operator.cc 78.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
26
#include "paddle/fluid/framework/pten_utils.h"
Y
Yi Wang 已提交
27
#include "paddle/fluid/framework/shape_inference.h"
28
#include "paddle/fluid/framework/transfer_scope_cache.h"
29
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/framework/var_type.h"
L
Leo Chen 已提交
31
#include "paddle/fluid/platform/enforce.h"
32
#include "paddle/fluid/platform/profiler.h"
33
#include "paddle/pten/common/scalar.h"
34
#include "paddle/pten/common/scalar_array.h"
35
#include "paddle/pten/ops/compat/signatures.h"
36

37 38 39 40
namespace pten {
class DenseTensor;
}  // namespace pten

41
#ifdef PADDLE_WITH_XPU
42 43
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
44
#endif
Q
Qiao Longfei 已提交
45

46 47 48 49
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
50 51 52 53
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
54
DECLARE_bool(benchmark);
55
DECLARE_bool(check_nan_inf);
56
DECLARE_bool(enable_unused_var_check);
57 58
PADDLE_DEFINE_EXPORTED_int32(inner_op_parallelism, 0,
                             "number of threads for inner op");
59
DECLARE_bool(run_pten_kernel);
F
Feng Xing 已提交
60
DECLARE_bool(run_kp_kernel);
D
dzhwinter 已提交
61

Q
Qiao Longfei 已提交
62 63 64
namespace paddle {
namespace framework {

65 66 67 68 69 70
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
71

72
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
73
                         bool get_actual_dim = false) {
74
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
75 76
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
77 78
  }

M
minqiyang 已提交
79 80 81
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
82
  } else if (var->IsType<pten::SelectedRows>()) {
M
minqiyang 已提交
83
    if (get_actual_dim) {
84
      return var->Get<pten::SelectedRows>().value().dims();
M
minqiyang 已提交
85
    } else {
86
      return var->Get<pten::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
87
    }
S
Steffy-zxf 已提交
88 89
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
90 91 92 93 94
  } else {
    return DDim({-1});
  }
}

95
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
96 97 98 99 100
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

101
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
102 103 104 105
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
106

M
minqiyang 已提交
107 108 109
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
110 111
      return "";
    }
Y
Yu Yang 已提交
112
    return DataTypeToString(tensor.type());
113 114
  } else if (var->IsType<pten::SelectedRows>()) {
    auto tensor = var->Get<pten::SelectedRows>().value();
Q
Qiao Longfei 已提交
115 116 117
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
118
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
119
    }
S
Steffy-zxf 已提交
120 121
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
122 123 124 125 126
  } else {
    return "";
  }
}

127
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
144 145
  } else if (var->IsType<pten::SelectedRows>()) {
    auto tensor = var->Get<pten::SelectedRows>().value();
L
Leo Chen 已提交
146 147 148 149 150 151 152 153 154 155
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

156
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
157 158 159 160 161
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

162 163
  if (var->IsType<pten::SelectedRows>()) {
    return var->Get<pten::SelectedRows>().rows().size();
164 165 166 167 168
  }

  return -1;
}

169
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
170 171 172 173 174 175 176
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
177 178 179
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
180 181 182 183 184
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
185 186 187 188 189
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
190
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
191 192 193 194 195 196
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
197
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
198 199 200 201 202 203
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

204
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
205 206 207
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
208
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
209 210 211 212
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
213
#else
214
      auto dev_id = place.device;
P
peizhilin 已提交
215
      platform::SetDeviceId(dev_id);
216 217 218
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
219 220 221 222
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
223
#else
224
      auto dev_id = place.device;
225
      platform::SetXPUDeviceId(dev_id);
226 227 228 229 230 231 232 233
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
234
      auto dev_id = place.device;
235
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
236 237 238 239 240 241 242 243
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
244
      auto dev_id = place.device;
F
fwenguang 已提交
245
      platform::SetMLUDeviceId(dev_id);
246
#endif
P
peizhilin 已提交
247
    }
P
peizhilin 已提交
248

249
    {
250 251 252 253 254 255
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
      platform::RecordEvent op_type_record_event(Type());
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
256
          op_name, platform::EventRole::kUniqueOp);
P
peizhilin 已提交
257 258
      RunImpl(scope, place);
    }
259

Z
Zhang Ting 已提交
260
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
261
  } catch (platform::EnforceNotMet& exception) {
262
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
263
    throw std::move(exception);
264 265 266 267 268 269
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
270
  } catch (...) {
271
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
272
    std::rethrow_exception(std::current_exception());
273
  }
274 275
}

276
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
277
  return inputs_.find(name) != inputs_.end();
278 279
}

280
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
281
  auto& ins = Inputs(name);
282 283
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
284
      platform::errors::InvalidArgument(
285 286
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
287
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
288 289
}

Y
Yu Yang 已提交
290 291
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
292
  auto it = inputs_.find(name);
293 294 295 296
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
297
  return it->second;
Y
Yan Chunwei 已提交
298 299
}

300
bool OperatorBase::HasOutputs(const std::string& name) const {
301
  if (outputs_.find(name) != outputs_.end()) {
302 303 304 305 306 307
    return true;
  } else {
    return false;
  }
}

308
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
309
  auto& outs = Outputs(name);
310 311 312 313 314
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
315
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
316 317
}

Y
Yu Yang 已提交
318 319
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
320
  auto it = outputs_.find(name);
321 322 323 324
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
325
  return it->second;
Y
Yan Chunwei 已提交
326 327
}

328
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
329
  std::stringstream ss;
Y
Yu Yang 已提交
330
  ss << "Op(" << type_ << "), inputs:{";
331

332
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
333 334
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
335 336
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
337 338
  }

Y
Yu Yang 已提交
339 340
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
341 342
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
343 344
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
345 346
      auto var_name = input.second[i];
      ss << var_name;
347
      if (scope) {
Q
Qiao Longfei 已提交
348 349 350 351 352 353 354
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
355 356 357
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
358
          ss << ":" << dtype;
359 360
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
361
          ss << "(" << GetPlace(*scope, var_name) << ")";
362
        }
363
      }
Y
Yu Yang 已提交
364 365 366
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
367
    }
Y
Yu Yang 已提交
368
    ss << "]";
Y
Yu Yang 已提交
369 370
    ++it;
    if (it != inputs_.end()) {
371 372
      ss << ", ";
    }
Q
Qiao Longfei 已提交
373
  }
Y
Yu Yang 已提交
374
  ss << "}, outputs:{";
Y
Yu Yang 已提交
375 376
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
377 378
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
379 380
      auto var_name = output.second[i];
      ss << var_name;
381
      if (scope) {
Q
Qiao Longfei 已提交
382 383 384 385 386 387 388
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
389 390
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
391 392
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
393
          ss << "(" << GetPlace(*scope, var_name) << ")";
394
        }
395
      }
Y
Yu Yang 已提交
396 397 398
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
399
    }
Y
Yu Yang 已提交
400
    ss << "]";
Y
Yu Yang 已提交
401 402
    ++it;
    if (it != outputs_.end()) {
403 404
      ss << ", ";
    }
Q
Qiao Longfei 已提交
405
  }
Y
Yu Yang 已提交
406
  ss << "}.";
Q
Qiao Longfei 已提交
407 408 409
  return ss.str();
}

Y
Yu Yang 已提交
410
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
411 412
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
413
                           const AttributeMap& attrs)
S
sneaxiy 已提交
414 415 416 417 418 419
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
420 421 422 423 424 425 426 427
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
428
}
429

Q
qijun 已提交
430 431
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
432
  for (auto& o : inputs_) {
Q
qijun 已提交
433 434 435 436 437 438
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
439 440 441 442 443 444 445 446 447 448
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
449
  auto& info = Info();
Y
Yu Yang 已提交
450 451

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
452
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
453 454 455 456 457 458 459 460 461
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
462 463
}

464
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
465
  if (info_ == nullptr || info_->proto_ == nullptr) return;
466

S
sneaxiy 已提交
467
  for (auto& in : info_->Proto().inputs()) {
468
    if (!in.dispensable() && !in.extra()) {
469 470 471 472
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
473
    }
474 475
  }

S
sneaxiy 已提交
476
  for (auto& out : info_->Proto().outputs()) {
477
    if (!out.dispensable() && !out.extra()) {
478 479 480 481
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
482
    }
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
498

C
chengduo 已提交
499
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
500 501
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
502 503
  } else if (var.IsType<pten::SelectedRows>()) {
    return &(var.Get<pten::SelectedRows>().value());
Q
QI JUN 已提交
504
  } else {
505 506 507
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
508 509 510
  }
}

C
chengduo 已提交
511
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
512
  if (var->IsType<LoDTensor>()) {
513
    return var->GetMutable<LoDTensor>();
514 515
  } else if (var->IsType<pten::SelectedRows>()) {
    return var->GetMutable<pten::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
516
  } else {
517 518 519
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
520 521 522
  }
}

523
bool ExecutionContext::HasInput(const std::string& name) const {
524
  auto* var = InputVar(name);
525 526 527 528
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
529
  auto* var = OutputVar(name);
530 531 532
  return var != nullptr;
}

X
Xin Pan 已提交
533
const Variable* ExecutionContext::InputVar(const std::string& name) const {
534 535
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
536 537 538
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

539 540
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
541
      platform::errors::InvalidArgument(
542 543
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
544 545 546
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
547
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
548 549 550
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

551 552 553 554 555
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
556 557 558
  return it->second.empty() ? nullptr : it->second[0];
}

559
template <>
560
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
561
    const std::string& name) const {
562 563
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
564 565
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
566 567 568 569 570
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
571
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
572
                   if (var == nullptr) return nullptr;
573 574 575 576 577
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
578 579 580 581 582
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

583
template <>
584
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
585
    const std::string& name) const {
H
hong 已提交
586 587 588
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
589 590
    return {};
  }
591
  std::vector<Tensor*> res;
592 593 594 595 596
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
597
                 });
598 599 600
  return res;
}

Y
Yu Yang 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

616 617
class RuntimeInferShapeContext : public InferShapeContext {
 public:
618
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
619
      : op_(op), ctx_(ctx) {}
620 621

  bool HasInput(const std::string& name) const override {
622
    // has only one input
X
Xin Pan 已提交
623
    const auto& ins = ctx_.inputs;
624 625
    auto it = ins.find(name);
    if (it == ins.end()) {
626 627
      return false;
    }
628
    const auto& in = it->second;
X
Xin Pan 已提交
629
    if (in.size() == 0) return false;
630 631 632 633
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
634
    return in[0] != nullptr;
635 636 637
  }

  bool HasOutput(const std::string& name) const override {
638
    // has only one output
X
Xin Pan 已提交
639
    const auto& outs = ctx_.outputs;
640 641
    auto it = outs.find(name);
    if (it == outs.end()) {
642 643
      return false;
    }
644
    const auto& out = it->second;
X
Xin Pan 已提交
645
    if (out.size() == 0) {
646 647
      return false;
    }
648 649 650 651
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
652
    return out[0] != nullptr;
653 654 655
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
656 657
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
658
    if (it == ins.end() || it->second.empty()) {
659 660
      return false;
    }
X
Xin Pan 已提交
661 662
    for (auto& input : it->second) {
      if (input == nullptr) {
663 664 665 666 667 668 669
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
670 671
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
672
    if (it == outs.end() || it->second.empty()) {
673 674
      return false;
    }
X
Xin Pan 已提交
675 676
    for (auto& output : it->second) {
      if (output == nullptr) {
677 678 679 680 681 682 683 684
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
685
  std::vector<std::string> Inputs(const std::string& name) const override {
686 687 688
    return op_.Inputs(name);
  }

H
hong 已提交
689
  std::vector<std::string> Outputs(const std::string& name) const override {
690 691 692
    return op_.Outputs(name);
  }

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

716 717
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
718 719
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
736 737 738

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
739

740 741 742 743 744
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
745

746 747 748
    if (in_var->IsType<pten::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<pten::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<pten::SelectedRows>();
749 750 751 752 753 754 755 756
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
757
      PADDLE_THROW(platform::errors::Unimplemented(
758
          "Currently, the input type of ShareDim only can be LoDTensor "
759
          "or SelectedRows."));
760 761 762
    }
  }

H
hong 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
781
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
808 809
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
810 811
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
828 829

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
830
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
831
    Variable* out_var = out_it->second.at(j);
832 833 834 835
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
836
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
837 838
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
839

M
mozga-intel 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
859 860
  }

861
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
862
    PADDLE_THROW(platform::errors::PreconditionNotMet(
863
        "GetLoDLevel is only used in compile time. The calculation of "
864
        "output's actual lod is different among operators so that should be "
865
        "set in the runtime kernel."));
866 867
  }

868 869
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
870
    PADDLE_THROW(platform::errors::PreconditionNotMet(
871
        "SetLoDLevel is only used in compile time. The calculation of "
872
        "output's actual lod is different among operators so that should be "
873
        "set in the runtime kernel."));
C
chengduo 已提交
874 875
  }

876 877
  bool IsRuntime() const override { return true; }

878 879 880 881 882 883 884 885 886 887 888
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
    } catch (std::bad_cast exp) {
      return false;
    }
  }

889 890
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
891
      const std::string& name) const override {
892 893 894 895 896 897 898 899
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
900
      const std::string& name) const override {
901 902 903 904 905 906 907
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
908 909
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
910 911 912 913 914
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
915 916 917 918 919 920 921 922
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
923 924 925 926 927 928 929 930 931 932
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
933 934
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
935 936 937 938 939
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
940 941 942 943 944 945 946 947 948
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

949
 protected:
X
Xin Pan 已提交
950
  DDim GetDim(Variable* var) const {
951 952
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
953 954
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
955 956
    } else if (var->IsType<pten::SelectedRows>()) {
      return var->Get<pten::SelectedRows>().GetCompleteDims();
957
    } else {
958 959 960 961
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
962 963 964
    }
  }

X
Xin Pan 已提交
965 966 967 968 969 970 971 972
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
973
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
974 975
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
976 977
  }

X
Xin Pan 已提交
978
  void SetDim(Variable* var, const DDim& dim) {
979 980
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
981 982
    } else if (var->IsType<pten::SelectedRows>()) {
      var->GetMutable<pten::SelectedRows>()->set_height(dim[0]);
983
    } else {
984 985 986 987
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
988 989 990 991 992 993
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
994 995 996 997 998 999
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
1000 1001 1002 1003 1004
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1005 1006 1007
    }
  }

F
fengjiayi 已提交
1008 1009
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1010 1011
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1012 1013
  }

X
Xin Pan 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1025 1026 1027
    return ToVarType(var->Type());
  }

1028 1029 1030
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1031 1032 1033 1034
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1035 1036 1037 1038 1039
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1040 1041 1042 1043
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1044
    return it->second;
F
fengjiayi 已提交
1045 1046
  }

1047
  const OperatorBase& op_;
X
Xin Pan 已提交
1048
  const RuntimeContext& ctx_;
1049 1050
};

1051 1052
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1053 1054 1055 1056
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
1057 1058
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
1059 1060
    return;
  }
1061 1062 1063 1064 1065 1066 1067 1068
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1069 1070
}

1071 1072
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1073 1074
  auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1075
                     [data_type](OpKernelMap::const_reference kern_pair) {
1076 1077
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1078 1079
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1080 1081 1082
                     });
}

1083 1084
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1085 1086 1087
  bool use_mkldnn_ctx = ctx.HasAttr("use_mkldnn") &&
                        ctx.Attr<bool>("use_mkldnn") &&
                        platform::is_cpu_place(ctx.GetPlace());
1088
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1089 1090
}

1091 1092 1093 1094 1095 1096 1097
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1098
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1099 1100
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1101
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1102
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1103 1104
}

L
luotao1 已提交
1105 1106
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1107 1108
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1109 1110 1111
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1112
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1113
    all_kernels_must_compute_runtime_shape_ = true;
1114
  const Scope* cur_scope = &scope;
1115
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1116 1117
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1118
    pre_scope_ = cur_scope;
L
luotao1 已提交
1119
  } else {
1120 1121 1122 1123 1124 1125
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1126 1127 1128 1129 1130 1131 1132 1133
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1134
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1135
  auto* dev_ctx = pool.Get(place);
1136

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1147
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1148 1149 1150 1151
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1152 1153 1154 1155 1156 1157

  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1158 1159 1160
  pten::KernelKey pt_kernel_key;
  std::string pt_kernel_name;
  if (pten::KernelFactory::Instance().HasCompatiblePtenKernel(type_)) {
1161
    if (pt_kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
      pt_kernel_signature_.reset(new KernelSignature(
          std::move(this->GetExpectedPtenKernelArgs(exe_ctx))));
      VLOG(6) << *pt_kernel_signature_.get();

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

      pt_kernel_name = pt_kernel_signature_->name;
      pt_kernel_key = TransOpKernelTypeToPtenKernelKey(*kernel_type_.get());
      pt_kernel_.reset(
          new pten::Kernel(pten::KernelFactory::Instance().SelectKernel(
              pt_kernel_name, pt_kernel_key)));

      if (pt_kernel_->IsValid()) {
        VLOG(6) << "Static mode ChoosePtenKernel - kernel name: "
                << pt_kernel_name << " | kernel key: " << pt_kernel_key
                << " | kernel: " << *pt_kernel_;
      } else {
        VLOG(6) << "Static mode ChoosePtenKernel - kernel `" << pt_kernel_name
                << "` not found.";
      }
    }
    if (pt_kernel_->IsValid()) {
      run_pten_kernel_ = true;
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
#ifdef PADDLE_WITH_XPU
          ||
          paddle::platform::is_xpu_place(kernel_type_->place_) &&  // NOLINT
              !paddle::platform::is_xpu_support_op(
                  type_, *kernel_type_.get())  // NOLINT
          || paddle::platform::is_in_xpu_black_list(type_)
#endif
              ) {
        auto pt_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), pt_kernel_key, *this);
        pt_kernel_.reset(
            new pten::Kernel(pten::KernelFactory::Instance().SelectKernel(
                pt_kernel_name, pt_cpu_kernel_key)));

        dev_ctx = pool.Get(platform::CPUPlace());

        if (pt_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: " << pt_kernel_name
                  << " | kernel key: " << pt_cpu_kernel_key
                  << " | kernel: " << *pt_kernel_;
          run_pten_kernel_ = true;
        }
      }
1216 1217 1218 1219 1220
    }
  }
  if (!run_pten_kernel_) {
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1221
      dev_ctx = pool.Get(kernel_type_->place_);
1222
    }
1223 1224
  }

Y
yuyang18 已提交
1225 1226
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1227 1228
  Scope* transfer_scope = nullptr;
  {
1229
    platform::RecordEvent record_event("prepare_data",
1230
                                       platform::EventRole::kInnerOp);
1231 1232 1233 1234
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1235
  }
Y
yuyang18 已提交
1236 1237 1238 1239
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1240
  if (!all_kernels_must_compute_runtime_shape_) {
1241
    platform::RecordEvent record_event("infer_shape",
1242
                                       platform::EventRole::kInnerOp);
1243
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1244
    this->Info().infer_shape_(&infer_shape_ctx);
1245
  }
1246 1247 1248 1249 1250

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1251 1252
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1253
  {
1254
    platform::RecordEvent record_event("compute",
1255
                                       platform::EventRole::kInnerOp);
1256
    if (run_pten_kernel_) {
1257
      pten::KernelContext pt_kernel_context;
1258
      // Do data transform before building KernelContext
1259
      // TODO(zhiqiu): support TransferInplaceVarsBack
1260 1261
      PreparePtenData(exec_scope, *pt_kernel_, *pt_kernel_signature_,
                      runtime_ctx);
1262 1263
      BuildPtenKernelContext(*runtime_ctx, dev_ctx, &pt_kernel_context);
      (*pt_kernel_)(&pt_kernel_context);
1264 1265 1266 1267
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1268
  }
D
dzhwinter 已提交
1269

Y
yuyang18 已提交
1270
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1271
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1272
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1273
  }
1274 1275 1276 1277 1278 1279 1280

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1281 1282 1283 1284 1285 1286 1287 1288
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1289

D
dzhwinter 已提交
1290
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1291
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1292
    dev_ctx->Wait();
1293 1294
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1295 1296
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1297
  }
C
chengduoZH 已提交
1298 1299

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1300
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1301
  }
1302 1303 1304 1305 1306 1307 1308

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1309
}
X
Xin Pan 已提交
1310

1311 1312 1313
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto& dev_ctx = ctx.device_context();
L
Liu Yiqun 已提交
1314

1315
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1316 1317 1318
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1329 1330 1331
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
      if (SupportGPU()) {
1332
        expected_kernel_key.place_ = dev_ctx.GetPlace();
B
Baibaifan 已提交
1333
      } else if (SupportNPU()) {
1334
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1335 1336 1337 1338 1339 1340 1341 1342
      } else {
        expected_kernel_key.place_ = platform::CPUPlace();
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1343 1344
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1345 1346 1347
  return expected_kernel_key;
}

1348 1349
pten::KernelKey OperatorWithKernel::ChoosePtenKernel(
    const ExecutionContext& ctx) const {
1350 1351
  pt_kernel_signature_.reset(
      new KernelSignature(std::move(this->GetExpectedPtenKernelArgs(ctx))));
1352
  VLOG(6) << *pt_kernel_signature_.get();
1353 1354 1355 1356

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

Y
YuanRisheng 已提交
1357
  auto pt_kernel_name = pt_kernel_signature_->name;
1358 1359 1360 1361 1362 1363
  auto pt_kernel_key = TransOpKernelTypeToPtenKernelKey(*kernel_type_.get());
  pt_kernel_.reset(
      new pten::Kernel(pten::KernelFactory::Instance().SelectKernel(
          pt_kernel_name, pt_kernel_key)));

  if (pt_kernel_->IsValid()) {
C
Chen Weihang 已提交
1364
    VLOG(6) << "Static mode ChoosePtenKernel - kernel name: " << pt_kernel_name
1365 1366 1367
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
C
Chen Weihang 已提交
1368
    VLOG(6) << "Static mode ChoosePtenKernel - kernel `" << pt_kernel_name
1369 1370
            << "` not found.";
  }
1371
  return pt_kernel_key;
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1398 1399
#endif
#ifdef PADDLE_WITH_XPU
1400
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1401 1402 1403
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1404 1405 1406 1407 1408 1409
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1410
#endif
A
Allen Guo 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1421 1422
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1423
      platform::is_npu_place(expected_kernel_key.place_)) {
1424 1425 1426 1427 1428 1429
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1430 1431 1432
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1433
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1434 1435 1436 1437 1438 1439
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1440
#endif
1441 1442 1443 1444
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1445

1446 1447 1448 1449 1450
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1451 1452
}

Y
yuyang18 已提交
1453 1454 1455 1456
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1457
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1458
    auto* origin_var = scope.FindVar(var_name);
1459 1460 1461
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1462
    auto* original_tensor =
C
chengduo 已提交
1463
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1464
    auto* var = transfer_scope.FindVar(var_name);
1465 1466
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1467
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1468
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1469
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1470 1471 1472 1473 1474
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1475 1476 1477
  }
}

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
      auto src_type = grad_tensor->type();
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
      auto dst_type = tensor->saved_type();
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1545
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1546
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1547 1548
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1549
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1550

1551
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1552 1553 1554 1555
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1556 1557
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1558 1559 1560
    }
  }

Y
yuyang18 已提交
1561
  for (auto& var_name_item : Inputs()) {
1562 1563
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1564

X
Xin Pan 已提交
1565 1566 1567 1568
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1569
      auto* var = input_vars[i];
X
Xin Pan 已提交
1570

Y
yuyang18 已提交
1571
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1572
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1573 1574 1575
        continue;
      }

C
chengduo 已提交
1576
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1592 1593
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1626 1627
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1628

1629 1630 1631
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1632
      // We use a thread_local cache to fix that issue, the key in the cache is
1633 1634 1635 1636 1637
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1638 1639
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1640
      // variables, that behavior a lot different.
1641 1642 1643 1644 1645 1646 1647 1648 1649
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1650 1651
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1652
        enable_cache_transfer_scope_ = true;
1653
      }
1654
      if (!new_scope) {
Y
yuyang18 已提交
1655 1656
        new_scope = &scope.NewScope();
      }
1657 1658 1659 1660
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1661
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1662 1663
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1664
      if (enable_cache_runtime_context_) {
1665 1666
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1667 1668

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1669
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1670
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1688
      Tensor out;
Y
yuyang18 已提交
1689
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1690 1691 1692
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1693

1694 1695 1696 1697 1698 1699
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1700 1701 1702 1703 1704 1705

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1706 1707
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1708 1709 1710

  return new_scope;
}
Q
Qiao Longfei 已提交
1711

1712
void OperatorWithKernel::ParseInputDataType(
1713
    const std::vector<Variable*>& vars, const std::string& name,
1714
    proto::VarType::Type* data_type) const {
1715
  proto::VarType::Type default_data_type =
1716 1717 1718 1719 1720 1721 1722 1723 1724
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
1725 1726
      } else if (var->IsType<pten::SelectedRows>()) {
        t = &(var->Get<pten::SelectedRows>().value());
1727
      } else if (var->IsType<LoDTensorArray>()) {
1728 1729 1730 1731
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
1732 1733
          }
        }
1734 1735
      }
      if (t != nullptr) {
1736 1737
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
1738 1739 1740
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
1741
        proto::VarType::Type tmp = t->type();
1742 1743 1744 1745 1746 1747 1748 1749 1750
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
1751 1752 1753 1754 1755 1756
        *data_type = tmp;
      }
    }
  }
}

1757
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1758
    const ExecutionContext& ctx) const {
1759 1760 1761
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1762
  for (auto& input : ctx.InNameList()) {
1763 1764
    const std::vector<Variable*> vars = ctx.MultiInputVar(input);
    ParseInputDataType(vars, input, &data_type);
Y
Yu Yang 已提交
1765
  }
1766 1767 1768 1769
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1770 1771 1772 1773 1774 1775 1776 1777
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
1778
  ParseInputDataType(ctx.MultiInputVar(name), name, &data_type);
1779 1780
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1781 1782 1783 1784 1785
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1786
  return data_type;
Y
Yu Yang 已提交
1787
}
1788

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
1807 1808
  } else if (var->IsType<pten::SelectedRows>()) {
    t = var->GetMutable<pten::SelectedRows>()->mutable_value();
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
  auto type_a = tensor_a->type();
  auto type_b = tensor_b->type();

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1849 1850 1851 1852 1853 1854 1855 1856
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1857 1858
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1859 1860
}

1861 1862
KernelSignature OperatorWithKernel::GetExpectedPtenKernelArgs(
    const ExecutionContext& ctx) const {
1863 1864 1865 1866
  InitDefaultKernelSignatureMap();
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
  return pten::OpUtilsMap::Instance().GetArgumentMappingFn(Type())(
      arg_mapping_ctx);
1867 1868
}

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
Scope* OperatorWithKernel::PreparePtenData(
    const Scope& scope, const pten::Kernel& pt_kernel,
    const KernelSignature& pt_kernel_signature, RuntimeContext* ctx) const {
  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto input_defs = pt_kernel.args_def().input_defs();
  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));
  Scope* new_scope = nullptr;
1880
  auto& name_map = Inputs();
Y
YuanRisheng 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
    }
  }

1891 1892 1893
  for (size_t i = 0; i < input_defs.size(); ++i) {
    auto& in_def = input_defs.at(i);
    auto& ins_vector = ctx->inputs.at(input_names[i]);
1894
    auto& name_vec = name_map.at(input_names[i]);
Y
YuanRisheng 已提交
1895 1896 1897
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(input_names[i]) > 0;

1898 1899 1900 1901 1902 1903 1904 1905
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      // Only tensor can be tranfer to another device.
      auto* var = ins_vector[offset];
      if (var == nullptr || !VarIsTensor(*var)) {
        continue;
      }

      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
YuanRisheng 已提交
1906 1907 1908 1909 1910 1911 1912 1913 1914

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
        // TODO(YuanRisheng) : There need to supplement MKLDNN code later
        continue;
      }

1915 1916 1917 1918 1919 1920 1921 1922 1923
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto expected_place = pten::TransToFluidPlace(in_def.backend);
      if (platform::is_same_place(tensor_in->place(), expected_place)) {
        continue;
      }

1924 1925
      VLOG(3) << "PTen Transform Variable " << input_names[i] << " from "
              << tensor_in->place() << " to " << expected_place;
1926

1927 1928 1929
      if (!new_scope) {
        new_scope = &scope.NewScope();
      }
1930

1931
      // Create new var with the same name in transfer scopes
1932
      auto* trans_var = new_scope->Var(name_vec[offset]);
1933
      ins_vector[offset] = trans_var;
1934

1935 1936 1937 1938
      // Do transfer
      Tensor out;
      framework::TensorCopySync(*tensor_in, expected_place, &out);
      SetTensorToVariable(*var, out, trans_var);
1939 1940 1941 1942 1943 1944
    }
  }

  return new_scope;
}

1945
void OperatorWithKernel::BuildPtenKernelContext(
1946 1947 1948
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx,
    pten::KernelContext* pt_kernel_context) const {
  pt_kernel_context->SetDeviceContext(dev_ctx);
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976

  auto& input_names = std::get<0>(pt_kernel_signature_->args);
  auto& attr_names = std::get<1>(pt_kernel_signature_->args);
  auto& output_names = std::get<2>(pt_kernel_signature_->args);

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
1977
    auto& ins_vector = ctx.inputs.at(input_names[i]);
1978 1979 1980

    // calcute the start and end index of the input tensors
    size_t start_idx =
1981
        (i == 0 ? 0 : pt_kernel_context->InputRangeAt(i - 1).second);
1982
    size_t end_idx = start_idx + ins_vector.size();
1983 1984

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
      const framework::Tensor* tensor_in = nullptr;
      auto* var = ins_vector[offset];
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
      }  // TODO(zyfncg): Add support for SelectedRows

      pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
1996
    }
1997
    pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
1998 1999 2000
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
2001
    auto& outs_vector = ctx.outputs.at(output_names[i]);
2002 2003

    size_t start_idx =
2004
        (i == 0 ? 0 : pt_kernel_context->OutputRangeAt(i - 1).second);
2005
    size_t end_idx = start_idx + outs_vector.size();
2006 2007

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
      framework::Tensor* tensor_out = nullptr;
      auto* var = outs_vector[offset];
      if (var->template IsType<framework::LoDTensor>()) {
        tensor_out = var->template GetMutable<framework::LoDTensor>();
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported output `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
      }  // TODO(zyfncg): Add support for SelectedRows

      experimental::ResetTensorByArgDef(tensor_out, output_defs.at(i));
      SetAllocationForOutputTenosr(
          tensor_out, pten::TransToFluidPlace(output_defs.at(i).backend));

      pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2023
    }
2024 2025 2026 2027 2028

    // Deal with the case that some outputs are NULL when run the kernel.
    // For example : the outputs of matmul_grad are dx and dy,
    // sometimes dx or dy may be NULL.
    if (outs_vector.empty()) {
2029
      pt_kernel_context->EmplaceBackOutputWithoutSetRange({nullptr});
2030 2031 2032
      end_idx = start_idx + 1;
    }

2033
    pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
2034 2035 2036
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
2037 2038 2039 2040 2041
    if (attr_defs[i].type_index == std::type_index(typeid(pten::ScalarArray))) {
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // shape is in the attribute
        if (std::type_index(attr_iter->second.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
2042
          pt_kernel_context->EmplaceBackAttr(std::move(pten::ScalarArray(
2043
              BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2044 2045
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
2046
          pt_kernel_context->EmplaceBackAttr(std::move(pten::ScalarArray(
2047
              BOOST_GET_CONST(std::vector<int32_t>, attr_iter->second))));
2048 2049 2050 2051 2052 2053 2054 2055 2056
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to ScalarArray when "
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
2057
          pt_kernel_context->EmplaceBackAttr(std::move(
2058 2059
              experimental::MakePtenScalarArrayFromVar(*ins_vector.front())));
        } else {  // ShapeTensorList
2060
          pt_kernel_context->EmplaceBackAttr(std::move(
2061 2062 2063 2064 2065
              experimental::MakePtenScalarArrayFromVarList(ins_vector)));
        }
      }
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(pten::Scalar))) {
2066 2067 2068
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
2069 2070 2071 2072
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // scalar is in the attribute
        auto& attr = Attrs().at(attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
2073
          pt_kernel_context->EmplaceBackAttr(
2074 2075 2076
              std::move(pten::Scalar(BOOST_GET_CONST(float, attr))));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
2077
          pt_kernel_context->EmplaceBackAttr(
2078
              std::move(pten::Scalar(BOOST_GET_CONST(std::string, attr))));
2079 2080 2081 2082
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          pt_kernel_context->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(int, attr))));
2083 2084 2085 2086 2087 2088
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext.",
              attr_names[i]));
        }
2089
      } else {
2090
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
2091
        pt_kernel_context->EmplaceBackAttr(std::move(
2092
            experimental::MakePtenScalarFromVar(*ins_vector.front())));
2093
      }
2094

2095 2096
    } else {
      // TODO(chenweihang): support other attrs later
2097
      auto& attr = Attrs().at(attr_names[i]);
2098
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
2099
        pt_kernel_context->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
2100
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
2101
        pt_kernel_context->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
2102
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
2103
        pt_kernel_context->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
2104
      } else if (attr_defs[i].type_index ==
2105 2106 2107 2108
                 std::type_index(typeid(pten::DataType))) {
        auto data_type = pten::TransToPtenDataType(
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
2109
        pt_kernel_context->EmplaceBackAttr(data_type);
2110 2111 2112 2113 2114 2115 2116 2117
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Pten_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
2118
          pt_kernel_context->EmplaceBackAttr(vector_int64_attr);
2119 2120 2121
        }
        // TODO(YuanRisheng) Need support vector<int64_t> attr

2122 2123
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
2124
            "Unsupported cast op attribute `%s` when construct "
2125 2126 2127 2128 2129 2130 2131
            "KernelContext.",
            attr_names[i]));
      }
    }
  }
}

Q
Qiao Longfei 已提交
2132
}  // namespace framework
L
liaogang 已提交
2133
}  // namespace paddle