operator.cc 61.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/shape_inference.h"
27
#include "paddle/fluid/framework/transfer_scope_cache.h"
28
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
L
Leo Chen 已提交
30
#include "paddle/fluid/platform/enforce.h"
31
#include "paddle/fluid/platform/profiler.h"
32 33 34 35 36 37

namespace paddle {
namespace framework {
class LoDTensor;
}  // namespace framework
}  // namespace paddle
38
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
39 40
#include "paddle/fluid/platform/xpu/xpu_info.h"
#include "paddle/fluid/platform/xpu/xpu_op_list.h"
41
#endif
Q
Qiao Longfei 已提交
42

43 44 45 46
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dzhwinter 已提交
47
DECLARE_bool(benchmark);
48
DECLARE_bool(check_nan_inf);
49
DECLARE_bool(enable_unused_var_check);
50 51
PADDLE_DEFINE_EXPORTED_int32(inner_op_parallelism, 0,
                             "number of threads for inner op");
D
dzhwinter 已提交
52

Q
Qiao Longfei 已提交
53 54 55
namespace paddle {
namespace framework {

56 57 58 59 60 61
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
62

63 64
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
65
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
66 67
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
68 69
  }

M
minqiyang 已提交
70 71 72 73 74 75 76 77 78
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
79 80 81 82 83
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
84 85 86 87 88 89
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
90 91 92 93 94
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
95

M
minqiyang 已提交
96 97 98
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
99 100
      return "";
    }
Y
Yu Yang 已提交
101
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
102
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
103 104 105 106
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
107
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
108
    }
D
dzhwinter 已提交
109 110 111 112 113
  } else {
    return "";
  }
}

L
Leo Chen 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
static std::string GetPlace(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
  } else if (var->IsType<SelectedRows>()) {
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

143 144 145 146 147 148
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
149 150
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
151 152 153 154 155
  }

  return -1;
}

156
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
157 158 159 160 161 162 163
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
164 165 166
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
167 168 169 170 171
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
172 173 174 175 176
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
177
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
178 179 180 181 182 183
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
184
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
185 186 187 188 189 190
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

191
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
192 193 194
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
195
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
196 197 198 199
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
200
#else
201
      auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
P
peizhilin 已提交
202
      platform::SetDeviceId(dev_id);
203 204 205
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
206 207 208 209
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
210 211 212
#else
      auto dev_id = BOOST_GET_CONST(platform::XPUPlace, place).device;
      platform::SetXPUDeviceId(dev_id);
213 214 215 216 217 218 219 220 221 222
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
      auto dev_id = BOOST_GET_CONST(platform::NPUPlace, place).device;
      platform::SetNPUDeviceId(dev_id);
223
#endif
P
peizhilin 已提交
224
    }
P
peizhilin 已提交
225

226
    {
227 228 229 230 231 232
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
      platform::RecordEvent op_type_record_event(Type());
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
233
          op_name, platform::EventRole::kUniqueOp);
P
peizhilin 已提交
234 235
      RunImpl(scope, place);
    }
236

Z
Zhang Ting 已提交
237
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
238
  } catch (platform::EnforceNotMet& exception) {
239
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
240
    throw std::move(exception);
241 242 243 244 245 246
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
247
  } catch (...) {
248
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
249
    std::rethrow_exception(std::current_exception());
250
  }
251 252
}

253
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
254
  return inputs_.find(name) != inputs_.end();
255 256
}

257
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
258
  auto& ins = Inputs(name);
259 260
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
261
      platform::errors::InvalidArgument(
262 263
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
264
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
265 266
}

Y
Yu Yang 已提交
267 268
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
269
  auto it = inputs_.find(name);
270 271 272 273
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
274
  return it->second;
Y
Yan Chunwei 已提交
275 276
}

277
bool OperatorBase::HasOutputs(const std::string& name) const {
278
  if (outputs_.find(name) != outputs_.end()) {
279 280 281 282 283 284
    return true;
  } else {
    return false;
  }
}

285
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
286
  auto& outs = Outputs(name);
287 288 289 290 291
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
292
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
293 294
}

Y
Yu Yang 已提交
295 296
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
297
  auto it = outputs_.find(name);
298 299 300 301
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
302
  return it->second;
Y
Yan Chunwei 已提交
303 304
}

305
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
306
  std::stringstream ss;
Y
Yu Yang 已提交
307
  ss << "Op(" << type_ << "), inputs:{";
308

309
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
310 311
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
312 313
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
314 315
  }

Y
Yu Yang 已提交
316 317
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
318 319
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
320 321
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
322 323
      auto var_name = input.second[i];
      ss << var_name;
324
      if (scope) {
Q
Qiao Longfei 已提交
325 326 327 328 329 330 331
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
332 333 334
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
335
          ss << ":" << dtype;
336 337
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
338
          ss << "(" << GetPlace(*scope, var_name) << ")";
339
        }
340
      }
Y
Yu Yang 已提交
341 342 343
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
344
    }
Y
Yu Yang 已提交
345
    ss << "]";
Y
Yu Yang 已提交
346 347
    ++it;
    if (it != inputs_.end()) {
348 349
      ss << ", ";
    }
Q
Qiao Longfei 已提交
350
  }
Y
Yu Yang 已提交
351
  ss << "}, outputs:{";
Y
Yu Yang 已提交
352 353
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
354 355
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
356 357
      auto var_name = output.second[i];
      ss << var_name;
358
      if (scope) {
Q
Qiao Longfei 已提交
359 360 361 362 363 364 365
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
366 367
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
368 369
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
370
          ss << "(" << GetPlace(*scope, var_name) << ")";
371
        }
372
      }
Y
Yu Yang 已提交
373 374 375
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
376
    }
Y
Yu Yang 已提交
377
    ss << "]";
Y
Yu Yang 已提交
378 379
    ++it;
    if (it != outputs_.end()) {
380 381
      ss << ", ";
    }
Q
Qiao Longfei 已提交
382
  }
Y
Yu Yang 已提交
383
  ss << "}.";
Q
Qiao Longfei 已提交
384 385 386
  return ss.str();
}

Y
Yu Yang 已提交
387
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
388 389
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
390
                           const AttributeMap& attrs)
S
sneaxiy 已提交
391 392 393 394 395 396
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
397 398 399 400 401 402 403 404
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
405
}
406

Q
qijun 已提交
407 408
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
409
  for (auto& o : inputs_) {
Q
qijun 已提交
410 411 412 413 414 415
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
416 417 418 419 420 421 422 423 424 425
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
426
  auto& info = Info();
Y
Yu Yang 已提交
427 428

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
429
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
430 431 432 433 434 435 436 437 438
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
439 440
}

441
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
442
  if (info_ == nullptr || info_->proto_ == nullptr) return;
443

S
sneaxiy 已提交
444
  for (auto& in : info_->Proto().inputs()) {
445
    if (!in.dispensable() && !in.extra()) {
446 447 448 449
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
450
    }
451 452
  }

S
sneaxiy 已提交
453
  for (auto& out : info_->Proto().outputs()) {
454
    if (!out.dispensable() && !out.extra()) {
455 456 457 458
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
459
    }
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
476
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
477
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
478 479
}

C
chengduo 已提交
480
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
481 482 483 484
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
485
  } else {
486 487 488
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
489 490 491
  }
}

C
chengduo 已提交
492
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
493
  if (var->IsType<LoDTensor>()) {
494
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
495
  } else if (var->IsType<SelectedRows>()) {
496
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
497
  } else {
498 499 500
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
501 502 503
  }
}

504
bool ExecutionContext::HasInput(const std::string& name) const {
505
  auto* var = InputVar(name);
506 507 508 509
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
510
  auto* var = OutputVar(name);
511 512 513
  return var != nullptr;
}

X
Xin Pan 已提交
514
const Variable* ExecutionContext::InputVar(const std::string& name) const {
515 516
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
517 518 519
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

520 521
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
522
      platform::errors::InvalidArgument(
523 524
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
525 526 527
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
528
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
529 530 531
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

532 533 534 535 536
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
537 538 539
  return it->second.empty() ? nullptr : it->second[0];
}

540
template <>
541
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
542
  return Input<LoDTensor>(name);
543 544 545
}

template <>
546
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
547
    const std::string& name) const {
548 549
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
550 551
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
552 553 554 555 556
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
557
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
558
                   if (var == nullptr) return nullptr;
559 560 561 562 563
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
564 565 566 567 568
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

569
template <>
570
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
571
  return Output<LoDTensor>(name);
572 573 574
}

template <>
575
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
576
    const std::string& name) const {
H
hong 已提交
577 578 579
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
580 581
    return {};
  }
582
  std::vector<Tensor*> res;
583 584 585 586 587
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
588
                 });
589 590 591
  return res;
}

Y
Yu Yang 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

607 608
class RuntimeInferShapeContext : public InferShapeContext {
 public:
609
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
610
      : op_(op), ctx_(ctx) {}
611 612

  bool HasInput(const std::string& name) const override {
613
    // has only one input
X
Xin Pan 已提交
614
    const auto& ins = ctx_.inputs;
615 616
    auto it = ins.find(name);
    if (it == ins.end()) {
617 618
      return false;
    }
619
    const auto& in = it->second;
X
Xin Pan 已提交
620
    if (in.size() == 0) return false;
621 622 623 624
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
625
    return in[0] != nullptr;
626 627 628
  }

  bool HasOutput(const std::string& name) const override {
629
    // has only one output
X
Xin Pan 已提交
630
    const auto& outs = ctx_.outputs;
631 632
    auto it = outs.find(name);
    if (it == outs.end()) {
633 634
      return false;
    }
635
    const auto& out = it->second;
X
Xin Pan 已提交
636
    if (out.size() == 0) {
637 638
      return false;
    }
639 640 641 642
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
643
    return out[0] != nullptr;
644 645 646
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
647 648
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
649
    if (it == ins.end() || it->second.empty()) {
650 651
      return false;
    }
X
Xin Pan 已提交
652 653
    for (auto& input : it->second) {
      if (input == nullptr) {
654 655 656 657 658 659 660
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
661 662
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
663
    if (it == outs.end() || it->second.empty()) {
664 665
      return false;
    }
X
Xin Pan 已提交
666 667
    for (auto& output : it->second) {
      if (output == nullptr) {
668 669 670 671 672 673 674 675
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
676
  std::vector<std::string> Inputs(const std::string& name) const override {
677 678 679
    return op_.Inputs(name);
  }

H
hong 已提交
680
  std::vector<std::string> Outputs(const std::string& name) const override {
681 682 683
    return op_.Outputs(name);
  }

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

707 708
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
709 710
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
727 728 729

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
730

731 732 733 734 735
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
736 737 738 739 740 741 742 743 744 745 746 747

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
748
      PADDLE_THROW(platform::errors::Unimplemented(
749
          "Currently, the input type of ShareDim only can be LoDTensor "
750
          "or SelectedRows."));
751 752 753
    }
  }

H
hong 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
772
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
799 800
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
801 802
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
819 820

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
821
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
822
    Variable* out_var = out_it->second.at(j);
823 824 825 826
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
827
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
828 829
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
830

M
mozga-intel 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
850 851
  }

852
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
853
    PADDLE_THROW(platform::errors::PreconditionNotMet(
854
        "GetLoDLevel is only used in compile time. The calculation of "
855
        "output's actual lod is different among operators so that should be "
856
        "set in the runtime kernel."));
857 858
  }

859 860
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
861
    PADDLE_THROW(platform::errors::PreconditionNotMet(
862
        "SetLoDLevel is only used in compile time. The calculation of "
863
        "output's actual lod is different among operators so that should be "
864
        "set in the runtime kernel."));
C
chengduo 已提交
865 866
  }

867 868
  bool IsRuntime() const override { return true; }

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
888 889
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
890 891 892 893 894
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
895 896 897 898 899 900 901 902
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
903 904 905 906 907 908 909 910 911 912
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
913 914
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
915 916 917 918 919
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
920 921 922 923 924 925 926 927 928
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

929
 protected:
X
Xin Pan 已提交
930
  DDim GetDim(Variable* var) const {
931 932
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
933 934 935 936 937
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
938 939 940 941
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
942 943 944
    }
  }

X
Xin Pan 已提交
945 946 947 948 949 950 951 952
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
953
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
954 955
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
956 957
  }

X
Xin Pan 已提交
958
  void SetDim(Variable* var, const DDim& dim) {
959 960 961 962 963
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
964 965 966 967
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
968 969 970 971 972 973
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
974 975 976 977 978 979
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
980 981 982 983 984
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
985 986 987
    }
  }

F
fengjiayi 已提交
988 989
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
990 991
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
992 993
  }

X
Xin Pan 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1005 1006 1007
    return ToVarType(var->Type());
  }

1008 1009 1010
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1011 1012 1013 1014
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1015 1016 1017 1018 1019
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1020 1021 1022 1023
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1024
    return it->second;
F
fengjiayi 已提交
1025 1026
  }

1027
  const OperatorBase& op_;
X
Xin Pan 已提交
1028
  const RuntimeContext& ctx_;
1029 1030
};

1031 1032
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1033 1034 1035 1036
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
1037 1038
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
1039 1040
    return;
  }
1041 1042 1043 1044 1045 1046 1047 1048
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1049 1050
}

1051 1052
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1053 1054
  auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1055
                     [data_type](OpKernelMap::const_reference kern_pair) {
1056 1057
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1058 1059
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1060 1061 1062
                     });
}

1063 1064
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1065 1066
  bool use_mkldnn_ctx =
      ctx.Attr<bool>("use_mkldnn") && platform::is_cpu_place(ctx.GetPlace());
1067
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1068 1069
}

B
baojun-nervana 已提交
1070
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1071 1072
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1073
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
B
baojun-nervana 已提交
1074 1075 1076
  this->InferShape(&infer_shape_ctx);
}

L
luotao1 已提交
1077 1078
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1079 1080
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1081 1082 1083
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1084
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1085
    all_kernels_must_compute_runtime_shape_ = true;
1086
  const Scope* cur_scope = &scope;
1087
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1088 1089
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1090
    pre_scope_ = cur_scope;
L
luotao1 已提交
1091
  } else {
1092 1093 1094 1095 1096 1097
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1098 1099 1100 1101 1102 1103 1104 1105
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1106
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1107
  auto* dev_ctx = pool.Get(place);
1108

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1119
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
1120
    ChooseKernel(*runtime_ctx, scope, place);
1121 1122
  }

Y
yuyang18 已提交
1123 1124
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1125 1126
  Scope* transfer_scope = nullptr;
  {
1127
    platform::RecordEvent record_event("prepare_data",
1128
                                       platform::EventRole::kInnerOp);
1129 1130 1131 1132
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1133
  }
Y
yuyang18 已提交
1134 1135 1136 1137
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1138 1139
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
1140
  }
Q
QI JUN 已提交
1141

1142
  if (!all_kernels_must_compute_runtime_shape_) {
1143
    platform::RecordEvent record_event("infer_shape",
1144
                                       platform::EventRole::kInnerOp);
1145
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1146 1147
    this->InferShape(&infer_shape_ctx);
  }
1148 1149 1150 1151 1152

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1153 1154
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1155
  {
1156
    platform::RecordEvent record_event("compute",
1157
                                       platform::EventRole::kInnerOp);
1158 1159
    (*kernel_func_)(
        ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
1160
  }
D
dzhwinter 已提交
1161

Y
yuyang18 已提交
1162
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1163
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1164
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1165
  }
1166 1167 1168 1169 1170 1171 1172

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1173 1174 1175 1176 1177 1178 1179 1180
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1181

D
dzhwinter 已提交
1182
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1183
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1184
    dev_ctx->Wait();
L
Leo Chen 已提交
1185 1186 1187
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaGetLastError());
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
1188 1189 1190 1191
#endif
#if defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_CUDA_SUCCESS(hipGetLastError());
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
L
Leo Chen 已提交
1192
#endif
D
dzhwinter 已提交
1193
  }
C
chengduoZH 已提交
1194 1195

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1196
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1197
  }
1198 1199 1200 1201 1202 1203 1204

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1205
}
X
Xin Pan 已提交
1206

L
Liu Yiqun 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1216 1217 1218 1219 1220
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));
L
Liu Yiqun 已提交
1221 1222 1223 1224

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
1225
      ExecutionContext(*this, scope, *dev_ctx, ctx));
1226 1227 1228
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1239 1240 1241 1242
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
      if (SupportGPU()) {
        expected_kernel_key.place_ = dev_ctx->GetPlace();
B
Baibaifan 已提交
1243 1244
      } else if (SupportNPU()) {
        expected_kernel_key.place_ = dev_ctx->GetPlace();
1245 1246 1247 1248 1249 1250 1251 1252
      } else {
        expected_kernel_key.place_ = platform::CPUPlace();
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1253 1254
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
L
Liu Yiqun 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1266 1267
#endif
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
1268 1269 1270 1271
  if (is_xpu_place(expected_kernel_key.place_) &&
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1272 1273 1274 1275 1276 1277
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
      is_npu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1288
#endif
1289 1290 1291 1292
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1293

1294 1295 1296 1297 1298
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1299 1300
}

Y
yuyang18 已提交
1301 1302 1303 1304
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1305
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1306
    auto* origin_var = scope.FindVar(var_name);
1307 1308 1309
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1310
    auto* original_tensor =
C
chengduo 已提交
1311
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1312
    auto* var = transfer_scope.FindVar(var_name);
1313 1314
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1315
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1316
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1317
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1318 1319 1320 1321 1322
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1323 1324 1325
  }
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
      auto src_type = grad_tensor->type();
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
      auto dst_type = tensor->saved_type();
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1393
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1394
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1395 1396
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1397
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1398

1399
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1400 1401 1402 1403
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1404 1405
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1406 1407 1408
    }
  }

Y
yuyang18 已提交
1409
  for (auto& var_name_item : Inputs()) {
1410 1411
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1412

X
Xin Pan 已提交
1413 1414 1415 1416
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1417
      auto* var = input_vars[i];
X
Xin Pan 已提交
1418

Y
yuyang18 已提交
1419
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1420
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1421 1422 1423
        continue;
      }

C
chengduo 已提交
1424
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1440 1441
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1474 1475
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1476

1477 1478 1479
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1480
      // We use a thread_local cache to fix that issue, the key in the cache is
1481 1482 1483 1484 1485
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1486 1487
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1488
      // variables, that behavior a lot different.
1489 1490 1491 1492 1493 1494 1495 1496 1497
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1498 1499
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1500
        enable_cache_transfer_scope_ = true;
1501
      }
1502
      if (!new_scope) {
Y
yuyang18 已提交
1503 1504
        new_scope = &scope.NewScope();
      }
1505 1506 1507 1508
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1509
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1510 1511
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1512
      if (enable_cache_runtime_context_) {
1513 1514
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1515 1516

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1517
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1518
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1536
      Tensor out;
Y
yuyang18 已提交
1537
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1538 1539 1540
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1541

1542 1543 1544 1545 1546 1547
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1548 1549 1550 1551 1552 1553

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1554 1555
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1556 1557 1558

  return new_scope;
}
Q
Qiao Longfei 已提交
1559

1560 1561 1562
void OperatorWithKernel::ParseInputDataType(
    const ExecutionContext& ctx, const std::string& name,
    proto::VarType::Type* data_type) const {
1563
  proto::VarType::Type default_data_type =
1564
      static_cast<proto::VarType::Type>(-1);
H
hong 已提交
1565
  const std::vector<Variable*> vars = ctx.MultiInputVar(name);
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
1576
      } else if (var->IsType<LoDTensorArray>()) {
1577 1578 1579 1580
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
1581 1582
          }
        }
1583 1584
      }
      if (t != nullptr) {
1585 1586 1587 1588 1589
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
            platform::errors::InvalidArgument(
                "The Tensor in the %s Op's Input Variable %s(%s) is "
                "not initialized.",
H
hong 已提交
1590
                Type(), name, ctx.InputNames(name).at(i)));
1591
        proto::VarType::Type tmp = t->type();
1592 1593 1594 1595 1596 1597 1598 1599 1600
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
1601 1602 1603 1604 1605 1606
        *data_type = tmp;
      }
    }
  }
}

1607
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1608
    const ExecutionContext& ctx) const {
1609 1610 1611
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1612 1613
  for (auto& input : ctx.InNameList()) {
    ParseInputDataType(ctx, input, &data_type);
Y
Yu Yang 已提交
1614
  }
1615 1616 1617 1618
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
  ParseInputDataType(ctx, name, &data_type);
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1630 1631 1632 1633 1634
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1635
  return data_type;
Y
Yu Yang 已提交
1636
}
1637

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
  auto type_a = tensor_a->type();
  auto type_b = tensor_b->type();

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1698 1699 1700 1701 1702 1703 1704 1705
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1706 1707
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1708 1709
}

Q
Qiao Longfei 已提交
1710
}  // namespace framework
L
liaogang 已提交
1711
}  // namespace paddle