operator.cc 48.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17 18
#include <gflags/gflags.h>
#include <glog/logging.h>
19

20
#include <algorithm>
P
peizhilin 已提交
21 22
#include <sstream>
#include <string>
S
sneaxiy 已提交
23
#include <unordered_set>
P
peizhilin 已提交
24
#include <vector>
25

Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/data_transform.h"
W
WangXi 已提交
27
#include "paddle/fluid/framework/details/nan_inf_utils.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/executor.h"
29
#include "paddle/fluid/framework/lod_tensor.h"
30
#include "paddle/fluid/framework/op_call_stack.h"
31
#include "paddle/fluid/framework/op_proto_maker.h"
Y
Yi Wang 已提交
32
#include "paddle/fluid/framework/shape_inference.h"
33
#include "paddle/fluid/framework/transfer_scope_cache.h"
34
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/var_type.h"
36
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
37

38 39 40 41
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dzhwinter 已提交
42
DECLARE_bool(benchmark);
43
DECLARE_bool(check_nan_inf);
44
DECLARE_bool(enable_unused_var_check);
Q
Qiao Longfei 已提交
45
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
P
pkpk 已提交
46 47 48
DEFINE_bool(fast_check_nan_inf, false,
            "Fast checking NAN/INF after each operation. It will be a little"
            "bit slow, much faster than check_nan_inf");
D
dzhwinter 已提交
49

Q
Qiao Longfei 已提交
50 51 52
namespace paddle {
namespace framework {

53 54 55 56 57 58
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
59

60 61
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
62
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
63 64
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
65 66
  }

M
minqiyang 已提交
67 68 69 70 71 72 73 74 75
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
76 77 78 79 80
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
81 82 83 84 85 86
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
87 88 89 90 91
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
92

M
minqiyang 已提交
93 94 95
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
96 97
      return "";
    }
Y
Yu Yang 已提交
98
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
99
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
100 101 102 103
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
104
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
105
    }
D
dzhwinter 已提交
106 107 108 109 110
  } else {
    return "";
  }
}

111 112 113 114 115 116
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
117 118
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
119 120 121 122 123
  }

  return -1;
}

124
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
125 126 127 128 129 130 131
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
132 133 134
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
135 136 137 138 139
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
140 141 142 143 144
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
145
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
146 147 148 149 150 151
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
152
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
153 154 155 156 157 158
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

159
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
160 161 162
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
163
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
164
      PADDLE_THROW("Cannot run operator on place %s", place);
165
#else
166
      auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
P
peizhilin 已提交
167
      platform::SetDeviceId(dev_id);
168
#endif
P
peizhilin 已提交
169
    }
P
peizhilin 已提交
170

171
    {
172 173 174 175 176 177
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
      platform::RecordEvent op_type_record_event(Type());
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
178
          op_name, platform::EventRole::kUniqueOp);
P
peizhilin 已提交
179 180
      RunImpl(scope, place);
    }
181

Z
Zhang Ting 已提交
182
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
183
  } catch (platform::EnforceNotMet& exception) {
184
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
185
    throw std::move(exception);
186 187 188 189 190 191
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
192
  } catch (...) {
193
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
194
    std::rethrow_exception(std::current_exception());
195
  }
196 197
}

198
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
199
  return inputs_.find(name) != inputs_.end();
200 201
}

202
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
203
  auto& ins = Inputs(name);
204 205 206 207 208
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
      platform::errors::AlreadyExists(
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
209
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
210 211
}

Y
Yu Yang 已提交
212 213
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
214
  auto it = inputs_.find(name);
215 216
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
217
  return it->second;
Y
Yan Chunwei 已提交
218 219
}

220
bool OperatorBase::HasOutputs(const std::string& name) const {
221
  if (outputs_.find(name) != outputs_.end()) {
222 223 224 225 226 227
    return true;
  } else {
    return false;
  }
}

228
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
229
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
230
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
231 232
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
233
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
234 235
}

Y
Yu Yang 已提交
236 237
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
238
  auto it = outputs_.find(name);
239 240
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
241
  return it->second;
Y
Yan Chunwei 已提交
242 243
}

244
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
245
  std::stringstream ss;
Y
Yu Yang 已提交
246
  ss << "Op(" << type_ << "), inputs:{";
247

248
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
249 250
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
251 252
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
253 254
  }

Y
Yu Yang 已提交
255 256
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
257 258
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
259 260
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
261 262
      auto var_name = input.second[i];
      ss << var_name;
263
      if (scope) {
Q
Qiao Longfei 已提交
264 265 266 267 268 269 270
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
271 272 273
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
274
          ss << ":" << dtype;
275 276
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
277
        }
278
      }
Y
Yu Yang 已提交
279 280 281
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
282
    }
Y
Yu Yang 已提交
283
    ss << "]";
Y
Yu Yang 已提交
284 285
    ++it;
    if (it != inputs_.end()) {
286 287
      ss << ", ";
    }
Q
Qiao Longfei 已提交
288
  }
Y
Yu Yang 已提交
289
  ss << "}, outputs:{";
Y
Yu Yang 已提交
290 291
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
292 293
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
294 295
      auto var_name = output.second[i];
      ss << var_name;
296
      if (scope) {
Q
Qiao Longfei 已提交
297 298 299 300 301 302 303
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
304 305
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
306 307
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
308
        }
309
      }
Y
Yu Yang 已提交
310 311 312
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
313
    }
Y
Yu Yang 已提交
314
    ss << "]";
Y
Yu Yang 已提交
315 316
    ++it;
    if (it != outputs_.end()) {
317 318
      ss << ", ";
    }
Q
Qiao Longfei 已提交
319
  }
Y
Yu Yang 已提交
320
  ss << "}.";
Q
Qiao Longfei 已提交
321 322 323
  return ss.str();
}

Y
Yu Yang 已提交
324
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
325 326
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
327
                           const AttributeMap& attrs)
S
sneaxiy 已提交
328 329 330 331 332 333
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
334 335 336 337 338 339 340 341
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
342
}
343

Q
qijun 已提交
344 345
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
346
  for (auto& o : inputs_) {
Q
qijun 已提交
347 348 349 350 351 352
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
353 354 355 356 357 358 359 360 361 362
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
363
  auto& info = Info();
Y
Yu Yang 已提交
364 365

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
366
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
367 368 369 370 371 372 373 374 375
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
376 377
}

378
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
379
  if (info_ == nullptr || info_->proto_ == nullptr) return;
380

S
sneaxiy 已提交
381
  for (auto& in : info_->Proto().inputs()) {
382 383 384 385
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
386 387
  }

S
sneaxiy 已提交
388
  for (auto& out : info_->Proto().outputs()) {
389 390 391 392 393
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
410
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
411
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
412 413
}

C
chengduo 已提交
414
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
415 416 417 418
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
419
  } else {
Y
Yang Yang 已提交
420
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
421
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
422 423 424
  }
}

C
chengduo 已提交
425
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
426
  if (var->IsType<LoDTensor>()) {
427
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
428
  } else if (var->IsType<SelectedRows>()) {
429
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
430
  } else {
Y
Yang Yang 已提交
431
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
432
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
433 434 435
  }
}

436
bool ExecutionContext::HasInput(const std::string& name) const {
437
  auto* var = InputVar(name);
438 439 440 441
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
442
  auto* var = OutputVar(name);
443 444 445
  return var != nullptr;
}

X
Xin Pan 已提交
446
const Variable* ExecutionContext::InputVar(const std::string& name) const {
447 448
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
449 450 451
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

452 453 454 455 456
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::AlreadyExists(
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
457 458 459
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
460
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
461 462 463 464 465 466 467 468 469
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

470
template <>
471
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
472
  return Input<LoDTensor>(name);
473 474 475
}

template <>
476
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
477
    const std::string& name) const {
478 479
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
480 481
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
482 483 484 485 486
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
487
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
488 489 490 491
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
492
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
493 494 495 496 497
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

498
template <>
499
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
500
  return Output<LoDTensor>(name);
501 502 503
}

template <>
504
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
505
    const std::string& name) const {
H
hong 已提交
506 507 508
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
509 510
    return {};
  }
511
  std::vector<Tensor*> res;
512 513 514 515 516
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
517
                 });
518 519 520
  return res;
}

Y
Yu Yang 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

536 537
class RuntimeInferShapeContext : public InferShapeContext {
 public:
538
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
539
      : op_(op), ctx_(ctx) {}
540 541

  bool HasInput(const std::string& name) const override {
542
    // has only one input
X
Xin Pan 已提交
543
    const auto& ins = ctx_.inputs;
544 545
    auto it = ins.find(name);
    if (it == ins.end()) {
546 547
      return false;
    }
548
    const auto& in = it->second;
X
Xin Pan 已提交
549
    if (in.size() == 0) return false;
T
tensor-tang 已提交
550
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
551
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
552
    return in[0] != nullptr;
553 554 555
  }

  bool HasOutput(const std::string& name) const override {
556
    // has only one output
X
Xin Pan 已提交
557
    const auto& outs = ctx_.outputs;
558 559
    auto it = outs.find(name);
    if (it == outs.end()) {
560 561
      return false;
    }
562
    const auto& out = it->second;
X
Xin Pan 已提交
563
    if (out.size() == 0) {
564 565
      return false;
    }
T
tensor-tang 已提交
566 567
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
568
    return out[0] != nullptr;
569 570 571
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
572 573
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
574
    if (it == ins.end() || it->second.empty()) {
575 576
      return false;
    }
X
Xin Pan 已提交
577 578
    for (auto& input : it->second) {
      if (input == nullptr) {
579 580 581 582 583 584 585
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
586 587
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
588
    if (it == outs.end() || it->second.empty()) {
589 590
      return false;
    }
X
Xin Pan 已提交
591 592
    for (auto& output : it->second) {
      if (output == nullptr) {
593 594 595 596 597 598 599 600
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
601
  std::vector<std::string> Inputs(const std::string& name) const override {
602 603 604
    return op_.Inputs(name);
  }

H
hong 已提交
605
  std::vector<std::string> Outputs(const std::string& name) const override {
606 607 608
    return op_.Outputs(name);
  }

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

632 633
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
634 635 636 637 638 639 640 641 642
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
643 644

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
645
                   "The type of %s and %s is not the same.", in, out);
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

H
hong 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
682
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
709 710
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
711 712 713 714 715 716 717 718
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
719
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
720
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
721 722
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
723
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
724 725
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
726

M
mozga-intel 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
746 747
  }

748
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
749
    PADDLE_THROW(
750
        "GetLoDLevel is only used in compile time. The calculation of "
751 752 753 754
        "output's actual lod is different among operators so that should be "
        "set in the runtime kernel.");
  }

755 756
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
757
    PADDLE_THROW(
758
        "SetLoDLevel is only used in compile time. The calculation of "
759 760
        "output's actual lod is different among operators so that should be "
        "set in the runtime kernel.");
C
chengduo 已提交
761 762
  }

763 764
  bool IsRuntime() const override { return true; }

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
797 798 799 800 801 802 803 804 805 806
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819 820
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

821
 protected:
X
Xin Pan 已提交
822
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
823
    PADDLE_ENFORCE_NOT_NULL(var);
824 825 826 827 828
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
829
      PADDLE_THROW(
X
Xin Pan 已提交
830
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
831
          "type_id is %s.",
S
sneaxiy 已提交
832
          ToTypeName(var->Type()));
F
fengjiayi 已提交
833 834 835
    }
  }

X
Xin Pan 已提交
836 837 838 839 840 841 842 843
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
844
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
845
    PADDLE_THROW("Only compile time support this method");
846 847
  }

X
Xin Pan 已提交
848
  void SetDim(Variable* var, const DDim& dim) {
849 850 851 852 853
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
854
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
855
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
856 857 858 859 860 861 862 863 864 865 866 867
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
868 869 870
    }
  }

F
fengjiayi 已提交
871 872
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
873
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
874 875
  }

X
Xin Pan 已提交
876 877 878 879 880 881 882 883 884 885 886
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
887 888 889
    return ToVarType(var->Type());
  }

890 891 892 893 894 895 896 897 898 899 900 901 902 903
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
904 905
  }

906
  const OperatorBase& op_;
X
Xin Pan 已提交
907
  const RuntimeContext& ctx_;
908 909
};

910 911
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
912 913 914 915
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
916 917
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
918 919 920
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
921
                 "Operator %s output Tensor %s contains Inf", op_type, name);
C
chengduoZH 已提交
922
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
923
                 "Operator %s output Tensor %s contains NAN", op_type, name);
C
chengduoZH 已提交
924 925
}

B
baojun-nervana 已提交
926
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
927 928
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
929
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
B
baojun-nervana 已提交
930 931 932
  this->InferShape(&infer_shape_ctx);
}

L
luotao1 已提交
933 934
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
935 936
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
937 938 939
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
940
      HasAttr(kAllKernelsMustComputeRuntimeShape))
941
    all_kernels_must_compute_runtime_shape_ = true;
942
  const Scope* cur_scope = &scope;
943
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
944 945
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
946
    pre_scope_ = cur_scope;
L
luotao1 已提交
947
  } else {
948 949 950 951 952 953
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
954 955 956 957 958 959 960 961
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
962
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
963
  auto* dev_ctx = pool.Get(place);
964

965
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
966
    ChooseKernel(*runtime_ctx, scope, place);
967 968
  }

Y
yuyang18 已提交
969 970
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
971 972
  Scope* transfer_scope = nullptr;
  {
973
    platform::RecordEvent record_event("prepare_data",
974
                                       platform::EventRole::kInnerOp);
975 976 977 978
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
979
  }
Y
yuyang18 已提交
980 981 982 983
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

984 985
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
986
  }
Q
QI JUN 已提交
987

988
  if (!all_kernels_must_compute_runtime_shape_) {
989
    platform::RecordEvent record_event("infer_shape",
990
                                       platform::EventRole::kInnerOp);
991
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
992 993
    this->InferShape(&infer_shape_ctx);
  }
994 995 996 997 998

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
999 1000
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1001
  {
1002
    platform::RecordEvent record_event("compute",
1003
                                       platform::EventRole::kInnerOp);
1004 1005
    (*kernel_func_)(
        ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
1006
  }
D
dzhwinter 已提交
1007

Y
yuyang18 已提交
1008
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1009
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1010
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1011
  }
1012 1013 1014 1015 1016 1017 1018 1019
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1020

D
dzhwinter 已提交
1021
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1022
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1023
    dev_ctx->Wait();
D
dzhwinter 已提交
1024
  }
C
chengduoZH 已提交
1025

P
pkpk 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
  if (FLAGS_fast_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
      // only check inserted vars,
      // please see executor.py for details of fast_check_nan_inf
      if (vname.rfind("debug_var") == 0) {
        VLOG(3) << "debugging nan/inf in var " << vname;

        auto* var = exec_scope.FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
        } else if (var->IsType<framework::SelectedRows>()) {
          CheckTensorNANOrInf(type_, vname,
                              var->Get<framework::SelectedRows>().value());
        }
      }
    }
  }

C
chengduoZH 已提交
1045
  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1046
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1047
  }
1048 1049 1050 1051 1052 1053 1054

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1055
}
X
Xin Pan 已提交
1056

L
Liu Yiqun 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
  }

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
1074
      ExecutionContext(*this, scope, *dev_ctx, ctx));
1075 1076 1077
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
      if (SupportGPU()) {
        expected_kernel_key.place_ = dev_ctx->GetPlace();
      } else {
        expected_kernel_key.place_ = platform::CPUPlace();
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
L
Liu Yiqun 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

1118 1119 1120 1121 1122
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1123 1124
}

Y
yuyang18 已提交
1125 1126 1127 1128
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1129
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1130 1131 1132
    auto* origin_var = scope.FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(origin_var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1133
    auto* original_tensor =
C
chengduo 已提交
1134
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1135
    auto* var = transfer_scope.FindVar(var_name);
C
chengduo 已提交
1136 1137
    PADDLE_ENFORCE_NOT_NULL(var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1138
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1139
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1140
    original_tensor->ShareDataWith(*transformed_tensor);
1141
    original_tensor->Resize(original_dims);
Y
yuyang18 已提交
1142 1143 1144
  }
}

X
Xin Pan 已提交
1145
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1146
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1147 1148
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1149
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1150

1151
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1152 1153 1154 1155
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1156 1157
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1158 1159 1160
    }
  }

Y
yuyang18 已提交
1161
  for (auto& var_name_item : Inputs()) {
1162 1163
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1164

X
Xin Pan 已提交
1165 1166 1167 1168
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1169
      auto* var = input_vars[i];
X
Xin Pan 已提交
1170

Y
yuyang18 已提交
1171
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1172
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1173 1174 1175
        continue;
      }

C
chengduo 已提交
1176
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1192 1193
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1232 1233
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1234

1235 1236 1237
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1238
      // We use a thread_local cache to fix that issue, the key in the cache is
1239 1240 1241 1242 1243
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1244 1245
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1246
      // variables, that behavior a lot different.
1247 1248 1249 1250 1251 1252 1253 1254 1255
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1256 1257
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1258
        enable_cache_transfer_scope_ = true;
1259
      }
1260
      if (!new_scope) {
Y
yuyang18 已提交
1261 1262
        new_scope = &scope.NewScope();
      }
1263 1264 1265 1266
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1267
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1268 1269
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1270
      if (enable_cache_runtime_context_) {
1271 1272
        pre_scope_ = nullptr;
      }
Y
yuyang18 已提交
1273
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1274
      input_vars[i] = trans_var;
Y
yuyang18 已提交
1275
      Tensor out;
Y
yuyang18 已提交
1276
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1277 1278 1279
      SetTensorToVariable(*var, out, trans_var);
    }
  }
1280 1281 1282 1283 1284 1285 1286 1287 1288
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
  if (pre_scope_ == &scope && new_scope == nullptr) {
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1289 1290 1291

  return new_scope;
}
Q
Qiao Longfei 已提交
1292

1293 1294 1295
void OperatorWithKernel::ParseInputDataType(
    const ExecutionContext& ctx, const std::string& name,
    proto::VarType::Type* data_type) const {
1296
  proto::VarType::Type default_data_type =
1297
      static_cast<proto::VarType::Type>(-1);
H
hong 已提交
1298
  const std::vector<Variable*> vars = ctx.MultiInputVar(name);
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
1309 1310 1311 1312 1313 1314 1315
      } else if (var->IsType<LoDTensorArray>()) {
        auto t_arr = var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr.size(); j++) {
          if (t_arr[j].IsInitialized()) {
            t = &(t_arr[j]);
          }
        }
1316 1317
      }
      if (t != nullptr) {
1318 1319 1320 1321 1322
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
            platform::errors::InvalidArgument(
                "The Tensor in the %s Op's Input Variable %s(%s) is "
                "not initialized.",
H
hong 已提交
1323
                Type(), name, ctx.InputNames(name).at(i)));
1324
        proto::VarType::Type tmp = t->type();
1325
        PADDLE_ENFORCE(
1326
            tmp == *data_type || *data_type == default_data_type,
1327 1328 1329 1330 1331 1332
            platform::errors::InvalidArgument(
                "The DataType of %s Op's duplicable Variable %s must be "
                "consistent. The current variable type is (%s), but the "
                "previous variable type is (%s).",
                Type(), name, DataTypeToString(tmp),
                DataTypeToString(*data_type)));
1333 1334 1335 1336 1337 1338
        *data_type = tmp;
      }
    }
  }
}

1339
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1340
    const ExecutionContext& ctx) const {
1341 1342 1343
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1344 1345
  for (auto& input : ctx.InNameList()) {
    ParseInputDataType(ctx, input, &data_type);
Y
Yu Yang 已提交
1346
  }
1347 1348 1349 1350
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
  ParseInputDataType(ctx, name, &data_type);
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      "The Input Variable(%s) of %s Op used to determine kernel data type "
L
liym27 已提交
1363
      "is empty or not LoDTensor or SelectedRows or LoDTensorArray.",
1364
      name, Type());
1365
  return data_type;
Y
Yu Yang 已提交
1366
}
1367

1368 1369 1370 1371 1372 1373 1374 1375
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1376 1377
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1378 1379
}

Q
Qiao Longfei 已提交
1380
}  // namespace framework
L
liaogang 已提交
1381
}  // namespace paddle