operator.cc 96.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
22
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_transform.h"
24
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
25
#include "paddle/fluid/framework/details/nan_inf_utils.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/shape_inference.h"
29
#include "paddle/fluid/framework/transfer_scope_cache.h"
30
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/platform/enforce.h"
34
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
35
#include "paddle/fluid/platform/profiler/event_tracing.h"
36
#include "paddle/phi/common/int_array.h"
37 38 39
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
40

41
namespace phi {
42
class DenseTensor;
43
}  // namespace phi
44

45
#ifdef PADDLE_WITH_XPU
46 47
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
48
#endif
Q
Qiao Longfei 已提交
49

50 51 52 53
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
54 55 56 57
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
58
DECLARE_bool(benchmark);
59
DECLARE_bool(check_nan_inf);
60
DECLARE_bool(enable_unused_var_check);
61 62
PADDLE_DEFINE_EXPORTED_int32(inner_op_parallelism, 0,
                             "number of threads for inner op");
F
Feng Xing 已提交
63
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
64
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
65

Q
Qiao Longfei 已提交
66 67 68
namespace paddle {
namespace framework {

69 70 71 72 73 74
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
75

76
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
77
                         bool get_actual_dim = false) {
78
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
79 80
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
81 82
  }

M
minqiyang 已提交
83 84 85
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
86
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
87
    if (get_actual_dim) {
88
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
89
    } else {
90
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
91
    }
S
Steffy-zxf 已提交
92 93
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
94 95 96 97 98
  } else {
    return DDim({-1});
  }
}

99
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
100 101 102 103 104
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

105
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
106 107 108 109
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
110

M
minqiyang 已提交
111 112 113
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
114 115
      return "";
    }
116
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
117 118
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
119 120 121
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
122
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
123
    }
S
Steffy-zxf 已提交
124 125
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
126 127 128 129 130
  } else {
    return "";
  }
}

131
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
148 149
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
150 151 152 153 154 155 156 157 158 159
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

160
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
161 162 163 164 165
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

166 167
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
168 169 170 171 172
  }

  return -1;
}

173
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
174 175 176 177 178 179 180
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
181 182 183
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
184 185 186 187 188
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
189 190 191 192 193
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
194
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
195 196 197 198 199 200
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
201
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
202 203 204 205 206 207
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

208
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
209 210 211
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
212
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
213 214 215 216
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
217
#else
218
      auto dev_id = place.device;
P
peizhilin 已提交
219
      platform::SetDeviceId(dev_id);
220 221 222
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
223 224 225 226
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
227
#else
228
      auto dev_id = place.device;
229
      platform::SetXPUDeviceId(dev_id);
230 231 232 233 234 235 236 237
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
238
      auto dev_id = place.device;
239
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
240 241 242 243 244 245 246 247
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
248
      auto dev_id = place.device;
F
fwenguang 已提交
249
      platform::SetMLUDeviceId(dev_id);
250 251 252 253 254 255 256 257
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
258
      phi::DeviceManager::SetDevice(place);
259
#endif
P
peizhilin 已提交
260
    }
P
peizhilin 已提交
261

262
    {
263 264 265
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
266
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
267
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
268 269
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
C
chenjian 已提交
270 271
          op_name, platform::TracerEventType::Operator,
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
272
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
273 274
      RunImpl(scope, place);
    }
275

Z
Zhang Ting 已提交
276
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
277
  } catch (platform::EnforceNotMet& exception) {
278
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
279
    throw std::move(exception);
280 281 282 283 284 285
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
286
  } catch (...) {
287
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
288
    std::rethrow_exception(std::current_exception());
289
  }
290 291
}

292
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
293
  return inputs_.find(name) != inputs_.end();
294 295
}

296
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
297
  auto& ins = Inputs(name);
298 299
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
300
      platform::errors::InvalidArgument(
301 302
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
303
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
304 305
}

Y
Yu Yang 已提交
306 307
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
308
  auto it = inputs_.find(name);
309 310 311 312
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
313
  return it->second;
Y
Yan Chunwei 已提交
314 315
}

316
bool OperatorBase::HasOutputs(const std::string& name) const {
317
  if (outputs_.find(name) != outputs_.end()) {
318 319 320 321 322 323
    return true;
  } else {
    return false;
  }
}

324
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
325
  auto& outs = Outputs(name);
326 327 328 329 330
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
331
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
332 333
}

Y
Yu Yang 已提交
334 335
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
336
  auto it = outputs_.find(name);
337 338 339 340
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
341
  return it->second;
Y
Yan Chunwei 已提交
342 343
}

344
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
345
  std::stringstream ss;
Y
Yu Yang 已提交
346
  ss << "Op(" << type_ << "), inputs:{";
347

348
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
349 350
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
351 352
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
353 354
  }

Y
Yu Yang 已提交
355 356
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
357 358
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
359 360
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
361 362
      auto var_name = input.second[i];
      ss << var_name;
363
      if (scope) {
Q
Qiao Longfei 已提交
364 365 366 367 368 369 370
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
371 372 373
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
374
          ss << ":" << dtype;
375 376
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
377
          ss << "(" << GetPlace(*scope, var_name) << ")";
378
        }
379
      }
Y
Yu Yang 已提交
380 381 382
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
383
    }
Y
Yu Yang 已提交
384
    ss << "]";
Y
Yu Yang 已提交
385 386
    ++it;
    if (it != inputs_.end()) {
387 388
      ss << ", ";
    }
Q
Qiao Longfei 已提交
389
  }
Y
Yu Yang 已提交
390
  ss << "}, outputs:{";
Y
Yu Yang 已提交
391 392
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
393 394
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
395 396
      auto var_name = output.second[i];
      ss << var_name;
397
      if (scope) {
Q
Qiao Longfei 已提交
398 399 400 401 402 403 404
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
405 406
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
407 408
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
409
          ss << "(" << GetPlace(*scope, var_name) << ")";
410
        }
411
      }
Y
Yu Yang 已提交
412 413 414
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
415
    }
Y
Yu Yang 已提交
416
    ss << "]";
Y
Yu Yang 已提交
417 418
    ++it;
    if (it != outputs_.end()) {
419 420
      ss << ", ";
    }
Q
Qiao Longfei 已提交
421
  }
Y
Yu Yang 已提交
422
  ss << "}.";
Q
Qiao Longfei 已提交
423 424 425
  return ss.str();
}

Y
Yu Yang 已提交
426
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
427 428
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
429
                           const AttributeMap& attrs)
S
sneaxiy 已提交
430 431 432 433 434 435
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
436 437 438 439 440 441 442 443
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
444
}
445

Q
qijun 已提交
446 447
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
448
  for (auto& o : inputs_) {
Q
qijun 已提交
449 450 451 452 453 454
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
455 456 457 458 459 460 461 462 463 464
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
465
  auto& info = Info();
Y
Yu Yang 已提交
466 467

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
468
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
469 470 471 472 473 474 475 476 477
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
478 479
}

480
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
481
  if (info_ == nullptr || info_->proto_ == nullptr) return;
482

S
sneaxiy 已提交
483
  for (auto& in : info_->Proto().inputs()) {
484
    if (!in.dispensable() && !in.extra()) {
485 486 487 488
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
489
    }
490 491
  }

S
sneaxiy 已提交
492
  for (auto& out : info_->Proto().outputs()) {
493
    if (!out.dispensable() && !out.extra()) {
494 495 496 497
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
498
    }
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
514

C
chengduo 已提交
515
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
516 517
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
518 519
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
520
  } else {
521 522 523
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
524 525 526
  }
}

C
chengduo 已提交
527
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
528
  if (var->IsType<LoDTensor>()) {
529
    return var->GetMutable<LoDTensor>();
530 531
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
532
  } else {
533 534 535
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
536 537 538
  }
}

539
bool ExecutionContext::HasInput(const std::string& name) const {
540
  auto* var = InputVar(name);
541 542 543
  return var != nullptr;
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

558
bool ExecutionContext::HasOutput(const std::string& name) const {
559
  auto* var = OutputVar(name);
560 561 562
  return var != nullptr;
}

X
Xin Pan 已提交
563
const Variable* ExecutionContext::InputVar(const std::string& name) const {
564 565
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
566 567 568
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

569 570
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
571
      platform::errors::InvalidArgument(
572 573
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
574 575 576
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
577
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
578 579 580
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

581 582 583 584 585
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
586 587 588
  return it->second.empty() ? nullptr : it->second[0];
}

589
template <>
590
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
591
    const std::string& name) const {
592 593
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
594 595
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
596 597 598 599 600
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
601
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
602
                   if (var == nullptr) return nullptr;
603 604 605 606 607
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
608 609 610 611 612
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

613
template <>
614
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
615
    const std::string& name) const {
H
hong 已提交
616 617 618
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
619 620
    return {};
  }
621
  std::vector<Tensor*> res;
622 623 624 625 626
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
627
                 });
628 629 630
  return res;
}

Y
Yu Yang 已提交
631
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
632
  // check in new Function kernel first
633
  bool has_phi_kernel = false;
634
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
635
  auto kernel_key_map =
636
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
637
  for (auto& kernel : kernel_key_map) {
638
    has_phi_kernel = true;
639
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
640 641 642 643
      return true;
    }
  }

Y
Yu Yang 已提交
644 645
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
646 647 648 649 650 651 652 653 654 655 656 657 658
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
659 660 661
      return true;
    }
  }
H
hong 已提交
662

Y
Yu Yang 已提交
663 664 665
  return false;
}

666 667
class RuntimeInferShapeContext : public InferShapeContext {
 public:
668
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
669
      : op_(op), ctx_(ctx) {}
670 671

  bool HasInput(const std::string& name) const override {
672
    // has only one input
X
Xin Pan 已提交
673
    const auto& ins = ctx_.inputs;
674 675
    auto it = ins.find(name);
    if (it == ins.end()) {
676 677
      return false;
    }
678
    const auto& in = it->second;
X
Xin Pan 已提交
679
    if (in.size() == 0) return false;
680 681 682 683
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
684
    return in[0] != nullptr;
685 686 687
  }

  bool HasOutput(const std::string& name) const override {
688
    // has only one output
X
Xin Pan 已提交
689
    const auto& outs = ctx_.outputs;
690 691
    auto it = outs.find(name);
    if (it == outs.end()) {
692 693
      return false;
    }
694
    const auto& out = it->second;
X
Xin Pan 已提交
695
    if (out.size() == 0) {
696 697
      return false;
    }
698 699 700 701
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
702
    return out[0] != nullptr;
703 704
  }

705 706 707 708
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

709
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
710 711
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
712
    if (it == ins.end() || it->second.empty()) {
713 714
      return false;
    }
X
Xin Pan 已提交
715 716
    for (auto& input : it->second) {
      if (input == nullptr) {
717 718 719 720 721 722 723
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
724 725
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
726
    if (it == outs.end() || it->second.empty()) {
727 728
      return false;
    }
X
Xin Pan 已提交
729 730
    for (auto& output : it->second) {
      if (output == nullptr) {
731 732 733 734 735 736 737 738
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
739
  std::vector<std::string> Inputs(const std::string& name) const override {
740 741 742
    return op_.Inputs(name);
  }

H
hong 已提交
743
  std::vector<std::string> Outputs(const std::string& name) const override {
744 745 746
    return op_.Outputs(name);
  }

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

770 771
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
772 773
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
790 791 792

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
793

794 795 796 797 798
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
799

800 801 802
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
803 804 805 806 807 808 809 810
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
811
      PADDLE_THROW(platform::errors::Unimplemented(
812
          "Currently, the input type of ShareDim only can be LoDTensor "
813
          "or SelectedRows."));
814 815 816
    }
  }

H
hong 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
835
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
862 863
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
864 865
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
882 883

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
884
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
885
    Variable* out_var = out_it->second.at(j);
886 887 888 889
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
890
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
891 892
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
893

M
mozga-intel 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
913 914
  }

915
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
916
    PADDLE_THROW(platform::errors::PreconditionNotMet(
917
        "GetLoDLevel is only used in compile time. The calculation of "
918
        "output's actual lod is different among operators so that should be "
919
        "set in the runtime kernel."));
920 921
  }

922 923
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
924
    PADDLE_THROW(platform::errors::PreconditionNotMet(
925
        "SetLoDLevel is only used in compile time. The calculation of "
926
        "output's actual lod is different among operators so that should be "
927
        "set in the runtime kernel."));
C
chengduo 已提交
928 929
  }

930 931
  bool IsRuntime() const override { return true; }

932 933 934 935 936 937 938 939 940 941 942
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
    } catch (std::bad_cast exp) {
      return false;
    }
  }

943 944
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
945
      const std::string& name) const override {
946 947 948 949 950 951 952 953
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
954
      const std::string& name) const override {
955 956 957 958 959 960 961
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
962 963
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
964 965 966 967 968
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
969 970 971 972 973 974 975 976
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
977 978 979 980 981 982 983 984 985 986
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
987 988
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
989 990 991 992 993
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
994 995 996 997 998 999 1000 1001 1002
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1003
 protected:
X
Xin Pan 已提交
1004
  DDim GetDim(Variable* var) const {
1005 1006
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1007 1008
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
1009 1010
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1011
    } else {
1012 1013 1014 1015
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1016 1017 1018
    }
  }

X
Xin Pan 已提交
1019 1020 1021 1022 1023 1024 1025 1026
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1027
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1028 1029
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1030 1031
  }

X
Xin Pan 已提交
1032
  void SetDim(Variable* var, const DDim& dim) {
1033 1034
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1035 1036
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1037
    } else {
1038 1039 1040 1041
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1042 1043 1044 1045 1046 1047
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1048 1049 1050 1051 1052 1053
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
1054 1055 1056 1057 1058
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1059 1060 1061
    }
  }

F
fengjiayi 已提交
1062 1063
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1064 1065
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1066 1067
  }

X
Xin Pan 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1079 1080 1081
    return ToVarType(var->Type());
  }

1082 1083 1084
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1085 1086 1087 1088
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1089 1090 1091 1092 1093
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1094 1095 1096 1097
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1098
    return it->second;
F
fengjiayi 已提交
1099 1100
  }

1101
  const OperatorBase& op_;
X
Xin Pan 已提交
1102
  const RuntimeContext& ctx_;
1103 1104
};

1105 1106
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1107 1108 1109 1110
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1111 1112
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1113 1114
    return;
  }
1115 1116 1117 1118 1119 1120 1121 1122
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1123 1124
}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(), phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(), op_kernels.end(),
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(), phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(), op_kernels.end(),
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1175 1176
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1177 1178 1179 1180 1181 1182 1183 1184 1185
  auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
  if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
    VLOG(6) << "Warning: " << type_ << " don't find its MKLDNN Kernel in Fluid "
                                       "Registered Kernels. And We don't "
                                       "search its kernels in phi lib, "
                                       "SupportsMKLDNN() return false.";
    return false;
  }
  auto& op_kernels = op_kernel_iter->second;
1186
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1187
                     [data_type](OpKernelMap::const_reference kern_pair) {
1188 1189
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1190 1191
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1192 1193 1194
                     });
}

1195 1196
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1197 1198 1199
  bool use_mkldnn_ctx = ctx.HasAttr("use_mkldnn") &&
                        ctx.Attr<bool>("use_mkldnn") &&
                        platform::is_cpu_place(ctx.GetPlace());
1200
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1201 1202
}

1203 1204 1205 1206 1207 1208 1209
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1210
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1211 1212
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1213
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1214
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1215 1216
}

L
luotao1 已提交
1217 1218
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1219 1220
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1221 1222 1223
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1224
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1225
    all_kernels_must_compute_runtime_shape_ = true;
1226
  const Scope* cur_scope = &scope;
1227
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1228 1229
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1230
    pre_scope_ = cur_scope;
L
luotao1 已提交
1231
  } else {
1232 1233 1234 1235 1236 1237
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1238 1239 1240 1241 1242 1243 1244 1245
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1246
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1247
  auto* dev_ctx = pool.Get(place);
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1259
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1260 1261 1262 1263
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1264 1265 1266 1267 1268 1269

  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1270
  phi::KernelKey pt_kernel_key;
1271
  std::string pt_kernel_name;
1272
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1273
    if (pt_kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
1274
      pt_kernel_signature_.reset(
1275
          new KernelSignature(std::move(GetExpectedPhiKernelArgs(exe_ctx))));
1276 1277 1278 1279 1280 1281 1282
      VLOG(6) << *pt_kernel_signature_.get();

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

      pt_kernel_name = pt_kernel_signature_->name;
1283
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1284
      pt_kernel_.reset(
1285
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1286 1287 1288
              pt_kernel_name, pt_kernel_key)));

      if (pt_kernel_->IsValid()) {
1289
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1290 1291 1292
                << pt_kernel_name << " | kernel key: " << pt_kernel_key
                << " | kernel: " << *pt_kernel_;
      } else {
1293
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1294 1295
                << "` not found.";
      }
1296 1297
    } else {
      pt_kernel_name = pt_kernel_signature_->name;
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: " << type_
                  << ", using_kernel_key:" << *kernel_type_.get();
          auto try_pt_kernel_key =
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
          if (!phi::KernelFactory::Instance().IsSelectKernelValid(
                  pt_kernel_name, try_pt_kernel_key)) {
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: " << type_
                    << " is failed " << *kernel_type_.get();
          }
        }
      }
#endif
1332
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1333
    }
1334 1335 1336 1337

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1338
#if defined(PADDLE_WITH_XPU)
1339 1340 1341 1342 1343 1344
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
    if (pt_kernel_->IsValid()
1345
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1346 1347 1348
        && !is_xpu_unsupport
#endif
        ) {
1349
      run_phi_kernel_ = true;
1350 1351 1352
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      bool use_xpu_kp_kernel_rt =
          paddle::platform::is_xpu_place(kernel_type_->place_) &&
          FLAGS_run_kp_kernel &&
          paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
      bool use_xpu_kp_kernel_debug =
          paddle::platform::is_xpu_place(kernel_type_->place_) &&
          paddle::platform::is_in_xpu_kpwhite_list(type_);
      bool is_xpu_kp_support =
          (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1372 1373 1374
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1375
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1376
          || is_xpu_unsupport
1377
#endif
1378 1379 1380 1381
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
              ) {
1382 1383 1384
        auto pt_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), pt_kernel_key, *this);
        pt_kernel_.reset(
1385
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1386 1387 1388 1389 1390 1391 1392
                pt_kernel_name, pt_cpu_kernel_key)));

        dev_ctx = pool.Get(platform::CPUPlace());
        if (pt_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: " << pt_kernel_name
                  << " | kernel key: " << pt_cpu_kernel_key
                  << " | kernel: " << *pt_kernel_;
1393
          run_phi_kernel_ = true;
1394 1395
        }
      }
1396 1397
    }
  }
1398
  if (!run_phi_kernel_) {
1399 1400
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1401
      dev_ctx = pool.Get(kernel_type_->place_);
1402
    }
1403 1404
  }

Y
yuyang18 已提交
1405 1406
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1407 1408
  Scope* transfer_scope = nullptr;
  {
1409
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1410 1411
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1412 1413 1414 1415
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1416
  }
Y
yuyang18 已提交
1417 1418 1419 1420
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1421
  if (!all_kernels_must_compute_runtime_shape_) {
1422
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1423 1424
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1425
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1426
    this->Info().infer_shape_(&infer_shape_ctx);
1427
  }
1428 1429 1430 1431 1432

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1433 1434
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1435
  {
1436
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1437 1438
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1439
    if (run_phi_kernel_) {
1440
      phi::KernelContext pt_kernel_context;
1441
      // Do data transform before building KernelContext
1442
      // TODO(zhiqiu): support TransferInplaceVarsBack
1443 1444 1445
      PreparePhiData(exec_scope, *pt_kernel_, *pt_kernel_signature_,
                     runtime_ctx);
      BuildPhiKernelContext(*runtime_ctx, dev_ctx, &pt_kernel_context);
1446
      (*pt_kernel_)(&pt_kernel_context);
1447 1448 1449 1450
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1451
  }
D
dzhwinter 已提交
1452

Y
yuyang18 已提交
1453
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1454
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1455
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1456
  }
1457 1458 1459 1460 1461 1462 1463

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1464 1465 1466 1467 1468 1469 1470 1471
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1472

D
dzhwinter 已提交
1473
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1474
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1475
    dev_ctx->Wait();
1476 1477
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1478 1479
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1480
  }
C
chengduoZH 已提交
1481 1482

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1483
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1484
  }
1485 1486 1487 1488 1489 1490 1491

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1492
}
X
Xin Pan 已提交
1493

1494 1495 1496
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1497 1498 1499
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1510 1511
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
1512 1513
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1514
      if (SupportGPU()) {
1515
        auto& dev_ctx = ctx.device_context();
1516
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1517 1518 1519 1520 1521
      }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1522
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1523 1524 1525
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1526 1527 1528 1529 1530 1531
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1532 1533
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1534 1535 1536
  return expected_kernel_key;
}

1537
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
1538
    const ExecutionContext& ctx) const {
1539
  pt_kernel_signature_.reset(
1540
      new KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
1541
  VLOG(6) << *pt_kernel_signature_.get();
1542 1543 1544 1545

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

Y
YuanRisheng 已提交
1546
  auto pt_kernel_name = pt_kernel_signature_->name;
1547
  auto pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1548 1549
  pt_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      pt_kernel_name, pt_kernel_key)));
1550 1551

  if (pt_kernel_->IsValid()) {
1552
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << pt_kernel_name
1553 1554 1555
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
1556
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1557 1558
            << "` not found.";
  }
1559
  return pt_kernel_key;
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1575 1576

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1577

L
Liu Yiqun 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1587
#endif
1588 1589

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1590
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1591 1592 1593
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1594 1595 1596 1597 1598 1599
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1600
#endif
L
Liu-xiandong 已提交
1601 1602

#ifdef PADDLE_WITH_XPU_KP
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
      VLOG(3) << "xpu_kp using rt mode ";
    }
    if (use_xpu_kp_kernel_debug) {
      VLOG(3) << "xpu_kp using debug mode ";
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
1617 1618
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
1619 1620
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
      // if can't find corresponding kernel when is_xpu_kp_support is on
      // if the fluid do not register related kernel, it can't work and hava
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
        VLOG(3) << "using XPU KP kernel: " << type_
                << ", using_kernel_key:" << expected_kernel_key;
      }
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
    }
    bool is_xpu_unsupport =
        (!paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
         paddle::platform::is_in_xpu_black_list(type_));
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
      VLOG(3) << "missing XPU kernel: " << type_
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
1645 1646 1647
  }
#endif

A
Allen Guo 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1658 1659
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1660
      platform::is_npu_place(expected_kernel_key.place_)) {
1661 1662 1663 1664 1665 1666
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1667 1668 1669
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1670
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1671 1672 1673
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
1685 1686 1687
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1688
#endif
1689 1690 1691 1692
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1693

1694 1695 1696 1697 1698
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1699 1700
}

Y
yuyang18 已提交
1701 1702 1703 1704
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1705
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1706
    auto* origin_var = scope.FindVar(var_name);
1707 1708 1709
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1710
    auto* original_tensor =
C
chengduo 已提交
1711
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1712
    auto* var = transfer_scope.FindVar(var_name);
1713 1714
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1715
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1716
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1717
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1718 1719 1720 1721 1722
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1723 1724 1725
  }
}

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
1755
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
1775
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1793
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1794
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1795 1796
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1797
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1798

1799
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1800 1801 1802 1803
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1804 1805
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1806 1807 1808
    }
  }

Y
yuyang18 已提交
1809
  for (auto& var_name_item : Inputs()) {
1810 1811
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1812

X
Xin Pan 已提交
1813 1814 1815 1816
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1817
      auto* var = input_vars[i];
X
Xin Pan 已提交
1818

Y
yuyang18 已提交
1819
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1820
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1821 1822 1823
        continue;
      }

C
chengduo 已提交
1824
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1840 1841
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1874 1875
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1876

1877 1878 1879
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1880
      // We use a thread_local cache to fix that issue, the key in the cache is
1881 1882 1883 1884 1885
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1886 1887
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1888
      // variables, that behavior a lot different.
1889 1890 1891 1892 1893 1894 1895 1896 1897
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1898 1899
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1900
        enable_cache_transfer_scope_ = true;
1901
      }
1902
      if (!new_scope) {
Y
yuyang18 已提交
1903 1904
        new_scope = &scope.NewScope();
      }
1905 1906 1907 1908
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1909
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1910 1911
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1912
      if (enable_cache_runtime_context_) {
1913 1914
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1915 1916

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1917
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1918
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1936
      Tensor out;
Y
yuyang18 已提交
1937
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1938 1939 1940
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1941

1942 1943 1944 1945 1946 1947
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1948 1949 1950 1951 1952 1953

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1954 1955
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1956 1957 1958

  return new_scope;
}
Q
Qiao Longfei 已提交
1959

1960
void OperatorWithKernel::ParseInputDataType(
1961
    const std::vector<Variable*>& vars, const std::string& name,
1962
    proto::VarType::Type* data_type) const {
1963
  proto::VarType::Type default_data_type =
1964 1965 1966 1967 1968 1969 1970 1971 1972
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
1973 1974
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
1975
      } else if (var->IsType<LoDTensorArray>()) {
1976 1977 1978 1979
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
1980 1981
          }
        }
1982 1983
      }
      if (t != nullptr) {
1984 1985
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
1986 1987 1988
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
1989 1990
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
1991 1992 1993 1994 1995 1996 1997 1998 1999
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
2000 2001 2002 2003 2004 2005
        *data_type = tmp;
      }
    }
  }
}

2006
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2007
    const ExecutionContext& ctx) const {
2008 2009 2010
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
2011
  for (auto& input : ctx.InNameList()) {
2012 2013
    const std::vector<Variable*> vars = ctx.MultiInputVar(input);
    ParseInputDataType(vars, input, &data_type);
Y
Yu Yang 已提交
2014
  }
2015 2016 2017 2018
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2019 2020 2021 2022 2023 2024 2025 2026
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2027
  ParseInputDataType(ctx.MultiInputVar(name), name, &data_type);
2028 2029
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
2030 2031 2032 2033 2034
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
2035
  return data_type;
Y
Yu Yang 已提交
2036
}
2037

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
2056 2057
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2089 2090
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2091 2092 2093 2094 2095 2096 2097

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2098 2099 2100 2101 2102 2103 2104 2105
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
2106 2107
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
2108 2109
}

2110
KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2111
    const ExecutionContext& ctx) const {
2112 2113
  InitDefaultKernelSignatureMap();
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2114
  return phi::OpUtilsMap::Instance().GetArgumentMappingFn(Type())(
2115
      arg_mapping_ctx);
2116 2117
}

2118
Scope* OperatorWithKernel::PreparePhiData(
2119
    const Scope& scope, const phi::Kernel& pt_kernel,
2120 2121 2122 2123 2124 2125 2126 2127 2128
    const KernelSignature& pt_kernel_signature, RuntimeContext* ctx) const {
  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto input_defs = pt_kernel.args_def().input_defs();
  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));
  Scope* new_scope = nullptr;
2129
  auto& name_map = Inputs();
Y
YuanRisheng 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
    }
  }

2140 2141
  for (size_t i = 0; i < input_defs.size(); ++i) {
    auto& in_def = input_defs.at(i);
2142
    if (ctx->inputs.find(input_names[i]) == ctx->inputs.end()) {
H
hong 已提交
2143 2144
      continue;
    }
2145
    auto& ins_vector = ctx->inputs.at(input_names[i]);
2146
    auto& name_vec = name_map.at(input_names[i]);
Y
YuanRisheng 已提交
2147 2148 2149
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(input_names[i]) > 0;

2150 2151 2152 2153 2154 2155 2156
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      // Only tensor can be tranfer to another device.
      auto* var = ins_vector[offset];
      if (var == nullptr || !VarIsTensor(*var)) {
        continue;
      }
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
YuanRisheng 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
        // TODO(YuanRisheng) : There need to supplement MKLDNN code later
        continue;
      }

2166 2167 2168 2169
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2170 2171 2172
      if (in_def.backend == phi::Backend::ALL_BACKEND) {
        continue;
      }
2173
      auto expected_place = phi::TransToPhiPlace(in_def.backend);
2174 2175 2176 2177
      if (platform::is_same_place(tensor_in->place(), expected_place)) {
        continue;
      }

2178
      VLOG(3) << "phi Transform Variable " << input_names[i] << " from "
2179
              << tensor_in->place() << " to " << expected_place;
2180

2181 2182 2183
      if (!new_scope) {
        new_scope = &scope.NewScope();
      }
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
      if (enable_cache_runtime_context_) {
        pre_scope_ = nullptr;
      }
2194

2195
      // Create new var with the same name in transfer scopes
2196
      auto* trans_var = new_scope->Var(name_vec[offset]);
2197
      ins_vector[offset] = trans_var;
2198

2199 2200 2201 2202
      // Do transfer
      Tensor out;
      framework::TensorCopySync(*tensor_in, expected_place, &out);
      SetTensorToVariable(*var, out, trans_var);
2203 2204 2205 2206 2207 2208
    }
  }

  return new_scope;
}

2209
void OperatorWithKernel::BuildPhiKernelContext(
2210
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx,
2211
    phi::KernelContext* pt_kernel_context) const {
2212
  pt_kernel_context->SetDeviceContext(dev_ctx);
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240

  auto& input_names = std::get<0>(pt_kernel_signature_->args);
  auto& attr_names = std::get<1>(pt_kernel_signature_->args);
  auto& output_names = std::get<2>(pt_kernel_signature_->args);

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2241
    auto it = ctx.inputs.find(input_names[i]);
2242 2243 2244

    // calcute the start and end index of the input tensors
    size_t start_idx =
2245
        (i == 0 ? 0 : pt_kernel_context->InputRangeAt(i - 1).second);
2246

H
hong 已提交
2247
    // deal with optional here
2248
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2249
        (input_defs[i].type_index ==
H
hong 已提交
2250 2251 2252 2253
             std::type_index(
                 typeid(paddle::optional<const phi::DenseTensor&>)) ||
         input_defs[i].type_index ==
             std::type_index(
2254 2255 2256 2257 2258
                 typeid(paddle::optional<const phi::SelectedRows&>)) ||
         input_defs[i].type_index ==
             std::type_index(
                 typeid(paddle::optional<
                        const std::vector<const phi::DenseTensor*>>)))) {
H
hong 已提交
2259 2260 2261 2262 2263 2264 2265 2266
      pt_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                          i);
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2267
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2268
      const phi::TensorBase* tensor_in = nullptr;
2269
      auto* var = ins_vector[offset];
H
hong 已提交
2270 2271
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2272
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2273 2274
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2275 2276 2277 2278 2279 2280 2281 2282 2283
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
      } else if (var->IsType<framework::LoDTensorArray>()) {
        paddle::SmallVector<const phi::TensorBase*> tensor_vector;
        auto& tensor_array = var->Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
        pt_kernel_context->EmplaceBackInputsWithoutSetRange(tensor_vector);
        end_idx += tensor_array.size() - 1;
2284 2285 2286 2287
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2288
      }
2289
    }
2290
    // Note: here cannot deal with vector<LoDTensorArray> input
2291
    pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2292
  }
2293
  VLOG(4) << "Done inputs";
2294 2295

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2296
    auto it = ctx.outputs.find(output_names[i]);
2297
    size_t start_idx =
2298
        (i == 0 ? 0 : pt_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
      pt_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                           i);
      continue;
    }
    auto& outs_vector = it->second;

2313
    size_t end_idx = start_idx + outs_vector.size();
2314 2315

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2316
      phi::TensorBase* tensor_out = nullptr;
2317
      auto* var = outs_vector[offset];
2318 2319 2320
      if (var) {
        if (var->template IsType<framework::LoDTensor>()) {
          tensor_out = var->template GetMutable<framework::LoDTensor>();
2321
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2322 2323
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (var->template IsType<framework::LoDTensorArray>()) {
          paddle::SmallVector<phi::TensorBase*> tensor_vector;
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
          pt_kernel_context->EmplaceBackOutputsWithoutSetRange(tensor_vector);
          end_idx += tensor_array->size() - 1;
2336 2337 2338 2339 2340
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2341 2342
      } else {
        pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2343
      }
2344
    }
2345
    pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
2346
  }
2347
  VLOG(4) << "Done outputs";
2348 2349

  for (size_t i = 0; i < attr_names.size(); ++i) {
2350
    if (attr_defs[i].type_index == std::type_index(typeid(phi::IntArray))) {
2351 2352 2353 2354
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // shape is in the attribute
        if (std::type_index(attr_iter->second.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
2355
          pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
2356
              BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2357 2358
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
2359
          pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
2360
              BOOST_GET_CONST(std::vector<int32_t>, attr_iter->second))));
C
chentianyu03 已提交
2361 2362
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(int32_t))) {
2363 2364
          pt_kernel_context->EmplaceBackAttr(std::move(
              phi::IntArray(&BOOST_GET_CONST(int32_t, attr_iter->second), 1)));
2365 2366
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
2367
              "Unsupported cast op attribute `%s` to IntArray when "
2368 2369 2370 2371 2372 2373
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
2374
          pt_kernel_context->EmplaceBackAttr(std::move(
2375
              experimental::MakePhiIntArrayFromVar(*ins_vector.front())));
2376
        } else {  // ShapeTensorList
2377 2378
          pt_kernel_context->EmplaceBackAttr(
              std::move(experimental::MakePhiIntArrayFromVarList(ins_vector)));
2379 2380 2381
        }
      }
    } else if (attr_defs[i].type_index ==
2382
               std::type_index(typeid(phi::Scalar))) {
2383 2384 2385
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
2386 2387 2388 2389
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // scalar is in the attribute
        auto& attr = Attrs().at(attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
2390
          pt_kernel_context->EmplaceBackAttr(
2391
              std::move(phi::Scalar(BOOST_GET_CONST(float, attr))));
2392 2393
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
2394
          pt_kernel_context->EmplaceBackAttr(
2395
              std::move(phi::Scalar(BOOST_GET_CONST(std::string, attr))));
2396 2397 2398
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          pt_kernel_context->EmplaceBackAttr(
2399
              std::move(phi::Scalar(BOOST_GET_CONST(int, attr))));
2400 2401 2402 2403 2404 2405
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext.",
              attr_names[i]));
        }
2406
      } else {
2407
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
2408 2409
        pt_kernel_context->EmplaceBackAttr(
            std::move(experimental::MakePhiScalarFromVar(*ins_vector.front())));
2410
      }
2411

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(std::vector<phi::Scalar>))) {
      auto& attr = Attrs().at(attr_names[i]);
      if (std::type_index(attr.type()) ==
          std::type_index(typeid(std::vector<int32_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<float>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<double>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` to vector<Scalar> when "
            "construct KernelContext.",
            attr_names[i]));
      }
2457 2458
    } else {
      // TODO(chenweihang): support other attrs later
H
hong 已提交
2459
      auto attr_it = attrs_.find(attr_names[i]);
2460
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
H
hong 已提交
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
        if (attr_it == attrs_.end()) {
          auto in_it = ctx.inputs.find(attr_names[i]);
          if (in_it != ctx.inputs.end()) {
            // get data from input
            auto val = experimental::MakePhiScalarFromVar(*(in_it->second[0]));
            int32_t val_int = val.template to<int32_t>();
            pt_kernel_context->EmplaceBackAttr(val_int);
          } else {
            PADDLE_THROW(platform::errors::NotFound(
                "can not find attribute `%s` both in attribute and input ",
                attr_names[i]));
          }
        } else {
          pt_kernel_context->EmplaceBackAttr(
              BOOST_GET_CONST(int, attr_it->second));
        }
2477
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
H
hong 已提交
2478 2479
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(float, attr_it->second));
2480
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
H
hong 已提交
2481 2482
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(bool, attr_it->second));
H
hong 已提交
2483
      } else if (attr_defs[i].type_index == std::type_index(typeid(int64_t))) {
H
hong 已提交
2484 2485
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(int64_t, attr_it->second));
H
hong 已提交
2486 2487
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::string))) {
H
hong 已提交
2488 2489
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::string, attr_it->second));
2490
      } else if (attr_defs[i].type_index ==
2491
                 std::type_index(typeid(phi::DataType))) {
2492
        auto data_type = paddle::framework::TransToPhiDataType(
2493
            static_cast<framework::proto::VarType::Type>(
H
hong 已提交
2494
                BOOST_GET_CONST(int, attr_it->second)));
2495
        pt_kernel_context->EmplaceBackAttr(data_type);
2496 2497
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
H
hong 已提交
2498
        if (std::type_index(attr_it->second.type()) ==
2499 2500
            std::type_index(typeid(std::vector<int64_t>))) {
          pt_kernel_context->EmplaceBackAttr(
H
hong 已提交
2501 2502
              BOOST_GET_CONST(std::vector<int64_t>, attr_it->second));
        } else if (std::type_index(attr_it->second.type()) ==
2503
                   std::type_index(typeid(std::vector<int>))) {
2504
          // Emplace Back Attr according to the type of Phi_Kernel args.
H
hong 已提交
2505 2506
          const auto& vector_int_attr =
              BOOST_GET_CONST(std::vector<int>, attr_it->second);
2507 2508
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
2509
          pt_kernel_context->EmplaceBackAttr(vector_int64_attr);
2510
        }
H
hong 已提交
2511 2512
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int32_t>))) {
H
hong 已提交
2513 2514
        const auto& vector_int_attr =
            BOOST_GET_CONST(std::vector<int>, attr_it->second);
H
hong 已提交
2515
        pt_kernel_context->EmplaceBackAttr(vector_int_attr);
2516 2517 2518 2519
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<std::string>))) {
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<std::string>, attr_it->second));
2520 2521 2522 2523
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<float>))) {
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<float>, attr_it->second));
2524 2525
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
2526
            "Unsupported cast op attribute `%s` when construct "
2527 2528 2529 2530 2531
            "KernelContext.",
            attr_names[i]));
      }
    }
  }
2532
  VLOG(4) << "Done attributes";
2533 2534
}

Q
Qiao Longfei 已提交
2535
}  // namespace framework
L
liaogang 已提交
2536
}  // namespace paddle