operator.cc 89.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
22
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_transform.h"
24
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
25
#include "paddle/fluid/framework/details/nan_inf_utils.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/shape_inference.h"
29
#include "paddle/fluid/framework/transfer_scope_cache.h"
30
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/platform/enforce.h"
34
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
35
#include "paddle/fluid/platform/profiler/event_tracing.h"
36 37 38 39
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/common/scalar_array.h"
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
40

41
namespace phi {
42
class DenseTensor;
43
}  // namespace phi
44

45
#ifdef PADDLE_WITH_XPU
46 47
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
48
#endif
Q
Qiao Longfei 已提交
49

50 51 52 53
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
54 55 56 57
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
58
DECLARE_bool(benchmark);
59
DECLARE_bool(check_nan_inf);
60
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
61
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
62
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
63

Q
Qiao Longfei 已提交
64 65 66
namespace paddle {
namespace framework {

67 68 69 70 71 72
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
73

74
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
75
                         bool get_actual_dim = false) {
76
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
77 78
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
79 80
  }

M
minqiyang 已提交
81 82 83
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
84
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
85
    if (get_actual_dim) {
86
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
87
    } else {
88
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
89
    }
S
Steffy-zxf 已提交
90 91
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
92 93 94 95 96
  } else {
    return DDim({-1});
  }
}

97
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
98 99 100 101 102
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

103
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
104 105 106 107
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
108

M
minqiyang 已提交
109 110 111
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
112 113
      return "";
    }
114
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
115 116
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
117 118 119
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
120
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
121
    }
S
Steffy-zxf 已提交
122 123
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
124 125 126 127 128
  } else {
    return "";
  }
}

129
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
146 147
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
148 149 150 151 152 153 154 155 156 157
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

158
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
159 160 161 162 163
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

164 165
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
166 167 168 169 170
  }

  return -1;
}

171
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
172 173 174 175 176 177 178
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
179 180 181
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
182 183 184 185 186
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
187 188 189 190 191
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
192
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
193 194 195 196 197 198
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
199
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
200 201 202 203 204 205
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

206
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
207 208 209
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
210
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
211 212 213 214
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
215
#else
216
      auto dev_id = place.device;
P
peizhilin 已提交
217
      platform::SetDeviceId(dev_id);
218 219 220
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
221 222 223 224
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
225
#else
226
      auto dev_id = place.device;
227
      platform::SetXPUDeviceId(dev_id);
228 229 230 231 232 233 234 235
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
236
      auto dev_id = place.device;
237
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
238 239 240 241 242 243 244 245
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
246
      auto dev_id = place.device;
F
fwenguang 已提交
247
      platform::SetMLUDeviceId(dev_id);
248 249 250 251 252 253 254 255
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
256
      phi::DeviceManager::SetDevice(place);
257
#endif
P
peizhilin 已提交
258
    }
P
peizhilin 已提交
259

260
    {
261 262 263
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
264
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
265
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
266 267
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
C
chenjian 已提交
268 269
          op_name, platform::TracerEventType::Operator,
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
270
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
271 272
      RunImpl(scope, place);
    }
273

Z
Zhang Ting 已提交
274
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
275
  } catch (platform::EnforceNotMet& exception) {
276
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
277
    throw std::move(exception);
278 279 280 281 282 283
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
284
  } catch (...) {
285
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
286
    std::rethrow_exception(std::current_exception());
287
  }
288 289
}

290
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
291
  return inputs_.find(name) != inputs_.end();
292 293
}

294
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
295
  auto& ins = Inputs(name);
296 297
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
298
      platform::errors::InvalidArgument(
299 300
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
301
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
302 303
}

Y
Yu Yang 已提交
304 305
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
306
  auto it = inputs_.find(name);
307 308 309 310
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
311
  return it->second;
Y
Yan Chunwei 已提交
312 313
}

314
bool OperatorBase::HasOutputs(const std::string& name) const {
315
  if (outputs_.find(name) != outputs_.end()) {
316 317 318 319 320 321
    return true;
  } else {
    return false;
  }
}

322
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
323
  auto& outs = Outputs(name);
324 325 326 327 328
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
329
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
330 331
}

Y
Yu Yang 已提交
332 333
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
334
  auto it = outputs_.find(name);
335 336 337 338
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
339
  return it->second;
Y
Yan Chunwei 已提交
340 341
}

342
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
343
  std::stringstream ss;
Y
Yu Yang 已提交
344
  ss << "Op(" << type_ << "), inputs:{";
345

346
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
347 348
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
349 350
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
351 352
  }

Y
Yu Yang 已提交
353 354
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
355 356
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
357 358
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
359 360
      auto var_name = input.second[i];
      ss << var_name;
361
      if (scope) {
Q
Qiao Longfei 已提交
362 363 364 365 366 367 368
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
369 370 371
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
372
          ss << ":" << dtype;
373 374
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
375
          ss << "(" << GetPlace(*scope, var_name) << ")";
376
        }
377
      }
Y
Yu Yang 已提交
378 379 380
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
381
    }
Y
Yu Yang 已提交
382
    ss << "]";
Y
Yu Yang 已提交
383 384
    ++it;
    if (it != inputs_.end()) {
385 386
      ss << ", ";
    }
Q
Qiao Longfei 已提交
387
  }
Y
Yu Yang 已提交
388
  ss << "}, outputs:{";
Y
Yu Yang 已提交
389 390
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
391 392
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
393 394
      auto var_name = output.second[i];
      ss << var_name;
395
      if (scope) {
Q
Qiao Longfei 已提交
396 397 398 399 400 401 402
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
403 404
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
405 406
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
407
          ss << "(" << GetPlace(*scope, var_name) << ")";
408
        }
409
      }
Y
Yu Yang 已提交
410 411 412
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
413
    }
Y
Yu Yang 已提交
414
    ss << "]";
Y
Yu Yang 已提交
415 416
    ++it;
    if (it != outputs_.end()) {
417 418
      ss << ", ";
    }
Q
Qiao Longfei 已提交
419
  }
Y
Yu Yang 已提交
420
  ss << "}.";
Q
Qiao Longfei 已提交
421 422 423
  return ss.str();
}

Y
Yu Yang 已提交
424
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
425 426
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
427
                           const AttributeMap& attrs)
S
sneaxiy 已提交
428 429 430 431 432 433
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
434 435 436 437 438 439 440 441
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
442
}
443

Q
qijun 已提交
444 445
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
446
  for (auto& o : inputs_) {
Q
qijun 已提交
447 448 449 450 451 452
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
453 454 455 456 457 458 459 460 461 462
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
463
  auto& info = Info();
Y
Yu Yang 已提交
464 465

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
466
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
467 468 469 470 471 472 473 474 475
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
476 477
}

478
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
479
  if (info_ == nullptr || info_->proto_ == nullptr) return;
480

S
sneaxiy 已提交
481
  for (auto& in : info_->Proto().inputs()) {
482
    if (!in.dispensable() && !in.extra()) {
483 484 485 486
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
487
    }
488 489
  }

S
sneaxiy 已提交
490
  for (auto& out : info_->Proto().outputs()) {
491
    if (!out.dispensable() && !out.extra()) {
492 493 494 495
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
496
    }
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
512

C
chengduo 已提交
513
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
514 515
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
516 517
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
518
  } else {
519 520 521
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
522 523 524
  }
}

C
chengduo 已提交
525
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
526
  if (var->IsType<LoDTensor>()) {
527
    return var->GetMutable<LoDTensor>();
528 529
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
530
  } else {
531 532 533
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
534 535 536
  }
}

537
bool ExecutionContext::HasInput(const std::string& name) const {
538
  auto* var = InputVar(name);
539 540 541
  return var != nullptr;
}

542 543 544 545 546 547 548 549 550 551 552 553 554 555
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

556
bool ExecutionContext::HasOutput(const std::string& name) const {
557
  auto* var = OutputVar(name);
558 559 560
  return var != nullptr;
}

X
Xin Pan 已提交
561
const Variable* ExecutionContext::InputVar(const std::string& name) const {
562 563
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
564 565 566
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

567 568
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
569
      platform::errors::InvalidArgument(
570 571
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
572 573 574
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
575
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
576 577 578
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

579 580 581 582 583
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
584 585 586
  return it->second.empty() ? nullptr : it->second[0];
}

587
template <>
588
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
589
    const std::string& name) const {
590 591
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
592 593
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
594 595 596 597 598
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
599
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
600
                   if (var == nullptr) return nullptr;
601 602 603 604 605
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
606 607 608 609 610
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

611
template <>
612
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
613
    const std::string& name) const {
H
hong 已提交
614 615 616
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
617 618
    return {};
  }
619
  std::vector<Tensor*> res;
620 621 622 623 624
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
625
                 });
626 627 628
  return res;
}

Y
Yu Yang 已提交
629
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
630
  // check in new Function kernel first
631
  bool has_phi_kernel = false;
632
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
633
  auto kernel_key_map =
634
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
635
  for (auto& kernel : kernel_key_map) {
636
    has_phi_kernel = true;
637
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
638 639 640 641
      return true;
    }
  }

Y
Yu Yang 已提交
642 643
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
644 645 646 647 648 649 650 651 652 653 654 655 656
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
657 658 659
      return true;
    }
  }
H
hong 已提交
660

Y
Yu Yang 已提交
661 662 663
  return false;
}

664 665
class RuntimeInferShapeContext : public InferShapeContext {
 public:
666
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
667
      : op_(op), ctx_(ctx) {}
668 669

  bool HasInput(const std::string& name) const override {
670
    // has only one input
X
Xin Pan 已提交
671
    const auto& ins = ctx_.inputs;
672 673
    auto it = ins.find(name);
    if (it == ins.end()) {
674 675
      return false;
    }
676
    const auto& in = it->second;
X
Xin Pan 已提交
677
    if (in.size() == 0) return false;
678 679 680 681
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
682
    return in[0] != nullptr;
683 684 685
  }

  bool HasOutput(const std::string& name) const override {
686
    // has only one output
X
Xin Pan 已提交
687
    const auto& outs = ctx_.outputs;
688 689
    auto it = outs.find(name);
    if (it == outs.end()) {
690 691
      return false;
    }
692
    const auto& out = it->second;
X
Xin Pan 已提交
693
    if (out.size() == 0) {
694 695
      return false;
    }
696 697 698 699
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
700
    return out[0] != nullptr;
701 702
  }

703 704 705 706
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

707
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
708 709
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
710
    if (it == ins.end() || it->second.empty()) {
711 712
      return false;
    }
X
Xin Pan 已提交
713 714
    for (auto& input : it->second) {
      if (input == nullptr) {
715 716 717 718 719 720 721
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
722 723
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
724
    if (it == outs.end() || it->second.empty()) {
725 726
      return false;
    }
X
Xin Pan 已提交
727 728
    for (auto& output : it->second) {
      if (output == nullptr) {
729 730 731 732 733 734 735 736
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
737
  std::vector<std::string> Inputs(const std::string& name) const override {
738 739 740
    return op_.Inputs(name);
  }

H
hong 已提交
741
  std::vector<std::string> Outputs(const std::string& name) const override {
742 743 744
    return op_.Outputs(name);
  }

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

768 769
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
770 771
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
788 789 790

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
791

792 793 794 795 796
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
797

798 799 800
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
801 802 803 804 805 806 807 808
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
809
      PADDLE_THROW(platform::errors::Unimplemented(
810
          "Currently, the input type of ShareDim only can be LoDTensor "
811
          "or SelectedRows."));
812 813 814
    }
  }

H
hong 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
833
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
860 861
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
862 863
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
880 881

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
882
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
883
    Variable* out_var = out_it->second.at(j);
884 885 886 887
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
888
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
889 890
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
891

M
mozga-intel 已提交
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
911 912
  }

913
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
914
    PADDLE_THROW(platform::errors::PreconditionNotMet(
915
        "GetLoDLevel is only used in compile time. The calculation of "
916
        "output's actual lod is different among operators so that should be "
917
        "set in the runtime kernel."));
918 919
  }

920 921
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
922
    PADDLE_THROW(platform::errors::PreconditionNotMet(
923
        "SetLoDLevel is only used in compile time. The calculation of "
924
        "output's actual lod is different among operators so that should be "
925
        "set in the runtime kernel."));
C
chengduo 已提交
926 927
  }

928 929
  bool IsRuntime() const override { return true; }

930 931 932 933 934 935 936 937 938 939 940
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
    } catch (std::bad_cast exp) {
      return false;
    }
  }

941 942
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
943
      const std::string& name) const override {
944 945 946 947 948 949 950 951
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
952
      const std::string& name) const override {
953 954 955 956 957 958 959
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
960 961
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
962 963 964 965 966
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
967 968 969 970 971 972 973 974
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
975 976 977 978 979 980 981 982 983 984
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
985 986
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
987 988 989 990 991
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
992 993 994 995 996 997 998 999 1000
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1001
 protected:
X
Xin Pan 已提交
1002
  DDim GetDim(Variable* var) const {
1003 1004
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1005 1006
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
1007 1008
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1009
    } else {
1010 1011 1012 1013
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1014 1015 1016
    }
  }

X
Xin Pan 已提交
1017 1018 1019 1020 1021 1022 1023 1024
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1025
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1026 1027
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1028 1029
  }

X
Xin Pan 已提交
1030
  void SetDim(Variable* var, const DDim& dim) {
1031 1032
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1033 1034
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1035
    } else {
1036 1037 1038 1039
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1040 1041 1042 1043 1044 1045
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1046 1047 1048 1049 1050 1051
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
1052 1053 1054 1055 1056
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1057 1058 1059
    }
  }

F
fengjiayi 已提交
1060 1061
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1062 1063
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1064 1065
  }

X
Xin Pan 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1077 1078 1079
    return ToVarType(var->Type());
  }

1080 1081 1082
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1083 1084 1085 1086
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1087 1088 1089 1090 1091
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1092 1093 1094 1095
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1096
    return it->second;
F
fengjiayi 已提交
1097 1098
  }

1099
  const OperatorBase& op_;
X
Xin Pan 已提交
1100
  const RuntimeContext& ctx_;
1101 1102
};

1103 1104
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1105 1106 1107 1108
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1109 1110
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1111 1112
    return;
  }
1113 1114 1115 1116 1117 1118 1119 1120
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1121 1122
}

1123 1124
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1125 1126 1127 1128 1129 1130 1131 1132 1133
  auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
  if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
    VLOG(6) << "Warning: " << type_ << " don't find its MKLDNN Kernel in Fluid "
                                       "Registered Kernels. And We don't "
                                       "search its kernels in phi lib, "
                                       "SupportsMKLDNN() return false.";
    return false;
  }
  auto& op_kernels = op_kernel_iter->second;
1134
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1135
                     [data_type](OpKernelMap::const_reference kern_pair) {
1136 1137
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1138 1139
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1140 1141 1142
                     });
}

1143 1144
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1145 1146 1147
  bool use_mkldnn_ctx = ctx.HasAttr("use_mkldnn") &&
                        ctx.Attr<bool>("use_mkldnn") &&
                        platform::is_cpu_place(ctx.GetPlace());
1148
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1149 1150
}

1151 1152 1153 1154 1155 1156 1157
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1158
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1159 1160
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1161
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1162
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1163 1164
}

L
luotao1 已提交
1165 1166
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1167 1168
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1169 1170 1171
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1172
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1173
    all_kernels_must_compute_runtime_shape_ = true;
1174
  const Scope* cur_scope = &scope;
1175
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1176 1177
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1178
    pre_scope_ = cur_scope;
L
luotao1 已提交
1179
  } else {
1180 1181 1182 1183 1184 1185
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1186 1187 1188 1189 1190 1191 1192 1193
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1194
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1195
  auto* dev_ctx = pool.Get(place);
1196

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1207
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1208 1209 1210 1211
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1212 1213 1214 1215 1216 1217

  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1218
  phi::KernelKey pt_kernel_key;
1219
  std::string pt_kernel_name;
1220
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1221
    if (pt_kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
1222
      pt_kernel_signature_.reset(
1223
          new KernelSignature(std::move(GetExpectedPhiKernelArgs(exe_ctx))));
1224 1225 1226 1227 1228 1229 1230
      VLOG(6) << *pt_kernel_signature_.get();

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

      pt_kernel_name = pt_kernel_signature_->name;
1231
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1232
      pt_kernel_.reset(
1233
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1234 1235 1236
              pt_kernel_name, pt_kernel_key)));

      if (pt_kernel_->IsValid()) {
1237
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1238 1239 1240
                << pt_kernel_name << " | kernel key: " << pt_kernel_key
                << " | kernel: " << *pt_kernel_;
      } else {
1241
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1242 1243
                << "` not found.";
      }
1244 1245 1246
    } else {
      pt_kernel_name = pt_kernel_signature_->name;
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1247
    }
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
#ifdef PADDLE_WITH_XPU
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
    if (pt_kernel_->IsValid()
#ifdef PADDLE_WITH_XPU
        && !is_xpu_unsupport
#endif
        ) {
1259
      run_phi_kernel_ = true;
1260 1261 1262 1263 1264 1265 1266
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
#ifdef PADDLE_WITH_XPU
1267
          || is_xpu_unsupport
1268
#endif
1269
          ) {
1270 1271 1272
        auto pt_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), pt_kernel_key, *this);
        pt_kernel_.reset(
1273
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1274 1275 1276 1277 1278 1279 1280
                pt_kernel_name, pt_cpu_kernel_key)));

        dev_ctx = pool.Get(platform::CPUPlace());
        if (pt_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: " << pt_kernel_name
                  << " | kernel key: " << pt_cpu_kernel_key
                  << " | kernel: " << *pt_kernel_;
1281
          run_phi_kernel_ = true;
1282 1283
        }
      }
1284 1285
    }
  }
1286
  if (!run_phi_kernel_) {
1287 1288
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1289
      dev_ctx = pool.Get(kernel_type_->place_);
1290
    }
1291 1292
  }

Y
yuyang18 已提交
1293 1294
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1295 1296
  Scope* transfer_scope = nullptr;
  {
1297
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1298 1299
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1300 1301 1302 1303
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1304
  }
Y
yuyang18 已提交
1305 1306 1307 1308
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1309
  if (!all_kernels_must_compute_runtime_shape_) {
1310
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1311 1312
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1313
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1314
    this->Info().infer_shape_(&infer_shape_ctx);
1315
  }
1316 1317 1318 1319 1320

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1321 1322
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1323
  {
1324
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1325 1326
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1327
    if (run_phi_kernel_) {
1328
      phi::KernelContext pt_kernel_context;
1329
      // Do data transform before building KernelContext
1330
      // TODO(zhiqiu): support TransferInplaceVarsBack
1331 1332 1333
      PreparePhiData(exec_scope, *pt_kernel_, *pt_kernel_signature_,
                     runtime_ctx);
      BuildPhiKernelContext(*runtime_ctx, dev_ctx, &pt_kernel_context);
1334
      (*pt_kernel_)(&pt_kernel_context);
1335 1336 1337 1338
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1339
  }
D
dzhwinter 已提交
1340

Y
yuyang18 已提交
1341
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1342
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1343
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1344
  }
1345 1346 1347 1348 1349 1350 1351

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1352 1353 1354 1355 1356 1357 1358 1359
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1360

D
dzhwinter 已提交
1361
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1362
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1363
    dev_ctx->Wait();
1364 1365
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1366 1367
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1368
  }
C
chengduoZH 已提交
1369 1370

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1371
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1372
  }
1373 1374 1375 1376 1377 1378 1379

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1380
}
X
Xin Pan 已提交
1381

1382 1383 1384
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1385 1386 1387
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1398 1399
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
1400 1401
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1402
      if (SupportGPU()) {
1403
        auto& dev_ctx = ctx.device_context();
1404
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1405 1406 1407 1408 1409
      }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1410
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1411 1412 1413
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1414 1415 1416 1417 1418 1419
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1420 1421
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1422 1423 1424
  return expected_kernel_key;
}

1425
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
1426
    const ExecutionContext& ctx) const {
1427
  pt_kernel_signature_.reset(
1428
      new KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
1429
  VLOG(6) << *pt_kernel_signature_.get();
1430 1431 1432 1433

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

Y
YuanRisheng 已提交
1434
  auto pt_kernel_name = pt_kernel_signature_->name;
1435
  auto pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1436 1437
  pt_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      pt_kernel_name, pt_kernel_key)));
1438 1439

  if (pt_kernel_->IsValid()) {
1440
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << pt_kernel_name
1441 1442 1443
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
1444
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1445 1446
            << "` not found.";
  }
1447
  return pt_kernel_key;
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1463 1464

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1465

L
Liu Yiqun 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1475
#endif
1476 1477

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1478
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1479 1480 1481
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1482 1483 1484 1485 1486 1487
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1488
#endif
L
Liu-xiandong 已提交
1489 1490

#ifdef PADDLE_WITH_XPU_KP
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
      VLOG(3) << "xpu_kp using rt mode ";
    }
    if (use_xpu_kp_kernel_debug) {
      VLOG(3) << "xpu_kp using debug mode ";
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
      VLOG(3) << "using XPU KP kernel: " << type_
              << ", using_kernel_key:" << expected_kernel_key;
    }
    bool is_xpu_unsupport =
        (!paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
         paddle::platform::is_in_xpu_black_list(type_));
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
      VLOG(3) << "missing XPU kernel: " << type_
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
1521 1522 1523
  }
#endif

A
Allen Guo 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1534 1535
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1536
      platform::is_npu_place(expected_kernel_key.place_)) {
1537 1538 1539 1540 1541 1542
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1543 1544 1545
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1546
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1547 1548 1549 1550 1551 1552
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1553
#endif
1554 1555 1556 1557
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1558

1559 1560 1561 1562 1563
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1564 1565
}

Y
yuyang18 已提交
1566 1567 1568 1569
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1570
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1571
    auto* origin_var = scope.FindVar(var_name);
1572 1573 1574
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1575
    auto* original_tensor =
C
chengduo 已提交
1576
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1577
    auto* var = transfer_scope.FindVar(var_name);
1578 1579
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1580
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1581
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1582
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1583 1584 1585 1586 1587
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1588 1589 1590
  }
}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
1620
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
1640
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1658
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1659
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1660 1661
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1662
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1663

1664
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1665 1666 1667 1668
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1669 1670
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1671 1672 1673
    }
  }

Y
yuyang18 已提交
1674
  for (auto& var_name_item : Inputs()) {
1675 1676
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1677

X
Xin Pan 已提交
1678 1679 1680 1681
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1682
      auto* var = input_vars[i];
X
Xin Pan 已提交
1683

Y
yuyang18 已提交
1684
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1685
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1686 1687 1688
        continue;
      }

C
chengduo 已提交
1689
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1705 1706
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1739 1740
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1741

1742 1743 1744
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1745
      // We use a thread_local cache to fix that issue, the key in the cache is
1746 1747 1748 1749 1750
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1751 1752
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1753
      // variables, that behavior a lot different.
1754 1755 1756 1757 1758 1759 1760 1761 1762
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1763 1764
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1765
        enable_cache_transfer_scope_ = true;
1766
      }
1767
      if (!new_scope) {
Y
yuyang18 已提交
1768 1769
        new_scope = &scope.NewScope();
      }
1770 1771 1772 1773
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1774
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1775 1776
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1777
      if (enable_cache_runtime_context_) {
1778 1779
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1780 1781

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1782
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1783
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1801
      Tensor out;
Y
yuyang18 已提交
1802
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1803 1804 1805
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1806

1807 1808 1809 1810 1811 1812
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1813 1814 1815 1816 1817 1818

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1819 1820
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1821 1822 1823

  return new_scope;
}
Q
Qiao Longfei 已提交
1824

1825
void OperatorWithKernel::ParseInputDataType(
1826
    const std::vector<Variable*>& vars, const std::string& name,
1827
    proto::VarType::Type* data_type) const {
1828
  proto::VarType::Type default_data_type =
1829 1830 1831 1832 1833 1834 1835 1836 1837
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
1838 1839
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
1840
      } else if (var->IsType<LoDTensorArray>()) {
1841 1842 1843 1844
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
1845 1846
          }
        }
1847 1848
      }
      if (t != nullptr) {
1849 1850
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
1851 1852 1853
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
1854 1855
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
1856 1857 1858 1859 1860 1861 1862 1863 1864
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
1865 1866 1867 1868 1869 1870
        *data_type = tmp;
      }
    }
  }
}

1871
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1872
    const ExecutionContext& ctx) const {
1873 1874 1875
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1876
  for (auto& input : ctx.InNameList()) {
1877 1878
    const std::vector<Variable*> vars = ctx.MultiInputVar(input);
    ParseInputDataType(vars, input, &data_type);
Y
Yu Yang 已提交
1879
  }
1880 1881 1882 1883
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1884 1885 1886 1887 1888 1889 1890 1891
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
1892
  ParseInputDataType(ctx.MultiInputVar(name), name, &data_type);
1893 1894
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1895 1896 1897 1898 1899
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1900
  return data_type;
Y
Yu Yang 已提交
1901
}
1902

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
1921 1922
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
1954 1955
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
1956 1957 1958 1959 1960 1961 1962

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1963 1964 1965 1966 1967 1968 1969 1970
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1971 1972
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1973 1974
}

1975
KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
1976
    const ExecutionContext& ctx) const {
1977 1978
  InitDefaultKernelSignatureMap();
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
1979
  return phi::OpUtilsMap::Instance().GetArgumentMappingFn(Type())(
1980
      arg_mapping_ctx);
1981 1982
}

1983
Scope* OperatorWithKernel::PreparePhiData(
1984
    const Scope& scope, const phi::Kernel& pt_kernel,
1985 1986 1987 1988 1989 1990 1991 1992 1993
    const KernelSignature& pt_kernel_signature, RuntimeContext* ctx) const {
  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto input_defs = pt_kernel.args_def().input_defs();
  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));
  Scope* new_scope = nullptr;
1994
  auto& name_map = Inputs();
Y
YuanRisheng 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
    }
  }

2005 2006
  for (size_t i = 0; i < input_defs.size(); ++i) {
    auto& in_def = input_defs.at(i);
2007
    if (ctx->inputs.find(input_names[i]) == ctx->inputs.end()) {
H
hong 已提交
2008 2009
      continue;
    }
2010
    auto& ins_vector = ctx->inputs.at(input_names[i]);
2011
    auto& name_vec = name_map.at(input_names[i]);
Y
YuanRisheng 已提交
2012 2013 2014
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(input_names[i]) > 0;

2015 2016 2017 2018 2019 2020 2021
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      // Only tensor can be tranfer to another device.
      auto* var = ins_vector[offset];
      if (var == nullptr || !VarIsTensor(*var)) {
        continue;
      }
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
YuanRisheng 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
        // TODO(YuanRisheng) : There need to supplement MKLDNN code later
        continue;
      }

2031 2032 2033 2034
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2035 2036 2037
      if (in_def.backend == phi::Backend::ALL_BACKEND) {
        continue;
      }
2038
      auto expected_place = phi::TransToPhiPlace(in_def.backend);
2039 2040 2041 2042
      if (platform::is_same_place(tensor_in->place(), expected_place)) {
        continue;
      }

2043
      VLOG(3) << "phi Transform Variable " << input_names[i] << " from "
2044
              << tensor_in->place() << " to " << expected_place;
2045

2046 2047 2048
      if (!new_scope) {
        new_scope = &scope.NewScope();
      }
2049

2050
      // Create new var with the same name in transfer scopes
2051
      auto* trans_var = new_scope->Var(name_vec[offset]);
2052
      ins_vector[offset] = trans_var;
2053

2054 2055 2056 2057
      // Do transfer
      Tensor out;
      framework::TensorCopySync(*tensor_in, expected_place, &out);
      SetTensorToVariable(*var, out, trans_var);
2058 2059 2060 2061 2062 2063
    }
  }

  return new_scope;
}

2064
void OperatorWithKernel::BuildPhiKernelContext(
2065
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx,
2066
    phi::KernelContext* pt_kernel_context) const {
2067
  pt_kernel_context->SetDeviceContext(dev_ctx);
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

  auto& input_names = std::get<0>(pt_kernel_signature_->args);
  auto& attr_names = std::get<1>(pt_kernel_signature_->args);
  auto& output_names = std::get<2>(pt_kernel_signature_->args);

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2096
    auto it = ctx.inputs.find(input_names[i]);
2097 2098 2099

    // calcute the start and end index of the input tensors
    size_t start_idx =
2100
        (i == 0 ? 0 : pt_kernel_context->InputRangeAt(i - 1).second);
2101

H
hong 已提交
2102
    // deal with optional here
2103
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2104
        (input_defs[i].type_index ==
H
hong 已提交
2105 2106 2107 2108 2109
             std::type_index(
                 typeid(paddle::optional<const phi::DenseTensor&>)) ||
         input_defs[i].type_index ==
             std::type_index(
                 typeid(paddle::optional<const phi::SelectedRows&>)))) {
H
hong 已提交
2110 2111 2112 2113 2114 2115 2116 2117
      pt_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                          i);
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2118
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2119
      const phi::TensorBase* tensor_in = nullptr;
2120
      auto* var = ins_vector[offset];
H
hong 已提交
2121 2122
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2123
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2124 2125
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2126 2127 2128 2129 2130 2131 2132 2133 2134
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
      } else if (var->IsType<framework::LoDTensorArray>()) {
        paddle::SmallVector<const phi::TensorBase*> tensor_vector;
        auto& tensor_array = var->Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
        pt_kernel_context->EmplaceBackInputsWithoutSetRange(tensor_vector);
        end_idx += tensor_array.size() - 1;
2135 2136 2137 2138
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2139
      }
2140
    }
2141
    // Note: here cannot deal with vector<LoDTensorArray> input
2142
    pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2143
  }
2144
  VLOG(4) << "Done inputs";
2145 2146

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2147
    auto it = ctx.outputs.find(output_names[i]);
2148
    size_t start_idx =
2149
        (i == 0 ? 0 : pt_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
      pt_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                           i);
      continue;
    }
    auto& outs_vector = it->second;

2164
    size_t end_idx = start_idx + outs_vector.size();
2165 2166

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2167
      phi::TensorBase* tensor_out = nullptr;
2168
      auto* var = outs_vector[offset];
2169 2170 2171
      if (var) {
        if (var->template IsType<framework::LoDTensor>()) {
          tensor_out = var->template GetMutable<framework::LoDTensor>();
2172
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2173 2174
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (var->template IsType<framework::LoDTensorArray>()) {
          paddle::SmallVector<phi::TensorBase*> tensor_vector;
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
          pt_kernel_context->EmplaceBackOutputsWithoutSetRange(tensor_vector);
          end_idx += tensor_array->size() - 1;
2187 2188 2189 2190 2191
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2192 2193
      } else {
        pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2194
      }
2195
    }
2196
    pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
2197
  }
2198
  VLOG(4) << "Done outputs";
2199 2200

  for (size_t i = 0; i < attr_names.size(); ++i) {
2201
    if (attr_defs[i].type_index == std::type_index(typeid(phi::ScalarArray))) {
2202 2203 2204 2205
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // shape is in the attribute
        if (std::type_index(attr_iter->second.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
2206
          pt_kernel_context->EmplaceBackAttr(std::move(phi::ScalarArray(
2207
              BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2208 2209
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
2210
          pt_kernel_context->EmplaceBackAttr(std::move(phi::ScalarArray(
2211
              BOOST_GET_CONST(std::vector<int32_t>, attr_iter->second))));
C
chentianyu03 已提交
2212 2213
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(int32_t))) {
2214
          pt_kernel_context->EmplaceBackAttr(std::move(phi::ScalarArray(
C
chentianyu03 已提交
2215
              &BOOST_GET_CONST(int32_t, attr_iter->second), 1)));
2216 2217 2218 2219 2220 2221 2222 2223 2224
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to ScalarArray when "
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
2225
          pt_kernel_context->EmplaceBackAttr(std::move(
2226
              experimental::MakePhiScalarArrayFromVar(*ins_vector.front())));
2227
        } else {  // ShapeTensorList
2228
          pt_kernel_context->EmplaceBackAttr(std::move(
2229
              experimental::MakePhiScalarArrayFromVarList(ins_vector)));
2230 2231 2232
        }
      }
    } else if (attr_defs[i].type_index ==
2233
               std::type_index(typeid(phi::Scalar))) {
2234 2235 2236
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
2237 2238 2239 2240
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // scalar is in the attribute
        auto& attr = Attrs().at(attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
2241
          pt_kernel_context->EmplaceBackAttr(
2242
              std::move(phi::Scalar(BOOST_GET_CONST(float, attr))));
2243 2244
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
2245
          pt_kernel_context->EmplaceBackAttr(
2246
              std::move(phi::Scalar(BOOST_GET_CONST(std::string, attr))));
2247 2248 2249
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          pt_kernel_context->EmplaceBackAttr(
2250
              std::move(phi::Scalar(BOOST_GET_CONST(int, attr))));
2251 2252 2253 2254 2255 2256
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext.",
              attr_names[i]));
        }
2257
      } else {
2258
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
2259 2260
        pt_kernel_context->EmplaceBackAttr(
            std::move(experimental::MakePhiScalarFromVar(*ins_vector.front())));
2261
      }
2262

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(std::vector<phi::Scalar>))) {
      auto& attr = Attrs().at(attr_names[i]);
      if (std::type_index(attr.type()) ==
          std::type_index(typeid(std::vector<int32_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<float>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<double>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` to vector<Scalar> when "
            "construct KernelContext.",
            attr_names[i]));
      }
2308 2309
    } else {
      // TODO(chenweihang): support other attrs later
H
hong 已提交
2310
      auto attr_it = attrs_.find(attr_names[i]);
2311
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
H
hong 已提交
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
        if (attr_it == attrs_.end()) {
          auto in_it = ctx.inputs.find(attr_names[i]);
          if (in_it != ctx.inputs.end()) {
            // get data from input
            auto val = experimental::MakePhiScalarFromVar(*(in_it->second[0]));
            int32_t val_int = val.template to<int32_t>();
            pt_kernel_context->EmplaceBackAttr(val_int);
          } else {
            PADDLE_THROW(platform::errors::NotFound(
                "can not find attribute `%s` both in attribute and input ",
                attr_names[i]));
          }
        } else {
          pt_kernel_context->EmplaceBackAttr(
              BOOST_GET_CONST(int, attr_it->second));
        }
2328
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
H
hong 已提交
2329 2330
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(float, attr_it->second));
2331
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
H
hong 已提交
2332 2333
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(bool, attr_it->second));
H
hong 已提交
2334
      } else if (attr_defs[i].type_index == std::type_index(typeid(int64_t))) {
H
hong 已提交
2335 2336
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(int64_t, attr_it->second));
H
hong 已提交
2337 2338
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::string))) {
H
hong 已提交
2339 2340
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::string, attr_it->second));
2341
      } else if (attr_defs[i].type_index ==
2342
                 std::type_index(typeid(phi::DataType))) {
2343
        auto data_type = paddle::framework::TransToPhiDataType(
2344
            static_cast<framework::proto::VarType::Type>(
H
hong 已提交
2345
                BOOST_GET_CONST(int, attr_it->second)));
2346
        pt_kernel_context->EmplaceBackAttr(data_type);
2347 2348
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
H
hong 已提交
2349
        if (std::type_index(attr_it->second.type()) ==
2350 2351
            std::type_index(typeid(std::vector<int64_t>))) {
          pt_kernel_context->EmplaceBackAttr(
H
hong 已提交
2352 2353
              BOOST_GET_CONST(std::vector<int64_t>, attr_it->second));
        } else if (std::type_index(attr_it->second.type()) ==
2354
                   std::type_index(typeid(std::vector<int>))) {
2355
          // Emplace Back Attr according to the type of Phi_Kernel args.
H
hong 已提交
2356 2357
          const auto& vector_int_attr =
              BOOST_GET_CONST(std::vector<int>, attr_it->second);
2358 2359
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
2360
          pt_kernel_context->EmplaceBackAttr(vector_int64_attr);
2361
        }
H
hong 已提交
2362 2363
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int32_t>))) {
H
hong 已提交
2364 2365
        const auto& vector_int_attr =
            BOOST_GET_CONST(std::vector<int>, attr_it->second);
H
hong 已提交
2366
        pt_kernel_context->EmplaceBackAttr(vector_int_attr);
2367 2368 2369 2370
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<std::string>))) {
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<std::string>, attr_it->second));
2371 2372
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
2373
            "Unsupported cast op attribute `%s` when construct "
2374 2375 2376 2377 2378
            "KernelContext.",
            attr_names[i]));
      }
    }
  }
2379
  VLOG(4) << "Done attributes";
2380 2381
}

Q
Qiao Longfei 已提交
2382
}  // namespace framework
L
liaogang 已提交
2383
}  // namespace paddle