operator.cc 60.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/shape_inference.h"
27
#include "paddle/fluid/framework/transfer_scope_cache.h"
28
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
L
Leo Chen 已提交
30
#include "paddle/fluid/platform/enforce.h"
31
#include "paddle/fluid/platform/profiler.h"
32 33 34 35 36 37

namespace paddle {
namespace framework {
class LoDTensor;
}  // namespace framework
}  // namespace paddle
38
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
39 40
#include "paddle/fluid/platform/xpu/xpu_info.h"
#include "paddle/fluid/platform/xpu/xpu_op_list.h"
41
#endif
Q
Qiao Longfei 已提交
42

43 44 45 46
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dzhwinter 已提交
47
DECLARE_bool(benchmark);
48
DECLARE_bool(check_nan_inf);
49
DECLARE_bool(enable_unused_var_check);
Q
Qiao Longfei 已提交
50
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
D
dzhwinter 已提交
51

Q
Qiao Longfei 已提交
52 53 54
namespace paddle {
namespace framework {

55 56 57 58 59 60
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
61

62 63
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
64
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
65 66
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
67 68
  }

M
minqiyang 已提交
69 70 71 72 73 74 75 76 77
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
78 79 80 81 82
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
83 84 85 86 87 88
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
89 90 91 92 93
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
94

M
minqiyang 已提交
95 96 97
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
98 99
      return "";
    }
Y
Yu Yang 已提交
100
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
101
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
102 103 104 105
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
106
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
107
    }
D
dzhwinter 已提交
108 109 110 111 112
  } else {
    return "";
  }
}

L
Leo Chen 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
static std::string GetPlace(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
  } else if (var->IsType<SelectedRows>()) {
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

142 143 144 145 146 147
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
148 149
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
150 151 152 153 154
  }

  return -1;
}

155
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
156 157 158 159 160 161 162
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
163 164 165
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
166 167 168 169 170
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
171 172 173 174 175
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
176
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
177 178 179 180 181 182
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
183
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
184 185 186 187 188 189
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

190
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
191 192 193
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
194
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
195 196 197 198
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
199
#else
200
      auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
P
peizhilin 已提交
201
      platform::SetDeviceId(dev_id);
202 203 204
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
205 206 207 208
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
209 210 211
#else
      auto dev_id = BOOST_GET_CONST(platform::XPUPlace, place).device;
      platform::SetXPUDeviceId(dev_id);
212 213 214 215 216 217 218 219 220 221
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
      auto dev_id = BOOST_GET_CONST(platform::NPUPlace, place).device;
      platform::SetNPUDeviceId(dev_id);
222
#endif
P
peizhilin 已提交
223
    }
P
peizhilin 已提交
224

225
    {
226 227 228 229 230 231
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
      platform::RecordEvent op_type_record_event(Type());
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
232
          op_name, platform::EventRole::kUniqueOp);
P
peizhilin 已提交
233 234
      RunImpl(scope, place);
    }
235

Z
Zhang Ting 已提交
236
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
237
  } catch (platform::EnforceNotMet& exception) {
238
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
239
    throw std::move(exception);
240 241 242 243 244 245
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
246
  } catch (...) {
247
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
248
    std::rethrow_exception(std::current_exception());
249
  }
250 251
}

252
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
253
  return inputs_.find(name) != inputs_.end();
254 255
}

256
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
257
  auto& ins = Inputs(name);
258 259
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
260
      platform::errors::InvalidArgument(
261 262
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
263
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
264 265
}

Y
Yu Yang 已提交
266 267
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
268
  auto it = inputs_.find(name);
269 270 271 272
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
273
  return it->second;
Y
Yan Chunwei 已提交
274 275
}

276
bool OperatorBase::HasOutputs(const std::string& name) const {
277
  if (outputs_.find(name) != outputs_.end()) {
278 279 280 281 282 283
    return true;
  } else {
    return false;
  }
}

284
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
285
  auto& outs = Outputs(name);
286 287 288 289 290
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
291
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
292 293
}

Y
Yu Yang 已提交
294 295
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
296
  auto it = outputs_.find(name);
297 298 299 300
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
301
  return it->second;
Y
Yan Chunwei 已提交
302 303
}

304
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
305
  std::stringstream ss;
Y
Yu Yang 已提交
306
  ss << "Op(" << type_ << "), inputs:{";
307

308
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
309 310
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
311 312
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
313 314
  }

Y
Yu Yang 已提交
315 316
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
317 318
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
319 320
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
321 322
      auto var_name = input.second[i];
      ss << var_name;
323
      if (scope) {
Q
Qiao Longfei 已提交
324 325 326 327 328 329 330
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
331 332 333
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
334
          ss << ":" << dtype;
335 336
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
337
          ss << "(" << GetPlace(*scope, var_name) << ")";
338
        }
339
      }
Y
Yu Yang 已提交
340 341 342
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
343
    }
Y
Yu Yang 已提交
344
    ss << "]";
Y
Yu Yang 已提交
345 346
    ++it;
    if (it != inputs_.end()) {
347 348
      ss << ", ";
    }
Q
Qiao Longfei 已提交
349
  }
Y
Yu Yang 已提交
350
  ss << "}, outputs:{";
Y
Yu Yang 已提交
351 352
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
353 354
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
355 356
      auto var_name = output.second[i];
      ss << var_name;
357
      if (scope) {
Q
Qiao Longfei 已提交
358 359 360 361 362 363 364
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
365 366
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
367 368
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
369
          ss << "(" << GetPlace(*scope, var_name) << ")";
370
        }
371
      }
Y
Yu Yang 已提交
372 373 374
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
375
    }
Y
Yu Yang 已提交
376
    ss << "]";
Y
Yu Yang 已提交
377 378
    ++it;
    if (it != outputs_.end()) {
379 380
      ss << ", ";
    }
Q
Qiao Longfei 已提交
381
  }
Y
Yu Yang 已提交
382
  ss << "}.";
Q
Qiao Longfei 已提交
383 384 385
  return ss.str();
}

Y
Yu Yang 已提交
386
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
387 388
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
389
                           const AttributeMap& attrs)
S
sneaxiy 已提交
390 391 392 393 394 395
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
396 397 398 399 400 401 402 403
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
404
}
405

Q
qijun 已提交
406 407
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
408
  for (auto& o : inputs_) {
Q
qijun 已提交
409 410 411 412 413 414
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
415 416 417 418 419 420 421 422 423 424
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
425
  auto& info = Info();
Y
Yu Yang 已提交
426 427

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
428
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
429 430 431 432 433 434 435 436 437
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
438 439
}

440
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
441
  if (info_ == nullptr || info_->proto_ == nullptr) return;
442

S
sneaxiy 已提交
443
  for (auto& in : info_->Proto().inputs()) {
444
    if (!in.dispensable()) {
445 446 447 448
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
449
    }
450 451
  }

S
sneaxiy 已提交
452
  for (auto& out : info_->Proto().outputs()) {
453
    if (!out.dispensable()) {
454 455 456 457
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
458
    }
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
475
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
476
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
477 478
}

C
chengduo 已提交
479
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
480 481 482 483
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
484
  } else {
485 486 487
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
488 489 490
  }
}

C
chengduo 已提交
491
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
492
  if (var->IsType<LoDTensor>()) {
493
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
494
  } else if (var->IsType<SelectedRows>()) {
495
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
496
  } else {
497 498 499
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
500 501 502
  }
}

503
bool ExecutionContext::HasInput(const std::string& name) const {
504
  auto* var = InputVar(name);
505 506 507 508
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
509
  auto* var = OutputVar(name);
510 511 512
  return var != nullptr;
}

X
Xin Pan 已提交
513
const Variable* ExecutionContext::InputVar(const std::string& name) const {
514 515
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
516 517 518
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

519 520
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
521
      platform::errors::InvalidArgument(
522 523
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
524 525 526
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
527
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
528 529 530
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

531 532 533 534 535
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
536 537 538
  return it->second.empty() ? nullptr : it->second[0];
}

539
template <>
540
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
541
  return Input<LoDTensor>(name);
542 543 544
}

template <>
545
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
546
    const std::string& name) const {
547 548
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
549 550
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
551 552 553 554 555
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
556
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
557
                   if (var == nullptr) return nullptr;
558 559 560 561 562
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
563 564 565 566 567
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

568
template <>
569
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
570
  return Output<LoDTensor>(name);
571 572 573
}

template <>
574
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
575
    const std::string& name) const {
H
hong 已提交
576 577 578
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
579 580
    return {};
  }
581
  std::vector<Tensor*> res;
582 583 584 585 586
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
587
                 });
588 589 590
  return res;
}

Y
Yu Yang 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

606 607
class RuntimeInferShapeContext : public InferShapeContext {
 public:
608
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
609
      : op_(op), ctx_(ctx) {}
610 611

  bool HasInput(const std::string& name) const override {
612
    // has only one input
X
Xin Pan 已提交
613
    const auto& ins = ctx_.inputs;
614 615
    auto it = ins.find(name);
    if (it == ins.end()) {
616 617
      return false;
    }
618
    const auto& in = it->second;
X
Xin Pan 已提交
619
    if (in.size() == 0) return false;
620 621 622 623
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
624
    return in[0] != nullptr;
625 626 627
  }

  bool HasOutput(const std::string& name) const override {
628
    // has only one output
X
Xin Pan 已提交
629
    const auto& outs = ctx_.outputs;
630 631
    auto it = outs.find(name);
    if (it == outs.end()) {
632 633
      return false;
    }
634
    const auto& out = it->second;
X
Xin Pan 已提交
635
    if (out.size() == 0) {
636 637
      return false;
    }
638 639 640 641
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
642
    return out[0] != nullptr;
643 644 645
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
646 647
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
648
    if (it == ins.end() || it->second.empty()) {
649 650
      return false;
    }
X
Xin Pan 已提交
651 652
    for (auto& input : it->second) {
      if (input == nullptr) {
653 654 655 656 657 658 659
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
660 661
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
662
    if (it == outs.end() || it->second.empty()) {
663 664
      return false;
    }
X
Xin Pan 已提交
665 666
    for (auto& output : it->second) {
      if (output == nullptr) {
667 668 669 670 671 672 673 674
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
675
  std::vector<std::string> Inputs(const std::string& name) const override {
676 677 678
    return op_.Inputs(name);
  }

H
hong 已提交
679
  std::vector<std::string> Outputs(const std::string& name) const override {
680 681 682
    return op_.Outputs(name);
  }

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

706 707
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
708 709
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
726 727 728

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
729

730 731 732 733 734
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
735 736 737 738 739 740 741 742 743 744 745 746

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
747
      PADDLE_THROW(platform::errors::Unimplemented(
748
          "Currently, the input type of ShareDim only can be LoDTensor "
749
          "or SelectedRows."));
750 751 752
    }
  }

H
hong 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
771
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
798 799
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
800 801
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
818 819

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
820
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
821
    Variable* out_var = out_it->second.at(j);
822 823 824 825
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
826
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
827 828
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
829

M
mozga-intel 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
849 850
  }

851
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
852
    PADDLE_THROW(platform::errors::PreconditionNotMet(
853
        "GetLoDLevel is only used in compile time. The calculation of "
854
        "output's actual lod is different among operators so that should be "
855
        "set in the runtime kernel."));
856 857
  }

858 859
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
860
    PADDLE_THROW(platform::errors::PreconditionNotMet(
861
        "SetLoDLevel is only used in compile time. The calculation of "
862
        "output's actual lod is different among operators so that should be "
863
        "set in the runtime kernel."));
C
chengduo 已提交
864 865
  }

866 867
  bool IsRuntime() const override { return true; }

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
887 888
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
889 890 891 892 893
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
894 895 896 897 898 899 900 901
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
902 903 904 905 906 907 908 909 910 911
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
912 913
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
914 915 916 917 918
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
919 920 921 922 923 924 925 926 927
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

928
 protected:
X
Xin Pan 已提交
929
  DDim GetDim(Variable* var) const {
930 931
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
932 933 934 935 936
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
937 938 939 940
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
941 942 943
    }
  }

X
Xin Pan 已提交
944 945 946 947 948 949 950 951
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
952
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
953 954
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
955 956
  }

X
Xin Pan 已提交
957
  void SetDim(Variable* var, const DDim& dim) {
958 959 960 961 962
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
963 964 965 966
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
967 968 969 970 971 972
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
973 974 975 976 977 978
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
979 980 981 982 983
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
984 985 986
    }
  }

F
fengjiayi 已提交
987 988
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
989 990
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
991 992
  }

X
Xin Pan 已提交
993 994 995 996 997 998 999 1000 1001 1002 1003
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1004 1005 1006
    return ToVarType(var->Type());
  }

1007 1008 1009
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1010 1011 1012 1013
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1014 1015 1016 1017 1018
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1019 1020 1021 1022
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1023
    return it->second;
F
fengjiayi 已提交
1024 1025
  }

1026
  const OperatorBase& op_;
X
Xin Pan 已提交
1027
  const RuntimeContext& ctx_;
1028 1029
};

1030 1031
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1032 1033 1034 1035
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
1036 1037
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
1038 1039
    return;
  }
1040 1041 1042 1043 1044 1045 1046 1047
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1048 1049
}

1050 1051
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1052 1053
  auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1054
                     [data_type](OpKernelMap::const_reference kern_pair) {
1055 1056
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1057 1058
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1059 1060 1061
                     });
}

1062 1063
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1064 1065
  bool use_mkldnn_ctx =
      ctx.Attr<bool>("use_mkldnn") && platform::is_cpu_place(ctx.GetPlace());
1066
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1067 1068
}

B
baojun-nervana 已提交
1069
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1070 1071
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1072
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
B
baojun-nervana 已提交
1073 1074 1075
  this->InferShape(&infer_shape_ctx);
}

L
luotao1 已提交
1076 1077
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1078 1079
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1080 1081 1082
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1083
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1084
    all_kernels_must_compute_runtime_shape_ = true;
1085
  const Scope* cur_scope = &scope;
1086
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1087 1088
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1089
    pre_scope_ = cur_scope;
L
luotao1 已提交
1090
  } else {
1091 1092 1093 1094 1095 1096
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1097 1098 1099 1100 1101 1102 1103 1104
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1105
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1106
  auto* dev_ctx = pool.Get(place);
1107

1108
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
1109
    ChooseKernel(*runtime_ctx, scope, place);
1110 1111
  }

Y
yuyang18 已提交
1112 1113
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1114 1115
  Scope* transfer_scope = nullptr;
  {
1116
    platform::RecordEvent record_event("prepare_data",
1117
                                       platform::EventRole::kInnerOp);
1118 1119 1120 1121
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1122
  }
Y
yuyang18 已提交
1123 1124 1125 1126
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1127 1128
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
1129
  }
Q
QI JUN 已提交
1130

1131
  if (!all_kernels_must_compute_runtime_shape_) {
1132
    platform::RecordEvent record_event("infer_shape",
1133
                                       platform::EventRole::kInnerOp);
1134
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1135 1136
    this->InferShape(&infer_shape_ctx);
  }
1137 1138 1139 1140 1141

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1142 1143
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1144
  {
1145
    platform::RecordEvent record_event("compute",
1146
                                       platform::EventRole::kInnerOp);
1147 1148
    (*kernel_func_)(
        ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
1149
  }
D
dzhwinter 已提交
1150

Y
yuyang18 已提交
1151
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1152
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1153
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1154
  }
1155 1156 1157 1158 1159 1160 1161

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1162 1163 1164 1165 1166 1167 1168 1169
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1170

D
dzhwinter 已提交
1171
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1172
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1173
    dev_ctx->Wait();
L
Leo Chen 已提交
1174 1175 1176
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaGetLastError());
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
1177 1178 1179 1180
#endif
#if defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_CUDA_SUCCESS(hipGetLastError());
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
L
Leo Chen 已提交
1181
#endif
D
dzhwinter 已提交
1182
  }
C
chengduoZH 已提交
1183 1184

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1185
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1186
  }
1187 1188 1189 1190 1191 1192 1193

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1194
}
X
Xin Pan 已提交
1195

L
Liu Yiqun 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1205 1206 1207 1208 1209
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));
L
Liu Yiqun 已提交
1210 1211 1212 1213

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
1214
      ExecutionContext(*this, scope, *dev_ctx, ctx));
1215 1216 1217
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1228 1229 1230 1231
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
      if (SupportGPU()) {
        expected_kernel_key.place_ = dev_ctx->GetPlace();
B
Baibaifan 已提交
1232 1233
      } else if (SupportNPU()) {
        expected_kernel_key.place_ = dev_ctx->GetPlace();
1234 1235 1236 1237 1238 1239 1240 1241
      } else {
        expected_kernel_key.place_ = platform::CPUPlace();
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1242 1243
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
L
Liu Yiqun 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1255 1256
#endif
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
1257 1258 1259 1260
  if (is_xpu_place(expected_kernel_key.place_) &&
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1261 1262 1263 1264 1265 1266
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
      is_npu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1277
#endif
1278 1279 1280 1281
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1282

1283 1284 1285 1286 1287
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1288 1289
}

Y
yuyang18 已提交
1290 1291 1292 1293
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1294
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1295
    auto* origin_var = scope.FindVar(var_name);
1296 1297 1298
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1299
    auto* original_tensor =
C
chengduo 已提交
1300
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1301
    auto* var = transfer_scope.FindVar(var_name);
1302 1303
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1304
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1305
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1306
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1307 1308 1309 1310 1311
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1312 1313 1314
  }
}

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
      auto src_type = grad_tensor->type();
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
      auto dst_type = tensor->saved_type();
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1382
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1383
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1384 1385
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1386
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1387

1388
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1389 1390 1391 1392
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1393 1394
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1395 1396 1397
    }
  }

Y
yuyang18 已提交
1398
  for (auto& var_name_item : Inputs()) {
1399 1400
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1401

X
Xin Pan 已提交
1402 1403 1404 1405
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1406
      auto* var = input_vars[i];
X
Xin Pan 已提交
1407

Y
yuyang18 已提交
1408
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1409
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1410 1411 1412
        continue;
      }

C
chengduo 已提交
1413
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1429 1430
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1463 1464
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1465

1466 1467 1468
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1469
      // We use a thread_local cache to fix that issue, the key in the cache is
1470 1471 1472 1473 1474
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1475 1476
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1477
      // variables, that behavior a lot different.
1478 1479 1480 1481 1482 1483 1484 1485 1486
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1487 1488
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1489
        enable_cache_transfer_scope_ = true;
1490
      }
1491
      if (!new_scope) {
Y
yuyang18 已提交
1492 1493
        new_scope = &scope.NewScope();
      }
1494 1495 1496 1497
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1498
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1499 1500
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1501
      if (enable_cache_runtime_context_) {
1502 1503
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1504 1505

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1506
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1507
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1525
      Tensor out;
Y
yuyang18 已提交
1526
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1527 1528 1529
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1530

1531 1532 1533 1534 1535 1536
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1537 1538 1539 1540 1541 1542

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1543 1544
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1545 1546 1547

  return new_scope;
}
Q
Qiao Longfei 已提交
1548

1549 1550 1551
void OperatorWithKernel::ParseInputDataType(
    const ExecutionContext& ctx, const std::string& name,
    proto::VarType::Type* data_type) const {
1552
  proto::VarType::Type default_data_type =
1553
      static_cast<proto::VarType::Type>(-1);
H
hong 已提交
1554
  const std::vector<Variable*> vars = ctx.MultiInputVar(name);
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
1565
      } else if (var->IsType<LoDTensorArray>()) {
1566 1567 1568 1569
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
1570 1571
          }
        }
1572 1573
      }
      if (t != nullptr) {
1574 1575 1576 1577 1578
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
            platform::errors::InvalidArgument(
                "The Tensor in the %s Op's Input Variable %s(%s) is "
                "not initialized.",
H
hong 已提交
1579
                Type(), name, ctx.InputNames(name).at(i)));
1580
        proto::VarType::Type tmp = t->type();
1581
        PADDLE_ENFORCE(
1582
            tmp == *data_type || *data_type == default_data_type,
1583 1584 1585 1586 1587 1588
            platform::errors::InvalidArgument(
                "The DataType of %s Op's duplicable Variable %s must be "
                "consistent. The current variable type is (%s), but the "
                "previous variable type is (%s).",
                Type(), name, DataTypeToString(tmp),
                DataTypeToString(*data_type)));
1589 1590 1591 1592 1593 1594
        *data_type = tmp;
      }
    }
  }
}

1595
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1596
    const ExecutionContext& ctx) const {
1597 1598 1599
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1600 1601
  for (auto& input : ctx.InNameList()) {
    ParseInputDataType(ctx, input, &data_type);
Y
Yu Yang 已提交
1602
  }
1603 1604 1605 1606
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
  ParseInputDataType(ctx, name, &data_type);
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1618 1619 1620 1621 1622
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1623
  return data_type;
Y
Yu Yang 已提交
1624
}
1625

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
  auto type_a = tensor_a->type();
  auto type_b = tensor_b->type();

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1686 1687 1688 1689 1690 1691 1692 1693
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1694 1695
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1696 1697
}

Q
Qiao Longfei 已提交
1698
}  // namespace framework
L
liaogang 已提交
1699
}  // namespace paddle