operator.cc 81.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
22
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_transform.h"
24
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
25
#include "paddle/fluid/framework/details/nan_inf_utils.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/pten_utils.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/shape_inference.h"
29
#include "paddle/fluid/framework/transfer_scope_cache.h"
30
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
L
Leo Chen 已提交
32
#include "paddle/fluid/platform/enforce.h"
33
#include "paddle/fluid/platform/profiler.h"
34
#include "paddle/pten/common/scalar.h"
35
#include "paddle/pten/common/scalar_array.h"
H
hong 已提交
36
#include "paddle/pten/core/kernel_factory.h"
37
#include "paddle/pten/ops/compat/signatures.h"
38

39 40 41 42
namespace pten {
class DenseTensor;
}  // namespace pten

43
#ifdef PADDLE_WITH_XPU
44 45
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
46
#endif
Q
Qiao Longfei 已提交
47

48 49 50 51
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
52 53 54 55
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
56
DECLARE_bool(benchmark);
57
DECLARE_bool(check_nan_inf);
58
DECLARE_bool(enable_unused_var_check);
59 60
PADDLE_DEFINE_EXPORTED_int32(inner_op_parallelism, 0,
                             "number of threads for inner op");
F
Feng Xing 已提交
61
DECLARE_bool(run_kp_kernel);
D
dzhwinter 已提交
62

Q
Qiao Longfei 已提交
63 64 65
namespace paddle {
namespace framework {

66 67 68 69 70 71
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
72

73
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
74
                         bool get_actual_dim = false) {
75
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
76 77
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
78 79
  }

M
minqiyang 已提交
80 81 82
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
83
  } else if (var->IsType<pten::SelectedRows>()) {
M
minqiyang 已提交
84
    if (get_actual_dim) {
85
      return var->Get<pten::SelectedRows>().value().dims();
M
minqiyang 已提交
86
    } else {
87
      return var->Get<pten::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
88
    }
S
Steffy-zxf 已提交
89 90
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
91 92 93 94 95
  } else {
    return DDim({-1});
  }
}

96
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
97 98 99 100 101
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

102
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
103 104 105 106
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
107

M
minqiyang 已提交
108 109 110
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
111 112
      return "";
    }
113
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
114 115
  } else if (var->IsType<pten::SelectedRows>()) {
    auto tensor = var->Get<pten::SelectedRows>().value();
Q
Qiao Longfei 已提交
116 117 118
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
119
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
120
    }
S
Steffy-zxf 已提交
121 122
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
123 124 125 126 127
  } else {
    return "";
  }
}

128
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
145 146
  } else if (var->IsType<pten::SelectedRows>()) {
    auto tensor = var->Get<pten::SelectedRows>().value();
L
Leo Chen 已提交
147 148 149 150 151 152 153 154 155 156
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

157
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
158 159 160 161 162
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

163 164
  if (var->IsType<pten::SelectedRows>()) {
    return var->Get<pten::SelectedRows>().rows().size();
165 166 167 168 169
  }

  return -1;
}

170
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
171 172 173 174 175 176 177
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
178 179 180
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
181 182 183 184 185
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
186 187 188 189 190
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
191
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
192 193 194 195 196 197
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
198
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
199 200 201 202 203 204
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

205
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
206 207 208
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
209
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
210 211 212 213
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
214
#else
215
      auto dev_id = place.device;
P
peizhilin 已提交
216
      platform::SetDeviceId(dev_id);
217 218 219
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
220 221 222 223
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
224
#else
225
      auto dev_id = place.device;
226
      platform::SetXPUDeviceId(dev_id);
227 228 229 230 231 232 233 234
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
235
      auto dev_id = place.device;
236
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
237 238 239 240 241 242 243 244
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
245
      auto dev_id = place.device;
F
fwenguang 已提交
246
      platform::SetMLUDeviceId(dev_id);
247
#endif
P
peizhilin 已提交
248
    }
P
peizhilin 已提交
249

250
    {
251 252 253 254 255 256
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
      platform::RecordEvent op_type_record_event(Type());
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
257
          op_name, platform::EventRole::kUniqueOp);
P
peizhilin 已提交
258 259
      RunImpl(scope, place);
    }
260

Z
Zhang Ting 已提交
261
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
262
  } catch (platform::EnforceNotMet& exception) {
263
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
264
    throw std::move(exception);
265 266 267 268 269 270
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
271
  } catch (...) {
272
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
273
    std::rethrow_exception(std::current_exception());
274
  }
275 276
}

277
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
278
  return inputs_.find(name) != inputs_.end();
279 280
}

281
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
282
  auto& ins = Inputs(name);
283 284
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
285
      platform::errors::InvalidArgument(
286 287
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
288
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
289 290
}

Y
Yu Yang 已提交
291 292
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
293
  auto it = inputs_.find(name);
294 295 296 297
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
298
  return it->second;
Y
Yan Chunwei 已提交
299 300
}

301
bool OperatorBase::HasOutputs(const std::string& name) const {
302
  if (outputs_.find(name) != outputs_.end()) {
303 304 305 306 307 308
    return true;
  } else {
    return false;
  }
}

309
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
310
  auto& outs = Outputs(name);
311 312 313 314 315
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
316
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
317 318
}

Y
Yu Yang 已提交
319 320
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
321
  auto it = outputs_.find(name);
322 323 324 325
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
326
  return it->second;
Y
Yan Chunwei 已提交
327 328
}

329
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
330
  std::stringstream ss;
Y
Yu Yang 已提交
331
  ss << "Op(" << type_ << "), inputs:{";
332

333
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
334 335
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
336 337
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
338 339
  }

Y
Yu Yang 已提交
340 341
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
342 343
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
344 345
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
346 347
      auto var_name = input.second[i];
      ss << var_name;
348
      if (scope) {
Q
Qiao Longfei 已提交
349 350 351 352 353 354 355
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
356 357 358
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
359
          ss << ":" << dtype;
360 361
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
362
          ss << "(" << GetPlace(*scope, var_name) << ")";
363
        }
364
      }
Y
Yu Yang 已提交
365 366 367
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
368
    }
Y
Yu Yang 已提交
369
    ss << "]";
Y
Yu Yang 已提交
370 371
    ++it;
    if (it != inputs_.end()) {
372 373
      ss << ", ";
    }
Q
Qiao Longfei 已提交
374
  }
Y
Yu Yang 已提交
375
  ss << "}, outputs:{";
Y
Yu Yang 已提交
376 377
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
378 379
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
380 381
      auto var_name = output.second[i];
      ss << var_name;
382
      if (scope) {
Q
Qiao Longfei 已提交
383 384 385 386 387 388 389
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
390 391
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
392 393
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
394
          ss << "(" << GetPlace(*scope, var_name) << ")";
395
        }
396
      }
Y
Yu Yang 已提交
397 398 399
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
400
    }
Y
Yu Yang 已提交
401
    ss << "]";
Y
Yu Yang 已提交
402 403
    ++it;
    if (it != outputs_.end()) {
404 405
      ss << ", ";
    }
Q
Qiao Longfei 已提交
406
  }
Y
Yu Yang 已提交
407
  ss << "}.";
Q
Qiao Longfei 已提交
408 409 410
  return ss.str();
}

Y
Yu Yang 已提交
411
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
412 413
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
414
                           const AttributeMap& attrs)
S
sneaxiy 已提交
415 416 417 418 419 420
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
421 422 423 424 425 426 427 428
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
429
}
430

Q
qijun 已提交
431 432
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
433
  for (auto& o : inputs_) {
Q
qijun 已提交
434 435 436 437 438 439
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
440 441 442 443 444 445 446 447 448 449
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
450
  auto& info = Info();
Y
Yu Yang 已提交
451 452

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
453
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
454 455 456 457 458 459 460 461 462
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
463 464
}

465
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
466
  if (info_ == nullptr || info_->proto_ == nullptr) return;
467

S
sneaxiy 已提交
468
  for (auto& in : info_->Proto().inputs()) {
469
    if (!in.dispensable() && !in.extra()) {
470 471 472 473
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
474
    }
475 476
  }

S
sneaxiy 已提交
477
  for (auto& out : info_->Proto().outputs()) {
478
    if (!out.dispensable() && !out.extra()) {
479 480 481 482
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
483
    }
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
499

C
chengduo 已提交
500
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
501 502
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
503 504
  } else if (var.IsType<pten::SelectedRows>()) {
    return &(var.Get<pten::SelectedRows>().value());
Q
QI JUN 已提交
505
  } else {
506 507 508
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
509 510 511
  }
}

C
chengduo 已提交
512
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
513
  if (var->IsType<LoDTensor>()) {
514
    return var->GetMutable<LoDTensor>();
515 516
  } else if (var->IsType<pten::SelectedRows>()) {
    return var->GetMutable<pten::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
517
  } else {
518 519 520
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
521 522 523
  }
}

524
bool ExecutionContext::HasInput(const std::string& name) const {
525
  auto* var = InputVar(name);
526 527 528 529
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
530
  auto* var = OutputVar(name);
531 532 533
  return var != nullptr;
}

X
Xin Pan 已提交
534
const Variable* ExecutionContext::InputVar(const std::string& name) const {
535 536
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
537 538 539
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

540 541
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
542
      platform::errors::InvalidArgument(
543 544
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
545 546 547
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
548
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
549 550 551
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

552 553 554 555 556
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
557 558 559
  return it->second.empty() ? nullptr : it->second[0];
}

560
template <>
561
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
562
    const std::string& name) const {
563 564
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
565 566
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
567 568 569 570 571
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
572
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
573
                   if (var == nullptr) return nullptr;
574 575 576 577 578
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
579 580 581 582 583
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

584
template <>
585
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
586
    const std::string& name) const {
H
hong 已提交
587 588 589
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
590 591
    return {};
  }
592
  std::vector<Tensor*> res;
593 594 595 596 597
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
598
                 });
599 600 601
  return res;
}

Y
Yu Yang 已提交
602
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
603 604 605 606 607 608
  // check in new Function kernel first
  auto& kernel_factory = pten::KernelFactory::Instance();
  auto kernel_key_map =
      kernel_factory.SelectKernelMap(pten::TransToPtenKernelName(op_type));
  for (auto& kernel : kernel_key_map) {
    if (platform::is_gpu_place(
609
            pten::TransToPtenPlace(kernel.first.backend()))) {
H
hong 已提交
610 611 612 613
      return true;
    }
  }

Y
Yu Yang 已提交
614 615 616 617 618 619 620 621 622 623 624
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
H
hong 已提交
625

Y
Yu Yang 已提交
626 627 628
  return false;
}

629 630
class RuntimeInferShapeContext : public InferShapeContext {
 public:
631
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
632
      : op_(op), ctx_(ctx) {}
633 634

  bool HasInput(const std::string& name) const override {
635
    // has only one input
X
Xin Pan 已提交
636
    const auto& ins = ctx_.inputs;
637 638
    auto it = ins.find(name);
    if (it == ins.end()) {
639 640
      return false;
    }
641
    const auto& in = it->second;
X
Xin Pan 已提交
642
    if (in.size() == 0) return false;
643 644 645 646
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
647
    return in[0] != nullptr;
648 649 650
  }

  bool HasOutput(const std::string& name) const override {
651
    // has only one output
X
Xin Pan 已提交
652
    const auto& outs = ctx_.outputs;
653 654
    auto it = outs.find(name);
    if (it == outs.end()) {
655 656
      return false;
    }
657
    const auto& out = it->second;
X
Xin Pan 已提交
658
    if (out.size() == 0) {
659 660
      return false;
    }
661 662 663 664
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
665
    return out[0] != nullptr;
666 667
  }

668 669 670 671
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

672
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
673 674
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
675
    if (it == ins.end() || it->second.empty()) {
676 677
      return false;
    }
X
Xin Pan 已提交
678 679
    for (auto& input : it->second) {
      if (input == nullptr) {
680 681 682 683 684 685 686
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
687 688
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
689
    if (it == outs.end() || it->second.empty()) {
690 691
      return false;
    }
X
Xin Pan 已提交
692 693
    for (auto& output : it->second) {
      if (output == nullptr) {
694 695 696 697 698 699 700 701
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
702
  std::vector<std::string> Inputs(const std::string& name) const override {
703 704 705
    return op_.Inputs(name);
  }

H
hong 已提交
706
  std::vector<std::string> Outputs(const std::string& name) const override {
707 708 709
    return op_.Outputs(name);
  }

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

733 734
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
735 736
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
753 754 755

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
756

757 758 759 760 761
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
762

763 764 765
    if (in_var->IsType<pten::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<pten::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<pten::SelectedRows>();
766 767 768 769 770 771 772 773
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
774
      PADDLE_THROW(platform::errors::Unimplemented(
775
          "Currently, the input type of ShareDim only can be LoDTensor "
776
          "or SelectedRows."));
777 778 779
    }
  }

H
hong 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
798
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
825 826
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
827 828
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
845 846

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
847
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
848
    Variable* out_var = out_it->second.at(j);
849 850 851 852
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
853
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
854 855
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
856

M
mozga-intel 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
876 877
  }

878
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
879
    PADDLE_THROW(platform::errors::PreconditionNotMet(
880
        "GetLoDLevel is only used in compile time. The calculation of "
881
        "output's actual lod is different among operators so that should be "
882
        "set in the runtime kernel."));
883 884
  }

885 886
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
887
    PADDLE_THROW(platform::errors::PreconditionNotMet(
888
        "SetLoDLevel is only used in compile time. The calculation of "
889
        "output's actual lod is different among operators so that should be "
890
        "set in the runtime kernel."));
C
chengduo 已提交
891 892
  }

893 894
  bool IsRuntime() const override { return true; }

895 896 897 898 899 900 901 902 903 904 905
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
    } catch (std::bad_cast exp) {
      return false;
    }
  }

906 907
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
908
      const std::string& name) const override {
909 910 911 912 913 914 915 916
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
917
      const std::string& name) const override {
918 919 920 921 922 923 924
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
925 926
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
927 928 929 930 931
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
932 933 934 935 936 937 938 939
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
940 941 942 943 944 945 946 947 948 949
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
950 951
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
952 953 954 955 956
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
957 958 959 960 961 962 963 964 965
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

966
 protected:
X
Xin Pan 已提交
967
  DDim GetDim(Variable* var) const {
968 969
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
970 971
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
972 973
    } else if (var->IsType<pten::SelectedRows>()) {
      return var->Get<pten::SelectedRows>().GetCompleteDims();
974
    } else {
975 976 977 978
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
979 980 981
    }
  }

X
Xin Pan 已提交
982 983 984 985 986 987 988 989
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
990
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
991 992
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
993 994
  }

X
Xin Pan 已提交
995
  void SetDim(Variable* var, const DDim& dim) {
996 997
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
998 999
    } else if (var->IsType<pten::SelectedRows>()) {
      var->GetMutable<pten::SelectedRows>()->set_height(dim[0]);
1000
    } else {
1001 1002 1003 1004
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1005 1006 1007 1008 1009 1010
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1011 1012 1013 1014 1015 1016
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
1017 1018 1019 1020 1021
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1022 1023 1024
    }
  }

F
fengjiayi 已提交
1025 1026
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1027 1028
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1029 1030
  }

X
Xin Pan 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1042 1043 1044
    return ToVarType(var->Type());
  }

1045 1046 1047
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1048 1049 1050 1051
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1052 1053 1054 1055 1056
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1057 1058 1059 1060
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1061
    return it->second;
F
fengjiayi 已提交
1062 1063
  }

1064
  const OperatorBase& op_;
X
Xin Pan 已提交
1065
  const RuntimeContext& ctx_;
1066 1067
};

1068 1069
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1070 1071 1072 1073
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1074 1075
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1076 1077
    return;
  }
1078 1079 1080 1081 1082 1083 1084 1085
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1086 1087
}

1088 1089
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1090 1091
  auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1092
                     [data_type](OpKernelMap::const_reference kern_pair) {
1093 1094
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1095 1096
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1097 1098 1099
                     });
}

1100 1101
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1102 1103 1104
  bool use_mkldnn_ctx = ctx.HasAttr("use_mkldnn") &&
                        ctx.Attr<bool>("use_mkldnn") &&
                        platform::is_cpu_place(ctx.GetPlace());
1105
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1106 1107
}

1108 1109 1110 1111 1112 1113 1114
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1115
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1116 1117
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1118
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1119
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1120 1121
}

L
luotao1 已提交
1122 1123
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1124 1125
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1126 1127 1128
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1129
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1130
    all_kernels_must_compute_runtime_shape_ = true;
1131
  const Scope* cur_scope = &scope;
1132
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1133 1134
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1135
    pre_scope_ = cur_scope;
L
luotao1 已提交
1136
  } else {
1137 1138 1139 1140 1141 1142
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1143 1144 1145 1146 1147 1148 1149 1150
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1151
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1152
  auto* dev_ctx = pool.Get(place);
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1164
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1165 1166 1167 1168
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1169 1170 1171 1172 1173 1174

  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1175 1176 1177
  pten::KernelKey pt_kernel_key;
  std::string pt_kernel_name;
  if (pten::KernelFactory::Instance().HasCompatiblePtenKernel(type_)) {
1178
    if (pt_kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
1179 1180
      pt_kernel_signature_.reset(
          new KernelSignature(std::move(GetExpectedPtenKernelArgs(exe_ctx))));
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
      VLOG(6) << *pt_kernel_signature_.get();

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

      pt_kernel_name = pt_kernel_signature_->name;
      pt_kernel_key = TransOpKernelTypeToPtenKernelKey(*kernel_type_.get());
      pt_kernel_.reset(
          new pten::Kernel(pten::KernelFactory::Instance().SelectKernel(
              pt_kernel_name, pt_kernel_key)));

      if (pt_kernel_->IsValid()) {
        VLOG(6) << "Static mode ChoosePtenKernel - kernel name: "
                << pt_kernel_name << " | kernel key: " << pt_kernel_key
                << " | kernel: " << *pt_kernel_;
      } else {
        VLOG(6) << "Static mode ChoosePtenKernel - kernel `" << pt_kernel_name
                << "` not found.";
      }
    }
    if (pt_kernel_->IsValid()) {
      run_pten_kernel_ = true;
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
#ifdef PADDLE_WITH_XPU
          ||
          paddle::platform::is_xpu_place(kernel_type_->place_) &&  // NOLINT
              !paddle::platform::is_xpu_support_op(
                  type_, *kernel_type_.get())  // NOLINT
          || paddle::platform::is_in_xpu_black_list(type_)
#endif
              ) {
        auto pt_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), pt_kernel_key, *this);
        pt_kernel_.reset(
            new pten::Kernel(pten::KernelFactory::Instance().SelectKernel(
                pt_kernel_name, pt_cpu_kernel_key)));

        dev_ctx = pool.Get(platform::CPUPlace());
        if (pt_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: " << pt_kernel_name
                  << " | kernel key: " << pt_cpu_kernel_key
                  << " | kernel: " << *pt_kernel_;
          run_pten_kernel_ = true;
        }
      }
1232 1233 1234 1235 1236
    }
  }
  if (!run_pten_kernel_) {
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1237
      dev_ctx = pool.Get(kernel_type_->place_);
1238
    }
1239 1240
  }

Y
yuyang18 已提交
1241 1242
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1243 1244
  Scope* transfer_scope = nullptr;
  {
1245
    platform::RecordEvent record_event("prepare_data",
1246
                                       platform::EventRole::kInnerOp);
1247 1248 1249 1250
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1251
  }
Y
yuyang18 已提交
1252 1253 1254 1255
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1256
  if (!all_kernels_must_compute_runtime_shape_) {
1257
    platform::RecordEvent record_event("infer_shape",
1258
                                       platform::EventRole::kInnerOp);
1259
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1260
    this->Info().infer_shape_(&infer_shape_ctx);
1261
  }
1262 1263 1264 1265 1266

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1267 1268
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1269
  {
1270
    platform::RecordEvent record_event("compute",
1271
                                       platform::EventRole::kInnerOp);
1272
    if (run_pten_kernel_) {
1273
      pten::KernelContext pt_kernel_context;
1274
      // Do data transform before building KernelContext
1275
      // TODO(zhiqiu): support TransferInplaceVarsBack
1276 1277
      PreparePtenData(exec_scope, *pt_kernel_, *pt_kernel_signature_,
                      runtime_ctx);
1278 1279
      BuildPtenKernelContext(*runtime_ctx, dev_ctx, &pt_kernel_context);
      (*pt_kernel_)(&pt_kernel_context);
1280 1281 1282 1283
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1284
  }
D
dzhwinter 已提交
1285

Y
yuyang18 已提交
1286
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1287
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1288
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1289
  }
1290 1291 1292 1293 1294 1295 1296

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1297 1298 1299 1300 1301 1302 1303 1304
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1305

D
dzhwinter 已提交
1306
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1307
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1308
    dev_ctx->Wait();
1309 1310
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1311 1312
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1313
  }
C
chengduoZH 已提交
1314 1315

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1316
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1317
  }
1318 1319 1320 1321 1322 1323 1324

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1325
}
X
Xin Pan 已提交
1326

1327 1328 1329
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto& dev_ctx = ctx.device_context();
L
Liu Yiqun 已提交
1330

1331
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1332 1333 1334
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1345 1346 1347
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
      if (SupportGPU()) {
1348
        expected_kernel_key.place_ = dev_ctx.GetPlace();
B
Baibaifan 已提交
1349
      } else if (SupportNPU()) {
1350
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1351 1352 1353 1354 1355 1356 1357 1358
      } else {
        expected_kernel_key.place_ = platform::CPUPlace();
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1359 1360
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1361 1362 1363
  return expected_kernel_key;
}

1364 1365
pten::KernelKey OperatorWithKernel::ChoosePtenKernel(
    const ExecutionContext& ctx) const {
1366
  pt_kernel_signature_.reset(
1367
      new KernelSignature(std::move(GetExpectedPtenKernelArgs(ctx))));
1368
  VLOG(6) << *pt_kernel_signature_.get();
1369 1370 1371 1372

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

Y
YuanRisheng 已提交
1373
  auto pt_kernel_name = pt_kernel_signature_->name;
1374 1375 1376 1377 1378 1379
  auto pt_kernel_key = TransOpKernelTypeToPtenKernelKey(*kernel_type_.get());
  pt_kernel_.reset(
      new pten::Kernel(pten::KernelFactory::Instance().SelectKernel(
          pt_kernel_name, pt_kernel_key)));

  if (pt_kernel_->IsValid()) {
C
Chen Weihang 已提交
1380
    VLOG(6) << "Static mode ChoosePtenKernel - kernel name: " << pt_kernel_name
1381 1382 1383
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
C
Chen Weihang 已提交
1384
    VLOG(6) << "Static mode ChoosePtenKernel - kernel `" << pt_kernel_name
1385 1386
            << "` not found.";
  }
1387
  return pt_kernel_key;
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1403 1404

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1405

L
Liu Yiqun 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1415 1416
#endif
#ifdef PADDLE_WITH_XPU
1417
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1418 1419 1420
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1421 1422 1423 1424 1425 1426
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1427
#endif
L
Liu-xiandong 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

#ifdef PADDLE_WITH_XPU_KP
  bool use_xpu_kp_kernel_rt =
      FLAGS_run_kp_kernel &&
      paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
  bool use_xpu_kp_kernel_debug =
      paddle::platform::is_in_xpu_kpwhite_list(type_);
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
      (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug)) {
    expected_kernel_key.library_type_ = LibraryType::kKP;
    kernel_iter = kernels.find(expected_kernel_key);
    VLOG(3) << "using XPU KP kernel: " << type_
            << ", using_kernel_key:" << expected_kernel_key;
  }
#endif

A
Allen Guo 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1454 1455
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1456
      platform::is_npu_place(expected_kernel_key.place_)) {
1457 1458 1459 1460 1461 1462
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1463 1464 1465
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1466
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1467 1468 1469 1470 1471 1472
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1473
#endif
1474 1475 1476 1477
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1478

1479 1480 1481 1482 1483
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1484 1485
}

Y
yuyang18 已提交
1486 1487 1488 1489
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1490
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1491
    auto* origin_var = scope.FindVar(var_name);
1492 1493 1494
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1495
    auto* original_tensor =
C
chengduo 已提交
1496
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1497
    auto* var = transfer_scope.FindVar(var_name);
1498 1499
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1500
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1501
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1502
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1503 1504 1505 1506 1507
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1508 1509 1510
  }
}

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
1540
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
1560
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1578
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1579
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1580 1581
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1582
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1583

1584
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1585 1586 1587 1588
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1589 1590
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1591 1592 1593
    }
  }

Y
yuyang18 已提交
1594
  for (auto& var_name_item : Inputs()) {
1595 1596
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1597

X
Xin Pan 已提交
1598 1599 1600 1601
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1602
      auto* var = input_vars[i];
X
Xin Pan 已提交
1603

Y
yuyang18 已提交
1604
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1605
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1606 1607 1608
        continue;
      }

C
chengduo 已提交
1609
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1625 1626
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1659 1660
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1661

1662 1663 1664
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1665
      // We use a thread_local cache to fix that issue, the key in the cache is
1666 1667 1668 1669 1670
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1671 1672
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1673
      // variables, that behavior a lot different.
1674 1675 1676 1677 1678 1679 1680 1681 1682
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1683 1684
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1685
        enable_cache_transfer_scope_ = true;
1686
      }
1687
      if (!new_scope) {
Y
yuyang18 已提交
1688 1689
        new_scope = &scope.NewScope();
      }
1690 1691 1692 1693
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1694
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1695 1696
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1697
      if (enable_cache_runtime_context_) {
1698 1699
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1700 1701

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1702
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1703
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1721
      Tensor out;
Y
yuyang18 已提交
1722
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1723 1724 1725
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1726

1727 1728 1729 1730 1731 1732
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1733 1734 1735 1736 1737 1738

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1739 1740
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1741 1742 1743

  return new_scope;
}
Q
Qiao Longfei 已提交
1744

1745
void OperatorWithKernel::ParseInputDataType(
1746
    const std::vector<Variable*>& vars, const std::string& name,
1747
    proto::VarType::Type* data_type) const {
1748
  proto::VarType::Type default_data_type =
1749 1750 1751 1752 1753 1754 1755 1756 1757
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
1758 1759
      } else if (var->IsType<pten::SelectedRows>()) {
        t = &(var->Get<pten::SelectedRows>().value());
1760
      } else if (var->IsType<LoDTensorArray>()) {
1761 1762 1763 1764
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
1765 1766
          }
        }
1767 1768
      }
      if (t != nullptr) {
1769 1770
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
1771 1772 1773
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
1774 1775
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
1776 1777 1778 1779 1780 1781 1782 1783 1784
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
1785 1786 1787 1788 1789 1790
        *data_type = tmp;
      }
    }
  }
}

1791
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1792
    const ExecutionContext& ctx) const {
1793 1794 1795
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1796
  for (auto& input : ctx.InNameList()) {
1797 1798
    const std::vector<Variable*> vars = ctx.MultiInputVar(input);
    ParseInputDataType(vars, input, &data_type);
Y
Yu Yang 已提交
1799
  }
1800 1801 1802 1803
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1804 1805 1806 1807 1808 1809 1810 1811
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
1812
  ParseInputDataType(ctx.MultiInputVar(name), name, &data_type);
1813 1814
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1815 1816 1817 1818 1819
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1820
  return data_type;
Y
Yu Yang 已提交
1821
}
1822

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
1841 1842
  } else if (var->IsType<pten::SelectedRows>()) {
    t = var->GetMutable<pten::SelectedRows>()->mutable_value();
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
1874 1875
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
1876 1877 1878 1879 1880 1881 1882

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1883 1884 1885 1886 1887 1888 1889 1890
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1891 1892
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1893 1894
}

1895 1896
KernelSignature OperatorWithKernel::GetExpectedPtenKernelArgs(
    const ExecutionContext& ctx) const {
1897 1898 1899 1900
  InitDefaultKernelSignatureMap();
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
  return pten::OpUtilsMap::Instance().GetArgumentMappingFn(Type())(
      arg_mapping_ctx);
1901 1902
}

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
Scope* OperatorWithKernel::PreparePtenData(
    const Scope& scope, const pten::Kernel& pt_kernel,
    const KernelSignature& pt_kernel_signature, RuntimeContext* ctx) const {
  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto input_defs = pt_kernel.args_def().input_defs();
  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));
  Scope* new_scope = nullptr;
1914
  auto& name_map = Inputs();
Y
YuanRisheng 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
    }
  }

1925 1926
  for (size_t i = 0; i < input_defs.size(); ++i) {
    auto& in_def = input_defs.at(i);
H
hong 已提交
1927 1928 1929 1930 1931 1932
    auto it = ctx->inputs.find(input_names[i]);
    if (it == ctx->inputs.end()) {
      continue;
    }

    auto& ins_vector = it->second;
1933
    auto& name_vec = name_map.at(input_names[i]);
Y
YuanRisheng 已提交
1934 1935 1936
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(input_names[i]) > 0;

1937 1938 1939 1940 1941 1942 1943 1944
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      // Only tensor can be tranfer to another device.
      auto* var = ins_vector[offset];
      if (var == nullptr || !VarIsTensor(*var)) {
        continue;
      }

      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
YuanRisheng 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
        // TODO(YuanRisheng) : There need to supplement MKLDNN code later
        continue;
      }

1954 1955 1956 1957
      if (!tensor_in->IsInitialized()) {
        continue;
      }

1958
      auto expected_place = pten::TransToPtenPlace(in_def.backend);
1959 1960 1961 1962
      if (platform::is_same_place(tensor_in->place(), expected_place)) {
        continue;
      }

1963 1964
      VLOG(3) << "PTen Transform Variable " << input_names[i] << " from "
              << tensor_in->place() << " to " << expected_place;
1965

1966 1967 1968
      if (!new_scope) {
        new_scope = &scope.NewScope();
      }
1969

1970
      // Create new var with the same name in transfer scopes
1971
      auto* trans_var = new_scope->Var(name_vec[offset]);
1972
      ins_vector[offset] = trans_var;
1973

1974 1975 1976 1977
      // Do transfer
      Tensor out;
      framework::TensorCopySync(*tensor_in, expected_place, &out);
      SetTensorToVariable(*var, out, trans_var);
1978 1979 1980 1981 1982 1983
    }
  }

  return new_scope;
}

1984
void OperatorWithKernel::BuildPtenKernelContext(
1985 1986 1987
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx,
    pten::KernelContext* pt_kernel_context) const {
  pt_kernel_context->SetDeviceContext(dev_ctx);
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

  auto& input_names = std::get<0>(pt_kernel_signature_->args);
  auto& attr_names = std::get<1>(pt_kernel_signature_->args);
  auto& output_names = std::get<2>(pt_kernel_signature_->args);

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2016
    auto it = ctx.inputs.find(input_names[i]);
2017 2018 2019

    // calcute the start and end index of the input tensors
    size_t start_idx =
2020
        (i == 0 ? 0 : pt_kernel_context->InputRangeAt(i - 1).second);
2021

H
hong 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
    // deal with optional here
    if ((it == ctx.inputs.end()) &&
        (input_defs[i].type_index ==
         std::type_index(typeid(paddle::optional<const pten::DenseTensor&>)))) {
      pt_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                          i);
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2034
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2035
      const pten::TensorBase* tensor_in = nullptr;
2036
      auto* var = ins_vector[offset];
H
hong 已提交
2037 2038
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2039 2040
      } else if (var->IsType<pten::SelectedRows>()) {
        tensor_in = &(var->Get<pten::SelectedRows>());
2041 2042 2043 2044
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2045
      }
H
hong 已提交
2046

2047
      pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2048
    }
2049
    pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2050 2051 2052
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2053
    auto it = ctx.outputs.find(output_names[i]);
2054
    size_t start_idx =
2055
        (i == 0 ? 0 : pt_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
      pt_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                           i);
      continue;
    }
    auto& outs_vector = it->second;

2070
    size_t end_idx = start_idx + outs_vector.size();
2071 2072

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2073
      pten::TensorBase* tensor_out = nullptr;
2074
      auto* var = outs_vector[offset];
H
hong 已提交
2075 2076
      if (var->template IsType<framework::LoDTensor>()) {
        tensor_out = var->template GetMutable<framework::LoDTensor>();
2077 2078
      } else if (var->template IsType<pten::SelectedRows>()) {
        tensor_out = var->template GetMutable<pten::SelectedRows>();
2079 2080 2081 2082
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported output `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2083
      }
2084

2085 2086
      experimental::ResetTensorDtypeAndLayoutByArgDef(tensor_out,
                                                      output_defs.at(i));
2087
      SetAllocationForOutputTenosr(
2088
          tensor_out, pten::TransToPtenPlace(output_defs.at(i).backend));
2089 2090

      pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2091
    }
2092

2093
    pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
2094 2095 2096
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
2097 2098 2099 2100 2101
    if (attr_defs[i].type_index == std::type_index(typeid(pten::ScalarArray))) {
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // shape is in the attribute
        if (std::type_index(attr_iter->second.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
2102
          pt_kernel_context->EmplaceBackAttr(std::move(pten::ScalarArray(
2103
              BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2104 2105
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
2106
          pt_kernel_context->EmplaceBackAttr(std::move(pten::ScalarArray(
2107
              BOOST_GET_CONST(std::vector<int32_t>, attr_iter->second))));
C
chentianyu03 已提交
2108 2109 2110 2111
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(int32_t))) {
          pt_kernel_context->EmplaceBackAttr(std::move(pten::ScalarArray(
              &BOOST_GET_CONST(int32_t, attr_iter->second), 1)));
2112 2113 2114 2115 2116 2117 2118 2119 2120
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to ScalarArray when "
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
2121
          pt_kernel_context->EmplaceBackAttr(std::move(
2122 2123
              experimental::MakePtenScalarArrayFromVar(*ins_vector.front())));
        } else {  // ShapeTensorList
2124
          pt_kernel_context->EmplaceBackAttr(std::move(
2125 2126 2127 2128 2129
              experimental::MakePtenScalarArrayFromVarList(ins_vector)));
        }
      }
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(pten::Scalar))) {
2130 2131 2132
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
2133 2134 2135 2136
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // scalar is in the attribute
        auto& attr = Attrs().at(attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
2137
          pt_kernel_context->EmplaceBackAttr(
2138 2139 2140
              std::move(pten::Scalar(BOOST_GET_CONST(float, attr))));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
2141
          pt_kernel_context->EmplaceBackAttr(
2142
              std::move(pten::Scalar(BOOST_GET_CONST(std::string, attr))));
2143 2144 2145 2146
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          pt_kernel_context->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(int, attr))));
2147 2148 2149 2150 2151 2152
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext.",
              attr_names[i]));
        }
2153
      } else {
2154
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
2155
        pt_kernel_context->EmplaceBackAttr(std::move(
2156
            experimental::MakePtenScalarFromVar(*ins_vector.front())));
2157
      }
2158

2159 2160
    } else {
      // TODO(chenweihang): support other attrs later
2161
      auto& attr = Attrs().at(attr_names[i]);
2162
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
2163
        pt_kernel_context->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
2164
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
2165
        pt_kernel_context->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
2166
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
2167
        pt_kernel_context->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
H
hong 已提交
2168 2169 2170
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::string))) {
        pt_kernel_context->EmplaceBackAttr(BOOST_GET_CONST(std::string, attr));
2171
      } else if (attr_defs[i].type_index ==
2172
                 std::type_index(typeid(pten::DataType))) {
2173
        auto data_type = paddle::framework::TransToPtenDataType(
2174 2175
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
2176
        pt_kernel_context->EmplaceBackAttr(data_type);
2177 2178 2179 2180 2181 2182 2183 2184
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Pten_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
2185
          pt_kernel_context->EmplaceBackAttr(vector_int64_attr);
2186 2187 2188
        }
        // TODO(YuanRisheng) Need support vector<int64_t> attr

H
hong 已提交
2189 2190 2191 2192
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int32_t>))) {
        const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
        pt_kernel_context->EmplaceBackAttr(vector_int_attr);
2193 2194
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
2195
            "Unsupported cast op attribute `%s` when construct "
2196 2197 2198 2199 2200 2201 2202
            "KernelContext.",
            attr_names[i]));
      }
    }
  }
}

Q
Qiao Longfei 已提交
2203
}  // namespace framework
L
liaogang 已提交
2204
}  // namespace paddle