operator.cc 58.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17 18
#include <gflags/gflags.h>
#include <glog/logging.h>
19

20
#include <algorithm>
P
peizhilin 已提交
21 22
#include <sstream>
#include <string>
S
sneaxiy 已提交
23
#include <unordered_set>
P
peizhilin 已提交
24
#include <vector>
25

Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/data_transform.h"
27
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
28
#include "paddle/fluid/framework/details/nan_inf_utils.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/executor.h"
30
#include "paddle/fluid/framework/lod_tensor.h"
31
#include "paddle/fluid/framework/op_call_stack.h"
32
#include "paddle/fluid/framework/op_proto_maker.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/shape_inference.h"
34
#include "paddle/fluid/framework/transfer_scope_cache.h"
35
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/var_type.h"
37
#include "paddle/fluid/platform/profiler.h"
38 39 40
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif
Q
Qiao Longfei 已提交
41

42 43 44 45
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dzhwinter 已提交
46
DECLARE_bool(benchmark);
47
DECLARE_bool(check_nan_inf);
48
DECLARE_bool(enable_unused_var_check);
Q
Qiao Longfei 已提交
49
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
P
pkpk 已提交
50 51 52
DEFINE_bool(fast_check_nan_inf, false,
            "Fast checking NAN/INF after each operation. It will be a little"
            "bit slow, much faster than check_nan_inf");
D
dzhwinter 已提交
53

Q
Qiao Longfei 已提交
54 55 56
namespace paddle {
namespace framework {

57 58 59 60 61 62
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
63

64 65
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
66
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
67 68
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
69 70
  }

M
minqiyang 已提交
71 72 73 74 75 76 77 78 79
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
80 81 82 83 84
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
85 86 87 88 89 90
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
91 92 93 94 95
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
96

M
minqiyang 已提交
97 98 99
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
100 101
      return "";
    }
Y
Yu Yang 已提交
102
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
103
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
104 105 106 107
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
108
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
109
    }
D
dzhwinter 已提交
110 111 112 113 114
  } else {
    return "";
  }
}

115 116 117 118 119 120
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
121 122
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
123 124 125 126 127
  }

  return -1;
}

128
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
129 130 131 132 133 134 135
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
136 137 138
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
139 140 141 142 143
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
144 145 146 147 148
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
149
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
150 151 152 153 154 155
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
156
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
157 158 159 160 161 162
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

163
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
164 165 166
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
167
#ifndef PADDLE_WITH_CUDA
168 169 170 171
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
172
#else
173
      auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
P
peizhilin 已提交
174
      platform::SetDeviceId(dev_id);
175 176 177
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
178 179 180 181
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
182 183 184
#else
      auto dev_id = BOOST_GET_CONST(platform::XPUPlace, place).device;
      platform::SetXPUDeviceId(dev_id);
185
#endif
P
peizhilin 已提交
186
    }
P
peizhilin 已提交
187

188
    {
189 190 191 192 193 194
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
      platform::RecordEvent op_type_record_event(Type());
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
195
          op_name, platform::EventRole::kUniqueOp);
P
peizhilin 已提交
196 197
      RunImpl(scope, place);
    }
198

Z
Zhang Ting 已提交
199
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
200
  } catch (platform::EnforceNotMet& exception) {
201
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
202
    throw std::move(exception);
203 204 205 206 207 208
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
209
  } catch (...) {
210
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
211
    std::rethrow_exception(std::current_exception());
212
  }
213 214
}

215
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
216
  return inputs_.find(name) != inputs_.end();
217 218
}

219
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
220
  auto& ins = Inputs(name);
221 222
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
223
      platform::errors::InvalidArgument(
224 225
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
226
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
227 228
}

Y
Yu Yang 已提交
229 230
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
231
  auto it = inputs_.find(name);
232 233 234 235
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
236
  return it->second;
Y
Yan Chunwei 已提交
237 238
}

239
bool OperatorBase::HasOutputs(const std::string& name) const {
240
  if (outputs_.find(name) != outputs_.end()) {
241 242 243 244 245 246
    return true;
  } else {
    return false;
  }
}

247
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
248
  auto& outs = Outputs(name);
249 250 251 252 253
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
254
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
255 256
}

Y
Yu Yang 已提交
257 258
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
259
  auto it = outputs_.find(name);
260 261 262 263
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
264
  return it->second;
Y
Yan Chunwei 已提交
265 266
}

267
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
268
  std::stringstream ss;
Y
Yu Yang 已提交
269
  ss << "Op(" << type_ << "), inputs:{";
270

271
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
272 273
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
274 275
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
276 277
  }

Y
Yu Yang 已提交
278 279
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
280 281
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
282 283
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
284 285
      auto var_name = input.second[i];
      ss << var_name;
286
      if (scope) {
Q
Qiao Longfei 已提交
287 288 289 290 291 292 293
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
294 295 296
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
297
          ss << ":" << dtype;
298 299
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
300
        }
301
      }
Y
Yu Yang 已提交
302 303 304
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
305
    }
Y
Yu Yang 已提交
306
    ss << "]";
Y
Yu Yang 已提交
307 308
    ++it;
    if (it != inputs_.end()) {
309 310
      ss << ", ";
    }
Q
Qiao Longfei 已提交
311
  }
Y
Yu Yang 已提交
312
  ss << "}, outputs:{";
Y
Yu Yang 已提交
313 314
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
315 316
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
317 318
      auto var_name = output.second[i];
      ss << var_name;
319
      if (scope) {
Q
Qiao Longfei 已提交
320 321 322 323 324 325 326
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
327 328
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
329 330
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
331
        }
332
      }
Y
Yu Yang 已提交
333 334 335
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
336
    }
Y
Yu Yang 已提交
337
    ss << "]";
Y
Yu Yang 已提交
338 339
    ++it;
    if (it != outputs_.end()) {
340 341
      ss << ", ";
    }
Q
Qiao Longfei 已提交
342
  }
Y
Yu Yang 已提交
343
  ss << "}.";
Q
Qiao Longfei 已提交
344 345 346
  return ss.str();
}

Y
Yu Yang 已提交
347
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
348 349
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
350
                           const AttributeMap& attrs)
S
sneaxiy 已提交
351 352 353 354 355 356
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
357 358 359 360 361 362 363 364
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
365
}
366

Q
qijun 已提交
367 368
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
369
  for (auto& o : inputs_) {
Q
qijun 已提交
370 371 372 373 374 375
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
376 377 378 379 380 381 382 383 384 385
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
386
  auto& info = Info();
Y
Yu Yang 已提交
387 388

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
389
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
390 391 392 393 394 395 396 397 398
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
399 400
}

401
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
402
  if (info_ == nullptr || info_->proto_ == nullptr) return;
403

S
sneaxiy 已提交
404
  for (auto& in : info_->Proto().inputs()) {
405
    if (!in.dispensable()) {
406 407 408 409
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
410
    }
411 412
  }

S
sneaxiy 已提交
413
  for (auto& out : info_->Proto().outputs()) {
414
    if (!out.dispensable()) {
415 416 417 418
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
419
    }
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
436
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
437
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
438 439
}

C
chengduo 已提交
440
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
441 442 443 444
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
445
  } else {
446 447 448
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
449 450 451
  }
}

C
chengduo 已提交
452
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
453
  if (var->IsType<LoDTensor>()) {
454
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
455
  } else if (var->IsType<SelectedRows>()) {
456
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
457
  } else {
458 459 460
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
461 462 463
  }
}

464
bool ExecutionContext::HasInput(const std::string& name) const {
465
  auto* var = InputVar(name);
466 467 468 469
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
470
  auto* var = OutputVar(name);
471 472 473
  return var != nullptr;
}

X
Xin Pan 已提交
474
const Variable* ExecutionContext::InputVar(const std::string& name) const {
475 476
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
477 478 479
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

480 481
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
482
      platform::errors::InvalidArgument(
483 484
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
485 486 487
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
488
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
489 490 491
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

492 493 494 495 496
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
497 498 499
  return it->second.empty() ? nullptr : it->second[0];
}

500
template <>
501
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
502
  return Input<LoDTensor>(name);
503 504 505
}

template <>
506
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
507
    const std::string& name) const {
508 509
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
510 511
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
512 513 514 515 516
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
517
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
518
                   if (var == nullptr) return nullptr;
519 520 521 522 523
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
524 525 526 527 528
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

529
template <>
530
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
531
  return Output<LoDTensor>(name);
532 533 534
}

template <>
535
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
536
    const std::string& name) const {
H
hong 已提交
537 538 539
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
540 541
    return {};
  }
542
  std::vector<Tensor*> res;
543 544 545 546 547
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
548
                 });
549 550 551
  return res;
}

Y
Yu Yang 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

567 568
class RuntimeInferShapeContext : public InferShapeContext {
 public:
569
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
570
      : op_(op), ctx_(ctx) {}
571 572

  bool HasInput(const std::string& name) const override {
573
    // has only one input
X
Xin Pan 已提交
574
    const auto& ins = ctx_.inputs;
575 576
    auto it = ins.find(name);
    if (it == ins.end()) {
577 578
      return false;
    }
579
    const auto& in = it->second;
X
Xin Pan 已提交
580
    if (in.size() == 0) return false;
581 582 583 584
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
585
    return in[0] != nullptr;
586 587 588
  }

  bool HasOutput(const std::string& name) const override {
589
    // has only one output
X
Xin Pan 已提交
590
    const auto& outs = ctx_.outputs;
591 592
    auto it = outs.find(name);
    if (it == outs.end()) {
593 594
      return false;
    }
595
    const auto& out = it->second;
X
Xin Pan 已提交
596
    if (out.size() == 0) {
597 598
      return false;
    }
599 600 601 602
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
603
    return out[0] != nullptr;
604 605 606
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
607 608
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
609
    if (it == ins.end() || it->second.empty()) {
610 611
      return false;
    }
X
Xin Pan 已提交
612 613
    for (auto& input : it->second) {
      if (input == nullptr) {
614 615 616 617 618 619 620
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
621 622
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
623
    if (it == outs.end() || it->second.empty()) {
624 625
      return false;
    }
X
Xin Pan 已提交
626 627
    for (auto& output : it->second) {
      if (output == nullptr) {
628 629 630 631 632 633 634 635
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
636
  std::vector<std::string> Inputs(const std::string& name) const override {
637 638 639
    return op_.Inputs(name);
  }

H
hong 已提交
640
  std::vector<std::string> Outputs(const std::string& name) const override {
641 642 643
    return op_.Outputs(name);
  }

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

667 668
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
669 670
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
687 688 689

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
690

691 692 693 694 695
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
696 697 698 699 700 701 702 703 704 705 706 707

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
708
      PADDLE_THROW(platform::errors::Unimplemented(
709
          "Currently, the input type of ShareDim only can be LoDTensor "
710
          "or SelectedRows."));
711 712 713
    }
  }

H
hong 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
732
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
759 760
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
761 762
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
779 780

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
781
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
782
    Variable* out_var = out_it->second.at(j);
783 784 785 786
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
787
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
788 789
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
790

M
mozga-intel 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
810 811
  }

812
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
813
    PADDLE_THROW(platform::errors::PreconditionNotMet(
814
        "GetLoDLevel is only used in compile time. The calculation of "
815
        "output's actual lod is different among operators so that should be "
816
        "set in the runtime kernel."));
817 818
  }

819 820
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
821
    PADDLE_THROW(platform::errors::PreconditionNotMet(
822
        "SetLoDLevel is only used in compile time. The calculation of "
823
        "output's actual lod is different among operators so that should be "
824
        "set in the runtime kernel."));
C
chengduo 已提交
825 826
  }

827 828
  bool IsRuntime() const override { return true; }

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
848 849
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
850 851 852 853 854
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
855 856 857 858 859 860 861 862
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
863 864 865 866 867 868 869 870 871 872
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
873 874
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
875 876 877 878 879
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
880 881 882 883 884 885 886 887 888
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

889
 protected:
X
Xin Pan 已提交
890
  DDim GetDim(Variable* var) const {
891 892
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
893 894 895 896 897
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
898 899 900 901
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
902 903 904
    }
  }

X
Xin Pan 已提交
905 906 907 908 909 910 911 912
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
913
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
914 915
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
916 917
  }

X
Xin Pan 已提交
918
  void SetDim(Variable* var, const DDim& dim) {
919 920 921 922 923
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
924 925 926 927
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
928 929 930 931 932 933
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
934 935 936 937 938 939
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
940 941 942 943 944
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
945 946 947
    }
  }

F
fengjiayi 已提交
948 949
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
950 951
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
952 953
  }

X
Xin Pan 已提交
954 955 956 957 958 959 960 961 962 963 964
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
965 966 967
    return ToVarType(var->Type());
  }

968 969 970
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
971 972 973 974
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
975 976 977 978 979
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
980 981 982 983
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
984
    return it->second;
F
fengjiayi 已提交
985 986
  }

987
  const OperatorBase& op_;
X
Xin Pan 已提交
988
  const RuntimeContext& ctx_;
989 990
};

991 992
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
993 994 995 996
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
997 998
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
999 1000
    return;
  }
1001 1002 1003 1004 1005 1006 1007 1008
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1009 1010
}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
bool OperatorWithKernel::SupportsMKLDNN() const {
  auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
  return std::any_of(op_kernels.begin(), op_kernels.end(),
                     [](OpKernelMap::const_reference kern_pair) {
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
                                  LibraryType::kMKLDNN;
                     });
}

bool OperatorWithKernel::CanMKLDNNBeUsed(
    const framework::ExecutionContext& ctx) const {
  bool use_mkldnn_ctx =
      ctx.Attr<bool>("use_mkldnn") && platform::is_cpu_place(ctx.GetPlace());
  return use_mkldnn_ctx && this->SupportsMKLDNN();
}

B
baojun-nervana 已提交
1028
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1029 1030
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1031
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
B
baojun-nervana 已提交
1032 1033 1034
  this->InferShape(&infer_shape_ctx);
}

L
luotao1 已提交
1035 1036
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1037 1038
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1039 1040 1041
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1042
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1043
    all_kernels_must_compute_runtime_shape_ = true;
1044
  const Scope* cur_scope = &scope;
1045
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1046 1047
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1048
    pre_scope_ = cur_scope;
L
luotao1 已提交
1049
  } else {
1050 1051 1052 1053 1054 1055
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1056 1057 1058 1059 1060 1061 1062 1063
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1064
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1065
  auto* dev_ctx = pool.Get(place);
1066

1067
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
1068
    ChooseKernel(*runtime_ctx, scope, place);
1069 1070
  }

Y
yuyang18 已提交
1071 1072
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1073 1074
  Scope* transfer_scope = nullptr;
  {
1075
    platform::RecordEvent record_event("prepare_data",
1076
                                       platform::EventRole::kInnerOp);
1077 1078 1079 1080
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1081
  }
Y
yuyang18 已提交
1082 1083 1084 1085
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1086 1087
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
1088
  }
Q
QI JUN 已提交
1089

1090
  if (!all_kernels_must_compute_runtime_shape_) {
1091
    platform::RecordEvent record_event("infer_shape",
1092
                                       platform::EventRole::kInnerOp);
1093
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1094 1095
    this->InferShape(&infer_shape_ctx);
  }
1096 1097 1098 1099 1100

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1101 1102
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1103
  {
1104
    platform::RecordEvent record_event("compute",
1105
                                       platform::EventRole::kInnerOp);
1106 1107
    (*kernel_func_)(
        ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
1108
  }
D
dzhwinter 已提交
1109

Y
yuyang18 已提交
1110
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1111
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1112
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1113
  }
1114 1115 1116 1117 1118 1119 1120

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1121 1122 1123 1124 1125 1126 1127 1128
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1129

D
dzhwinter 已提交
1130
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1131
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1132
    dev_ctx->Wait();
D
dzhwinter 已提交
1133
  }
C
chengduoZH 已提交
1134

P
pkpk 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
  if (FLAGS_fast_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
      // only check inserted vars,
      // please see executor.py for details of fast_check_nan_inf
      if (vname.rfind("debug_var") == 0) {
        VLOG(3) << "debugging nan/inf in var " << vname;

        auto* var = exec_scope.FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
        } else if (var->IsType<framework::SelectedRows>()) {
          CheckTensorNANOrInf(type_, vname,
                              var->Get<framework::SelectedRows>().value());
        }
      }
    }
  }

C
chengduoZH 已提交
1154
  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1155
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1156
  }
1157 1158 1159 1160 1161 1162 1163

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1164
}
X
Xin Pan 已提交
1165

L
Liu Yiqun 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1175 1176 1177 1178 1179
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));
L
Liu Yiqun 已提交
1180 1181 1182 1183

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
1184
      ExecutionContext(*this, scope, *dev_ctx, ctx));
1185 1186 1187
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
      if (SupportGPU()) {
        expected_kernel_key.place_ = dev_ctx->GetPlace();
      } else {
        expected_kernel_key.place_ = platform::CPUPlace();
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
L
Liu Yiqun 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
#endif
#ifdef PADDLE_WITH_XPU
  if (kernel_iter == kernels.end() &&
      is_xpu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1232
#endif
1233 1234 1235 1236
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1237

1238 1239 1240 1241 1242
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1243 1244
}

Y
yuyang18 已提交
1245 1246 1247 1248
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1249
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1250
    auto* origin_var = scope.FindVar(var_name);
1251 1252 1253
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1254
    auto* original_tensor =
C
chengduo 已提交
1255
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1256
    auto* var = transfer_scope.FindVar(var_name);
1257 1258
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1259
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1260
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1261
    original_tensor->ShareDataWith(*transformed_tensor);
1262
    original_tensor->Resize(original_dims);
Y
yuyang18 已提交
1263 1264 1265
  }
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
      auto src_type = grad_tensor->type();
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
      auto dst_type = tensor->saved_type();
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1333
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1334
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1335 1336
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1337
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1338

1339
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1340 1341 1342 1343
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1344 1345
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1346 1347 1348
    }
  }

Y
yuyang18 已提交
1349
  for (auto& var_name_item : Inputs()) {
1350 1351
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1352

X
Xin Pan 已提交
1353 1354 1355 1356
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1357
      auto* var = input_vars[i];
X
Xin Pan 已提交
1358

Y
yuyang18 已提交
1359
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1360
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1361 1362 1363
        continue;
      }

C
chengduo 已提交
1364
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1380 1381
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1414 1415
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1416

1417 1418 1419
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1420
      // We use a thread_local cache to fix that issue, the key in the cache is
1421 1422 1423 1424 1425
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1426 1427
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1428
      // variables, that behavior a lot different.
1429 1430 1431 1432 1433 1434 1435 1436 1437
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1438 1439
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1440
        enable_cache_transfer_scope_ = true;
1441
      }
1442
      if (!new_scope) {
Y
yuyang18 已提交
1443 1444
        new_scope = &scope.NewScope();
      }
1445 1446 1447 1448
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1449
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1450 1451
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1452
      if (enable_cache_runtime_context_) {
1453 1454
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1455 1456

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1457
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1458
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1476
      Tensor out;
Y
yuyang18 已提交
1477
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1478 1479 1480
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1481

1482 1483 1484 1485 1486 1487 1488 1489 1490
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
  if (pre_scope_ == &scope && new_scope == nullptr) {
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1491 1492 1493

  return new_scope;
}
Q
Qiao Longfei 已提交
1494

1495 1496 1497
void OperatorWithKernel::ParseInputDataType(
    const ExecutionContext& ctx, const std::string& name,
    proto::VarType::Type* data_type) const {
1498
  proto::VarType::Type default_data_type =
1499
      static_cast<proto::VarType::Type>(-1);
H
hong 已提交
1500
  const std::vector<Variable*> vars = ctx.MultiInputVar(name);
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
1511 1512 1513 1514 1515 1516 1517
      } else if (var->IsType<LoDTensorArray>()) {
        auto t_arr = var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr.size(); j++) {
          if (t_arr[j].IsInitialized()) {
            t = &(t_arr[j]);
          }
        }
1518 1519
      }
      if (t != nullptr) {
1520 1521 1522 1523 1524
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
            platform::errors::InvalidArgument(
                "The Tensor in the %s Op's Input Variable %s(%s) is "
                "not initialized.",
H
hong 已提交
1525
                Type(), name, ctx.InputNames(name).at(i)));
1526
        proto::VarType::Type tmp = t->type();
1527
        PADDLE_ENFORCE(
1528
            tmp == *data_type || *data_type == default_data_type,
1529 1530 1531 1532 1533 1534
            platform::errors::InvalidArgument(
                "The DataType of %s Op's duplicable Variable %s must be "
                "consistent. The current variable type is (%s), but the "
                "previous variable type is (%s).",
                Type(), name, DataTypeToString(tmp),
                DataTypeToString(*data_type)));
1535 1536 1537 1538 1539 1540
        *data_type = tmp;
      }
    }
  }
}

1541
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1542
    const ExecutionContext& ctx) const {
1543 1544 1545
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1546 1547
  for (auto& input : ctx.InNameList()) {
    ParseInputDataType(ctx, input, &data_type);
Y
Yu Yang 已提交
1548
  }
1549 1550 1551 1552
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
  ParseInputDataType(ctx, name, &data_type);
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1564 1565 1566 1567 1568
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1569
  return data_type;
Y
Yu Yang 已提交
1570
}
1571

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
  auto type_a = tensor_a->type();
  auto type_b = tensor_b->type();

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1632 1633 1634 1635 1636 1637 1638 1639
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1640 1641
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1642 1643
}

Q
Qiao Longfei 已提交
1644
}  // namespace framework
L
liaogang 已提交
1645
}  // namespace paddle