operator.cc 44.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
P
peizhilin 已提交
19 20
#include <sstream>
#include <string>
S
sneaxiy 已提交
21
#include <unordered_set>
P
peizhilin 已提交
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
25
#include "paddle/fluid/framework/lod_tensor.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/op_proto_maker.h"
28
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/shape_inference.h"
30
#include "paddle/fluid/framework/transfer_scope_cache.h"
31
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
32
#include "paddle/fluid/framework/var_type.h"
33
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
34

D
dzhwinter 已提交
35
DECLARE_bool(benchmark);
36
DECLARE_bool(check_nan_inf);
37
DECLARE_bool(enable_unused_var_check);
Q
Qiao Longfei 已提交
38
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
P
pkpk 已提交
39 40 41
DEFINE_bool(fast_check_nan_inf, false,
            "Fast checking NAN/INF after each operation. It will be a little"
            "bit slow, much faster than check_nan_inf");
D
dzhwinter 已提交
42

Q
Qiao Longfei 已提交
43 44 45
namespace paddle {
namespace framework {

46 47 48 49 50 51
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
52

53 54
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
55
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
56 57
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
58 59
  }

M
minqiyang 已提交
60 61 62 63 64 65 66 67 68
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
69 70 71 72 73
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
74 75 76 77 78 79
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
80 81 82 83 84
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
85

M
minqiyang 已提交
86 87 88
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
89 90
      return "";
    }
Y
Yu Yang 已提交
91
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
92
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
93 94 95 96
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
97
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
98
    }
D
dzhwinter 已提交
99 100 101 102 103
  } else {
    return "";
  }
}

104 105 106 107 108 109
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
110 111
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
112 113 114 115 116
  }

  return -1;
}

117
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
118 119 120 121 122 123 124
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
125 126 127
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
128 129 130 131 132
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
133 134 135 136 137
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
138
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
139 140 141 142 143 144
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
145
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
146 147 148 149 150 151
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

152
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
153 154 155
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
156
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
157
      PADDLE_THROW("Cannot run operator on place %s", place);
158
#else
P
peizhilin 已提交
159 160
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
161
#endif
P
peizhilin 已提交
162
    }
P
peizhilin 已提交
163

P
peizhilin 已提交
164 165 166 167 168
    // The profile has a process-wide mutex, results in serious performance
    // issue
    // in concurrency scenerio. Here use an `if` to fix this issue.
    // Please not remove the `if`, ask @Superjomn if there are any concern.
    if (platform::IsProfileEnabled()) {
169
      platform::RecordEvent record_event(Type());
P
peizhilin 已提交
170 171 172 173 174
      RunImpl(scope, place);
    } else {
      RunImpl(scope, place);
    }
    VLOG(3) << place << " " << DebugStringEx(&scope);
175
  } catch (platform::EnforceNotMet& exception) {
176
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
177
    throw std::move(exception);
178 179 180 181 182 183
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
184
  } catch (...) {
185
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
186
    std::rethrow_exception(std::current_exception());
187
  }
188 189
}

190
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
191
  return inputs_.find(name) != inputs_.end();
192 193
}

194
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
195
  auto& ins = Inputs(name);
196 197 198 199 200
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
      platform::errors::AlreadyExists(
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
201
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
202 203
}

Y
Yu Yang 已提交
204 205
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
206
  auto it = inputs_.find(name);
207 208
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
209
  return it->second;
Y
Yan Chunwei 已提交
210 211
}

212
bool OperatorBase::HasOutputs(const std::string& name) const {
213
  if (outputs_.find(name) != outputs_.end()) {
214 215 216 217 218 219
    return true;
  } else {
    return false;
  }
}

220
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
221
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
222
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
223 224
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
225
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
226 227
}

Y
Yu Yang 已提交
228 229
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
230
  auto it = outputs_.find(name);
231 232
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
233
  return it->second;
Y
Yan Chunwei 已提交
234 235
}

236
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
237
  std::stringstream ss;
Y
Yu Yang 已提交
238
  ss << "Op(" << type_ << "), inputs:{";
239

240
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
241 242
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
243 244
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
245 246
  }

Y
Yu Yang 已提交
247 248
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
249 250
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
251 252
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
253 254
      auto var_name = input.second[i];
      ss << var_name;
255
      if (scope) {
Q
Qiao Longfei 已提交
256 257 258 259 260 261 262
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
263 264 265
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
266
          ss << ":" << dtype;
267 268
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
269
        }
270
      }
Y
Yu Yang 已提交
271 272 273
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
274
    }
Y
Yu Yang 已提交
275
    ss << "]";
Y
Yu Yang 已提交
276 277
    ++it;
    if (it != inputs_.end()) {
278 279
      ss << ", ";
    }
Q
Qiao Longfei 已提交
280
  }
Y
Yu Yang 已提交
281
  ss << "}, outputs:{";
Y
Yu Yang 已提交
282 283
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
284 285
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
286 287
      auto var_name = output.second[i];
      ss << var_name;
288
      if (scope) {
Q
Qiao Longfei 已提交
289 290 291 292 293 294 295
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
296 297
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
298 299
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
300
        }
301
      }
Y
Yu Yang 已提交
302 303 304
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
305
    }
Y
Yu Yang 已提交
306
    ss << "]";
Y
Yu Yang 已提交
307 308
    ++it;
    if (it != outputs_.end()) {
309 310
      ss << ", ";
    }
Q
Qiao Longfei 已提交
311
  }
Y
Yu Yang 已提交
312
  ss << "}.";
Q
Qiao Longfei 已提交
313 314 315
  return ss.str();
}

Y
Yu Yang 已提交
316
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
317 318
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
319
                           const AttributeMap& attrs)
S
sneaxiy 已提交
320 321 322 323 324 325
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
326 327 328 329 330 331 332 333
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
334
}
335

Q
qijun 已提交
336 337
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
338
  for (auto& o : inputs_) {
Q
qijun 已提交
339 340 341 342 343 344
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
345 346 347 348 349 350 351 352 353 354
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
355
  auto& info = Info();
Y
Yu Yang 已提交
356 357

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
358
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
359 360 361 362 363 364 365 366 367
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
368 369
}

370
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
371
  if (info_ == nullptr || info_->proto_ == nullptr) return;
372

S
sneaxiy 已提交
373
  for (auto& in : info_->Proto().inputs()) {
374 375 376 377
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
378 379
  }

S
sneaxiy 已提交
380
  for (auto& out : info_->Proto().outputs()) {
381 382 383 384 385
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
402
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
403
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
404 405
}

C
chengduo 已提交
406
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
407 408 409 410
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
411
  } else {
Y
Yang Yang 已提交
412
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
413
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
414 415 416
  }
}

C
chengduo 已提交
417
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
418
  if (var->IsType<LoDTensor>()) {
419
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
420
  } else if (var->IsType<SelectedRows>()) {
421
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
422
  } else {
Y
Yang Yang 已提交
423
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
424
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
425 426 427
  }
}

428
bool ExecutionContext::HasInput(const std::string& name) const {
429
  auto* var = InputVar(name);
430 431 432 433
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
434
  auto* var = OutputVar(name);
435 436 437
  return var != nullptr;
}

X
Xin Pan 已提交
438
const Variable* ExecutionContext::InputVar(const std::string& name) const {
439 440
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
441 442 443
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

444 445 446 447 448
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::AlreadyExists(
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
449 450 451
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
452
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
453 454 455 456 457 458 459 460 461
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

462
template <>
463
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
464
  return Input<LoDTensor>(name);
465 466 467
}

template <>
468
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
469
    const std::string& name) const {
470 471
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
472 473
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
474 475 476 477 478
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
479
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
480 481 482 483
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
484
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
485 486 487 488 489
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

490
template <>
491
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
492
  return Output<LoDTensor>(name);
493 494 495
}

template <>
496
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
497
    const std::string& name) const {
H
hong 已提交
498 499 500
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
501 502
    return {};
  }
503
  std::vector<Tensor*> res;
504 505 506 507 508
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
509
                 });
510 511 512
  return res;
}

Y
Yu Yang 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

528 529
class RuntimeInferShapeContext : public InferShapeContext {
 public:
X
Xin Pan 已提交
530 531
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope,
                           const RuntimeContext& ctx)
G
Gabor Buella 已提交
532
      : op_(op), ctx_(ctx) {}
533 534

  bool HasInput(const std::string& name) const override {
535
    // has only one input
X
Xin Pan 已提交
536
    const auto& ins = ctx_.inputs;
537 538
    auto it = ins.find(name);
    if (it == ins.end()) {
539 540
      return false;
    }
541
    const auto& in = it->second;
X
Xin Pan 已提交
542
    if (in.size() == 0) return false;
T
tensor-tang 已提交
543
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
544
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
545
    return in[0] != nullptr;
546 547 548
  }

  bool HasOutput(const std::string& name) const override {
549
    // has only one output
X
Xin Pan 已提交
550
    const auto& outs = ctx_.outputs;
551 552
    auto it = outs.find(name);
    if (it == outs.end()) {
553 554
      return false;
    }
555
    const auto& out = it->second;
X
Xin Pan 已提交
556
    if (out.size() == 0) {
557 558
      return false;
    }
T
tensor-tang 已提交
559 560
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
561
    return out[0] != nullptr;
562 563 564
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
565 566
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
567
    if (it == ins.end() || it->second.empty()) {
568 569
      return false;
    }
X
Xin Pan 已提交
570 571
    for (auto& input : it->second) {
      if (input == nullptr) {
572 573 574 575 576 577 578
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
579 580
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
581
    if (it == outs.end() || it->second.empty()) {
582 583
      return false;
    }
X
Xin Pan 已提交
584 585
    for (auto& output : it->second) {
      if (output == nullptr) {
586 587 588 589 590 591 592 593
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
594
  std::vector<std::string> Inputs(const std::string& name) const override {
595 596 597
    return op_.Inputs(name);
  }

H
hong 已提交
598
  std::vector<std::string> Outputs(const std::string& name) const override {
599 600 601
    return op_.Outputs(name);
  }

602 603
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
604 605 606 607 608 609 610 611 612
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
613 614

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
615
                   "The type of %s and %s is not the same.", in, out);
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

H
hong 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
            "Op [%s]: Input var size should be equal with ouput var size",
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
679 680
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
681 682 683 684 685 686 687 688
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
689
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
690
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
691 692
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
693
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
694 695
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
696

M
mozga-intel 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
716 717
  }

718
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
719
    PADDLE_THROW(
720
        "GetLoDLevel is only used in compile time. The calculation of "
721 722 723 724
        "output's actual lod is different among operators so that should be "
        "set in the runtime kernel.");
  }

725 726
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
727
    PADDLE_THROW(
728
        "SetLoDLevel is only used in compile time. The calculation of "
729 730
        "output's actual lod is different among operators so that should be "
        "set in the runtime kernel.");
C
chengduo 已提交
731 732
  }

733 734
  bool IsRuntime() const override { return true; }

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
767 768 769 770 771 772 773 774 775 776
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
777 778 779 780 781 782 783 784 785 786 787 788 789 790
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

791
 protected:
X
Xin Pan 已提交
792
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
793
    PADDLE_ENFORCE_NOT_NULL(var);
794 795 796 797 798
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
799
      PADDLE_THROW(
X
Xin Pan 已提交
800
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
801
          "type_id is %s.",
S
sneaxiy 已提交
802
          ToTypeName(var->Type()));
F
fengjiayi 已提交
803 804 805
    }
  }

X
Xin Pan 已提交
806 807 808 809 810 811 812 813
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
814
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
815
    PADDLE_THROW("Only compile time support this method");
816 817
  }

X
Xin Pan 已提交
818
  void SetDim(Variable* var, const DDim& dim) {
819 820 821 822 823
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
824
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
825
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
826 827 828 829 830 831 832 833 834 835 836 837
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
838 839 840
    }
  }

F
fengjiayi 已提交
841 842
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
843
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
844 845
  }

X
Xin Pan 已提交
846 847 848 849 850 851 852 853 854 855 856
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
857 858 859
    return ToVarType(var->Type());
  }

860 861 862 863 864 865 866 867 868 869 870 871 872 873
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
874 875
  }

876
  const OperatorBase& op_;
X
Xin Pan 已提交
877
  const RuntimeContext& ctx_;
878 879
};

880 881
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
882 883 884 885
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
886 887
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
888 889 890
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
891
                 "Operator %s output Tensor %s contains Inf", op_type, name);
C
chengduoZH 已提交
892
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
893
                 "Operator %s output Tensor %s contains NAN", op_type, name);
C
chengduoZH 已提交
894 895
}

B
baojun-nervana 已提交
896
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
897 898 899
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope, ctx);
B
baojun-nervana 已提交
900 901 902
  this->InferShape(&infer_shape_ctx);
}

X
polish  
Xin Pan 已提交
903 904 905 906 907 908 909 910 911 912
std::vector<KernelConfig>* OperatorWithKernel::GetKernelConfig(
    const OpKernelType& key) const {
  auto config_iter = kernel_configs_map_.find(key);
  std::vector<KernelConfig>* kernel_configs = nullptr;
  if (config_iter != kernel_configs_map_.end()) {
    kernel_configs = &(config_iter->second);
  }
  return kernel_configs;
}

L
luotao1 已提交
913 914
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
915 916
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
917 918 919
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
920
      HasAttr(kAllKernelsMustComputeRuntimeShape))
921 922
    all_kernels_must_compute_runtime_shape_ = true;
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
923 924 925 926
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
  } else {
    const Scope* cur_scope = &scope;
927 928 929 930 931 932
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
933 934 935 936 937 938 939 940
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
941
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
942
  auto* dev_ctx = pool.Get(place);
943

944
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
945
    ChooseKernel(*runtime_ctx, scope, place);
946 947
  }

L
Liu Yiqun 已提交
948
  std::vector<KernelConfig>* kernel_configs = GetKernelConfig(*kernel_type_);
949

Y
yuyang18 已提交
950 951
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
T
Tao Luo 已提交
952
  auto* transfer_scope =
953
      PrepareData(scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
954

Y
yuyang18 已提交
955 956 957 958
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

959 960
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
961
  }
Q
QI JUN 已提交
962

963
  if (!all_kernels_must_compute_runtime_shape_) {
L
luotao1 已提交
964
    RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, *runtime_ctx);
965 966
    this->InferShape(&infer_shape_ctx);
  }
967 968 969 970 971

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
972 973
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
974 975
  (*kernel_func_)(ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx,
                                   kernel_configs));
D
dzhwinter 已提交
976

Y
yuyang18 已提交
977 978 979
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
980
  }
981 982 983 984 985 986 987 988
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
989

D
dzhwinter 已提交
990
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
991
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
992
    dev_ctx->Wait();
D
dzhwinter 已提交
993
  }
C
chengduoZH 已提交
994

P
pkpk 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
  if (FLAGS_fast_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
      // only check inserted vars,
      // please see executor.py for details of fast_check_nan_inf
      if (vname.rfind("debug_var") == 0) {
        VLOG(3) << "debugging nan/inf in var " << vname;

        auto* var = exec_scope.FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
        } else if (var->IsType<framework::SelectedRows>()) {
          CheckTensorNANOrInf(type_, vname,
                              var->Get<framework::SelectedRows>().value());
        }
      }
    }
  }

C
chengduoZH 已提交
1014 1015
  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
1016
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
1017 1018
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
1019
        CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
1020
      } else if (var->IsType<framework::SelectedRows>()) {
1021 1022
        CheckTensorNANOrInf(type_, vname,
                            var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
1023 1024 1025
      }
    }
  }
1026 1027 1028 1029 1030 1031 1032

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1033
}
X
Xin Pan 已提交
1034

L
Liu Yiqun 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
  }

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
      ExecutionContext(*this, scope, *dev_ctx, ctx, nullptr));
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

1071 1072 1073 1074 1075
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1076 1077
}

Y
yuyang18 已提交
1078 1079 1080 1081
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1082
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1083 1084 1085
    auto* origin_var = scope.FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(origin_var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1086
    auto* original_tensor =
C
chengduo 已提交
1087
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1088
    auto* var = transfer_scope.FindVar(var_name);
C
chengduo 已提交
1089 1090
    PADDLE_ENFORCE_NOT_NULL(var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1091
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1092 1093 1094 1095
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
1096
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1097
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1098 1099
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1100
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1101

1102
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1103 1104 1105 1106
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1107 1108
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1109 1110 1111
    }
  }

Y
yuyang18 已提交
1112
  for (auto& var_name_item : Inputs()) {
1113
    if (no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0) {
G
gongweibao 已提交
1114
      VLOG(7) << "Skip scanning input " << var_name_item.first
S
sneaxiy 已提交
1115
              << " in Operator " << type_;
S
sneaxiy 已提交
1116 1117 1118
      continue;
    }

X
Xin Pan 已提交
1119 1120 1121 1122
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1123
      auto* var = input_vars[i];
X
Xin Pan 已提交
1124

Y
yuyang18 已提交
1125
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1126
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1127 1128 1129
        continue;
      }

C
chengduo 已提交
1130
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1148 1149
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
1163 1164 1165 1166 1167 1168 1169 1170 1171
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1172 1173
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1174
        enable_cache_transfer_scope_ = true;
1175
      }
1176
      if (!new_scope) {
Y
yuyang18 已提交
1177 1178
        new_scope = &scope.NewScope();
      }
1179 1180 1181 1182
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1183
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1184 1185 1186
      // time, not the gpu tensor.
      // Thus, we set pre_scope_ = nullptr to trigger `new RuntimeContext()` in
      // RunImpl().
1187
      if (enable_cache_runtime_context_) {
1188 1189
        pre_scope_ = nullptr;
      }
Y
yuyang18 已提交
1190 1191

      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1192
      input_vars[i] = trans_var;
1193

Y
yuyang18 已提交
1194
      Tensor out;
Y
yuyang18 已提交
1195
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1196 1197 1198 1199 1200 1201
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1202

1203 1204 1205 1206 1207
void OperatorWithKernel::ParseInputDataType(
    const ExecutionContext& ctx, const std::string& name,
    proto::VarType::Type* data_type) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
H
hong 已提交
1208
  const std::vector<Variable*> vars = ctx.MultiInputVar(name);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
      }
      if (t != nullptr) {
1221 1222 1223 1224 1225
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
            platform::errors::InvalidArgument(
                "The Tensor in the %s Op's Input Variable %s(%s) is "
                "not initialized.",
H
hong 已提交
1226
                Type(), name, ctx.InputNames(name).at(i)));
1227
        proto::VarType::Type tmp = t->type();
1228 1229 1230 1231 1232 1233 1234 1235
        PADDLE_ENFORCE(
            tmp == *data_type || *data_type == dafault_data_type,
            platform::errors::InvalidArgument(
                "The DataType of %s Op's duplicable Variable %s must be "
                "consistent. The current variable type is (%s), but the "
                "previous variable type is (%s).",
                Type(), name, DataTypeToString(tmp),
                DataTypeToString(*data_type)));
1236 1237 1238 1239 1240 1241
        *data_type = tmp;
      }
    }
  }
}

1242
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1243
    const ExecutionContext& ctx) const {
1244 1245 1246
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1247 1248
  for (auto& input : ctx.InNameList()) {
    ParseInputDataType(ctx, input, &data_type);
Y
Yu Yang 已提交
1249
  }
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
  PADDLE_ENFORCE_NE(data_type, dafault_data_type,
                    "DataType should be indicated by input Variable.");
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
  ParseInputDataType(ctx, name, &data_type);
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      "The Input Variable(%s) of %s Op used to determine kernel data type "
      "is empty or not LoDTensor or SelectedRows.",
      name, Type());
1266
  return data_type;
Y
Yu Yang 已提交
1267
}
1268

1269 1270 1271 1272 1273 1274 1275 1276
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1277 1278
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1279 1280
}

Q
Qiao Longfei 已提交
1281
}  // namespace framework
L
liaogang 已提交
1282
}  // namespace paddle