operator.cc 83.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
22
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_transform.h"
24
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
25
#include "paddle/fluid/framework/details/nan_inf_utils.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/pten_utils.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/shape_inference.h"
29
#include "paddle/fluid/framework/transfer_scope_cache.h"
30
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/platform/enforce.h"
34
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
35
#include "paddle/fluid/platform/profiler/event_tracing.h"
36
#include "paddle/pten/common/scalar.h"
37
#include "paddle/pten/common/scalar_array.h"
H
hong 已提交
38
#include "paddle/pten/core/kernel_factory.h"
39
#include "paddle/pten/ops/compat/signatures.h"
40

41 42 43 44
namespace pten {
class DenseTensor;
}  // namespace pten

45
#ifdef PADDLE_WITH_XPU
46 47
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
48
#endif
Q
Qiao Longfei 已提交
49

50 51 52 53
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
54 55 56 57
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
58
DECLARE_bool(benchmark);
59
DECLARE_bool(check_nan_inf);
60
DECLARE_bool(enable_unused_var_check);
61 62
PADDLE_DEFINE_EXPORTED_int32(inner_op_parallelism, 0,
                             "number of threads for inner op");
F
Feng Xing 已提交
63
DECLARE_bool(run_kp_kernel);
D
dzhwinter 已提交
64

Q
Qiao Longfei 已提交
65 66 67
namespace paddle {
namespace framework {

68 69 70 71 72 73
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
74

75
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
76
                         bool get_actual_dim = false) {
77
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
78 79
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
80 81
  }

M
minqiyang 已提交
82 83 84
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
85
  } else if (var->IsType<pten::SelectedRows>()) {
M
minqiyang 已提交
86
    if (get_actual_dim) {
87
      return var->Get<pten::SelectedRows>().value().dims();
M
minqiyang 已提交
88
    } else {
89
      return var->Get<pten::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
90
    }
S
Steffy-zxf 已提交
91 92
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
93 94 95 96 97
  } else {
    return DDim({-1});
  }
}

98
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
99 100 101 102 103
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

104
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
105 106 107 108
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
109

M
minqiyang 已提交
110 111 112
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
113 114
      return "";
    }
115
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
116 117
  } else if (var->IsType<pten::SelectedRows>()) {
    auto tensor = var->Get<pten::SelectedRows>().value();
Q
Qiao Longfei 已提交
118 119 120
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
121
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
122
    }
S
Steffy-zxf 已提交
123 124
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
125 126 127 128 129
  } else {
    return "";
  }
}

130
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
147 148
  } else if (var->IsType<pten::SelectedRows>()) {
    auto tensor = var->Get<pten::SelectedRows>().value();
L
Leo Chen 已提交
149 150 151 152 153 154 155 156 157 158
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

159
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
160 161 162 163 164
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

165 166
  if (var->IsType<pten::SelectedRows>()) {
    return var->Get<pten::SelectedRows>().rows().size();
167 168 169 170 171
  }

  return -1;
}

172
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
173 174 175 176 177 178 179
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
180 181 182
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
183 184 185 186 187
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
188 189 190 191 192
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
193
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
194 195 196 197 198 199
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
200
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
201 202 203 204 205 206
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

207
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
208 209 210
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
211
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
212 213 214 215
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
216
#else
217
      auto dev_id = place.device;
P
peizhilin 已提交
218
      platform::SetDeviceId(dev_id);
219 220 221
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
222 223 224 225
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
226
#else
227
      auto dev_id = place.device;
228
      platform::SetXPUDeviceId(dev_id);
229 230 231 232 233 234 235 236
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
237
      auto dev_id = place.device;
238
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
239 240 241 242 243 244 245 246
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
247
      auto dev_id = place.device;
F
fwenguang 已提交
248
      platform::SetMLUDeviceId(dev_id);
249 250 251 252 253 254 255 256 257
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
      platform::DeviceManager::SetDevice(place);
258
#endif
P
peizhilin 已提交
259
    }
P
peizhilin 已提交
260

261
    {
262 263 264
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
265 266
      platform::RecordEvent op_type_record_event(
          Type().c_str(), platform::TracerEventType::Operator, 1);
267 268
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
C
chenjian 已提交
269 270
          op_name, platform::TracerEventType::Operator, 1,
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
271 272
      RunImpl(scope, place);
    }
273

Z
Zhang Ting 已提交
274
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
275
  } catch (platform::EnforceNotMet& exception) {
276
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
277
    throw std::move(exception);
278 279 280 281 282 283
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
284
  } catch (...) {
285
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
286
    std::rethrow_exception(std::current_exception());
287
  }
288 289
}

290
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
291
  return inputs_.find(name) != inputs_.end();
292 293
}

294
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
295
  auto& ins = Inputs(name);
296 297
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
298
      platform::errors::InvalidArgument(
299 300
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
301
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
302 303
}

Y
Yu Yang 已提交
304 305
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
306
  auto it = inputs_.find(name);
307 308 309 310
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
311
  return it->second;
Y
Yan Chunwei 已提交
312 313
}

314
bool OperatorBase::HasOutputs(const std::string& name) const {
315
  if (outputs_.find(name) != outputs_.end()) {
316 317 318 319 320 321
    return true;
  } else {
    return false;
  }
}

322
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
323
  auto& outs = Outputs(name);
324 325 326 327 328
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
329
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
330 331
}

Y
Yu Yang 已提交
332 333
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
334
  auto it = outputs_.find(name);
335 336 337 338
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
339
  return it->second;
Y
Yan Chunwei 已提交
340 341
}

342
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
343
  std::stringstream ss;
Y
Yu Yang 已提交
344
  ss << "Op(" << type_ << "), inputs:{";
345

346
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
347 348
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
349 350
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
351 352
  }

Y
Yu Yang 已提交
353 354
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
355 356
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
357 358
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
359 360
      auto var_name = input.second[i];
      ss << var_name;
361
      if (scope) {
Q
Qiao Longfei 已提交
362 363 364 365 366 367 368
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
369 370 371
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
372
          ss << ":" << dtype;
373 374
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
375
          ss << "(" << GetPlace(*scope, var_name) << ")";
376
        }
377
      }
Y
Yu Yang 已提交
378 379 380
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
381
    }
Y
Yu Yang 已提交
382
    ss << "]";
Y
Yu Yang 已提交
383 384
    ++it;
    if (it != inputs_.end()) {
385 386
      ss << ", ";
    }
Q
Qiao Longfei 已提交
387
  }
Y
Yu Yang 已提交
388
  ss << "}, outputs:{";
Y
Yu Yang 已提交
389 390
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
391 392
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
393 394
      auto var_name = output.second[i];
      ss << var_name;
395
      if (scope) {
Q
Qiao Longfei 已提交
396 397 398 399 400 401 402
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
403 404
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
405 406
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
407
          ss << "(" << GetPlace(*scope, var_name) << ")";
408
        }
409
      }
Y
Yu Yang 已提交
410 411 412
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
413
    }
Y
Yu Yang 已提交
414
    ss << "]";
Y
Yu Yang 已提交
415 416
    ++it;
    if (it != outputs_.end()) {
417 418
      ss << ", ";
    }
Q
Qiao Longfei 已提交
419
  }
Y
Yu Yang 已提交
420
  ss << "}.";
Q
Qiao Longfei 已提交
421 422 423
  return ss.str();
}

Y
Yu Yang 已提交
424
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
425 426
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
427
                           const AttributeMap& attrs)
S
sneaxiy 已提交
428 429 430 431 432 433
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
434 435 436 437 438 439 440 441
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
442
}
443

Q
qijun 已提交
444 445
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
446
  for (auto& o : inputs_) {
Q
qijun 已提交
447 448 449 450 451 452
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
453 454 455 456 457 458 459 460 461 462
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
463
  auto& info = Info();
Y
Yu Yang 已提交
464 465

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
466
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
467 468 469 470 471 472 473 474 475
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
476 477
}

478
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
479
  if (info_ == nullptr || info_->proto_ == nullptr) return;
480

S
sneaxiy 已提交
481
  for (auto& in : info_->Proto().inputs()) {
482
    if (!in.dispensable() && !in.extra()) {
483 484 485 486
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
487
    }
488 489
  }

S
sneaxiy 已提交
490
  for (auto& out : info_->Proto().outputs()) {
491
    if (!out.dispensable() && !out.extra()) {
492 493 494 495
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
496
    }
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
512

C
chengduo 已提交
513
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
514 515
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
516 517
  } else if (var.IsType<pten::SelectedRows>()) {
    return &(var.Get<pten::SelectedRows>().value());
Q
QI JUN 已提交
518
  } else {
519 520 521
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
522 523 524
  }
}

C
chengduo 已提交
525
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
526
  if (var->IsType<LoDTensor>()) {
527
    return var->GetMutable<LoDTensor>();
528 529
  } else if (var->IsType<pten::SelectedRows>()) {
    return var->GetMutable<pten::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
530
  } else {
531 532 533
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
534 535 536
  }
}

537
bool ExecutionContext::HasInput(const std::string& name) const {
538
  auto* var = InputVar(name);
539 540 541 542
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
543
  auto* var = OutputVar(name);
544 545 546
  return var != nullptr;
}

X
Xin Pan 已提交
547
const Variable* ExecutionContext::InputVar(const std::string& name) const {
548 549
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
550 551 552
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

553 554
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
555
      platform::errors::InvalidArgument(
556 557
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
558 559 560
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
561
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
562 563 564
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

565 566 567 568 569
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
570 571 572
  return it->second.empty() ? nullptr : it->second[0];
}

573
template <>
574
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
575
    const std::string& name) const {
576 577
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
578 579
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
580 581 582 583 584
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
585
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
586
                   if (var == nullptr) return nullptr;
587 588 589 590 591
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
592 593 594 595 596
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

597
template <>
598
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
599
    const std::string& name) const {
H
hong 已提交
600 601 602
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
603 604
    return {};
  }
605
  std::vector<Tensor*> res;
606 607 608 609 610
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
611
                 });
612 613 614
  return res;
}

Y
Yu Yang 已提交
615
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
616 617 618 619 620 621
  // check in new Function kernel first
  auto& kernel_factory = pten::KernelFactory::Instance();
  auto kernel_key_map =
      kernel_factory.SelectKernelMap(pten::TransToPtenKernelName(op_type));
  for (auto& kernel : kernel_key_map) {
    if (platform::is_gpu_place(
622
            pten::TransToPtenPlace(kernel.first.backend()))) {
H
hong 已提交
623 624 625 626
      return true;
    }
  }

Y
Yu Yang 已提交
627 628 629 630 631 632 633 634 635 636 637
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
H
hong 已提交
638

Y
Yu Yang 已提交
639 640 641
  return false;
}

642 643
class RuntimeInferShapeContext : public InferShapeContext {
 public:
644
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
645
      : op_(op), ctx_(ctx) {}
646 647

  bool HasInput(const std::string& name) const override {
648
    // has only one input
X
Xin Pan 已提交
649
    const auto& ins = ctx_.inputs;
650 651
    auto it = ins.find(name);
    if (it == ins.end()) {
652 653
      return false;
    }
654
    const auto& in = it->second;
X
Xin Pan 已提交
655
    if (in.size() == 0) return false;
656 657 658 659
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
660
    return in[0] != nullptr;
661 662 663
  }

  bool HasOutput(const std::string& name) const override {
664
    // has only one output
X
Xin Pan 已提交
665
    const auto& outs = ctx_.outputs;
666 667
    auto it = outs.find(name);
    if (it == outs.end()) {
668 669
      return false;
    }
670
    const auto& out = it->second;
X
Xin Pan 已提交
671
    if (out.size() == 0) {
672 673
      return false;
    }
674 675 676 677
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
678
    return out[0] != nullptr;
679 680
  }

681 682 683 684
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

685
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
686 687
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
688
    if (it == ins.end() || it->second.empty()) {
689 690
      return false;
    }
X
Xin Pan 已提交
691 692
    for (auto& input : it->second) {
      if (input == nullptr) {
693 694 695 696 697 698 699
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
700 701
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
702
    if (it == outs.end() || it->second.empty()) {
703 704
      return false;
    }
X
Xin Pan 已提交
705 706
    for (auto& output : it->second) {
      if (output == nullptr) {
707 708 709 710 711 712 713 714
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
715
  std::vector<std::string> Inputs(const std::string& name) const override {
716 717 718
    return op_.Inputs(name);
  }

H
hong 已提交
719
  std::vector<std::string> Outputs(const std::string& name) const override {
720 721 722
    return op_.Outputs(name);
  }

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

746 747
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
748 749
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
766 767 768

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
769

770 771 772 773 774
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
775

776 777 778
    if (in_var->IsType<pten::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<pten::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<pten::SelectedRows>();
779 780 781 782 783 784 785 786
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
787
      PADDLE_THROW(platform::errors::Unimplemented(
788
          "Currently, the input type of ShareDim only can be LoDTensor "
789
          "or SelectedRows."));
790 791 792
    }
  }

H
hong 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
811
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
838 839
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
840 841
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
858 859

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
860
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
861
    Variable* out_var = out_it->second.at(j);
862 863 864 865
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
866
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
867 868
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
869

M
mozga-intel 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
889 890
  }

891
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
892
    PADDLE_THROW(platform::errors::PreconditionNotMet(
893
        "GetLoDLevel is only used in compile time. The calculation of "
894
        "output's actual lod is different among operators so that should be "
895
        "set in the runtime kernel."));
896 897
  }

898 899
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
900
    PADDLE_THROW(platform::errors::PreconditionNotMet(
901
        "SetLoDLevel is only used in compile time. The calculation of "
902
        "output's actual lod is different among operators so that should be "
903
        "set in the runtime kernel."));
C
chengduo 已提交
904 905
  }

906 907
  bool IsRuntime() const override { return true; }

908 909 910 911 912 913 914 915 916 917 918
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
    } catch (std::bad_cast exp) {
      return false;
    }
  }

919 920
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
921
      const std::string& name) const override {
922 923 924 925 926 927 928 929
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
930
      const std::string& name) const override {
931 932 933 934 935 936 937
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
938 939
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
940 941 942 943 944
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
945 946 947 948 949 950 951 952
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
953 954 955 956 957 958 959 960 961 962
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
963 964
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
965 966 967 968 969
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
970 971 972 973 974 975 976 977 978
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

979
 protected:
X
Xin Pan 已提交
980
  DDim GetDim(Variable* var) const {
981 982
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
983 984
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
985 986
    } else if (var->IsType<pten::SelectedRows>()) {
      return var->Get<pten::SelectedRows>().GetCompleteDims();
987
    } else {
988 989 990 991
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
992 993 994
    }
  }

X
Xin Pan 已提交
995 996 997 998 999 1000 1001 1002
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1003
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1004 1005
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1006 1007
  }

X
Xin Pan 已提交
1008
  void SetDim(Variable* var, const DDim& dim) {
1009 1010
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1011 1012
    } else if (var->IsType<pten::SelectedRows>()) {
      var->GetMutable<pten::SelectedRows>()->set_height(dim[0]);
1013
    } else {
1014 1015 1016 1017
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1018 1019 1020 1021 1022 1023
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1024 1025 1026 1027 1028 1029
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
1030 1031 1032 1033 1034
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1035 1036 1037
    }
  }

F
fengjiayi 已提交
1038 1039
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1040 1041
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1042 1043
  }

X
Xin Pan 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1055 1056 1057
    return ToVarType(var->Type());
  }

1058 1059 1060
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1061 1062 1063 1064
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1065 1066 1067 1068 1069
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1070 1071 1072 1073
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1074
    return it->second;
F
fengjiayi 已提交
1075 1076
  }

1077
  const OperatorBase& op_;
X
Xin Pan 已提交
1078
  const RuntimeContext& ctx_;
1079 1080
};

1081 1082
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1083 1084 1085 1086
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1087 1088
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1089 1090
    return;
  }
1091 1092 1093 1094 1095 1096 1097 1098
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1099 1100
}

1101 1102
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1103 1104
  auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1105
                     [data_type](OpKernelMap::const_reference kern_pair) {
1106 1107
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1108 1109
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1110 1111 1112
                     });
}

1113 1114
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1115 1116 1117
  bool use_mkldnn_ctx = ctx.HasAttr("use_mkldnn") &&
                        ctx.Attr<bool>("use_mkldnn") &&
                        platform::is_cpu_place(ctx.GetPlace());
1118
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1119 1120
}

1121 1122 1123 1124 1125 1126 1127
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1128
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1129 1130
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1131
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1132
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1133 1134
}

L
luotao1 已提交
1135 1136
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1137 1138
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1139 1140 1141
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1142
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1143
    all_kernels_must_compute_runtime_shape_ = true;
1144
  const Scope* cur_scope = &scope;
1145
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1146 1147
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1148
    pre_scope_ = cur_scope;
L
luotao1 已提交
1149
  } else {
1150 1151 1152 1153 1154 1155
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1156 1157 1158 1159 1160 1161 1162 1163
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1164
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1165
  auto* dev_ctx = pool.Get(place);
1166

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1177
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1178 1179 1180 1181
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1182 1183 1184 1185 1186 1187

  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1188 1189 1190
  pten::KernelKey pt_kernel_key;
  std::string pt_kernel_name;
  if (pten::KernelFactory::Instance().HasCompatiblePtenKernel(type_)) {
1191
    if (pt_kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
1192 1193
      pt_kernel_signature_.reset(
          new KernelSignature(std::move(GetExpectedPtenKernelArgs(exe_ctx))));
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
      VLOG(6) << *pt_kernel_signature_.get();

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

      pt_kernel_name = pt_kernel_signature_->name;
      pt_kernel_key = TransOpKernelTypeToPtenKernelKey(*kernel_type_.get());
      pt_kernel_.reset(
          new pten::Kernel(pten::KernelFactory::Instance().SelectKernel(
              pt_kernel_name, pt_kernel_key)));

      if (pt_kernel_->IsValid()) {
        VLOG(6) << "Static mode ChoosePtenKernel - kernel name: "
                << pt_kernel_name << " | kernel key: " << pt_kernel_key
                << " | kernel: " << *pt_kernel_;
      } else {
        VLOG(6) << "Static mode ChoosePtenKernel - kernel `" << pt_kernel_name
                << "` not found.";
      }
    }
    if (pt_kernel_->IsValid()) {
      run_pten_kernel_ = true;
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
#ifdef PADDLE_WITH_XPU
          ||
          paddle::platform::is_xpu_place(kernel_type_->place_) &&  // NOLINT
              !paddle::platform::is_xpu_support_op(
                  type_, *kernel_type_.get())  // NOLINT
          || paddle::platform::is_in_xpu_black_list(type_)
#endif
              ) {
        auto pt_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), pt_kernel_key, *this);
        pt_kernel_.reset(
            new pten::Kernel(pten::KernelFactory::Instance().SelectKernel(
                pt_kernel_name, pt_cpu_kernel_key)));

        dev_ctx = pool.Get(platform::CPUPlace());
        if (pt_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: " << pt_kernel_name
                  << " | kernel key: " << pt_cpu_kernel_key
                  << " | kernel: " << *pt_kernel_;
          run_pten_kernel_ = true;
        }
      }
1245 1246 1247 1248 1249
    }
  }
  if (!run_pten_kernel_) {
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1250
      dev_ctx = pool.Get(kernel_type_->place_);
1251
    }
1252 1253
  }

Y
yuyang18 已提交
1254 1255
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1256 1257
  Scope* transfer_scope = nullptr;
  {
1258
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1259 1260
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1261 1262 1263 1264
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1265
  }
Y
yuyang18 已提交
1266 1267 1268 1269
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1270
  if (!all_kernels_must_compute_runtime_shape_) {
1271
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1272 1273
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1274
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1275
    this->Info().infer_shape_(&infer_shape_ctx);
1276
  }
1277 1278 1279 1280 1281

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1282 1283
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1284
  {
1285
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1286 1287
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1288
    if (run_pten_kernel_) {
1289
      pten::KernelContext pt_kernel_context;
1290
      // Do data transform before building KernelContext
1291
      // TODO(zhiqiu): support TransferInplaceVarsBack
1292 1293
      PreparePtenData(exec_scope, *pt_kernel_, *pt_kernel_signature_,
                      runtime_ctx);
1294 1295
      BuildPtenKernelContext(*runtime_ctx, dev_ctx, &pt_kernel_context);
      (*pt_kernel_)(&pt_kernel_context);
1296 1297 1298 1299
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1300
  }
D
dzhwinter 已提交
1301

Y
yuyang18 已提交
1302
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1303
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1304
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1305
  }
1306 1307 1308 1309 1310 1311 1312

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1313 1314 1315 1316 1317 1318 1319 1320
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1321

D
dzhwinter 已提交
1322
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1323
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1324
    dev_ctx->Wait();
1325 1326
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1327 1328
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1329
  }
C
chengduoZH 已提交
1330 1331

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1332
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1333
  }
1334 1335 1336 1337 1338 1339 1340

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1341
}
X
Xin Pan 已提交
1342

1343 1344 1345
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1346 1347 1348
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1359 1360
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
1361 1362
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1363
      if (SupportGPU()) {
1364
        auto& dev_ctx = ctx.device_context();
1365
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1366 1367 1368 1369 1370
      }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1371
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1372 1373 1374
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1375 1376 1377 1378 1379 1380
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1381 1382
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1383 1384 1385
  return expected_kernel_key;
}

1386 1387
pten::KernelKey OperatorWithKernel::ChoosePtenKernel(
    const ExecutionContext& ctx) const {
1388
  pt_kernel_signature_.reset(
1389
      new KernelSignature(std::move(GetExpectedPtenKernelArgs(ctx))));
1390
  VLOG(6) << *pt_kernel_signature_.get();
1391 1392 1393 1394

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

Y
YuanRisheng 已提交
1395
  auto pt_kernel_name = pt_kernel_signature_->name;
1396 1397 1398 1399 1400 1401
  auto pt_kernel_key = TransOpKernelTypeToPtenKernelKey(*kernel_type_.get());
  pt_kernel_.reset(
      new pten::Kernel(pten::KernelFactory::Instance().SelectKernel(
          pt_kernel_name, pt_kernel_key)));

  if (pt_kernel_->IsValid()) {
C
Chen Weihang 已提交
1402
    VLOG(6) << "Static mode ChoosePtenKernel - kernel name: " << pt_kernel_name
1403 1404 1405
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
C
Chen Weihang 已提交
1406
    VLOG(6) << "Static mode ChoosePtenKernel - kernel `" << pt_kernel_name
1407 1408
            << "` not found.";
  }
1409
  return pt_kernel_key;
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1425 1426

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1427

L
Liu Yiqun 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1437 1438
#endif
#ifdef PADDLE_WITH_XPU
1439
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1440 1441 1442
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1443 1444 1445 1446 1447 1448
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1449
#endif
L
Liu-xiandong 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

#ifdef PADDLE_WITH_XPU_KP
  bool use_xpu_kp_kernel_rt =
      FLAGS_run_kp_kernel &&
      paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
  bool use_xpu_kp_kernel_debug =
      paddle::platform::is_in_xpu_kpwhite_list(type_);
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
      (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug)) {
    expected_kernel_key.library_type_ = LibraryType::kKP;
    kernel_iter = kernels.find(expected_kernel_key);
    VLOG(3) << "using XPU KP kernel: " << type_
            << ", using_kernel_key:" << expected_kernel_key;
  }
#endif

A
Allen Guo 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1476 1477
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1478
      platform::is_npu_place(expected_kernel_key.place_)) {
1479 1480 1481 1482 1483 1484
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1485 1486 1487
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1488
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1489 1490 1491 1492 1493 1494
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1495
#endif
1496 1497 1498 1499
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1500

1501 1502 1503 1504 1505
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1506 1507
}

Y
yuyang18 已提交
1508 1509 1510 1511
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1512
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1513
    auto* origin_var = scope.FindVar(var_name);
1514 1515 1516
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1517
    auto* original_tensor =
C
chengduo 已提交
1518
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1519
    auto* var = transfer_scope.FindVar(var_name);
1520 1521
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1522
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1523
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1524
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1525 1526 1527 1528 1529
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1530 1531 1532
  }
}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
1562
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
1582
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1600
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1601
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1602 1603
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1604
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1605

1606
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1607 1608 1609 1610
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1611 1612
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1613 1614 1615
    }
  }

Y
yuyang18 已提交
1616
  for (auto& var_name_item : Inputs()) {
1617 1618
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1619

X
Xin Pan 已提交
1620 1621 1622 1623
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1624
      auto* var = input_vars[i];
X
Xin Pan 已提交
1625

Y
yuyang18 已提交
1626
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1627
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1628 1629 1630
        continue;
      }

C
chengduo 已提交
1631
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1647 1648
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1681 1682
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1683

1684 1685 1686
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1687
      // We use a thread_local cache to fix that issue, the key in the cache is
1688 1689 1690 1691 1692
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1693 1694
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1695
      // variables, that behavior a lot different.
1696 1697 1698 1699 1700 1701 1702 1703 1704
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1705 1706
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1707
        enable_cache_transfer_scope_ = true;
1708
      }
1709
      if (!new_scope) {
Y
yuyang18 已提交
1710 1711
        new_scope = &scope.NewScope();
      }
1712 1713 1714 1715
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1716
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1717 1718
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1719
      if (enable_cache_runtime_context_) {
1720 1721
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1722 1723

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1724
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1725
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1743
      Tensor out;
Y
yuyang18 已提交
1744
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1745 1746 1747
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1748

1749 1750 1751 1752 1753 1754
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1755 1756 1757 1758 1759 1760

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1761 1762
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1763 1764 1765

  return new_scope;
}
Q
Qiao Longfei 已提交
1766

1767
void OperatorWithKernel::ParseInputDataType(
1768
    const std::vector<Variable*>& vars, const std::string& name,
1769
    proto::VarType::Type* data_type) const {
1770
  proto::VarType::Type default_data_type =
1771 1772 1773 1774 1775 1776 1777 1778 1779
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
1780 1781
      } else if (var->IsType<pten::SelectedRows>()) {
        t = &(var->Get<pten::SelectedRows>().value());
1782
      } else if (var->IsType<LoDTensorArray>()) {
1783 1784 1785 1786
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
1787 1788
          }
        }
1789 1790
      }
      if (t != nullptr) {
1791 1792
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
1793 1794 1795
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
1796 1797
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
1798 1799 1800 1801 1802 1803 1804 1805 1806
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
1807 1808 1809 1810 1811 1812
        *data_type = tmp;
      }
    }
  }
}

1813
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1814
    const ExecutionContext& ctx) const {
1815 1816 1817
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1818
  for (auto& input : ctx.InNameList()) {
1819 1820
    const std::vector<Variable*> vars = ctx.MultiInputVar(input);
    ParseInputDataType(vars, input, &data_type);
Y
Yu Yang 已提交
1821
  }
1822 1823 1824 1825
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1826 1827 1828 1829 1830 1831 1832 1833
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
1834
  ParseInputDataType(ctx.MultiInputVar(name), name, &data_type);
1835 1836
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1837 1838 1839 1840 1841
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1842
  return data_type;
Y
Yu Yang 已提交
1843
}
1844

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
1863 1864
  } else if (var->IsType<pten::SelectedRows>()) {
    t = var->GetMutable<pten::SelectedRows>()->mutable_value();
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
1896 1897
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
1898 1899 1900 1901 1902 1903 1904

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1905 1906 1907 1908 1909 1910 1911 1912
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1913 1914
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1915 1916
}

1917 1918
KernelSignature OperatorWithKernel::GetExpectedPtenKernelArgs(
    const ExecutionContext& ctx) const {
1919 1920 1921 1922
  InitDefaultKernelSignatureMap();
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
  return pten::OpUtilsMap::Instance().GetArgumentMappingFn(Type())(
      arg_mapping_ctx);
1923 1924
}

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
Scope* OperatorWithKernel::PreparePtenData(
    const Scope& scope, const pten::Kernel& pt_kernel,
    const KernelSignature& pt_kernel_signature, RuntimeContext* ctx) const {
  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto input_defs = pt_kernel.args_def().input_defs();
  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));
  Scope* new_scope = nullptr;
1936
  auto& name_map = Inputs();
Y
YuanRisheng 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
    }
  }

1947 1948
  for (size_t i = 0; i < input_defs.size(); ++i) {
    auto& in_def = input_defs.at(i);
1949
    if (ctx->inputs.find(input_names[i]) == ctx->inputs.end()) {
H
hong 已提交
1950 1951
      continue;
    }
1952
    auto& ins_vector = ctx->inputs.at(input_names[i]);
1953
    auto& name_vec = name_map.at(input_names[i]);
Y
YuanRisheng 已提交
1954 1955 1956
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(input_names[i]) > 0;

1957 1958 1959 1960 1961 1962 1963
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      // Only tensor can be tranfer to another device.
      auto* var = ins_vector[offset];
      if (var == nullptr || !VarIsTensor(*var)) {
        continue;
      }
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
YuanRisheng 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
        // TODO(YuanRisheng) : There need to supplement MKLDNN code later
        continue;
      }

1973 1974 1975 1976
      if (!tensor_in->IsInitialized()) {
        continue;
      }

1977
      auto expected_place = pten::TransToPtenPlace(in_def.backend);
1978 1979 1980 1981
      if (platform::is_same_place(tensor_in->place(), expected_place)) {
        continue;
      }

1982 1983
      VLOG(3) << "PTen Transform Variable " << input_names[i] << " from "
              << tensor_in->place() << " to " << expected_place;
1984

1985 1986 1987
      if (!new_scope) {
        new_scope = &scope.NewScope();
      }
1988

1989
      // Create new var with the same name in transfer scopes
1990
      auto* trans_var = new_scope->Var(name_vec[offset]);
1991
      ins_vector[offset] = trans_var;
1992

1993 1994 1995 1996
      // Do transfer
      Tensor out;
      framework::TensorCopySync(*tensor_in, expected_place, &out);
      SetTensorToVariable(*var, out, trans_var);
1997 1998 1999 2000 2001 2002
    }
  }

  return new_scope;
}

2003
void OperatorWithKernel::BuildPtenKernelContext(
2004 2005 2006
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx,
    pten::KernelContext* pt_kernel_context) const {
  pt_kernel_context->SetDeviceContext(dev_ctx);
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

  auto& input_names = std::get<0>(pt_kernel_signature_->args);
  auto& attr_names = std::get<1>(pt_kernel_signature_->args);
  auto& output_names = std::get<2>(pt_kernel_signature_->args);

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2035
    auto it = ctx.inputs.find(input_names[i]);
2036 2037 2038

    // calcute the start and end index of the input tensors
    size_t start_idx =
2039
        (i == 0 ? 0 : pt_kernel_context->InputRangeAt(i - 1).second);
2040

H
hong 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
    // deal with optional here
    if ((it == ctx.inputs.end()) &&
        (input_defs[i].type_index ==
         std::type_index(typeid(paddle::optional<const pten::DenseTensor&>)))) {
      pt_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                          i);
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2053
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2054
      const pten::TensorBase* tensor_in = nullptr;
2055
      auto* var = ins_vector[offset];
H
hong 已提交
2056 2057
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2058 2059
      } else if (var->IsType<pten::SelectedRows>()) {
        tensor_in = &(var->Get<pten::SelectedRows>());
2060 2061 2062 2063
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2064
      }
H
hong 已提交
2065

2066
      pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2067
    }
2068
    pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2069 2070 2071
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2072
    auto it = ctx.outputs.find(output_names[i]);
2073
    size_t start_idx =
2074
        (i == 0 ? 0 : pt_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
      pt_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                           i);
      continue;
    }
    auto& outs_vector = it->second;

2089
    size_t end_idx = start_idx + outs_vector.size();
2090 2091

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2092
      pten::TensorBase* tensor_out = nullptr;
2093
      auto* var = outs_vector[offset];
H
hong 已提交
2094 2095
      if (var->template IsType<framework::LoDTensor>()) {
        tensor_out = var->template GetMutable<framework::LoDTensor>();
2096 2097
      } else if (var->template IsType<pten::SelectedRows>()) {
        tensor_out = var->template GetMutable<pten::SelectedRows>();
2098 2099 2100 2101
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported output `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2102
      }
2103

2104 2105
      experimental::ResetTensorDtypeAndLayoutByArgDef(tensor_out,
                                                      output_defs.at(i));
2106
      SetAllocationForOutputTenosr(
2107
          tensor_out, pten::TransToPtenPlace(output_defs.at(i).backend));
2108 2109

      pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2110
    }
2111

2112
    pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
2113 2114 2115
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
2116 2117 2118 2119 2120
    if (attr_defs[i].type_index == std::type_index(typeid(pten::ScalarArray))) {
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // shape is in the attribute
        if (std::type_index(attr_iter->second.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
2121
          pt_kernel_context->EmplaceBackAttr(std::move(pten::ScalarArray(
2122
              BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2123 2124
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
2125
          pt_kernel_context->EmplaceBackAttr(std::move(pten::ScalarArray(
2126
              BOOST_GET_CONST(std::vector<int32_t>, attr_iter->second))));
C
chentianyu03 已提交
2127 2128 2129 2130
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(int32_t))) {
          pt_kernel_context->EmplaceBackAttr(std::move(pten::ScalarArray(
              &BOOST_GET_CONST(int32_t, attr_iter->second), 1)));
2131 2132 2133 2134 2135 2136 2137 2138 2139
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to ScalarArray when "
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
2140
          pt_kernel_context->EmplaceBackAttr(std::move(
2141 2142
              experimental::MakePtenScalarArrayFromVar(*ins_vector.front())));
        } else {  // ShapeTensorList
2143
          pt_kernel_context->EmplaceBackAttr(std::move(
2144 2145 2146 2147 2148
              experimental::MakePtenScalarArrayFromVarList(ins_vector)));
        }
      }
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(pten::Scalar))) {
2149 2150 2151
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
2152 2153 2154 2155
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // scalar is in the attribute
        auto& attr = Attrs().at(attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
2156
          pt_kernel_context->EmplaceBackAttr(
2157 2158 2159
              std::move(pten::Scalar(BOOST_GET_CONST(float, attr))));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
2160
          pt_kernel_context->EmplaceBackAttr(
2161
              std::move(pten::Scalar(BOOST_GET_CONST(std::string, attr))));
2162 2163 2164 2165
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          pt_kernel_context->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(int, attr))));
2166 2167 2168 2169 2170 2171
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext.",
              attr_names[i]));
        }
2172
      } else {
2173
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
2174
        pt_kernel_context->EmplaceBackAttr(std::move(
2175
            experimental::MakePtenScalarFromVar(*ins_vector.front())));
2176
      }
2177

2178 2179
    } else {
      // TODO(chenweihang): support other attrs later
2180
      auto& attr = Attrs().at(attr_names[i]);
2181
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
2182
        pt_kernel_context->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
2183
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
2184
        pt_kernel_context->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
2185
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
2186
        pt_kernel_context->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
H
hong 已提交
2187 2188
      } else if (attr_defs[i].type_index == std::type_index(typeid(int64_t))) {
        pt_kernel_context->EmplaceBackAttr(BOOST_GET_CONST(int64_t, attr));
H
hong 已提交
2189 2190 2191
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::string))) {
        pt_kernel_context->EmplaceBackAttr(BOOST_GET_CONST(std::string, attr));
2192
      } else if (attr_defs[i].type_index ==
2193
                 std::type_index(typeid(pten::DataType))) {
2194
        auto data_type = paddle::framework::TransToPtenDataType(
2195 2196
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
2197
        pt_kernel_context->EmplaceBackAttr(data_type);
2198 2199 2200 2201 2202 2203 2204 2205
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Pten_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
2206
          pt_kernel_context->EmplaceBackAttr(vector_int64_attr);
2207 2208 2209
        }
        // TODO(YuanRisheng) Need support vector<int64_t> attr

H
hong 已提交
2210 2211 2212 2213
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int32_t>))) {
        const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
        pt_kernel_context->EmplaceBackAttr(vector_int_attr);
2214 2215
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
2216
            "Unsupported cast op attribute `%s` when construct "
2217 2218 2219 2220 2221 2222 2223
            "KernelContext.",
            attr_names[i]));
      }
    }
  }
}

Q
Qiao Longfei 已提交
2224
}  // namespace framework
L
liaogang 已提交
2225
}  // namespace paddle