheng 已提交
4445 4446 4447 4448 4449 4450
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4451
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4452 4453 4454 4455
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4456 4457 4458 4459

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4460
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4461 4462 4463
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4464 4465
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4466
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4467 4468
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4469 4470 4471 4472 4473
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4474
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4475 4476 4477 4478
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4479 4480


C
caoying03 已提交
4481
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4482
    """
Y
Yibing Liu 已提交
4483
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4484 4485 4486

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4487 4488 4489
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4490
            must be in the range :math:`[-rank(input), rank(input))`. If
4491
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4492
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4493 4494
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4495
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4496
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4497
                       will be named automatically.
G
guosheng 已提交
4498 4499

    Returns:
Y
Yibing Liu 已提交
4500
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4501

G
guosheng 已提交
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4512 4513
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4514 4515 4516 4517 4518 4519 4520

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4521 4522
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4523
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4524 4525
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4526 4527 4528 4529 4530
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4531
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4532 4533 4534 4535
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4536 4537


C
caoying03 已提交
4538
def reduce_max(input, dim=None, keep_dim=False, name=None):
4539
    """
Y
yangyaming 已提交
4540
    Computes the maximum of tensor elements over the given dimension.
4541 4542 4543

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4544
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4545 4546 4547
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4548
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4549 4550
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4551
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4552 4553
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4554 4555 4556

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4557

4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4569 4570 4571 4572 4573 4574 4575

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4576 4577
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4578
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4579 4580
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4581 4582 4583 4584 4585
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4586
            'dim': dim if dim != None else [0],
4587 4588 4589 4590 4591 4592
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4593
def reduce_min(input, dim=None, keep_dim=False, name=None):
4594
    """
Y
yangyaming 已提交
4595
    Computes the minimum of tensor elements over the given dimension.
4596 4597 4598

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4599
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4600 4601 4602
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4603
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4604 4605
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4606
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4607 4608
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4609 4610 4611

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4612

4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4624 4625 4626 4627 4628 4629 4630

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4631 4632
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4633
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4634 4635
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4636 4637 4638 4639 4640
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4641
            'dim': dim if dim != None else [0],
4642 4643 4644 4645
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4646 4647


4648 4649 4650 4651 4652 4653
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4654
        dim (list|int|None): The dimensions along which the product is performed. If
4655 4656
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4657 4658
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4659 4660 4661
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4662
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4663
            layer will be named automatically.
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4678
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4679
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4680 4681 4682 4683 4684 4685 4686

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4687 4688
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4689
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4690 4691
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4692 4693 4694 4695 4696
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4697
            'dim': dim if dim != None else [0],
4698 4699 4700 4701 4702 4703
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4704
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4705
    """
C
caoying03 已提交
4706
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4707 4708 4709

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4710 4711 4712 4713 4714
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4715
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4716
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4717
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4718 4719
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4720 4721

    Returns:
D
dzhwinter 已提交
4722
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4723 4724 4725 4726 4727 4728 4729 4730 4731

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4732 4733
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4749
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4763 4764 4765 4766 4767 4768 4769 4770 4771


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4772
    .. math::
4773 4774

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4775 4776 4777 4778 4779

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4780
        x(Variable|list): The input tensor to l2_normalize layer.
4781
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4782 4783
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4784
        epsilon(float): The epsilon value is used to avoid division by zero, \
4785
            the defalut value is 1e-10.
4786
        name(str|None): A name for this layer(optional). If set None, the layer \
4787
            will be named automatically.
C
caoying03 已提交
4788 4789

    Returns:
4790
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4791 4792

    Examples:
4793

C
caoying03 已提交
4794 4795
        .. code-block:: python

4796 4797 4798 4799
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4800 4801
    """

F
fengjiayi 已提交
4802 4803
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4804 4805
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4806 4807
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4808
    helper.append_op(
4809 4810 4811 4812
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4813
        attrs={
4814 4815
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4816 4817
        })
    return out
4818 4819


S
sneaxiy 已提交
4820
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4821
    """
Y
ying 已提交
4822 4823 4824 4825
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4826

C
chengduoZH 已提交
4827
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4828
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4829

4830 4831 4832 4833 4834
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4835
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4836

C
chengduoZH 已提交
4837
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4838
      performs in the following way.
G
guosheng 已提交
4839

4840
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4841
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4842
        last two dimensions and a batched matrix multiply supporting broadcast
4843
        applies on the two tensors.
G
guosheng 已提交
4844

Y
ying 已提交
4845 4846
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4847
    removed after matrix multiplication.
G
guosheng 已提交
4848 4849 4850

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4851 4852 4853
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4854
        alpha (float): The scale of output. Default 1.0.
4855
        name(str|None): A name for this layer(optional). If set None, the layer
4856
            will be named automatically.
G
guosheng 已提交
4857 4858

    Returns:
4859
        Variable: The product Tensor variable.
G
guosheng 已提交
4860

G
guosheng 已提交
4861 4862 4863
    Examples:
        .. code-block:: python

4864
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4865 4866
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4867

4868 4869
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4870

4871 4872
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4873

4874 4875
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4876 4877 4878 4879

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4880 4881
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4882

Y
ying 已提交
4883
            # x: [M], y: [N]
4884
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4885
    """
Y
ying 已提交
4886 4887 4888 4889 4890 4891 4892

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4893
            y_shape = y_shape + [1]
Y
ying 已提交
4894 4895 4896 4897 4898 4899 4900

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4901 4902
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
4903

C
chengduo 已提交
4904
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4905
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
4906 4907 4908
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
4909
                if dim_x != y_shape[i]:
C
chengduo 已提交
4910 4911
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
4912 4913 4914

    __check_input(x, y)

4915
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4916
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4917
    helper.append_op(
4918 4919 4920 4921
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4922 4923 4924
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4925
            'alpha': float(alpha),
S
sneaxiy 已提交
4926
        })
4927
    return out
4928 4929


4930
def topk(input, k, name=None):
Q
qingqing01 已提交
4931 4932 4933 4934
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4935
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4936 4937 4938 4939 4940 4941
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4963 4964 4965
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4966
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4967
                 of input.
4968
        name(str|None): A name for this layer(optional). If set None, the layer
4969
                       will be named automatically.
F
fengjiayi 已提交
4970
                       Default: None
Q
qingqing01 已提交
4971 4972

    Returns:
4973 4974 4975
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4976
        within the last dimension of input.
Q
qingqing01 已提交
4977

F
fengjiayi 已提交
4978 4979
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4980 4981 4982 4983 4984 4985 4986

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4987 4988
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4989 4990 4991 4992 4993 4994
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4995 4996
    helper.append_op(
        type="top_k",
W
whs 已提交
4997
        inputs=inputs,
Q
qingqing01 已提交
4998 4999
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5000
        attrs=attrs)
Q
qingqing01 已提交
5001 5002 5003 5004 5005
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5006
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5007
    """
Y
ying 已提交
5008 5009 5010 5011 5012 5013 5014 5015 5016
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5017

Y
ying 已提交
5018
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5019

5020
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5021 5022
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5023
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5024

5025
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5026 5027
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5028

5029 5030 5031
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5032
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5033
                          the length of reference string.
5034
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5035
                                     calculating edit distance.
5036
        name (str): The name of this layer. It is optional.
5037

W
wanghaoshuang 已提交
5038
    Returns:
W
wanghaoshuang 已提交
5039
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5040 5041 5042 5043

    Examples:
        .. code-block:: python

T
tink2123 已提交
5044 5045
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5046
            cost = fluid.layers.edit_distance(input=x,label=y)
5047
    """
5048
    helper = LayerHelper("edit_distance", **locals())
5049

5050
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5051
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5052 5053
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5054 5055 5056 5057 5058

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5059
            attrs={"tokens": ignored_tokens})
5060 5061 5062 5063 5064
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5065
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5066
            attrs={"tokens": ignored_tokens})
5067 5068
        label = erased_label

5069
    # edit distance op
X
Xin Pan 已提交
5070 5071
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5072 5073 5074 5075
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5076 5077
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5078 5079
        attrs={"normalized": normalized})

5080
    return edit_distance_out, sequence_num
5081 5082 5083 5084 5085


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5086

Y
ying 已提交
5087 5088 5089 5090
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5108
        input.lod = [[4, 4]]
M
minqiyang 已提交
5109

W
whs 已提交
5110
        Computation:
5111

W
whs 已提交
5112 5113 5114 5115 5116 5117
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5118 5119 5120 5121 5122

        output.data = [[2],
                       [1],
                       [3]]

5123
        output.lod = [[2, 1]]
5124

W
whs 已提交
5125

5126 5127
    Args:

Y
ying 已提交
5128 5129 5130 5131 5132 5133 5134 5135 5136
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5137
        name (str): The name of this layer. It is optional.
5138 5139

    Returns:
H
haowang101779990 已提交
5140 5141 5142
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5143
                  LoD [[]] and dims [1, 1].
5144 5145 5146 5147 5148

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5149

5150
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5151
    """
5152
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5153
    _, topk_indices = topk(input, k=1)
5154 5155

    # ctc align op
X
Xin Pan 已提交
5156
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5157 5158 5159
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5160
        outputs={"Output": [ctc_out]},
5161 5162
        attrs={"merge_repeated": True,
               "blank": blank})
5163
    return ctc_out
5164 5165


W
Wu Yi 已提交
5166
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5167
    """
5168 5169
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5170
    to compute Connectionist Temporal Classification (CTC) loss.
5171 5172
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5173 5174 5175
    input tensor.

    Args:
5176
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5177 5178 5179 5180
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5181
       label (Variable): The ground truth of variable-length sequence,
5182 5183 5184
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5185 5186
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5187 5188 5189
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5190
         follewed by a mean_op.
W
Wu Yi 已提交
5191
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5192 5193

    Returns:
5194 5195
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5196 5197

    Examples:
5198

W
wanghaoshuang 已提交
5199
        .. code-block:: python
5200

5201 5202 5203
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5204 5205

    """
F
fengjiayi 已提交
5206
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5207 5208
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5209 5210 5211 5212 5213 5214
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5215 5216 5217 5218 5219
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5220
    return loss_out
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5236 5237 5238
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5239 5240 5241 5242 5243
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5244

5245
            out.lod  = [[0, 1, 3]]
5246 5247 5248 5249

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5250 5251 5252 5253 5254 5255 5256
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5257 5258 5259

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5260 5261

    Returns:
5262

5263 5264 5265 5266 5267
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5268
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5269
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5270 5271
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5272
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5273 5274 5275 5276 5277 5278
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5279 5280


5281 5282 5283 5284
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5285 5286 5287 5288 5289 5290
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5291
        num_neg_samples=None,
5292 5293 5294
        name=None,
        sampler="uniform",
        custom_dist=None,
5295 5296
        seed=0,
        is_sparse=False):
5297 5298 5299 5300 5301 5302 5303
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5304 5305
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5306
            sample is 1.0.
C
chengduo 已提交
5307 5308 5309 5310 5311 5312 5313 5314 5315
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5316
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5317 5318
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5319 5320 5321
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5322
        custom_dist (float[]): A float[] with size=num_total_classes.
5323 5324 5325 5326
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5327
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5328

5329
    Returns:
Y
Yibing Liu 已提交
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5357 5358 5359 5360 5361 5362 5363 5364 5365

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5366

5367
    """
Y
Yang Yu 已提交
5368 5369 5370
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5371 5372

    dim = input.shape[1]
Y
Yang Yu 已提交
5373 5374 5375 5376 5377 5378
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5379
    inputs = {}
C
chengduo 已提交
5380 5381 5382 5383 5384 5385 5386
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5387 5388 5389
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5390

5391 5392 5393 5394
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5395 5396 5397 5398 5399 5400 5401

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5402 5403 5404 5405 5406 5407 5408 5409 5410
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5411
            if normal_prob - 1.0 > 0:
5412
                bigs.append((i, normal_prob))
5413
            elif 1.0 - normal_prob > 0:
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5429
            if big_left - 1.0 > 0:
5430
                bigs.append((big_idx, big_left))
5431
            elif 1.0 - big_left > 0:
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5461 5462 5463 5464
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5465 5466 5467 5468 5469
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5470 5471 5472 5473
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5474

Y
Yang Yu 已提交
5475 5476
    attrs = {
        'num_total_classes': int(num_total_classes),
5477 5478
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5479
        'sampler': sampler,
5480 5481
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5482
    }
Y
Yang Yu 已提交
5483 5484 5485

    helper.append_op(
        type='nce',
C
chengduo 已提交
5486
        inputs=inputs,
Y
Yang Yu 已提交
5487 5488 5489 5490 5491 5492
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5493
    return cost / (num_neg_samples + 1)
5494 5495


C
chengduo 已提交
5496 5497
def hsigmoid(input,
             label,
5498
             num_classes,
C
chengduo 已提交
5499 5500
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5501
             name=None,
5502 5503 5504
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5505
             is_sparse=False):
W
weixing02 已提交
5506 5507
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5508
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5509
    complete binary tree, or you can use is_custom to pass your own tree to
5510
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5511 5512 5513 5514 5515 5516
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5517
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5518
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5519

5520 5521
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5522 5523 5524 5525
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5526
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5527
       related to the same batch of inputs.
5528

W
weixing02 已提交
5529
    Args:
M
minqiyang 已提交
5530
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5531 5532 5533 5534
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5535 5536
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5537
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5549
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5550
            it should be in leaf -> root order
M
minqiyang 已提交
5551 5552 5553
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5554
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5555
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5556
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5557
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5558
             of W and input will be sparse.
W
weixing02 已提交
5559 5560

    Returns:
J
JiabinYang 已提交
5561
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5562 5563 5564 5565 5566

    Examples:

        .. code-block:: python

G
guosheng 已提交
5567 5568 5569
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5570 5571 5572 5573
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5574 5575
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5576
    dim = input.shape[1]
5577
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5578 5579 5580
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5581 5582 5583 5584
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5585 5586
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5587 5588 5589
    else:
        pass

J
JiabinYang 已提交
5590
    weights = None
5591 5592 5593 5594
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5595
    if not is_custom:
J
JiabinYang 已提交
5596 5597 5598 5599 5600 5601 5602 5603
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5604
            shape=[num_classes, dim],
J
JiabinYang 已提交
5605 5606
            is_bias=False,
            dtype=input.dtype)
5607 5608 5609
    inputs = {
        "X": input,
        "W": weights,
5610
        "PathTable": path_table,
5611
        "PathCode": path_code,
5612 5613
        "Label": label
    }
W
weixing02 已提交
5614
    if helper.bias_attr:
5615
        if not is_custom:
J
JiabinYang 已提交
5616 5617
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5618
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5619 5620 5621 5622 5623 5624
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5625
                shape=[num_classes, 1],
J
JiabinYang 已提交
5626 5627 5628
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5629 5630
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5631
        inputs=inputs,
W
weixing02 已提交
5632
        outputs={"Out": out,
5633 5634 5635 5636 5637 5638 5639
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5640 5641 5642
    return out


Y
fix ci.  
ying 已提交
5643
def transpose(x, perm, name=None):
Y
ying 已提交
5644 5645 5646 5647 5648 5649 5650
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5651 5652 5653
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5654 5655 5656 5657 5658 5659 5660

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5661
            # use append_batch_size=False to avoid prepending extra
5662
            # batch size in shape
5663
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5664
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5665
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5666 5667
    """

Y
fix ci.  
ying 已提交
5668
    if len(perm) != len(x.shape):
Y
ying 已提交
5669 5670 5671
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5672 5673 5674 5675 5676 5677
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5678 5679

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5680 5681
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5682
    helper.append_op(
5683
        type='transpose2',
Y
fix ci.  
ying 已提交
5684
        inputs={'X': [x]},
5685 5686
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5687 5688
        attrs={'axis': perm})
    return out
5689 5690


5691 5692 5693 5694 5695 5696 5697
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5698
    """
5699 5700 5701 5702 5703 5704 5705
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5706 5707 5708 5709 5710 5711 5712 5713 5714 5715

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5734 5735 5736 5737 5738 5739 5740 5741 5742
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5743 5744 5745
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5746 5747 5748 5749 5750
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5778 5779 5780
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5793
            output.dims = {8, 8}
5794

5795
            output.lod = [[4, 4]]
5796

T
Tink_Y 已提交
5797
    Examples:
5798 5799 5800

        .. code-block:: python

5801 5802
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5803 5804

    """
W
wanghaoshuang 已提交
5805 5806 5807 5808 5809 5810 5811 5812 5813 5814

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5815 5816 5817 5818 5819 5820 5821
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5822
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5823
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5824
    helper.append_op(
5825
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5826
    return out
5827 5828


Y
yuyang18 已提交
5829
@templatedoc()
5830
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5831 5832
    """
    ${comment}
5833 5834

    Args:
Y
yuyang18 已提交
5835
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5836 5837
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5838 5839 5840 5841 5842
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5843
        ${out_comment}.
5844 5845

    Examples:
Y
yuyang18 已提交
5846 5847 5848 5849
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5850 5851 5852 5853 5854 5855
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5856
    out = helper.create_variable_for_type_inference(dtype)
5857 5858 5859 5860 5861
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5862
    return helper.append_activation(out)
5863 5864


Y
yuyang18 已提交
5865
@templatedoc()
5866 5867
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5868 5869 5870 5871 5872 5873 5874
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5875 5876

    Args:
Y
yuyang18 已提交
5877 5878
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5879 5880

    Returns:
Y
yuyang18 已提交
5881
        ${out_comment}.
5882 5883
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5884 5885 5886 5887 5888

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5889
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5890 5891 5892 5893 5894 5895
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5896 5897


5898 5899 5900
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5901
                               ignore_index=kIgnoreIndex,
5902
                               numeric_stable_mode=True,
5903
                               return_softmax=False):
5904 5905
    """
    **Softmax With Cross Entropy Operator.**
5906

5907 5908 5909 5910
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5911

5912 5913 5914
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5915

5916 5917 5918
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5919

5920
    The equation is as follows:
5921

5922
    1) Hard label (one-hot label, so every sample has exactly one class)
5923

5924 5925 5926 5927
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5928

5929 5930 5931
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5932

5933 5934 5935 5936
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5937 5938 5939
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5940

H
haowang101779990 已提交
5941
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5942

H
haowang101779990 已提交
5943
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5944

H
haowang101779990 已提交
5945
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5946 5947 5948

    and then cross entropy loss is calculated by softmax and label.

5949 5950 5951 5952 5953 5954 5955 5956
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5957 5958
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5959
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5960 5961 5962
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5963 5964 5965
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
5966
                                    stable algorithm. Default: True
5967
        return_softmax (bool): A flag indicating whether to return the softmax
5968
                               along with the cross entropy loss. Default: False
5969

5970
    Returns:
H
haowang101779990 已提交
5971 5972 5973 5974 5975
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5976 5977 5978 5979 5980 5981 5982

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5983 5984
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5985 5986
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5987 5988
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5989 5990 5991 5992 5993 5994
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5995 5996 5997 5998 5999
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
6000 6001 6002 6003

    if return_softmax:
        return loss, softmax

6004 6005 6006
    return loss


6007 6008 6009
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6010
                                       num_true=1,
6011
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6012 6013 6014
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6015
                                       seed=0):
X
xuezhong 已提交
6016 6017 6018 6019 6020
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6021
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6022 6023 6024 6025 6026 6027 6028 6029
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6030
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6031 6032 6033 6034 6035 6036 6037 6038
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6039
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6051
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6052 6053 6054 6055 6056
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6057
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6058
            logits.
X
xuezhong 已提交
6059 6060 6061 6062 6063
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6064 6065 6066
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6087 6088
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
X
xuezhong 已提交
6089 6090 6091 6092 6093

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6094
            'Labels': label,
X
xuezhong 已提交
6095 6096
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6097 6098 6099 6100
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6101
            'SampledLabels': sampled_label,
X
xuezhong 已提交
6102 6103 6104
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
6105
            'use_customized_samples': use_customized_samples,
6106
            'uniq': True,
X
xuezhong 已提交
6107 6108 6109 6110
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6111 6112
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6113 6114 6115 6116 6117 6118
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6119 6120
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6121
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6122
                'Label': sampled_softlabel},
X
xuezhong 已提交
6123 6124 6125
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6126
            'soft_label': True,
X
xuezhong 已提交
6127 6128 6129
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6130
    return loss / num_true
X
xuezhong 已提交
6131 6132


6133 6134
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6135 6136
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6137
    For each instance, it computes the smooth L1 loss element by element first
6138
    and then sums all the losses. So the shape of ouput Variable is
6139
    [batch_size, 1].
6140

6141 6142
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6143
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6144
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6145
            L1 loss op with same shape as :attr:`x`.
6146
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6147 6148
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6149
            by this tensor element by element.
6150
        outside_weight (Variable|None): A tensor with rank at least 2. This
6151 6152
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6153
            element by element.
6154
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6155 6156
           scalar with default value 1.0.

6157
    Returns:
6158
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6159 6160 6161 6162 6163

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6164 6165
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6166
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6167
            out = fluid.layers.smooth_l1(x=fc, y=label)
6168
    """
6169

6170
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6171 6172
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
6185 6186 6187 6188


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6189
    This layer creates the one-hot representations for input indices.
6190 6191

    Args:
Y
Yibing Liu 已提交
6192 6193
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6194 6195

    Returns:
Y
Yibing Liu 已提交
6196
        Variable: The one-hot representations of input.
6197 6198

    Examples:
C
caoying03 已提交
6199
        .. code-block:: python
6200

Y
Yibing Liu 已提交
6201 6202
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6203 6204
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6205
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6206 6207 6208 6209
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6210 6211
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6212
    return one_hot_out
Y
Yu Yang 已提交
6213 6214


Y
Yu Yang 已提交
6215
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6216
    """
Y
yi.wu 已提交
6217 6218 6219
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6220 6221 6222 6223 6224 6225

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6226 6227
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6228 6229 6230 6231 6232 6233

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6234 6235
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6236 6237
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6238 6239 6240 6241 6242
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6243
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6244
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6245 6246
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6247
            outputs={'Out': [counter]},
M
minqiyang 已提交
6248 6249
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6250 6251 6252
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6253 6254


6255
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6256
    """
C
caoying03 已提交
6257 6258
    Gives a new shape to the input Tensor without changing its data.

6259 6260 6261 6262 6263
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6264

6265
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6266

6267 6268 6269 6270
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6271
    2. 0 means the actual dimension value is going to be copied from the
6272 6273 6274 6275
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6276 6277

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6278
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6279
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6280

6281
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6282 6283
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6284 6285
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6286
    dimensions.
C
caoying03 已提交
6287

6288
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6289 6290 6291 6292
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6293 6294

    Args:
6295
        x(variable): The input tensor.
C
caoying03 已提交
6296 6297
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6298 6299 6300 6301 6302
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6303 6304
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6305 6306 6307
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6308
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6309
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6310

6311
    Returns:
G
guosheng 已提交
6312 6313 6314 6315
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6316

X
Xin Pan 已提交
6317 6318 6319
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6320 6321
    Examples:
        .. code-block:: python
G
guosheng 已提交
6322

6323
            data = fluid.layers.data(
6324
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6325
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6326
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6327 6328 6329
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6330
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6331 6332 6333 6334 6335
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6336

6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6352
    helper = LayerHelper("reshape2", **locals())
6353 6354
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6355
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6356
    helper.append_op(
6357
        type="reshape2",
X
Xin Pan 已提交
6358
        inputs=inputs,
D
dzhwinter 已提交
6359
        attrs={"shape": shape},
6360 6361
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6362

D
dzhwinter 已提交
6363
    return helper.append_activation(out)
6364

6365

6366
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6367
    """
M
minqiyang 已提交
6368 6369 6370
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6371
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6372

H
haowang101779990 已提交
6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6394

Y
Yibing Liu 已提交
6395
    Args:
6396
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6397
        axes (list): List of integers, indicating the dimensions to be squeezed.
6398
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6399 6400 6401 6402 6403 6404 6405 6406

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6407
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6408
    """
6409 6410
    assert not _in_imperative_mode(), (
        "squeeze layer is not supported in imperative mode yet.")
Y
Yibing Liu 已提交
6411
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6412 6413
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6414
    helper.append_op(
6415
        type="squeeze2",
6416
        inputs={"X": input},
Y
Yibing Liu 已提交
6417
        attrs={"axes": axes},
6418 6419
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6420

6421 6422 6423
    return out


6424
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6425
    """
M
minqiyang 已提交
6426 6427 6428
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6429

M
minqiyang 已提交
6430
    For example:
H
haowang101779990 已提交
6431 6432 6433

    .. code-block:: text

M
minqiyang 已提交
6434
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6435
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6436

Y
Yibing Liu 已提交
6437
    Args:
6438
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6439
        axes (list): List of integers, indicating the dimensions to be inserted.
6440
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6441 6442 6443 6444 6445 6446 6447 6448

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6449
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6450 6451
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6452 6453
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6454
    helper.append_op(
6455
        type="unsqueeze2",
6456
        inputs={"X": input},
Y
Yibing Liu 已提交
6457
        attrs={"axes": axes},
6458 6459
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6460

6461 6462
    return out

6463

Y
yangyaming 已提交
6464
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6465
    """
Y
Yibing Liu 已提交
6466
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6467 6468 6469 6470
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6471
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6472 6473 6474 6475 6476 6477

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6478
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6479 6480 6481
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6482
            target_lod: [4, 2]
Y
yangyaming 已提交
6483 6484

            then we get a 1-level LoDTensor:
6485
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6486 6487 6488 6489 6490 6491
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6492
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6493 6494 6495 6496
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6497
                y.data = [[2, 4]]
Y
yangyaming 已提交
6498 6499 6500
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6501
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6502 6503 6504 6505 6506 6507
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6508
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6509 6510 6511 6512
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6513
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6514 6515 6516 6517
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6518
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6519 6520 6521 6522 6523
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6524
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6525
                           from :attr:`y`.
Y
yangyaming 已提交
6526
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6527
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6528 6529

    Returns:
Y
Yibing Liu 已提交
6530
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6531 6532

    Raises:
Y
Yibing Liu 已提交
6533
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6534 6535 6536 6537 6538 6539 6540 6541 6542

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6543
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6569
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6598 6599
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6612 6613 6614
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6628 6629 6630 6631


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6632
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6633
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6634

G
guosheng 已提交
6635 6636 6637 6638
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6661
                         The length of :attr:paddings must be
G
guosheng 已提交
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6672

G
guosheng 已提交
6673 6674 6675 6676 6677 6678
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6679
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6680 6681 6682 6683 6684 6685 6686
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6687 6688


C
chengduo 已提交
6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6720 6721
		And
            pad_value = -1,
C
chengduo 已提交
6722

T
Tink_Y 已提交
6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6758
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6759 6760 6761 6762 6763 6764 6765 6766 6767
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6768 6769 6770 6771 6772 6773 6774
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6775 6776
    called label-smoothing regularization (LSR).

6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6800
                              be :math:`(1, class\_num)`.
6801 6802
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6803
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6823
    smooth_label = helper.create_variable_for_type_inference(dtype)
6824 6825 6826 6827 6828 6829 6830
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6831 6832


W
wopeizl 已提交
6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6869 6870


J
jerrywgz 已提交
6871 6872 6873 6874 6875 6876
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6877 6878
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6895 6896 6897
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6898 6899 6900 6901 6902 6903
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6904
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6945 6946
        .. code-block:: python

W
whs 已提交
6947 6948 6949 6950
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6951
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6952 6953 6954 6955 6956 6957
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6958 6959


6960 6961 6962 6963
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6964
                 resample='BILINEAR',
6965 6966
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
6967
                 align_mode=1):
6968
    """
Q
qiaolongfei 已提交
6969
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6970

6971
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6972 6973 6974
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6975

6976
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6977

6978
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6979

6980 6981 6982 6983 6984 6985 6986 6987 6988 6989
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
6990
    Align_corners and align_mode are optinal parameters,the calculation method 
6991 6992 6993 6994
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6995
    .. code-block:: text
6996

T
Tink_Y 已提交
6997
        For scale:
6998
          
T
Tink_Y 已提交
6999
            if align_corners = True && out_size > 1 :
7000

T
Tink_Y 已提交
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7012

T
Tink_Y 已提交
7013 7014
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7015

T
Tink_Y 已提交
7016 7017
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7018

T
Tink_Y 已提交
7019 7020
          else:
              align_corners = True
7021

T
Tink_Y 已提交
7022 7023
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7024

T
Tink_Y 已提交
7025 7026
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7027

T
Tink_Y 已提交
7028 7029 7030 7031 7032 7033 7034 7035 7036 7037
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7038

T
Tink_Y 已提交
7039 7040 7041 7042
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7043

T
Tink_Y 已提交
7044 7045
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7046 7047 7048 7049 7050 7051 7052 7053 7054

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7055
    Args:
7056
        input (Variable): The input tensor of image resize layer,
7057 7058
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7059
        out_shape(list|tuple|Variable|None): Output shape of image resize
7060 7061
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
7062
        scale(float|None): The multiplier for the input height or width.
7063 7064 7065
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
7066 7067
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7068
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7069
                       currently.
7070
                       Default: 'BILINEAR'
7071 7072 7073
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7074
                                :attr:`out_shape` and :attr:`scale` specifying
7075 7076 7077 7078 7079 7080 7081
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7082 7083
                                constructing stage.
                                Default: None
7084 7085 7086 7087
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7088
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7089 7090
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7091 7092

    Returns:
Q
update  
qiaolongfei 已提交
7093 7094
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7095

7096 7097 7098
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7099
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7100 7101 7102
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
7103 7104
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7105

7106 7107 7108
    Examples:
        .. code-block:: python

7109
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7110
    """
7111 7112 7113 7114
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7115 7116
    if resample not in resample_methods:
        raise ValueError(
7117
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7118
        )
7119
    resample_type = resample_methods[resample]
7120 7121 7122 7123 7124 7125

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7126
    if out_shape is None and scale is None:
7127
        raise ValueError("One of out_shape and scale must not be None.")
7128
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7129
    dtype = helper.input_dtype()
7130 7131 7132 7133

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7134 7135 7136
    out_h = 0
    out_w = 0
    inputs = {"X": input}
7137
    if out_shape is not None:
7138 7139 7140 7141
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7142
            inputs['OutSize'] = out_shape
7143 7144 7145 7146 7147 7148 7149 7150
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
7151 7152 7153 7154
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

7155 7156 7157 7158 7159
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7160
    out = helper.create_variable_for_type_inference(dtype)
7161
    helper.append_op(
7162
        type='{}_interp'.format(resample_type),
7163
        inputs=inputs,
7164
        outputs={"Out": out},
7165 7166 7167 7168 7169 7170 7171
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
7172
    return out
F
stash  
fengjiayi 已提交
7173 7174


7175
@templatedoc(op_type="bilinear_interp")
7176 7177 7178 7179
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7180 7181
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7182
                    align_mode=1):
7183
    """
7184 7185
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7186 7187
    in priority order.

7188 7189 7190 7191
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7192 7193
    again in the other direction.

7194
    For details of bilinear interpolation, please refer to Wikipedia:
7195
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7196

T
tink2123 已提交
7197
    Align_corners and align_mode are optinal parameters,the calculation 
7198 7199 7200 7201
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7202
    .. code-block:: text
7203

T
Tink_Y 已提交
7204
        For scale:
7205
          
T
Tink_Y 已提交
7206
            if align_corners = True && out_size > 1 :
7207

T
Tink_Y 已提交
7208 7209 7210 7211 7212
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7213

T
Tink_Y 已提交
7214 7215 7216 7217 7218 7219 7220 7221 7222 7223
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7224 7225


T
Tink_Y 已提交
7226
          else:
T
tink2123 已提交
7227

T
Tink_Y 已提交
7228 7229
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7230

T
Tink_Y 已提交
7231 7232
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7233 7234 7235



Y
yuyang18 已提交
7236 7237 7238 7239
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7240

Y
yuyang18 已提交
7241 7242 7243 7244 7245
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7246 7247 7248
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7249
                                :attr:`out_shape` and :attr:`scale` specifying
7250 7251 7252 7253 7254 7255 7256
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7257 7258
                                constructing stage.
                                Default: None
7259 7260
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7261 7262 7263

    Returns:
        ${out_comment}.
7264 7265 7266 7267 7268

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7269 7270
    """

7271 7272
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7273 7274


7275
@templatedoc(op_type="nearest_interp")
7276 7277 7278 7279
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7280 7281
                   actual_shape=None,
                   align_corners=True):
7282
    """
7283
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7284 7285
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7286 7287
    out_shape and scale in priority order.

7288 7289
    Example:

T
Tink_Y 已提交
7290 7291 7292 7293 7294
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7295

T
Tink_Y 已提交
7296 7297 7298 7299 7300 7301 7302 7303
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7304
          
T
Tink_Y 已提交
7305 7306
          if:
              align_corners = False
7307

T
Tink_Y 已提交
7308 7309
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7310

T
Tink_Y 已提交
7311 7312
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7313

T
Tink_Y 已提交
7314 7315
          else:
              align_corners = True
7316

T
Tink_Y 已提交
7317 7318
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7319

T
Tink_Y 已提交
7320 7321
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7322 7323


7324
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7325
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7326 7327 7328 7329 7330

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7331

Y
yuyang18 已提交
7332 7333 7334 7335 7336
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7337 7338 7339
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7340
                                :attr:`out_shape` and :attr:`scale` specifying
7341 7342 7343 7344 7345 7346 7347
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7348 7349
                                constructing stage.
                                Default: None
7350
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7351 7352 7353

    Returns:
        ${out_comment}.
7354 7355 7356 7357 7358

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7359 7360
    """

7361 7362
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7363 7364 7365 7366


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7367 7368 7369
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7370 7371 7372 7373 7374 7375 7376
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7377
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7378

7379
    Returns:
Q
update  
qiaolongfei 已提交
7380
        Variable: The output is a 4-D tensor of the shape
7381
        (num_batches, channls, out_h, out_w).
7382 7383 7384 7385 7386 7387 7388 7389 7390 7391
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7392 7393 7394
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7395 7396 7397
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7398 7399
def gather(input, index):
    """
Q
qiaolongfei 已提交
7400 7401
    **Gather Layer**

7402
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7403 7404 7405 7406
    of X indexed by `index` and concatenate them together.

    .. math::

7407
        Out = X[Index]
W
whs 已提交
7408 7409 7410 7411 7412 7413 7414


    .. code-block:: text


                Given:

7415 7416
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7417 7418 7419 7420 7421 7422 7423 7424 7425 7426
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7427
        input (Variable): The source input with rank>=1.
W
whs 已提交
7428 7429 7430 7431 7432 7433
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7434

W
whs 已提交
7435 7436 7437 7438 7439 7440
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7441
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7442 7443 7444 7445 7446 7447 7448 7449
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7481
    out = helper.create_variable_for_type_inference(dtype)
7482 7483 7484 7485 7486 7487 7488 7489 7490
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7491 7492 7493 7494 7495 7496 7497 7498 7499
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7500

Q
Qingsheng Li 已提交
7501
    Given the following input:
H
haowang101779990 已提交
7502

Q
Qingsheng Li 已提交
7503
    .. code-block:: text
H
haowang101779990 已提交
7504

Q
Qingsheng Li 已提交
7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7517

Q
Qingsheng Li 已提交
7518
    .. code-block:: text
H
haowang101779990 已提交
7519

Q
Qingsheng Li 已提交
7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7535
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7536 7537 7538 7539 7540 7541 7542 7543 7544 7545

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7546
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7547 7548 7549 7550 7551 7552 7553 7554 7555
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7569

7570 7571 7572
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7573
    """
F
stash  
fengjiayi 已提交
7574
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7575
    dtype = x.dtype
X
Xin Pan 已提交
7576
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7577
    if seed is None:
7578
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7579
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7580
    if isinstance(seed, int):
F
fengjiayi 已提交
7581 7582 7583 7584 7585
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7586 7587 7588 7589
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7590
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7591 7592
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7593 7594
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7595
    return out
W
whs 已提交
7596 7597


7598
def log(x, name=None):
W
wanghaoshuang 已提交
7599 7600 7601 7602 7603
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7604
        Out = \\ln(x)
W
wanghaoshuang 已提交
7605 7606

    Args:
7607
        x (Variable): Input tensor.
7608 7609
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7610 7611 7612 7613 7614 7615 7616 7617

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7618
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7619 7620
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7621
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7622
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7623
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7624 7625 7626
    return out


7627
def relu(x, name=None):
W
wanghaoshuang 已提交
7628 7629
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7630
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7631 7632 7633 7634
    the tensor elementwise.

    .. math::

7635
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7636 7637

    Args:
7638
        x (Variable): The input tensor.
7639 7640
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7641 7642 7643 7644 7645 7646 7647 7648

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7649
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7650 7651
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7652
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7653
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7654 7655
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7656
    return out
7657 7658


C
chengduo 已提交
7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7700 7701 7702
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7703 7704 7705 7706
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7707
    .. math::
7708

H
haowang101779990 已提交
7709
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7710

7711
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7712 7713 7714 7715 7716
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7717
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7718
                           Its shape should be the same as input.
7719
        num_classes (int): The possible number of labels.
W
whs 已提交
7720 7721

    Returns:
M
minqiyang 已提交
7722 7723
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7724
                     Three variables:
M
minqiyang 已提交
7725

H
haowang101779990 已提交
7726 7727 7728
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7729 7730 7731 7732

    Examples:

        .. code-block:: python
7733

W
whs 已提交
7734 7735 7736 7737
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7738 7739 7740
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7741 7742
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7743 7744
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7745
        outputs={
W
whs 已提交
7746 7747 7748
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7749 7750 7751
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7820
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7821 7822 7823 7824 7825

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7826
            isinstance(shape, Variable)):
7827 7828 7829 7830 7831
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7832
    out = helper.create_variable_for_type_inference(x.dtype)
7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7850 7851


W
whs 已提交
7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7869

W
whs 已提交
7870
              out_shape = [2, 3, 5, 5]
7871

W
whs 已提交
7872
          Step 1:
7873

W
whs 已提交
7874 7875 7876
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7877

W
whs 已提交
7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7923
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7924
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7937

W
whs 已提交
7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7949
            isinstance(out_shape, Variable)):
W
whs 已提交
7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7971 7972
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7973

7974 7975
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7976
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7977 7978 7979
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7980

7981 7982
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7983

H
haowang101779990 已提交
7984 7985
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7986 7987
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7988

H
haowang101779990 已提交
7989 7990 7991 7992 7993 7994 7995 7996
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7997 7998 7999

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8034
    out = helper.create_variable_for_type_inference("float32")
8035 8036 8037 8038 8039 8040 8041 8042

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8043 8044


M
minqiyang 已提交
8045 8046
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8047
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8048
    which compares left score and right score passed in.
M
minqiyang 已提交
8049
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8050 8051 8052

    .. math::

H
haowang101779990 已提交
8053
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8054 8055

    Args:
M
minqiyang 已提交
8056
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8057 8058
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8059
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8060 8061
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8062

M
minqiyang 已提交
8063
    Returns:
M
minqiyang 已提交
8064
       Variable: The ranking loss.
H
haowang101779990 已提交
8065

M
minqiyang 已提交
8066
    Raises:
M
minqiyang 已提交
8067
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8068

M
minqiyang 已提交
8069
    Examples:
H
haowang101779990 已提交
8070

M
minqiyang 已提交
8071
        .. code-block:: python
H
haowang101779990 已提交
8072

M
minqiyang 已提交
8073 8074 8075 8076 8077
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8078
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8079 8080 8081 8082 8083 8084
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8085 8086
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8110
        .. code-block:: text
W
whs 已提交
8111

T
Tink_Y 已提交
8112
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8113

T
Tink_Y 已提交
8114 8115
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8116

T
Tink_Y 已提交
8117
	      Case 0:
M
minqiyang 已提交
8118

T
Tink_Y 已提交
8119 8120 8121
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8122

T
Tink_Y 已提交
8123 8124 8125
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8126

T
Tink_Y 已提交
8127
	      Case 1:
M
minqiyang 已提交
8128

T
Tink_Y 已提交
8129 8130
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8131

T
Tink_Y 已提交
8132 8133 8134
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8135

T
Tink_Y 已提交
8136
	      Case 2:
M
minqiyang 已提交
8137

T
Tink_Y 已提交
8138 8139
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8140

T
Tink_Y 已提交
8141 8142 8143
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8144 8145


W
whs 已提交
8146 8147
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8148
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8172
    out = helper.create_variable_for_type_inference(dtype)
8173 8174 8175 8176 8177 8178 8179 8180 8181
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8182
    helper.append_op(
8183
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8184 8185 8186 8187

    return out


8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8200 8201 8202 8203 8204

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8205 8206
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8207 8208
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8209
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8230 8231 8232 8233 8234

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8235 8236
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8237 8238
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8239
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8260 8261 8262 8263 8264

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8265 8266
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8267 8268
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8269
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8291 8292 8293 8294 8295

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8296
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8297
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8298 8299
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8300
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8323 8324 8325 8326 8327

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8328 8329
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8330 8331
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8332
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8354 8355 8356 8357 8358

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8359 8360
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8361 8362
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8363
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8364 8365 8366 8367 8368 8369 8370 8371
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8372 8373 8374 8375
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8376 8377
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8378 8379 8380

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8381
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8382
          weight (alpha).
J
jerrywgz 已提交
8383
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8384 8385 8386
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8387
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8388
          will be named automatically.
J
jerrywgz 已提交
8389 8390 8391 8392 8393 8394 8395 8396

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8397
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8411
        attr=helper.param_attr,
J
jerrywgz 已提交
8412 8413 8414 8415
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8416
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8417 8418 8419 8420 8421 8422 8423 8424 8425
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8426 8427 8428 8429 8430 8431 8432 8433 8434 8435
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8436
    Returns:
8437
        output(${out_type}): ${out_comment}
8438 8439 8440

    Examples:

8441
    .. code-block:: python
8442

H
haowang101779990 已提交
8443 8444
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8445 8446
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8447
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8466
    Returns:
8467
        output(${out_type}): ${out_comment}
8468 8469 8470 8471 8472

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8473 8474
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8475 8476
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8477
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8495
    Returns:
8496
        output(${out_type}): ${out_comment}
8497 8498 8499 8500 8501

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8502 8503
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8504 8505
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8506
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8507 8508 8509 8510 8511 8512 8513 8514
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8515 8516 8517 8518
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8519

H
haowang101779990 已提交
8520
    For Example:
M
minqiyang 已提交
8521

H
haowang101779990 已提交
8522
    .. code-block:: text
8523

H
haowang101779990 已提交
8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8545 8546 8547

    Args:
        x (Variable): A tensor of rank >= axis.
8548 8549
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8550 8551 8552 8553 8554 8555 8556 8557
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8558 8559 8560
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8561 8562 8563 8564
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8565
        ValueError: If axis is not in range [0, rank(x)].
8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8582 8583
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8584
    helper.append_op(
8585
        type='flatten2',
8586
        inputs={"X": x},
8587 8588
        outputs={'Out': out,
                 'XShape': x_shape},
8589 8590
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8591 8592


C
chenweihang 已提交
8593
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8594
    """
C
chenweihang 已提交
8595
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8596
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8597 8598
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8599

H
haowang101779990 已提交
8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8617 8618

    Args:
C
chenweihang 已提交
8619 8620 8621
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8633 8634
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8635 8636 8637 8638 8639 8640
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8641
    return out
8642

8643

S
sneaxiy 已提交
8644 8645 8646 8647 8648 8649 8650 8651 8652
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8653

S
sneaxiy 已提交
8654
    .. math::
8655

S
sneaxiy 已提交
8656 8657 8658
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8659
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8660 8661 8662 8663
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8664 8665 8666
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8667 8668
    Returns:
        Variable: The output sequence mask.
8669

S
sneaxiy 已提交
8670 8671
    """

Q
qingqing01 已提交
8672
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8673
    if name is None:
X
Xin Pan 已提交
8674
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8675
    else:
X
Xin Pan 已提交
8676
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8677

Q
qingqing01 已提交
8678 8679 8680
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8681 8682
        outputs={'Y': out},
        attrs={
8683
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8684 8685 8686
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8687 8688


X
Xin Pan 已提交
8689
def stack(x, axis=0):
S
sneaxiy 已提交
8690 8691 8692 8693
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8694 8695 8696 8697 8698 8699 8700

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8701
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8702
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8703

C
chengduozh 已提交
8704 8705
    For Example:

C
chengduozh 已提交
8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8744
    Args:
8745
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8746
        axis (int|None): The axis along which all inputs are stacked.
8747

S
sneaxiy 已提交
8748 8749
    Returns:
        Variable: The stacked variable.
8750

S
sneaxiy 已提交
8751 8752
    """

X
Xin Pan 已提交
8753 8754 8755 8756 8757 8758
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8759
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8760
    helper.append_op(
S
sneaxiy 已提交
8761 8762
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8763

X
Xin Pan 已提交
8764
    return out
D
dzhwinter 已提交
8765 8766 8767 8768 8769 8770 8771


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8772

D
dzhwinter 已提交
8773 8774 8775
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8776
    raised.
D
dzhwinter 已提交
8777 8778

    Args:
M
minqiyang 已提交
8779
        x (Variable): Input variable.
D
dzhwinter 已提交
8780 8781
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8782

D
dzhwinter 已提交
8783 8784
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8785

D
dzhwinter 已提交
8786 8787 8788 8789 8790 8791 8792 8793 8794 8795
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8796
    for _ in range(num):
X
Xin Pan 已提交
8797
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8798 8799 8800 8801 8802 8803 8804 8805

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8818

W
whs 已提交
8819 8820 8821 8822
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8823

W
whs 已提交
8824
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8825

W
whs 已提交
8826
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8827

W
whs 已提交
8828 8829 8830 8831
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8832

W
whs 已提交
8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8849
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8850 8851 8852 8853 8854 8855
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8856 8857


G
fix  
gongweibao 已提交
8858 8859 8860
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8861
@templatedoc()
G
fix  
gongweibao 已提交
8862 8863 8864 8865 8866 8867 8868 8869 8870
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8871
    ${comment}
G
fix  
gongweibao 已提交
8872 8873

    Args:
G
gongweibao 已提交
8874 8875 8876
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8877
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8878 8879 8880
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8881 8882
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8883
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8884

8885 8886 8887 8888 8889
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8890 8891 8892
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8893
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8910 8911


G
gongweibao 已提交
8912
@templatedoc()
X
Xin Pan 已提交
8913
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8914
    """
G
gongweibao 已提交
8915
    ${comment}
G
fix  
gongweibao 已提交
8916 8917

    Args:
G
gongweibao 已提交
8918 8919 8920 8921
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8922 8923 8924
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8925
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8926

8927 8928 8929 8930
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8931 8932 8933
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8934
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8935 8936 8937 8938 8939 8940 8941 8942 8943 8944
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8945
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8946 8947 8948 8949 8950
        })

    return out


G
gongweibao 已提交
8951
@templatedoc()
G
fix  
gongweibao 已提交
8952
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8953
    """
G
gongweibao 已提交
8954
    ${comment}
G
fix  
gongweibao 已提交
8955 8956

    Args:
G
gongweibao 已提交
8957 8958 8959 8960
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8961
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8962 8963

    Returns:
G
gongweibao 已提交
8964
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8965

8966 8967 8968 8969 8970 8971 8972 8973 8974 8975
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8976 8977 8978
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8979
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8991
@templatedoc()
G
fix  
gongweibao 已提交
8992 8993 8994 8995 8996 8997 8998 8999 9000
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9001
    ${comment}
G
fix  
gongweibao 已提交
9002 9003

    Args:
G
gongweibao 已提交
9004 9005
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9006
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9007 9008 9009 9010
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9011
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9012 9013

    Returns:
G
gongweibao 已提交
9014
        out (Variable): ${out_comment}
9015 9016 9017 9018 9019 9020 9021 9022

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9023 9024 9025
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9026
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9045
@templatedoc()
X
Xin Pan 已提交
9046
def sum(x):
G
fix  
gongweibao 已提交
9047
    """
G
gongweibao 已提交
9048
    ${comment}
G
fix  
gongweibao 已提交
9049 9050

    Args:
G
gongweibao 已提交
9051
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9052 9053

    Returns:
G
gongweibao 已提交
9054
        out (Variable): ${out_comment}
9055 9056 9057 9058 9059 9060

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9061 9062 9063
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9064 9065
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9066 9067 9068 9069
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9070
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9071 9072 9073 9074

    return out


G
gongweibao 已提交
9075
@templatedoc()
G
fix  
gongweibao 已提交
9076 9077
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9078
    ${comment}
G
fix  
gongweibao 已提交
9079 9080

    Args:
G
gongweibao 已提交
9081 9082 9083 9084
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9085 9086

    Returns:
G
gongweibao 已提交
9087
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9088

9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9100 9101 9102
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9103 9104
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9118 9119
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9120
    Get the shape of the input.
G
fix  
gongweibao 已提交
9121 9122

    Args:
C
chengduozh 已提交
9123
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9124 9125

    Returns:
C
fix doc  
chengduozh 已提交
9126
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9127

9128 9129 9130 9131 9132 9133
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9134 9135 9136
    """

    helper = LayerHelper('shape', **locals())
9137
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9138
    helper.append_op(
G
fix  
gongweibao 已提交
9139
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9140 9141

    return out
G
merge  
gongweibao 已提交
9142 9143


Z
zhoukunsheng 已提交
9144 9145 9146 9147
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9148
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9170 9171 9172 9173
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
9174 9175 9176 9177
    if _in_imperative_mode():
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9178 9179 9180 9181
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9182 9183
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9184
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9185 9186 9187
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9188

S
sneaxiy 已提交
9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9200
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9201 9202 9203 9204 9205 9206 9207 9208
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9209
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9210
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9211 9212 9213 9214 9215 9216

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9217
    if name is None:
X
Xin Pan 已提交
9218
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9219 9220 9221
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9222 9223 9224 9225 9226 9227 9228 9229 9230 9231

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9232
    return helper.append_activation(out)
S
sneaxiy 已提交
9233 9234


X
Xin Pan 已提交
9235
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9236 9237 9238
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9239
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9240 9241 9242
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9243
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9244 9245 9246
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9247
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9248 9249 9250
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9251
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9252 9253 9254
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9255
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9256 9257 9258
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9259
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9260 9261 9262
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9263 9264 9265 9266 9267 9268 9269 9270
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9271
for func in [
9272 9273 9274 9275 9276 9277 9278 9279 9280
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9281 9282 9283 9284 9285
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9286 9287
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9288
        ])
M
minqiyang 已提交
9289 9290


9291
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9292 9293
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9294 9295
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9296 9297 9298

    if out is None:
        if name is None:
X
Xin Pan 已提交
9299
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9315
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9327 9328 9329 9330 9331 9332 9333 9334 9335

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9336 9337 9338 9339 9340 9341 9342
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9343
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9355 9356 9357 9358 9359 9360 9361 9362 9363

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9364 9365 9366 9367 9368 9369 9370
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9371
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9383 9384 9385 9386 9387 9388 9389 9390 9391

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9392 9393 9394 9395 9396 9397 9398
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9399
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9400 9401 9402 9403 9404 9405 9406 9407 9408 9409
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9410 9411 9412 9413 9414 9415 9416

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9417 9418 9419 9420
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9436 9437 9438 9439 9440 9441 9442

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9443 9444 9445 9446 9447
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9448 9449 9450 9451
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9475 9476 9477 9478 9479 9480 9481

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9482 9483 9484 9485 9486
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9487 9488 9489 9490
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9491 9492 9493 9494 9495 9496 9497 9498

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9517
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9518 9519 9520 9521 9522 9523 9524 9525 9526 9527
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9570
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9571 9572 9573 9574 9575 9576 9577 9578 9579
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9580 9581
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9582 9583 9584 9585 9586 9587
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9588 9589 9590
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9591 9592
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9593 9594 9595 9596 9597 9598
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9599
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9600
        name(basestring|None): Name of the output.
9601 9602
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9603 9604 9605

    Returns:
        out(${out_type}): ${out_comment}
9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9620 9621 9622 9623 9624
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9625
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9626 9627 9628 9629 9630 9631 9632 9633
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9634 9635
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9656
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9657 9658 9659 9660 9661 9662 9663 9664 9665 9666
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9667 9668


J
JiabinYang 已提交
9669
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9670
    """
J
JiabinYang 已提交
9671
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9672 9673 9674

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9675
    The attr blocksize indicates the input block size.
9676 9677

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9678
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9679 9680

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9681
    (but keeping all data)
J
JiabinYang 已提交
9682

J
JiabinYang 已提交
9683
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9684
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9685 9686 9687 9688 9689
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9690
    Args:
J
JiabinYang 已提交
9691
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9692
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9693 9694

    Returns:
J
JiabinYang 已提交
9695
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9696 9697

    Raises:
J
JiabinYang 已提交
9698
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9699 9700 9701 9702 9703

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
9704
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
9705
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9706
                x=data, blocksize=2)
9707 9708 9709 9710 9711 9712

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
9713 9714
    """

J
JiabinYang 已提交
9715
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9716

J
JiabinYang 已提交
9717 9718
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9719 9720

    if name is None:
J
JiabinYang 已提交
9721 9722
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9723 9724 9725 9726 9727
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9728
        type="space_to_depth",
J
JiabinYang 已提交
9729
        inputs={"X": x},
J
JiabinYang 已提交
9730
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9731
        outputs={"Out": out})
J
JiabinYang 已提交
9732 9733
    return out

J
JiabinYang 已提交
9734

S
sneaxiy 已提交
9735 9736
@templatedoc()
def sequence_reverse(x, name=None):
9737
    """
S
sneaxiy 已提交
9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9749
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9750 9751 9752 9753 9754 9755 9756 9757 9758 9759
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9760 9761


9762 9763 9764 9765 9766 9767
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
9768 9769 9770 9771 9772
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9773

9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
9786
        act (str, default None): Activation to be applied to the output of this layer.
9787 9788 9789 9790 9791 9792 9793

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9794
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
9806
    return helper.append_activation(out)
9807 9808


B
barrierye 已提交
9809
def similarity_focus(input, axis, indexes, name=None):
9810
    """
B
barrierye 已提交
9811
    SimilarityFocus Operator
B
barrierye 已提交
9812 9813

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9814

9815 9816 9817
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9818
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9819 9820 9821 9822 9823 9824 9825
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9826
       each index.
B
barrierye 已提交
9827 9828 9829 9830
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9880
    Args:
9881
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9882
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9883
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9884
            1, 2 or 3.
B
barrierye 已提交
9885
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9886 9887

    Returns:
H
haowang101779990 已提交
9888 9889
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9890

B
barrierye 已提交
9891 9892
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9893

B
barrierye 已提交
9894
            data = fluid.layers.data(
B
barrierye 已提交
9895 9896
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9897

B
barrierye 已提交
9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9910 9911 9912 9913 9914
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9915 9916 9917 9918 9919 9920 9921
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9922 9923


M
minqiyang 已提交
9924 9925
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9926 9927
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9928 9929
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9968
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9969
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9970 9971 9972 9973 9974 9975

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9976

M
minqiyang 已提交
9977 9978 9979
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9980 9981
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9982 9983
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9984 9985 9986 9987 9988 9989 9990
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9991 9992


D
dengkaipeng 已提交
9993
@templatedoc()
9994 9995
def grid_sampler(x, grid, name=None):
    """
9996
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9997
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9998 9999 10000 10001
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10002
    interpolation value of 4 nearest corner points.
10003

H
haowang101779990 已提交
10004
    .. code-block:: text
10005

H
haowang101779990 已提交
10006 10007
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10008

H
haowang101779990 已提交
10009 10010
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10011

H
haowang101779990 已提交
10012 10013 10014
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10015

H
haowang101779990 已提交
10016 10017 10018 10019 10020 10021 10022 10023 10024
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10025

H
haowang101779990 已提交
10026 10027 10028 10029
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10030

H
haowang101779990 已提交
10031 10032 10033 10034
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10035

H
haowang101779990 已提交
10036 10037 10038 10039
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10040

H
haowang101779990 已提交
10041 10042
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10043 10044

    Args:
10045 10046 10047
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10048 10049

    Returns:
H
haowang101779990 已提交
10050
        Variable: Output of shape [N, C, H, W] data samples input X
10051 10052
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10053 10054 10055 10056 10057 10058 10059 10060
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10061

D
dengkaipeng 已提交
10062 10063 10064 10065 10066 10067 10068 10069 10070
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10071
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10072 10073
    ipts = {'X': x, 'Grid': grid}

10074
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10075 10076 10077
    return out


G
gmcather 已提交
10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10144
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10145 10146 10147 10148 10149 10150 10151
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10152

H
heqiaozhi 已提交
10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10167 10168 10169 10170
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10171
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10172 10173
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10174
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10175 10176

    .. math::
H
haowang101779990 已提交
10177 10178 10179
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10180 10181

    Where:
H
haowang101779990 已提交
10182 10183
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10198

G
gmcather 已提交
10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10215 10216 10217 10218 10219 10220 10221 10222 10223 10224


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10225
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10226

Q
Qiao Longfei 已提交
10227
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10228 10229 10230
    For example:

    .. math::
H
haowang101779990 已提交
10231
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10232

Q
Qiao Longfei 已提交
10233
    In this formula:
10234 10235
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10236
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10237
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10238 10239 10240
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10241 10242
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10243 10244 10245
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10246
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10247
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10248
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10249 10250 10251 10252
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10253
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10254 10255 10256 10257

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10258
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10259 10260
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10261
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10262 10263 10264 10265

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10266
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10307 10308


S
shippingwang 已提交
10309
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10310 10311
    """
    **Shuffle Channel Operator**
10312

S
shippingwang 已提交
10313 10314 10315 10316 10317 10318
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10319
    
S
shippingwang 已提交
10320
    .. code-block:: text
10321

S
shippingwang 已提交
10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10350
    Args: 
S
shippingwang 已提交
10351 10352
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10353 10354

    Returns:
S
shippingwang 已提交
10355 10356
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10357 10358

    Raises:
S
shippingwang 已提交
10359
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10360 10361 10362

    Examples:
        .. code-block:: python
10363 10364

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10365
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10366 10367 10368
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10369
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10370 10371 10372 10373 10374 10375 10376 10377 10378

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10379
    return out
S
Add  
shippingwang 已提交
10380 10381


S
sneaxiy 已提交
10382
class PyFuncRegistry(object):
S
sneaxiy 已提交
10383 10384 10385
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10386
        if func is None or not callable(func):
S
sneaxiy 已提交
10387 10388 10389
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10390
        # find named args using reflection
S
sneaxiy 已提交
10391 10392 10393 10394 10395 10396 10397
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10398 10399 10400
        '''
        Why record self here?

M
minqiyang 已提交
10401 10402
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10403
           to find the registered function corresponding
M
minqiyang 已提交
10404
           to :code:`idx`.
S
sneaxiy 已提交
10405

M
minqiyang 已提交
10406 10407
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10408
           whose reference count is 1 would cause
M
minqiyang 已提交
10409
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10410 10411
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10412
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10427 10428 10429 10430 10431 10432 10433 10434 10435
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10436

S
sneaxiy 已提交
10437 10438
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10439 10440

        ret = []
S
sneaxiy 已提交
10441 10442 10443
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10444 10445
                continue

S
sneaxiy 已提交
10446 10447
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10448

S
sneaxiy 已提交
10449 10450 10451
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10452

S
sneaxiy 已提交
10453
        return tuple(ret)
S
sneaxiy 已提交
10454 10455


S
sneaxiy 已提交
10456 10457 10458 10459
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10460

S
sneaxiy 已提交
10461 10462 10463 10464 10465 10466 10467 10468
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10469
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10470

S
sneaxiy 已提交
10471 10472
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10473 10474 10475 10476
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10477
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10478
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10479 10480
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10481 10482 10483 10484 10485
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10486
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10487
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10488
                                       None means no backward. Default None.
S
sneaxiy 已提交
10489
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10490
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10491 10492
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10493
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10494 10495 10496

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10497 10498

    Examples:
M
minqiyang 已提交
10499

S
sneaxiy 已提交
10500 10501 10502 10503 10504
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10505
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10506 10507
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10508
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10509 10510 10511
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10512
        >>>
S
sneaxiy 已提交
10513 10514 10515 10516 10517
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10518
        >>>     print(x)
S
sneaxiy 已提交
10519 10520 10521 10522 10523 10524
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10525
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10526 10527
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10528 10529
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10530 10531 10532 10533 10534 10535 10536 10537
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10538
    """
S
sneaxiy 已提交
10539
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10540 10541 10542
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10543
        x = [x]
S
sneaxiy 已提交
10544 10545
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10546

S
sneaxiy 已提交
10547 10548 10549
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10550
        out_list = [out]
S
sneaxiy 已提交
10551
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10552
        out_list = out
S
sneaxiy 已提交
10553 10554 10555
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10556

S
sneaxiy 已提交
10557 10558
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10559
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10560 10561

    for each_out in out_list:
S
sneaxiy 已提交
10562 10563
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10564 10565
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10566

S
sneaxiy 已提交
10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10582 10583 10584 10585

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10586 10587
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10588 10589 10590
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10591
        })
S
sneaxiy 已提交
10592
    return out
S
sneaxiy 已提交
10593 10594 10595


# For debug usage
S
sneaxiy 已提交
10596 10597 10598 10599
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10652

M
minqiyang 已提交
10653

M
minqiyang 已提交
10654
def huber_loss(input, label, delta):
10655
    """
M
minqiyang 已提交
10656 10657 10658
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10659 10660 10661 10662

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10663
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10664 10665 10666 10667

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10668
        huber\_loss = 0.5 * (label - input) * (label - input)
10669 10670 10671 10672 10673 10674 10675


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10676
        delta (float): The parameter of huber loss, which controls
10677 10678 10679
                       the range of outliers

    Returns:
M
minqiyang 已提交
10680
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10681 10682 10683 10684 10685

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10686
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10687
    """
M
minqiyang 已提交
10688
    helper = LayerHelper('huber_loss', **locals())
10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
10770 10771


C
ceci3 已提交
10772
from .ops import square
C
ceci3 已提交
10773
from .control_flow import equal
C
ceci3 已提交
10774 10775


C
ceci3 已提交
10776 10777 10778
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
10779

C
ceci3 已提交
10780
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
10781 10782

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
10783
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
10784 10785 10786 10787 10788
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
10789 10790
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
10791 10792 10793 10794 10795 10796 10797

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
10798 10799 10800 10801 10802 10803 10804 10805
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
10806 10807 10808 10809 10810 10811 10812
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
10813
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
10814 10815
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
10816 10817
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
10818 10819 10820 10821
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
10822 10823 10824
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
10825 10826 10827
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870


def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out