operator.cc 73.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/shape_inference.h"
27
#include "paddle/fluid/framework/transfer_scope_cache.h"
28
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
L
Leo Chen 已提交
30
#include "paddle/fluid/platform/enforce.h"
31
#include "paddle/fluid/platform/profiler.h"
32
#include "paddle/pten/common/scalar.h"
33 34 35 36 37 38

namespace paddle {
namespace framework {
class LoDTensor;
}  // namespace framework
}  // namespace paddle
39
#ifdef PADDLE_WITH_XPU
40 41
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
42
#endif
Q
Qiao Longfei 已提交
43

44 45 46 47
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dzhwinter 已提交
48
DECLARE_bool(benchmark);
49
DECLARE_bool(check_nan_inf);
50
DECLARE_bool(enable_unused_var_check);
51 52
PADDLE_DEFINE_EXPORTED_int32(inner_op_parallelism, 0,
                             "number of threads for inner op");
53
DECLARE_bool(run_pten_kernel);
D
dzhwinter 已提交
54

Q
Qiao Longfei 已提交
55 56 57
namespace paddle {
namespace framework {

58 59 60 61 62 63
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
64

65
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
66
                         bool get_actual_dim = false) {
67
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
68 69
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
70 71
  }

M
minqiyang 已提交
72 73 74 75 76 77 78 79 80
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
S
Steffy-zxf 已提交
81 82
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
83 84 85 86 87
  } else {
    return DDim({-1});
  }
}

88
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
89 90 91 92 93
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

94
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
95 96 97 98
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
99

M
minqiyang 已提交
100 101 102
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
103 104
      return "";
    }
Y
Yu Yang 已提交
105
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
106
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
107 108 109 110
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
111
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
112
    }
S
Steffy-zxf 已提交
113 114
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
115 116 117 118 119
  } else {
    return "";
  }
}

120
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
  } else if (var->IsType<SelectedRows>()) {
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

149
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
150 151 152 153 154
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
155 156
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
157 158 159 160 161
  }

  return -1;
}

162
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
163 164 165 166 167 168 169
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
170 171 172
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
173 174 175 176 177
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
178 179 180 181 182
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
183
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
184 185 186 187 188 189
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
190
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
191 192 193 194 195 196
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

197
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
198 199 200
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
201
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
202 203 204 205
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
206
#else
207
      auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
P
peizhilin 已提交
208
      platform::SetDeviceId(dev_id);
209 210 211
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
212 213 214 215
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
216 217 218
#else
      auto dev_id = BOOST_GET_CONST(platform::XPUPlace, place).device;
      platform::SetXPUDeviceId(dev_id);
219 220 221 222 223 224 225 226 227 228
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
      auto dev_id = BOOST_GET_CONST(platform::NPUPlace, place).device;
      platform::SetNPUDeviceId(dev_id);
229
#endif
P
peizhilin 已提交
230
    }
P
peizhilin 已提交
231

232
    {
233 234 235 236 237 238
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
      platform::RecordEvent op_type_record_event(Type());
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
239
          op_name, platform::EventRole::kUniqueOp);
P
peizhilin 已提交
240 241
      RunImpl(scope, place);
    }
242

Z
Zhang Ting 已提交
243
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
244
  } catch (platform::EnforceNotMet& exception) {
245
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
246
    throw std::move(exception);
247 248 249 250 251 252
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
253
  } catch (...) {
254
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
255
    std::rethrow_exception(std::current_exception());
256
  }
257 258
}

259
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
260
  return inputs_.find(name) != inputs_.end();
261 262
}

263
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
264
  auto& ins = Inputs(name);
265 266
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
267
      platform::errors::InvalidArgument(
268 269
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
270
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
271 272
}

Y
Yu Yang 已提交
273 274
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
275
  auto it = inputs_.find(name);
276 277 278 279
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
280
  return it->second;
Y
Yan Chunwei 已提交
281 282
}

283
bool OperatorBase::HasOutputs(const std::string& name) const {
284
  if (outputs_.find(name) != outputs_.end()) {
285 286 287 288 289 290
    return true;
  } else {
    return false;
  }
}

291
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
292
  auto& outs = Outputs(name);
293 294 295 296 297
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
298
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
299 300
}

Y
Yu Yang 已提交
301 302
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
303
  auto it = outputs_.find(name);
304 305 306 307
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
308
  return it->second;
Y
Yan Chunwei 已提交
309 310
}

311
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
312
  std::stringstream ss;
Y
Yu Yang 已提交
313
  ss << "Op(" << type_ << "), inputs:{";
314

315
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
316 317
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
318 319
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
320 321
  }

Y
Yu Yang 已提交
322 323
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
324 325
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
326 327
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
328 329
      auto var_name = input.second[i];
      ss << var_name;
330
      if (scope) {
Q
Qiao Longfei 已提交
331 332 333 334 335 336 337
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
338 339 340
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
341
          ss << ":" << dtype;
342 343
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
344
          ss << "(" << GetPlace(*scope, var_name) << ")";
345
        }
346
      }
Y
Yu Yang 已提交
347 348 349
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
350
    }
Y
Yu Yang 已提交
351
    ss << "]";
Y
Yu Yang 已提交
352 353
    ++it;
    if (it != inputs_.end()) {
354 355
      ss << ", ";
    }
Q
Qiao Longfei 已提交
356
  }
Y
Yu Yang 已提交
357
  ss << "}, outputs:{";
Y
Yu Yang 已提交
358 359
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
360 361
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
362 363
      auto var_name = output.second[i];
      ss << var_name;
364
      if (scope) {
Q
Qiao Longfei 已提交
365 366 367 368 369 370 371
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
372 373
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
374 375
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
376
          ss << "(" << GetPlace(*scope, var_name) << ")";
377
        }
378
      }
Y
Yu Yang 已提交
379 380 381
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
382
    }
Y
Yu Yang 已提交
383
    ss << "]";
Y
Yu Yang 已提交
384 385
    ++it;
    if (it != outputs_.end()) {
386 387
      ss << ", ";
    }
Q
Qiao Longfei 已提交
388
  }
Y
Yu Yang 已提交
389
  ss << "}.";
Q
Qiao Longfei 已提交
390 391 392
  return ss.str();
}

Y
Yu Yang 已提交
393
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
394 395
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
396
                           const AttributeMap& attrs)
S
sneaxiy 已提交
397 398 399 400 401 402
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
403 404 405 406 407 408 409 410
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
411
}
412

Q
qijun 已提交
413 414
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
415
  for (auto& o : inputs_) {
Q
qijun 已提交
416 417 418 419 420 421
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
422 423 424 425 426 427 428 429 430 431
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
432
  auto& info = Info();
Y
Yu Yang 已提交
433 434

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
435
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
436 437 438 439 440 441 442 443 444
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
445 446
}

447
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
448
  if (info_ == nullptr || info_->proto_ == nullptr) return;
449

S
sneaxiy 已提交
450
  for (auto& in : info_->Proto().inputs()) {
451
    if (!in.dispensable() && !in.extra()) {
452 453 454 455
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
456
    }
457 458
  }

S
sneaxiy 已提交
459
  for (auto& out : info_->Proto().outputs()) {
460
    if (!out.dispensable() && !out.extra()) {
461 462 463 464
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
465
    }
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
481

C
chengduo 已提交
482
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
483 484 485 486
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
487
  } else {
488 489 490
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
491 492 493
  }
}

C
chengduo 已提交
494
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
495
  if (var->IsType<LoDTensor>()) {
496
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
497
  } else if (var->IsType<SelectedRows>()) {
498
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
499
  } else {
500 501 502
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
503 504 505
  }
}

506
bool ExecutionContext::HasInput(const std::string& name) const {
507
  auto* var = InputVar(name);
508 509 510 511
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
512
  auto* var = OutputVar(name);
513 514 515
  return var != nullptr;
}

X
Xin Pan 已提交
516
const Variable* ExecutionContext::InputVar(const std::string& name) const {
517 518
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
519 520 521
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

522 523
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
524
      platform::errors::InvalidArgument(
525 526
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
527 528 529
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
530
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
531 532 533
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

534 535 536 537 538
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
539 540 541
  return it->second.empty() ? nullptr : it->second[0];
}

542
template <>
543
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
544
  return Input<LoDTensor>(name);
545 546 547
}

template <>
548
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
549
    const std::string& name) const {
550 551
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
552 553
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
554 555 556 557 558
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
559
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
560
                   if (var == nullptr) return nullptr;
561 562 563 564 565
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
566 567 568 569 570
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

571
template <>
572
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
573
  return Output<LoDTensor>(name);
574 575 576
}

template <>
577
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
578
    const std::string& name) const {
H
hong 已提交
579 580 581
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
582 583
    return {};
  }
584
  std::vector<Tensor*> res;
585 586 587 588 589
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
590
                 });
591 592 593
  return res;
}

Y
Yu Yang 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

609 610
class RuntimeInferShapeContext : public InferShapeContext {
 public:
611
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
612
      : op_(op), ctx_(ctx) {}
613 614

  bool HasInput(const std::string& name) const override {
615
    // has only one input
X
Xin Pan 已提交
616
    const auto& ins = ctx_.inputs;
617 618
    auto it = ins.find(name);
    if (it == ins.end()) {
619 620
      return false;
    }
621
    const auto& in = it->second;
X
Xin Pan 已提交
622
    if (in.size() == 0) return false;
623 624 625 626
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
627
    return in[0] != nullptr;
628 629 630
  }

  bool HasOutput(const std::string& name) const override {
631
    // has only one output
X
Xin Pan 已提交
632
    const auto& outs = ctx_.outputs;
633 634
    auto it = outs.find(name);
    if (it == outs.end()) {
635 636
      return false;
    }
637
    const auto& out = it->second;
X
Xin Pan 已提交
638
    if (out.size() == 0) {
639 640
      return false;
    }
641 642 643 644
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
645
    return out[0] != nullptr;
646 647 648
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
649 650
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
651
    if (it == ins.end() || it->second.empty()) {
652 653
      return false;
    }
X
Xin Pan 已提交
654 655
    for (auto& input : it->second) {
      if (input == nullptr) {
656 657 658 659 660 661 662
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
663 664
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
665
    if (it == outs.end() || it->second.empty()) {
666 667
      return false;
    }
X
Xin Pan 已提交
668 669
    for (auto& output : it->second) {
      if (output == nullptr) {
670 671 672 673 674 675 676 677
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
678
  std::vector<std::string> Inputs(const std::string& name) const override {
679 680 681
    return op_.Inputs(name);
  }

H
hong 已提交
682
  std::vector<std::string> Outputs(const std::string& name) const override {
683 684 685
    return op_.Outputs(name);
  }

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

709 710
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
711 712
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
729 730 731

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
732

733 734 735 736 737
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
738 739 740 741 742 743 744 745 746 747 748 749

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
750
      PADDLE_THROW(platform::errors::Unimplemented(
751
          "Currently, the input type of ShareDim only can be LoDTensor "
752
          "or SelectedRows."));
753 754 755
    }
  }

H
hong 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
774
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
801 802
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
803 804
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
821 822

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
823
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
824
    Variable* out_var = out_it->second.at(j);
825 826 827 828
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
829
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
830 831
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
832

M
mozga-intel 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
852 853
  }

854
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
855
    PADDLE_THROW(platform::errors::PreconditionNotMet(
856
        "GetLoDLevel is only used in compile time. The calculation of "
857
        "output's actual lod is different among operators so that should be "
858
        "set in the runtime kernel."));
859 860
  }

861 862
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
863
    PADDLE_THROW(platform::errors::PreconditionNotMet(
864
        "SetLoDLevel is only used in compile time. The calculation of "
865
        "output's actual lod is different among operators so that should be "
866
        "set in the runtime kernel."));
C
chengduo 已提交
867 868
  }

869 870
  bool IsRuntime() const override { return true; }

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
890 891
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
892 893 894 895 896
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
897 898 899 900 901 902 903 904
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
905 906 907 908 909 910 911 912 913 914
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
915 916
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
917 918 919 920 921
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
922 923 924 925 926 927 928 929 930
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

931
 protected:
X
Xin Pan 已提交
932
  DDim GetDim(Variable* var) const {
933 934
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
935 936 937 938 939
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
940 941 942 943
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
944 945 946
    }
  }

X
Xin Pan 已提交
947 948 949 950 951 952 953 954
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
955
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
956 957
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
958 959
  }

X
Xin Pan 已提交
960
  void SetDim(Variable* var, const DDim& dim) {
961 962 963 964 965
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
966 967 968 969
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
970 971 972 973 974 975
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
976 977 978 979 980 981
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
982 983 984 985 986
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
987 988 989
    }
  }

F
fengjiayi 已提交
990 991
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
992 993
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
994 995
  }

X
Xin Pan 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1007 1008 1009
    return ToVarType(var->Type());
  }

1010 1011 1012
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1013 1014 1015 1016
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1017 1018 1019 1020 1021
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1022 1023 1024 1025
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1026
    return it->second;
F
fengjiayi 已提交
1027 1028
  }

1029
  const OperatorBase& op_;
X
Xin Pan 已提交
1030
  const RuntimeContext& ctx_;
1031 1032
};

1033 1034
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1035 1036 1037 1038
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
1039 1040
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
1041 1042
    return;
  }
1043 1044 1045 1046 1047 1048 1049 1050
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1051 1052
}

1053 1054
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1055 1056
  auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1057
                     [data_type](OpKernelMap::const_reference kern_pair) {
1058 1059
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1060 1061
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1062 1063 1064
                     });
}

1065 1066
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1067 1068
  bool use_mkldnn_ctx =
      ctx.Attr<bool>("use_mkldnn") && platform::is_cpu_place(ctx.GetPlace());
1069
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1070 1071
}

B
baojun-nervana 已提交
1072
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1073 1074
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1075
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
B
baojun-nervana 已提交
1076 1077 1078
  this->InferShape(&infer_shape_ctx);
}

L
luotao1 已提交
1079 1080
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1081 1082
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1083 1084 1085
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1086
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1087
    all_kernels_must_compute_runtime_shape_ = true;
1088
  const Scope* cur_scope = &scope;
1089
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1090 1091
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1092
    pre_scope_ = cur_scope;
L
luotao1 已提交
1093
  } else {
1094 1095 1096 1097 1098 1099
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1100 1101 1102 1103 1104 1105 1106 1107
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1108
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1109
  auto* dev_ctx = pool.Get(place);
1110

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1121 1122 1123 1124 1125 1126 1127 1128 1129
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);

  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
  if (FLAGS_run_pten_kernel &&
      pten::KernelFactory::Instance().HasCompatiblePtenKernel(type_)) {
1130
    if (pt_kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
1131 1132 1133 1134 1135 1136 1137 1138
      ChoosePtenKernel(exe_ctx);
    }
    run_pten_kernel_ = pt_kernel_->IsValid();
  }
  if (!run_pten_kernel_) {
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
    }
1139 1140
  }

Y
yuyang18 已提交
1141 1142
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1143 1144
  Scope* transfer_scope = nullptr;
  {
1145
    platform::RecordEvent record_event("prepare_data",
1146
                                       platform::EventRole::kInnerOp);
1147 1148 1149 1150
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1151
  }
Y
yuyang18 已提交
1152 1153 1154 1155
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1156 1157
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
1158
  }
Q
QI JUN 已提交
1159

1160
  if (!all_kernels_must_compute_runtime_shape_) {
1161
    platform::RecordEvent record_event("infer_shape",
1162
                                       platform::EventRole::kInnerOp);
1163
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1164 1165
    this->InferShape(&infer_shape_ctx);
  }
1166 1167 1168 1169 1170

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1171 1172
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1173
  {
1174
    platform::RecordEvent record_event("compute",
1175
                                       platform::EventRole::kInnerOp);
1176
    if (run_pten_kernel_) {
1177 1178 1179 1180 1181
      if (pt_kernel_context_ == nullptr) {
        pt_kernel_context_.reset(new pten::KernelContext());
      }
      BuildPtenKernelContext(*runtime_ctx, dev_ctx);
      (*pt_kernel_)(pt_kernel_context_.get());
1182 1183 1184

      WriteBackToOutputs(runtime_ctx);

1185
      pt_kernel_context_->ClearData();
1186 1187 1188 1189
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1190
  }
D
dzhwinter 已提交
1191

Y
yuyang18 已提交
1192
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1193
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1194
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1195
  }
1196 1197 1198 1199 1200 1201 1202

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1203 1204 1205 1206 1207 1208 1209 1210
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1211

D
dzhwinter 已提交
1212
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1213
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1214
    dev_ctx->Wait();
L
Leo Chen 已提交
1215 1216 1217
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaGetLastError());
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
1218 1219 1220 1221
#endif
#if defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_CUDA_SUCCESS(hipGetLastError());
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
L
Leo Chen 已提交
1222
#endif
D
dzhwinter 已提交
1223
  }
C
chengduoZH 已提交
1224 1225

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1226
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1227
  }
1228 1229 1230 1231 1232 1233 1234

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1235
}
X
Xin Pan 已提交
1236

1237 1238 1239
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto& dev_ctx = ctx.device_context();
L
Liu Yiqun 已提交
1240

1241
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1242 1243 1244
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1255 1256 1257
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
      if (SupportGPU()) {
1258
        expected_kernel_key.place_ = dev_ctx.GetPlace();
B
Baibaifan 已提交
1259
      } else if (SupportNPU()) {
1260
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1261 1262 1263 1264 1265 1266 1267 1268
      } else {
        expected_kernel_key.place_ = platform::CPUPlace();
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1269 1270
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1271 1272 1273 1274 1275 1276
  return expected_kernel_key;
}

void OperatorWithKernel::ChoosePtenKernel(const ExecutionContext& ctx) const {
  pt_kernel_signature_.reset(
      new KernelSignature(std::move(this->GetExpectedPtenKernelArgs(ctx))));
C
Chen Weihang 已提交
1277
  VLOG(6) << KernelSignatureToString(*pt_kernel_signature_.get());
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

  auto pt_kernel_name = pten::KernelName(pt_kernel_signature_->name);
  auto pt_kernel_key = TransOpKernelTypeToPtenKernelKey(*kernel_type_.get());
  pt_kernel_.reset(
      new pten::Kernel(pten::KernelFactory::Instance().SelectKernel(
          pt_kernel_name, pt_kernel_key)));

  if (pt_kernel_->IsValid()) {
C
Chen Weihang 已提交
1289
    VLOG(6) << "Static mode ChoosePtenKernel - kernel name: " << pt_kernel_name
1290 1291 1292
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
C
Chen Weihang 已提交
1293
    VLOG(6) << "Static mode ChoosePtenKernel - kernel `" << pt_kernel_name
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
            << "` not found.";
  }
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1322 1323
#endif
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
1324 1325 1326 1327
  if (is_xpu_place(expected_kernel_key.place_) &&
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1328 1329 1330 1331 1332 1333
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
      is_npu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1344
#endif
1345 1346 1347 1348
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1349

1350 1351 1352 1353 1354
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1355 1356
}

Y
yuyang18 已提交
1357 1358 1359 1360
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1361
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1362
    auto* origin_var = scope.FindVar(var_name);
1363 1364 1365
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1366
    auto* original_tensor =
C
chengduo 已提交
1367
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1368
    auto* var = transfer_scope.FindVar(var_name);
1369 1370
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1371
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1372
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1373
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1374 1375 1376 1377 1378
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1379 1380 1381
  }
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
      auto src_type = grad_tensor->type();
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
      auto dst_type = tensor->saved_type();
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1449
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1450
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1451 1452
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1453
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1454

1455
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1456 1457 1458 1459
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1460 1461
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1462 1463 1464
    }
  }

Y
yuyang18 已提交
1465
  for (auto& var_name_item : Inputs()) {
1466 1467
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1468

X
Xin Pan 已提交
1469 1470 1471 1472
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1473
      auto* var = input_vars[i];
X
Xin Pan 已提交
1474

Y
yuyang18 已提交
1475
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1476
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1477 1478 1479
        continue;
      }

C
chengduo 已提交
1480
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1496 1497
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1530 1531
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1532

1533 1534 1535
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1536
      // We use a thread_local cache to fix that issue, the key in the cache is
1537 1538 1539 1540 1541
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1542 1543
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1544
      // variables, that behavior a lot different.
1545 1546 1547 1548 1549 1550 1551 1552 1553
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1554 1555
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1556
        enable_cache_transfer_scope_ = true;
1557
      }
1558
      if (!new_scope) {
Y
yuyang18 已提交
1559 1560
        new_scope = &scope.NewScope();
      }
1561 1562 1563 1564
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1565
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1566 1567
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1568
      if (enable_cache_runtime_context_) {
1569 1570
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1571 1572

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1573
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1574
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1592
      Tensor out;
Y
yuyang18 已提交
1593
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1594 1595 1596
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1597

1598 1599 1600 1601 1602 1603
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1604 1605 1606 1607 1608 1609

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1610 1611
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1612 1613 1614

  return new_scope;
}
Q
Qiao Longfei 已提交
1615

1616
void OperatorWithKernel::ParseInputDataType(
1617
    const std::vector<Variable*>& vars, const std::string& name,
1618
    proto::VarType::Type* data_type) const {
1619
  proto::VarType::Type default_data_type =
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
1631
      } else if (var->IsType<LoDTensorArray>()) {
1632 1633 1634 1635
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
1636 1637
          }
        }
1638 1639
      }
      if (t != nullptr) {
1640 1641
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
1642 1643 1644
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
1645
        proto::VarType::Type tmp = t->type();
1646 1647 1648 1649 1650 1651 1652 1653 1654
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
1655 1656 1657 1658 1659 1660
        *data_type = tmp;
      }
    }
  }
}

1661
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1662
    const ExecutionContext& ctx) const {
1663 1664 1665
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1666
  for (auto& input : ctx.InNameList()) {
1667 1668
    const std::vector<Variable*> vars = ctx.MultiInputVar(input);
    ParseInputDataType(vars, input, &data_type);
Y
Yu Yang 已提交
1669
  }
1670 1671 1672 1673
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1674 1675 1676 1677 1678 1679 1680 1681
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
1682
  ParseInputDataType(ctx.MultiInputVar(name), name, &data_type);
1683 1684
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1685 1686 1687 1688 1689
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1690
  return data_type;
Y
Yu Yang 已提交
1691
}
1692

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
  auto type_a = tensor_a->type();
  auto type_b = tensor_b->type();

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1753 1754 1755 1756 1757 1758 1759 1760
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1761 1762
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1763 1764
}

1765 1766 1767 1768 1769
KernelSignature OperatorWithKernel::GetExpectedPtenKernelArgs(
    const ExecutionContext& ctx) const {
  return KernelSignatureMap::Instance().Get(Type());
}

1770 1771
void OperatorWithKernel::BuildPtenKernelContext(
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx) const {
1772 1773 1774 1775 1776 1777 1778
  // TODO(chenweihang): now only work for very simple case,
  // many cases need to be deal with later:
  // 1. the input and output are not tensor
  // 2. the dispensbale, duplicable input and output
  // 3. needless attributes remove
  // 4. use pt Tensor directly
  // 5. kernel input is not DenseTensor
1779
  pt_kernel_context_->SetDeviceContext(dev_ctx);
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807

  auto& input_names = std::get<0>(pt_kernel_signature_->args);
  auto& attr_names = std::get<1>(pt_kernel_signature_->args);
  auto& output_names = std::get<2>(pt_kernel_signature_->args);

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
1808 1809
    auto& in_def = input_defs.at(i);
    auto& ins_vector = ctx.inputs.at(input_names[i]);
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821

    // calcute the start and end index of the input tensors
    size_t start_idx =
        (i == 0 ? 0 : pt_kernel_context_->InputRangeAt(i - 1).second);
    size_t end_idx = start_idx + ins_vector.size();

    // The current size of input/output in pt_kernel_context_ is at least equal
    // the start_idx. For the reason of reusing the allocted of inputs or
    // outputs in pt_kernel_context_, the current size of input/output can be
    // greater then the index of which the tensort wanted to set to, so it will
    // use ReMakePtenDenseTensorFromVar to make pten tensor.
    if (pt_kernel_context_->InputsSize() == start_idx) {
1822 1823 1824 1825 1826 1827
      paddle::SmallVector<std::shared_ptr<pten::TensorBase>> tmp_inputs;
      for (auto* var : ins_vector) {
        tmp_inputs.emplace_back(
            experimental::MakePtenTensorBaseFromVar(*var, in_def));
      }
      pt_kernel_context_->EmplaceBackInputs(std::move(tmp_inputs));
1828
    } else if (pt_kernel_context_->InputsSize() > start_idx) {
1829 1830
      size_t input_size = pt_kernel_context_->InputsSize();
      for (size_t j = 0; j < ins_vector.size(); ++j) {
1831
        if (input_size > start_idx + j) {
1832 1833
          experimental::ReMakePtenDenseTensorFromVar(
              *ins_vector[j], in_def,
1834 1835 1836 1837 1838 1839 1840 1841 1842
              pt_kernel_context_->MutableInputAt<pten::DenseTensor>(start_idx +
                                                                    j));
          // TODO(chentianyu03): When multi input kernel, open this code
          /*
          } else {
            pt_kernel_context_->EmplaceBackInputWithoutSetRange(
                experimental::MakePtenTensorBaseFromVar(*ins_vector[j],
          in_def));
          */
1843 1844 1845
        }
      }
      pt_kernel_context_->MutableInputRangeAt(i) =
1846 1847 1848 1849 1850 1851 1852
          std::make_pair(start_idx, end_idx);
    } else {
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "Error start index when trying to set new tensor to inputs, start "
          "index is `%d`, but current pt_kernel_context_.inputs.size() is "
          "`%d`.",
          start_idx, pt_kernel_context_->InputsSize()));
1853 1854 1855 1856
    }
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
1857 1858
    auto& out_def = output_defs.at(i);
    auto& outs_vector = ctx.outputs.at(output_names[i]);
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

    size_t start_idx =
        (i == 0 ? 0 : pt_kernel_context_->OutputRangeAt(i - 1).second);
    size_t end_idx = start_idx + outs_vector.size();

    // The current size of input/output in pt_kernel_context_ is at least equal
    // the start_idx. For the reason of reusing the allocted of inputs or
    // outputs in pt_kernel_context_, the current size of input/output can be
    // greater then the index of which the tensort wanted to set to, so it will
    // use ReMakePtenDenseTensorFromVar to make pten tensor.
    if (pt_kernel_context_->OutputsSize() == start_idx) {
1870 1871 1872 1873 1874 1875
      paddle::SmallVector<std::shared_ptr<pten::TensorBase>> tmp_outputs;
      for (auto* var : outs_vector) {
        tmp_outputs.emplace_back(
            experimental::MakePtenTensorBaseFromVar(var, out_def));
      }
      pt_kernel_context_->EmplaceBackOutputs(std::move(tmp_outputs));
1876
    } else if (pt_kernel_context_->OutputsSize() > start_idx) {
1877 1878
      size_t output_size = pt_kernel_context_->OutputsSize();
      for (size_t j = 0; j < outs_vector.size(); ++j) {
1879
        if (output_size > start_idx + j) {
1880 1881
          experimental::ReMakePtenDenseTensorFromVar(
              outs_vector[j], out_def,
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
              pt_kernel_context_->MutableOutputAt<pten::DenseTensor>(start_idx +
                                                                     j));

          // TODO(chentianyu03): When multi output kernel, open this code
          /*
          } else {
            pt_kernel_context_->EmplaceBackOutputWithoutSetRange(
                experimental::MakePtenTensorBaseFromVar(outs_vector[j],
          out_def));
              */
1892 1893 1894
        }
      }
      pt_kernel_context_->MutableOutputRangeAt(i) =
1895 1896 1897 1898 1899 1900 1901
          std::make_pair(start_idx, end_idx);
    } else {
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "Error start index when trying to set new tensor to inputs, start "
          "index is `%d`, but current pt_kernel_context_.outputs.size() is "
          "`%d`.",
          start_idx, pt_kernel_context_->OutputsSize()));
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
    }
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
    auto& attr = Attrs().at(attr_names[i]);
    if (attr_defs[i].type_index == std::type_index(typeid(pten::Scalar))) {
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
      if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
1912
        pt_kernel_context_->EmplaceBackAttr(
1913
            std::move(pten::Scalar(BOOST_GET_CONST(float, attr))));
1914 1915
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::string))) {
1916
        pt_kernel_context_->EmplaceBackAttr(
1917
            std::move(pten::Scalar(BOOST_GET_CONST(std::string, attr))));
1918 1919 1920 1921 1922 1923 1924 1925 1926
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "unsupported cast op attribute `%s` to Scalar when construct "
            "KernelContext.",
            attr_names[i]));
      }
    } else {
      // TODO(chenweihang): support other attrs later
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
1927
        pt_kernel_context_->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
1928
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
1929
        pt_kernel_context_->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
1930
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
1931
        pt_kernel_context_->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
1932
      } else if (attr_defs[i].type_index ==
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
                 std::type_index(typeid(pten::DataType))) {
        auto data_type = pten::TransToPtenDataType(
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        pt_kernel_context_->EmplaceBackAttr(data_type);
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Pten_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          pt_kernel_context_->EmplaceBackAttr(vector_int64_attr);
        }
        // TODO(YuanRisheng) Need support vector<int64_t> attr

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "unsupported cast op attribute `%s` when construct "
            "KernelContext.",
            attr_names[i]));
      }
    }
  }
}

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
void OperatorWithKernel::WriteBackToOutputs(RuntimeContext* ctx) const {
  // auto& input_names = std::get<0>(pt_kernel_signature_->args);
  // auto& attr_names = std::get<1>(pt_kernel_signature_->args);
  auto& output_names = std::get<2>(pt_kernel_signature_->args);

  // pt_kernel_context_

  for (size_t i = 0; i < output_names.size(); ++i) {
    auto& outs_vector = ctx->outputs.at(output_names[i]);

    auto& range_pair = pt_kernel_context_->OutputRangeAt(i);
    auto pten_outs =
        pt_kernel_context_->MutableOutputBetween<pten::DenseTensor>(
            range_pair.first, range_pair.second);

    for (size_t j = 0; j < pten_outs.size(); ++j) {
      experimental::MakeVariableFromPtenTensor(pten_outs[j], outs_vector[j]);
    }
  }
}

Q
Qiao Longfei 已提交
1981
}  // namespace framework
L
liaogang 已提交
1982
}  // namespace paddle