nn.py 358.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
95
    'group_norm',
X
Xin Pan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
109
    'roi_align',
X
Xin Pan 已提交
110 111 112 113
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
114
    'resize_nearest',
X
Xin Pan 已提交
115 116 117 118 119 120
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
121
    'selu',
X
Xin Pan 已提交
122 123 124
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
125
    'margin_rank_loss',
X
Xin Pan 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
169
    'space_to_depth',
W
whs 已提交
170
    'affine_grid',
S
sneaxiy 已提交
171
    'sequence_reverse',
172
    'affine_channel',
B
barrierye 已提交
173
    'similarity_focus',
M
minqiyang 已提交
174
    'hash',
D
dengkaipeng 已提交
175
    'grid_sampler',
G
gmcather 已提交
176 177
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
178
    'bilinear_tensor_product',
C
chengduo 已提交
179 180
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
181
    'lstm',
S
sneaxiy 已提交
182
    'py_func',
183
    'psroi_pool',
H
heqiaozhi 已提交
184
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
185
    'huber_loss',
Z
zhaozhehao 已提交
186
    'tree_conv',
Y
Yu Yang 已提交
187 188
]

J
jerrywgz 已提交
189 190
kIgnoreIndex = -100

Y
Yu Yang 已提交
191 192 193 194 195 196 197

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
198
       is_test=False,
199
       name=None):
Y
Yu Yang 已提交
200
    """
201
    **Fully Connected Layer**
Y
Yu Yang 已提交
202

203 204 205 206 207 208 209 210
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
211
    to the output as well.
C
caoying03 已提交
212

C
caoying03 已提交
213
    This process can be formulated as follows:
214 215 216

    .. math::

217
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
218 219 220

    In the above equation:

C
caoying03 已提交
221 222 223 224
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
225
    * :math:`Act`: The activation function.
C
caoying03 已提交
226
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
227 228

    Args:
R
ranqiu 已提交
229 230 231 232 233 234 235 236 237 238
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
239
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
240 241 242 243
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
244 245
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
246
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
247
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
248
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
249

250
    Returns:
F
fengjiayi 已提交
251
        Variable: The transformation result.
252 253

    Raises:
C
caoying03 已提交
254
        ValueError: If rank of the input tensor is less than 2.
255 256 257 258

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
259
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
260
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
261
    """
C
caoying03 已提交
262

C
caoying03 已提交
263
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
264 265 266 267

    dtype = helper.input_dtype()

    mul_results = []
268 269
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
270 271 272
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
273

Y
Yu Yang 已提交
274
        w = helper.create_parameter(
275
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
276
        tmp = helper.create_variable_for_type_inference(dtype)
277
        helper.append_op(
278 279 280
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
281
            outputs={"Out": tmp},
M
mozga-intel 已提交
282 283
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
284 285 286 287
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
288
    else:
X
Xin Pan 已提交
289
        pre_bias = helper.create_variable_for_type_inference(dtype)
290
        helper.append_op(
291 292 293
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
294
            attrs={"use_mkldnn": False})
295 296 297 298
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
299 300


301 302 303
def embedding(input,
              size,
              is_sparse=False,
304
              is_distributed=False,
305 306 307
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
308
    """
309 310
    **Embedding Layer**

311
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
312 313
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
314 315 316

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
317 318

    Args:
319 320 321 322 323
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
324
        is_distributed(bool): Whether to run lookup table from remote parameter server.
325 326
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
327
            with zeros whenever lookup encounters it in :attr:`input`. If
328
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
329 330
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
331
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
332

333 334 335
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
336

337 338
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
339

C
chengduoZH 已提交
340
          dict_size = len(dataset.ids)
341
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
342
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
343 344 345
    """

    helper = LayerHelper('embedding', **locals())
346
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
347 348
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
349 350
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
351
    tmp = helper.create_variable_for_type_inference(dtype)
352 353
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
354 355 356 357 358
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
359 360 361
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
362
            'remote_prefetch': remote_prefetch,
363 364
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
365 366 367
    return tmp


W
wopeizl 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
384

W
wopeizl 已提交
385 386 387 388 389 390 391 392 393 394 395
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
396

W
wopeizl 已提交
397 398 399 400
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
401

W
wopeizl 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
488 489


P
phlrain 已提交
490 491 492 493 494 495
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
496
         dropout_prob=0.0,
P
phlrain 已提交
497 498 499 500 501
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
502
    """
P
phlrain 已提交
503
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
504 505

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
506
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
507 508
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
509
    .. math::
M
minqiyang 已提交
510 511 512 513 514 515 516

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
517
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
518 519 520 521

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
522 523

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
524 525 526 527 528 529
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
530 531 532
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
533
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
534

M
minqiyang 已提交
535
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
536 537 538 539 540
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
541
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
542 543 544 545 546
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
547
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
548 549
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
550 551
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
552 553 554 555 556 557
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
558
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
559

L
liuhongyu 已提交
560 561

    Returns:
M
minqiyang 已提交
562 563
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
564
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
565

H
haowang101779990 已提交
566 567 568 569
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
570
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
571 572
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
573
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
589
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
590 591 592 593 594 595
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
596 597 598
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
658 659 660 661 662 663 664 665 666 667 668
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
669 670
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
671 672 673
    """
    **Dynamic LSTMP Layer**

674 675 676 677 678 679
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
680 681 682 683 684

    The formula is as follows:

    .. math::

685
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
686

687
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
688

689
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
690

691
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
692

693
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
694

695
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
696

697
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
698

Y
Yibing Liu 已提交
699 700 701 702 703 704
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
705
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
706
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
707
          bias vector).
Y
Yibing Liu 已提交
708 709 710
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
711
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
712
    * :math:`h`: The hidden state.
713
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
714 715
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
716
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
717
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
718
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
719 720
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
721 722 723 724

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
725

Y
Yibing Liu 已提交
726 727 728 729 730 731 732 733 734 735 736 737
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
738
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
739 740
                               hidden-hidden weight and projection weight.

741 742
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
743 744
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
745 746
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
747
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
748 749 750 751 752

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
753
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
754 755 756 757 758 759
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
760
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
761 762 763
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
764
                                - The shape is (1 x 7D).
C
chengduo 已提交
765 766 767 768 769

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
770 771 772 773 774 775 776 777 778
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
779
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
780 781
                              default "tanh".
        proj_activation(str): The activation for projection output.
782
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
783 784
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
785 786
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
787 788

    Returns:
789 790 791 792
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
793 794

    Examples:
795

Y
Yibing Liu 已提交
796 797
        .. code-block:: python

798 799 800 801
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
802
            hidden_dim, proj_dim = 512, 256
803
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
804
                                     act=None, bias_attr=None)
805 806 807
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
808 809 810 811
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
812
    """
813

C
chengduo 已提交
814
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
815
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
816
    size = size // 4
Y
Yibing Liu 已提交
817 818 819 820 821 822 823 824 825 826
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
827 828 829 830 831 832
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
861 862 863 864 865 866 867
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
868 869
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
870
    """
871
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
872

873 874 875
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
876

G
guosheng 已提交
877 878 879 880 881 882 883 884 885
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
886

G
guosheng 已提交
887
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
888

Q
Qiao Longfei 已提交
889 890 891

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
892 893 894 895 896 897 898 899 900 901 902 903
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
904
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
905 906
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
907 908 909 910
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
911
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
912 913

    Args:
914 915
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
916
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
917
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
918 919
            is the hidden size.
        size(int): The dimension of the gru cell.
920
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
921 922
            hidden-hidden weight matrix. Note:

923
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
924
              :math:`D` is the hidden size.
925
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
926
              The first part are weights of the update gate and reset gate with
927
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
928
              candidate hidden state with shape :math:`(D \\times D)`.
929 930 931 932 933

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
934
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
935
            the bias in the update gate, reset gate and candidate calculations.
936 937 938
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
939 940
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
941
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
942 943 944
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
945
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
946
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
947 948 949 950
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
951 952

    Returns:
G
guosheng 已提交
953
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
954
            and sequence length is the same with the input.
955

G
guosheng 已提交
956
    Examples:
957

G
guosheng 已提交
958 959
        .. code-block:: python

960 961 962 963
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
964
            hidden_dim = 512
965
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
966
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
967 968 969 970 971 972 973 974 975
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
976
    batch_size = input.shape[0]
G
guosheng 已提交
977
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
978
    if h_0:
G
guosheng 已提交
979
        assert h_0.shape == (
Y
Yancey 已提交
980 981 982
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
983

X
Xin Pan 已提交
984 985 986 987
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1001 1002
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1003 1004 1005 1006
        })
    return hidden


Y
Yu Yang 已提交
1007 1008 1009
def gru_unit(input,
             hidden,
             size,
1010 1011
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1012
             activation='tanh',
Q
Qiao Longfei 已提交
1013 1014
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1015
    """
1016 1017 1018
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1019
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1020
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1021

1022 1023
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1024

1025
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1026

1027
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1028

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1044 1045

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1046 1047 1048
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1049 1050
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1051 1052
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1053 1054 1055
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1056 1057 1058

    Args:
        input (Variable): The fc transformed input value of current step.
1059
        hidden (Variable): The hidden value of gru unit from previous step.
1060
        size (integer): The input dimension value.
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1075
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1076
            the bias in the update gate, reset gate and candidate calculations.
1077 1078 1079
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1080 1081
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1082 1083 1084 1085
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1086

1087 1088 1089 1090 1091 1092
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1093

1094
             # assuming we have x_t_data and prev_hidden of size=10
1095
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1096 1097
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1110
    size = size // 3
Y
Yu Yang 已提交
1111 1112

    # create weight
1113 1114
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1115

X
Xin Pan 已提交
1116 1117 1118
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1119
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1120
    # create bias
1121
    if helper.bias_attr:
Y
Yu Yang 已提交
1122 1123 1124
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1125
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1126 1127 1128

    helper.append_op(
        type='gru_unit',
1129
        inputs=inputs,
Y
Yu Yang 已提交
1130 1131 1132 1133 1134 1135
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1136 1137
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1138 1139 1140 1141 1142
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1143
@templatedoc()
1144
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1145 1146 1147 1148 1149 1150 1151
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1152
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1153 1154 1155 1156
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1157 1158 1159
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1160 1161

    """
Y
Yu Yang 已提交
1162 1163 1164 1165 1166 1167
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1168 1169 1170 1171 1172 1173 1174 1175
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1191 1192 1193 1194
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1195

W
wopeizl 已提交
1196 1197
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1198

W
wopeizl 已提交
1199
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1200

W
wopeizl 已提交
1201
        label(${label_type}): ${label_comment}
1202

W
wopeizl 已提交
1203 1204
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1205

W
wopeizl 已提交
1206 1207
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1208

W
wopeizl 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1219
                "Transition": transition,
W
wopeizl 已提交
1220 1221
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1222

W
wopeizl 已提交
1223
    return viterbi_path
Y
Yu Yang 已提交
1224 1225


Y
yi.wu 已提交
1226
@templatedoc()
F
fengjiayi 已提交
1227
def cos_sim(X, Y):
Y
Yu Yang 已提交
1228
    """
Y
yi.wu 已提交
1229 1230 1231
    ${comment}

    Args:
1232 1233
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1234

Y
yi.wu 已提交
1235
    Returns:
1236
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1237
    """
F
fengjiayi 已提交
1238
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1239 1240 1241
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1252 1253 1254 1255 1256
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1257
            dropout_implementation="downgrade_in_infer"):
1258 1259 1260 1261 1262
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1263
    training. The dropout operator randomly sets (according to the given dropout
1264 1265 1266
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1267 1268
    dropout op can be removed from the program to make the program more efficient.

1269
    Args:
1270 1271
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1272 1273 1274 1275 1276 1277 1278
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1279 1280
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1281
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1282 1283 1284 1285 1286 1287

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1288
                                        2. upscale_in_train, upscale the outcome at training time
1289

H
haowang101779990 已提交
1290 1291
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1292

H
haowang101779990 已提交
1293 1294
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1295

M
minqiyang 已提交
1296

1297
    Returns:
1298
        Variable: A tensor variable is the shape with `x`.
1299 1300

    Examples:
1301

1302 1303
        .. code-block:: python

1304 1305
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1306 1307
    """

F
fengjiayi 已提交
1308
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1309 1310 1311
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1312 1313 1314 1315

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1316 1317 1318 1319 1320
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1321 1322 1323 1324
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1325 1326
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1327
        })
1328 1329 1330
    return out


J
jerrywgz 已提交
1331
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1332
    """
Y
Yibing Liu 已提交
1333 1334
    **Cross Entropy Layer**

1335 1336 1337
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1338 1339

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1340
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1341

Y
Yibing Liu 已提交
1342
        .. math::
Y
yangyaming 已提交
1343

Y
Yibing Liu 已提交
1344 1345 1346
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1347 1348
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1349 1350 1351 1352 1353

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1354
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1355 1356 1357
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1358 1359
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1360
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1361

Y
Yibing Liu 已提交
1362
    Args:
Y
yangyaming 已提交
1363
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1364 1365 1366 1367
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1368
        label (Variable|list): the ground truth which is a 2-D tensor. When
1369 1370 1371 1372
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1373
        soft_label (bool): a flag indicating whether to
1374
                                           interpretate the given labels as soft
1375
                                           labels. Default: `False`.
M
minqiyang 已提交
1376 1377
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1378
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1379 1380 1381 1382 1383

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1384 1385 1386
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1387

H
haowang101779990 已提交
1388 1389
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1390

H
haowang101779990 已提交
1391 1392
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1393 1394 1395 1396 1397 1398

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1399
    """
F
fengjiayi 已提交
1400
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1401
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1402 1403 1404 1405 1406
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1407 1408
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1409 1410 1411
    return out


F
frankwhzhang 已提交
1412
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1413 1414 1415
    """
    Bayesian Personalized Ranking Loss Operator.

1416
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1417 1418 1419 1420 1421 1422
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1423 1424 1425 1426 1427 1428
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1429 1430
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1431 1432 1433
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1434 1435 1436
    Examples:
        .. code-block:: python

1437
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1438
    """
1439 1440 1441 1442 1443 1444

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1445
                'Label': [label]},
1446 1447 1448 1449
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1450
def square_error_cost(input, label):
Y
Yu Yang 已提交
1451
    """
1452 1453
    **Square error cost layer**

1454 1455
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1456

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1470 1471
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1472 1473

    Returns:
G
guosheng 已提交
1474
        Variable: The tensor variable storing the element-wise squared error \
1475
                  difference of input and label.
1476 1477 1478 1479 1480 1481 1482 1483

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1484
    """
F
fengjiayi 已提交
1485
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1486
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1487 1488 1489 1490 1491 1492
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1493
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1494
    helper.append_op(
F
fengjiayi 已提交
1495 1496
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1497 1498 1499
    return square_out


Y
yi.wu 已提交
1500
@templatedoc()
Y
Yu Yang 已提交
1501 1502 1503 1504
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1505
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1506
    """
Y
yi.wu 已提交
1507
    **Chunk Evaluator**
Y
yi.wu 已提交
1508

Y
yangyaming 已提交
1509
    This function computes and outputs the precision, recall and
1510
    F1-score of chunk detection.
Y
yi.wu 已提交
1511

M
minqiyang 已提交
1512
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1513
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1514 1515 1516 1517 1518 1519

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1520

Y
yi.wu 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1546

Y
yi.wu 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1571
    Args:
1572 1573 1574 1575 1576
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1577

Y
yi.wu 已提交
1578
    Returns:
Y
update  
yi.wu 已提交
1579 1580 1581
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1582

Y
yi.wu 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1595
    """
F
fengjiayi 已提交
1596
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1597 1598

    # prepare output
X
Xin Pan 已提交
1599 1600 1601 1602 1603 1604 1605
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1606 1607 1608 1609 1610 1611 1612 1613

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1614 1615 1616 1617
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1618 1619 1620
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1621 1622
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1623
        })
1624 1625
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1626 1627


1628
@templatedoc()
Y
Yu Yang 已提交
1629 1630 1631 1632 1633 1634 1635
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1636 1637
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1638 1639 1640 1641
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1642 1643 1644 1645 1646 1647 1648

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1662

1663 1664
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1665 1666 1667 1668 1669 1670 1671
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1672
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1683
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1684 1685 1686 1687 1688 1689
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1690
def sequence_softmax(input, use_cudnn=False, name=None):
1691 1692 1693
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1694
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1711 1712 1713
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1714

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1726 1727
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1728
    softmax_out = helper.create_variable_for_type_inference(dtype)
1729 1730 1731 1732 1733 1734 1735 1736
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1737
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1738
    """
1739
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1740
    has the same shape as the input.
Q
qiaolongfei 已提交
1741

1742 1743 1744 1745 1746 1747
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1748
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1749 1750 1751 1752 1753 1754 1755

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1756
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1757 1758 1759 1760 1761 1762 1763 1764

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1765 1766 1767
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1780 1781
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1782
    softmax_out = helper.create_variable_for_type_inference(dtype)
1783 1784 1785 1786 1787 1788 1789 1790
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1791 1792 1793
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1794 1795
           stride=1,
           padding=0,
1796
           dilation=1,
Y
Yu Yang 已提交
1797 1798 1799
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1800
           use_cudnn=True,
1801 1802
           act=None,
           name=None):
Y
Yu Yang 已提交
1803
    """
C
chengduoZH 已提交
1804
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1805 1806
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1807
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1808 1809 1810 1811 1812 1813 1814
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1815 1816 1817
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1818

1819
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1820

C
chengduoZH 已提交
1821 1822
    .. math::

C
refine  
chengduoZH 已提交
1823
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1824

T
tensor-tang 已提交
1825
    Where:
C
chengduoZH 已提交
1826

1827 1828 1829 1830 1831
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1832
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1833 1834 1835

    Example:

1836 1837
        - Input:

W
weixing02 已提交
1838
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1839

W
weixing02 已提交
1840
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1841

1842
        - Output:
T
tensor-tang 已提交
1843

W
weixing02 已提交
1844
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1845

C
chengduoZH 已提交
1846
        Where
1847 1848

        .. math::
C
chengduoZH 已提交
1849

W
weixing02 已提交
1850 1851
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1852 1853

    Args:
1854
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1855
        num_filters(int): The number of filter. It is as same as the output
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1873 1874 1875 1876 1877
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1878
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1879 1880 1881 1882 1883
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1884 1885
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1886 1887
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1888
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1889
            will be named automatically. Default: None
C
chengduoZH 已提交
1890 1891

    Returns:
G
guosheng 已提交
1892
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1893 1894
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1895
    Raises:
1896 1897
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1898

C
chengduoZH 已提交
1899 1900 1901
    Examples:
        .. code-block:: python

1902 1903
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1904 1905 1906
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1907
    assert param_attr is not False, "param_attr should not be False here."
1908
    l_type = 'conv2d'
X
xzl 已提交
1909 1910
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1911
        l_type = 'depthwise_conv2d'
1912 1913 1914 1915

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1916 1917 1918 1919 1920
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1921
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1922

C
chengduoZH 已提交
1923 1924 1925
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1926
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1927

C
chengduoZH 已提交
1928 1929
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1930 1931

    input_shape = input.shape
M
minqiyang 已提交
1932
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1933 1934

    def _get_default_param_initializer():
C
chengduo 已提交
1935 1936
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1937 1938 1939 1940 1941 1942 1943 1944
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1945
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1946

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1961
    helper.append_op(
1962
        type=l_type,
Y
Yu Yang 已提交
1963 1964 1965 1966 1967
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1968 1969 1970
        attrs={
            'strides': stride,
            'paddings': padding,
1971
            'dilations': dilation,
C
chengduoZH 已提交
1972
            'groups': groups,
1973
            'use_cudnn': use_cudnn,
1974
            'use_mkldnn': False,
1975
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
1976
        })
Y
Yu Yang 已提交
1977 1978 1979 1980 1981 1982

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2000 2001 2002 2003 2004 2005
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2015 2016
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2017 2018 2019
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2020
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2046
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2047 2048
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2049
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2050 2051
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2052
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2053 2054
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2055
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2056 2057 2058 2059 2060 2061
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2072 2073
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2074 2075
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2076
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2077
            will be named automatically. Default: None.
C
chengduoZH 已提交
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2090 2091
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2092 2093 2094
    """

    l_type = 'conv3d'
C
chengduo 已提交
2095
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2106
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2120 2121 2122
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2123 2124 2125 2126 2127 2128 2129 2130
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2131
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2146
            'use_mkldnn': False
C
chengduoZH 已提交
2147 2148
        })

2149
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2150 2151 2152 2153

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2154
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2155
    """
Y
yangyaming 已提交
2156 2157 2158
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2170
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2171 2172 2173 2174 2175
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2176
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2177 2178 2179 2180 2181 2182 2183

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2184 2185
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2186

L
Luo Tao 已提交
2187 2188
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2189
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2190
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2191
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2192 2193 2194 2195 2196 2197 2198

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2199

Y
yangyaming 已提交
2200
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2201 2202 2203 2204 2205
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2206 2207
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2208
    """
F
fengjiayi 已提交
2209
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2210
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2211 2212
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2213 2214 2215 2216 2217 2218

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2219 2220
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2221

Y
yangyaming 已提交
2222 2223 2224 2225 2226
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2227 2228 2229
    return pool_out


C
add doc  
chengduoZH 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2249
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2250 2251 2252 2253 2254
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2255
def sequence_first_step(input):
L
Luo Tao 已提交
2256
    """
L
Luo Tao 已提交
2257
    This function gets the first step of sequence.
L
Luo Tao 已提交
2258 2259 2260 2261

    .. code-block:: text

       x is a 1-level LoDTensor:
2262
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2263 2264 2265 2266 2267
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2268
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2269
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2270

L
Luo Tao 已提交
2271 2272 2273 2274 2275 2276 2277 2278 2279
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2280

Y
yangyaming 已提交
2281
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2282 2283 2284
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2285 2286 2287
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2288
def sequence_last_step(input):
L
Luo Tao 已提交
2289
    """
L
Luo Tao 已提交
2290
    This function gets the last step of sequence.
L
Luo Tao 已提交
2291 2292 2293 2294

    .. code-block:: text

       x is a 1-level LoDTensor:
2295
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2296 2297 2298 2299 2300
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2301
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2302
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2303

L
Luo Tao 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2313

Y
yangyaming 已提交
2314
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2315 2316 2317
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2318 2319 2320
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2321 2322 2323 2324
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2325
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2326 2327 2328 2329 2330
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2331

H
haowang101779990 已提交
2332
              - Case:
Y
Yibing Liu 已提交
2333

2334
            Given the input Variable **input**:
2335

2336 2337 2338
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2339

2340
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2341

2342
            the output Variable will be
2343

2344 2345 2346
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2347

M
minqiyang 已提交
2348
    Note:
H
haowang101779990 已提交
2349
          The first dimension size of **input**, **offset** and **length**
2350
          should be equal. The **offset** should start from 0.
2351

Y
Yibing Liu 已提交
2352
    Args:
2353
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2354
                         sequences.
Y
Yibing Liu 已提交
2355 2356 2357 2358 2359 2360
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2361
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2372
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2373 2374 2375 2376
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2377
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2392
@templatedoc()
Y
Yu Yang 已提交
2393
def pool2d(input,
C
chengduoZH 已提交
2394 2395
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2396 2397
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2398
           global_pooling=False,
C
chengduoZH 已提交
2399
           use_cudnn=True,
2400
           ceil_mode=False,
2401 2402
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2403
    """
F
fengjiayi 已提交
2404
    ${comment}
2405 2406

    Args:
2407 2408 2409
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2410
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2411
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2412 2413
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2414
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2415 2416 2417 2418 2419 2420
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2421 2422 2423
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2424
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2425
                        layer will be named automatically.
2426
        exclusive (bool): Whether to exclude padding points in average pooling
2427
                          mode, default is true
F
fengjiayi 已提交
2428

2429
    Returns:
F
fengjiayi 已提交
2430
        Variable: The pooling result.
F
fengjiayi 已提交
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2444 2445 2446 2447
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2448
                            global_pooling=False)
Y
Yu Yang 已提交
2449 2450 2451 2452 2453
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2454

C
chengduoZH 已提交
2455 2456 2457 2458 2459
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2460 2461 2462 2463
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2464 2465
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2466

C
Add doc  
chengduoZH 已提交
2467
    l_type = 'pool2d'
2468 2469

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2470
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2471
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2472 2473

    helper.append_op(
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2485 2486
            "use_mkldnn": False,
            "exclusive": exclusive,
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2500 2501
           name=None,
           exclusive=True):
2502 2503
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2504
    pooling configurations mentioned in input parameters.
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2517
        exclusive (bool): Whether to exclude padding points in average pooling
2518
                          mode, default is true
2519

2520
    Returns:
2521
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2522 2523 2524 2525 2526
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2527

C
chengduoZH 已提交
2528 2529 2530 2531 2532
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2533 2534 2535
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2536

C
chengduoZH 已提交
2537 2538
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2539

2540 2541
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2542
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2543
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2544 2545

    helper.append_op(
2546
        type=l_type,
Y
Yu Yang 已提交
2547 2548 2549 2550 2551 2552 2553
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2554
            "paddings": pool_padding,
2555
            "use_cudnn": use_cudnn,
2556
            "ceil_mode": ceil_mode,
2557 2558
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2559 2560 2561 2562 2563
        })

    return pool_out


2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2597
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2598
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2599
          # of input data into m * n grids averagely and performs poolings in each
2600 2601
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2602
          #
2603 2604 2605 2606 2607 2608 2609 2610
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2611 2612
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2613
          pool_out = fluid.layers.adaptive_pool2d(
2614 2615
                            input=data,
                            pool_size=[3, 3],
2616
                            pool_type='avg')
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2627
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2653
    return (pool_out, mask) if require_index else pool_out
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2689 2690
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2691
          # of input data into l * m * n grids averagely and performs poolings in each
2692 2693
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2694
          #
2695 2696 2697 2698 2699 2700 2701 2702 2703
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2704
          #                 output[:, :, i, j, k] =
2705 2706
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2707 2708
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2709
          pool_out, mask = fluid.layers.adaptive_pool3d(
2710 2711
                            input=data,
                            pool_size=[3, 3],
2712
                            pool_type='avg')
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2723
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2749
    return (pool_out, mask) if require_index else pool_out
2750 2751


Y
Yu Yang 已提交
2752 2753 2754 2755 2756 2757 2758
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2759
               data_layout='NCHW',
Y
Yang Yang 已提交
2760
               in_place=False,
2761 2762
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2763
               moving_variance_name=None,
2764
               do_model_average_for_mean_and_var=False,
2765 2766
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2767
    """
Q
qiaolongfei 已提交
2768 2769 2770 2771
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2772

Q
qiaolongfei 已提交
2773
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2774

Q
qiaolongfei 已提交
2775 2776
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2777 2778 2779
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2792

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2806
    Args:
Q
qiaolongfei 已提交
2807
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2808 2809 2810 2811
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2812 2813 2814 2815 2816 2817 2818 2819
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2820
        data_layout(string, default NCHW): NCHW|NHWC
2821
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2822 2823 2824 2825
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2826
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2827
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2828 2829 2830 2831 2832
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2833 2834

    Returns:
Q
qiaolongfei 已提交
2835
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2836 2837 2838 2839 2840 2841 2842

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2843
    """
C
chengduo 已提交
2844
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2845 2846 2847
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2848 2849 2850 2851
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2869 2870 2871
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2872 2873

    bias = helper.create_parameter(
2874
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2875 2876
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
M
minqiyang 已提交
2877
        bias.stop_gradient = True
Y
Yu Yang 已提交
2878

2879 2880
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2881 2882 2883
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2884
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2885
        shape=param_shape,
W
Wu Yi 已提交
2886
        dtype=dtype)
2887 2888 2889 2890 2891 2892
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2893
            trainable=False,
W
wanghaoshuang 已提交
2894
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2895
        shape=param_shape,
W
Wu Yi 已提交
2896
        dtype=dtype)
2897
    variance.stop_gradient = True
Y
Yu Yang 已提交
2898 2899 2900 2901 2902 2903

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2904 2905 2906 2907
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2908

X
Xin Pan 已提交
2909 2910
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2928 2929 2930 2931
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2932
            "use_mkldnn": False,
2933 2934
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2935
        })
Y
Yu Yang 已提交
2936 2937 2938 2939

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              use_mkldnn=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
        attrs={"epsilon": epsilon,
               "use_mkldnn": use_mkldnn})

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3067
@templatedoc()
G
guosheng 已提交
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3078
    ${comment}
G
guosheng 已提交
3079 3080 3081

    The formula is as follows:

Y
yuyang18 已提交
3082
    ..  math::
G
guosheng 已提交
3083 3084 3085 3086 3087 3088 3089

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3090 3091 3092 3093 3094 3095 3096 3097
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3098

G
guosheng 已提交
3099 3100
    Args:
        input(Variable): The input tensor variable.
3101
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3102
            normalization. Default True.
3103
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3104 3105
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3106
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3107
            Default 1.
3108
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3109
            division by zero. Default 1e-05.
G
guosheng 已提交
3110
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3111 3112
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3113 3114
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3115
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3116 3117
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3118
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3119
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3120
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3121 3122 3123
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3124 3125

    Returns:
Y
yuyang18 已提交
3126
        ${y_comment}
G
guosheng 已提交
3127 3128 3129

    Examples:

Y
yuyang18 已提交
3130 3131 3132
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3148
    if shift:
G
guosheng 已提交
3149 3150 3151 3152 3153 3154
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3155 3156 3157 3158 3159
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3187
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3235 3236 3237
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_variable(dtype)
D
Dun 已提交
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3253 3254 3255 3256
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3257 3258 3259
                     padding=0,
                     stride=1,
                     dilation=1,
3260
                     groups=None,
C
caoying03 已提交
3261
                     param_attr=None,
3262
                     bias_attr=None,
C
chengduoZH 已提交
3263
                     use_cudnn=True,
3264
                     act=None,
C
caoying03 已提交
3265
                     name=None):
Y
Yu Yang 已提交
3266
    """
3267 3268 3269 3270 3271 3272 3273 3274
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3275 3276
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3277 3278 3279
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3280 3281 3282 3283 3284

    For each input :math:`X`, the equation is:

    .. math::

3285
        Out = \sigma (W \\ast X + b)
3286

3287
    Where:
3288 3289 3290

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3291 3292 3293 3294
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3295

3296 3297 3298 3299
    Example:

        - Input:

3300
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3301

3302
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3303 3304 3305

        - Output:

3306
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3307 3308

        Where
Y
Yu Yang 已提交
3309

3310 3311
        .. math::

3312 3313
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3314 3315
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3316 3317

    Args:
3318 3319 3320 3321
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3322 3323 3324 3325
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3354
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3355 3356 3357
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3358
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3359
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3360 3361

    Returns:
3362
        Variable: The tensor variable storing the convolution transpose result.
3363 3364

    Raises:
3365 3366
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3367 3368 3369 3370

    Examples:
       .. code-block:: python

3371 3372
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3373
    """
C
chengduo 已提交
3374
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3375 3376 3377 3378 3379 3380 3381 3382
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3383 3384 3385
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3386 3387 3388
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3389

C
chengduoZH 已提交
3390 3391
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3392

Y
Yu Yang 已提交
3393 3394 3395 3396 3397
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3398

Y
Yu Yang 已提交
3399 3400
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3401

C
chengduoZH 已提交
3402
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3403
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3404
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3405
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3406
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3407 3408 3409
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3410

3411 3412 3413 3414 3415 3416 3417
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3418
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3419
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3420

Y
Yu Yang 已提交
3421 3422 3423
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3424
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3425
    helper.append_op(
3426
        type=op_type,
Y
Yu Yang 已提交
3427 3428
        inputs={'Input': [input],
                'Filter': [img_filter]},
3429
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3430
        attrs={
3431
            'output_size': output_size,
3432 3433 3434 3435 3436
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3437 3438
        })

3439 3440 3441
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3442 3443


3444
def conv3d_transpose(input,
Y
Yu Yang 已提交
3445 3446 3447
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3448 3449 3450
                     padding=0,
                     stride=1,
                     dilation=1,
3451
                     groups=None,
C
caoying03 已提交
3452
                     param_attr=None,
3453
                     bias_attr=None,
C
chengduoZH 已提交
3454
                     use_cudnn=True,
3455
                     act=None,
C
caoying03 已提交
3456
                     name=None):
Y
Yu Yang 已提交
3457
    """
3458
    **Convlution3D transpose layer**
3459

3460
    The convolution3D transpose layer calculates the output based on the input,
3461
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3462 3463 3464 3465 3466 3467
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3468 3469 3470
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3471 3472 3473 3474 3475

    For each input :math:`X`, the equation is:

    .. math::

3476
        Out = \sigma (W \\ast X + b)
3477 3478 3479

    In the above equation:

3480 3481
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3482 3483 3484 3485
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3486

3487 3488 3489 3490
    Example:

        - Input:

3491
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3492

3493
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3494 3495 3496

        - Output:

3497
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3498 3499

        Where
Y
Yu Yang 已提交
3500

3501 3502
        .. math::

3503 3504 3505
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3506 3507

    Args:
3508
        input(Variable): The input image with [N, C, D, H, W] format.
3509 3510 3511
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3512
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3513 3514
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3515
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3516 3517 3518
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3519 3520
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3521
        stride(int|tuple): The stride size. If stride is a tuple, it must
3522 3523
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3524
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3525 3526 3527
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3528 3529 3530 3531 3532
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3533 3534 3535 3536 3537 3538 3539 3540 3541
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3542 3543
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3544 3545
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3546 3547
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3548 3549

    Returns:
3550
        Variable: The tensor variable storing the convolution transpose result.
3551 3552

    Raises:
3553 3554
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3555 3556 3557 3558

    Examples:
       .. code-block:: python

3559 3560
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3561
    """
C
chengduo 已提交
3562
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3563 3564
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3565
    if not isinstance(input, Variable):
3566
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3567 3568
    input_channel = input.shape[1]

3569 3570 3571
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3572

C
chengduoZH 已提交
3573 3574 3575
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3576 3577 3578 3579 3580 3581
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3582 3583 3584
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3585

3586
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3587
                         padding[0] - 1) // dilation[0] + 1
3588
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3589
                         padding[1] - 1) // dilation[1] + 1
3590
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3591
                         padding[2] - 1) // dilation[2] + 1
3592
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3593
    else:
3594 3595
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3596

3597
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3598
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3599 3600 3601
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3602
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3603
    helper.append_op(
3604
        type=l_type,
Y
Yu Yang 已提交
3605 3606
        inputs={'Input': [input],
                'Filter': [img_filter]},
3607
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3608 3609 3610 3611
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3612
            'groups': groups,
C
chengduoZH 已提交
3613 3614
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3615

3616 3617
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3618
    return out
Y
yangyaming 已提交
3619 3620


Y
yangyaming 已提交
3621
def sequence_expand(x, y, ref_level=-1, name=None):
3622
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3623 3624 3625 3626
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3627 3628 3629 3630 3631

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3632
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3633
                x.data = [[a], [b], [c], [d]]
3634 3635 3636
                x.dims = [4, 1]

            y is a LoDTensor:
3637 3638
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3639

Y
yangyaming 已提交
3640
            ref_level: 0
3641

Y
yangyaming 已提交
3642
            then output is a 1-level LoDTensor:
3643
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3644
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3645 3646 3647 3648
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3649
                x.data = [[a], [b], [c]]
3650 3651 3652
                x.dims = [3, 1]

            y is a LoDTensor:
3653
                y.lod = [[2, 0, 3]]
3654

Y
yangyaming 已提交
3655
            ref_level: -1
3656

Y
yangyaming 已提交
3657 3658 3659
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3660 3661 3662
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3663 3664
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3665
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3666
                        will be named automatically.
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3677
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3678
    """
Y
yangyaming 已提交
3679
    helper = LayerHelper('sequence_expand', input=x, **locals())
3680
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3681
    tmp = helper.create_variable_for_type_inference(dtype)
3682
    helper.append_op(
Y
yangyaming 已提交
3683 3684 3685 3686 3687
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3688
    return tmp
3689 3690


C
chengduo 已提交
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3747
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3748 3749 3750 3751 3752 3753 3754 3755
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3756
@templatedoc()
3757
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3758 3759 3760 3761 3762
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3763 3764 3765
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3766
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3767 3768 3769 3770
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3771 3772 3773
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3774

F
fengjiayi 已提交
3775
    Returns:
M
minqiyang 已提交
3776
        Variable: The padded sequence batch and the original lengths before
3777
                  padding. All sequences has the same length.
M
minqiyang 已提交
3778

F
fengjiayi 已提交
3779 3780 3781 3782 3783 3784 3785
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3786
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3787
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3788 3789 3790 3791 3792
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3793 3794
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3795 3796 3797 3798

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3799 3800 3801 3802 3803 3804
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3805 3806
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3807
        attrs={'padded_length': maxlen})
3808
    return out, length
F
fengjiayi 已提交
3809 3810


3811
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3812
    """
3813
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3814

3815 3816
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3817 3818 3819 3820 3821 3822 3823 3824 3825
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3826 3827 3828
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3829
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3830 3831 3832 3833 3834 3835

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3836
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3837 3838 3839 3840 3841 3842

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3843 3844
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3859
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3871 3872 3873 3874 3875 3876 3877
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
3878
                is_accumulated=True,
3879 3880
                name=None):
    """
3881 3882
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3883 3884 3885

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3886 3887

    This layer does the search in beams for one time step. Specifically, it
3888 3889 3890
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
3902 3903 3904 3905

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3906

3907
    Args:
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
3931 3932
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
3933 3934
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3935

3936
    Returns:
3937 3938
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3939 3940 3941 3942

    Examples:
        .. code-block:: python

3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3960
    helper = LayerHelper('beam_search', **locals())
3961 3962 3963 3964 3965 3966
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
3967

X
Xin Pan 已提交
3968 3969 3970
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3971 3972 3973

    helper.append_op(
        type='beam_search',
3974
        inputs=inputs,
Q
Qiao Longfei 已提交
3975 3976 3977 3978 3979 3980 3981 3982 3983
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
3984
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
3985 3986 3987 3988 3989
        })

    return selected_ids, selected_scores


3990 3991 3992 3993 3994 3995 3996
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3997

3998 3999 4000 4001 4002 4003 4004 4005 4006
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4007

4008 4009 4010 4011 4012 4013
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4014

4015 4016
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4017

4018 4019 4020 4021 4022 4023
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4024 4025
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4041 4042 4043 4044
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4045
              param_attr=None,
C
caoying03 已提交
4046 4047
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4048 4049 4050 4051
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4052
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4053

4054
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4055

4056
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4057

4058
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4059 4060 4061

            h_t & = o_t tanh(c_t)

4062 4063 4064 4065 4066 4067
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4068 4069 4070

        .. math::

4071
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4072 4073 4074 4075 4076 4077 4078 4079

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4080
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4081 4082

    Args:
Y
yangyaming 已提交
4083 4084 4085 4086 4087 4088
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4089
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4102 4103
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4104 4105

    Returns:
Y
yangyaming 已提交
4106
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4107 4108

    Raises:
4109 4110 4111 4112
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4113 4114 4115 4116 4117 4118

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4119
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4120
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4121
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4138
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4139 4140 4141 4142
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4143 4144
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4145 4146 4147
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4148
    size = cell_t_prev.shape[1]
4149
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4150 4151
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4152
                param_attr=param_attr,
4153
                bias_attr=bias_attr)
Y
yangyaming 已提交
4154
    dtype = x_t.dtype
X
Xin Pan 已提交
4155 4156
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4157 4158 4159 4160 4161 4162 4163 4164 4165

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4166
    return h, c
G
guosheng 已提交
4167 4168


C
caoying03 已提交
4169
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4170
    """
Y
yangyaming 已提交
4171
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4172 4173 4174

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4175
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4176 4177
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4178 4179
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4180
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4181
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4182
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4183 4184
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4185 4186 4187

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4188

G
guosheng 已提交
4189 4190 4191 4192 4193 4194
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4195
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4196 4197 4198 4199
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4200 4201 4202 4203

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4204
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4205 4206 4207
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4208 4209
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4210
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4211 4212
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4213 4214 4215 4216 4217
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4218
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4219 4220 4221 4222
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4223 4224


C
caoying03 已提交
4225
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4226
    """
Y
Yibing Liu 已提交
4227
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4228 4229 4230

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4231 4232 4233
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4234
            must be in the range :math:`[-rank(input), rank(input))`. If
4235
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4236
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4237 4238
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4239
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4240
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4241
                       will be named automatically.
G
guosheng 已提交
4242 4243

    Returns:
Y
Yibing Liu 已提交
4244
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4245

G
guosheng 已提交
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4256 4257
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4258 4259 4260 4261 4262 4263 4264

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4265 4266
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4267
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4268 4269
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4270 4271 4272 4273 4274
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4275
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4276 4277 4278 4279
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4280 4281


C
caoying03 已提交
4282
def reduce_max(input, dim=None, keep_dim=False, name=None):
4283
    """
Y
yangyaming 已提交
4284
    Computes the maximum of tensor elements over the given dimension.
4285 4286 4287

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4288
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4289 4290 4291
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4292
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4293 4294
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4295
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4296 4297
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4298 4299 4300

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4301

4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4313 4314 4315 4316 4317 4318 4319

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4320 4321
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4322
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4323 4324
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4325 4326 4327 4328 4329
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4330
            'dim': dim if dim != None else [0],
4331 4332 4333 4334 4335 4336
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4337
def reduce_min(input, dim=None, keep_dim=False, name=None):
4338
    """
Y
yangyaming 已提交
4339
    Computes the minimum of tensor elements over the given dimension.
4340 4341 4342

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4343
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4344 4345 4346
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4347
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4348 4349
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4350
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4351 4352
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4353 4354 4355

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4356

4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4368 4369 4370 4371 4372 4373 4374

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4375 4376
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4377
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4378 4379
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4380 4381 4382 4383 4384
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4385
            'dim': dim if dim != None else [0],
4386 4387 4388 4389
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4390 4391


4392 4393 4394 4395 4396 4397
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4398
        dim (list|int|None): The dimensions along which the product is performed. If
4399 4400
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4401 4402
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4403 4404 4405
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4406
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4407
            layer will be named automatically.
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4422
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4423
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4424 4425 4426 4427 4428 4429 4430

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4431 4432
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4433
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4434 4435
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4436 4437 4438 4439 4440
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4441
            'dim': dim if dim != None else [0],
4442 4443 4444 4445 4446 4447
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4448
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4449
    """
C
caoying03 已提交
4450
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4451 4452 4453

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4454 4455 4456 4457 4458
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4459
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4460
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4461
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4462 4463
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4464 4465

    Returns:
D
dzhwinter 已提交
4466
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4467 4468 4469 4470 4471 4472 4473 4474 4475

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4476 4477
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4493
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4507 4508 4509 4510 4511 4512 4513 4514 4515


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4516
    .. math::
4517 4518

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4519 4520 4521 4522 4523

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4524
        x(Variable|list): The input tensor to l2_normalize layer.
4525
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4526 4527
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4528
        epsilon(float): The epsilon value is used to avoid division by zero, \
4529
            the defalut value is 1e-10.
4530
        name(str|None): A name for this layer(optional). If set None, the layer \
4531
            will be named automatically.
C
caoying03 已提交
4532 4533

    Returns:
4534
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4535 4536

    Examples:
4537

C
caoying03 已提交
4538 4539
        .. code-block:: python

4540 4541 4542 4543
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4544 4545
    """

F
fengjiayi 已提交
4546 4547
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4548 4549
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4550 4551
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4552
    helper.append_op(
4553 4554 4555 4556
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4557
        attrs={
4558 4559
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4560 4561
        })
    return out
4562 4563


S
sneaxiy 已提交
4564
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4565
    """
Y
ying 已提交
4566 4567 4568 4569
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4570

C
chengduoZH 已提交
4571
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4572
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4573

4574 4575 4576 4577 4578
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4579
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4580

C
chengduoZH 已提交
4581
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4582
      performs in the following way.
G
guosheng 已提交
4583

4584
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4585
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4586
        last two dimensions and a batched matrix multiply supporting broadcast
4587
        applies on the two tensors.
G
guosheng 已提交
4588

Y
ying 已提交
4589 4590
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4591
    removed after matrix multiplication.
G
guosheng 已提交
4592 4593 4594

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4595 4596 4597
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4598
        alpha (float): The scale of output. Default 1.0.
4599
        name(str|None): A name for this layer(optional). If set None, the layer
4600
            will be named automatically.
G
guosheng 已提交
4601 4602

    Returns:
4603
        Variable: The product Tensor variable.
G
guosheng 已提交
4604

G
guosheng 已提交
4605 4606 4607
    Examples:
        .. code-block:: python

4608
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4609 4610
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4611

4612 4613
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4614

4615 4616
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4617

4618 4619
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4620 4621 4622 4623

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4624 4625
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4626

Y
ying 已提交
4627
            # x: [M], y: [N]
4628
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4629
    """
Y
ying 已提交
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4642
            y_shape = y_shape + [1]
Y
ying 已提交
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4659
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4660
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4661
    helper.append_op(
4662 4663 4664 4665
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4666 4667 4668
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4669
            'alpha': float(alpha),
S
sneaxiy 已提交
4670
        })
4671
    return out
4672 4673


4674
def topk(input, k, name=None):
Q
qingqing01 已提交
4675 4676 4677 4678
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4679
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4680 4681 4682 4683 4684 4685
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4707 4708 4709
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4710
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4711
                 of input.
4712
        name(str|None): A name for this layer(optional). If set None, the layer
4713
                       will be named automatically.
F
fengjiayi 已提交
4714
                       Default: None
Q
qingqing01 已提交
4715 4716

    Returns:
4717 4718 4719
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4720
        within the last dimension of input.
Q
qingqing01 已提交
4721

F
fengjiayi 已提交
4722 4723
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4724 4725 4726 4727 4728 4729 4730

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4731 4732
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4733 4734 4735 4736 4737 4738
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4739 4740
    helper.append_op(
        type="top_k",
W
whs 已提交
4741
        inputs=inputs,
Q
qingqing01 已提交
4742 4743
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4744
        attrs=attrs)
Q
qingqing01 已提交
4745 4746 4747 4748 4749
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4750
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4751
    """
Y
ying 已提交
4752 4753 4754 4755 4756 4757 4758 4759 4760
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4761

Y
ying 已提交
4762
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4763

4764
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4765 4766
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4767
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4768

4769
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4770 4771
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4772

4773 4774 4775
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4776
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4777
                          the length of reference string.
4778
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4779
                                     calculating edit distance.
4780
        name (str): The name of this layer. It is optional.
4781

W
wanghaoshuang 已提交
4782
    Returns:
W
wanghaoshuang 已提交
4783
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4784 4785 4786 4787

    Examples:
        .. code-block:: python

T
tink2123 已提交
4788 4789
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4790
            cost = fluid.layers.edit_distance(input=x,label=y)
4791
    """
4792
    helper = LayerHelper("edit_distance", **locals())
4793

4794
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4795
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4796 4797
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4798 4799 4800 4801 4802

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4803
            attrs={"tokens": ignored_tokens})
4804 4805 4806 4807 4808
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4809
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4810
            attrs={"tokens": ignored_tokens})
4811 4812
        label = erased_label

4813
    # edit distance op
X
Xin Pan 已提交
4814 4815
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4816 4817 4818 4819
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4820 4821
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4822 4823
        attrs={"normalized": normalized})

4824
    return edit_distance_out, sequence_num
4825 4826 4827 4828 4829


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4830

Y
ying 已提交
4831 4832 4833 4834
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4852
        input.lod = [[4, 4]]
M
minqiyang 已提交
4853

W
whs 已提交
4854
        Computation:
4855

W
whs 已提交
4856 4857 4858 4859 4860 4861
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4862 4863 4864 4865 4866

        output.data = [[2],
                       [1],
                       [3]]

4867
        output.lod = [[2, 1]]
4868

W
whs 已提交
4869

4870 4871
    Args:

Y
ying 已提交
4872 4873 4874 4875 4876 4877 4878 4879 4880
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4881
        name (str): The name of this layer. It is optional.
4882 4883

    Returns:
H
haowang101779990 已提交
4884 4885 4886
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
4887
                  LoD [[]] and dims [1, 1].
4888 4889 4890 4891 4892

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4893

4894
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4895
    """
4896
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4897
    _, topk_indices = topk(input, k=1)
4898 4899

    # ctc align op
X
Xin Pan 已提交
4900
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4901 4902 4903
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4904
        outputs={"Output": [ctc_out]},
4905 4906
        attrs={"merge_repeated": True,
               "blank": blank})
4907
    return ctc_out
4908 4909


W
Wu Yi 已提交
4910
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4911
    """
4912 4913
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4914
    to compute Connectionist Temporal Classification (CTC) loss.
4915 4916
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4917 4918 4919
    input tensor.

    Args:
4920
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4921 4922 4923 4924
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4925
       label (Variable): The ground truth of variable-length sequence,
4926 4927 4928
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4929 4930
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4931 4932 4933
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4934
         follewed by a mean_op.
W
Wu Yi 已提交
4935
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4936 4937

    Returns:
4938 4939
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4940 4941

    Examples:
4942

W
wanghaoshuang 已提交
4943
        .. code-block:: python
4944

4945 4946 4947
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4948 4949

    """
F
fengjiayi 已提交
4950
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4951 4952
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4953 4954 4955 4956 4957 4958
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4959 4960 4961 4962 4963
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4964
    return loss_out
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4980 4981 4982
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4983 4984 4985 4986 4987
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4988

4989
            out.lod  = [[0, 1, 3]]
4990 4991 4992 4993

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4994 4995 4996 4997 4998 4999 5000
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5001 5002 5003

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5004 5005

    Returns:
5006

5007 5008 5009 5010 5011
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5012
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5013
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5014 5015
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5016
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5017 5018 5019 5020 5021 5022
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5023 5024


5025 5026 5027 5028
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5029 5030 5031 5032 5033 5034
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5035
        num_neg_samples=None,
5036 5037 5038
        name=None,
        sampler="uniform",
        custom_dist=None,
5039 5040
        seed=0,
        is_sparse=False):
5041 5042 5043 5044 5045 5046 5047
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5048 5049
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5050
            sample is 1.0.
C
chengduo 已提交
5051 5052 5053 5054 5055 5056 5057 5058 5059
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5060
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5061 5062
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5063 5064 5065
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5066
        custom_dist (float[]): A float[] with size=num_total_classes.
5067 5068 5069 5070
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5071
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5072

5073
    Returns:
Y
Yibing Liu 已提交
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5101 5102 5103 5104 5105 5106 5107 5108 5109

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5110

5111
    """
Y
Yang Yu 已提交
5112 5113 5114
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5115 5116

    dim = input.shape[1]
Y
Yang Yu 已提交
5117 5118 5119 5120 5121 5122
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5123
    inputs = {}
C
chengduo 已提交
5124 5125 5126 5127 5128 5129 5130
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5131 5132 5133
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5134

5135 5136 5137 5138
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5139 5140 5141 5142 5143 5144 5145

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5146 5147 5148 5149 5150 5151 5152 5153 5154
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5155
            if normal_prob - 1.0 > 0:
5156
                bigs.append((i, normal_prob))
5157
            elif 1.0 - normal_prob > 0:
5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5173
            if big_left - 1.0 > 0:
5174
                bigs.append((big_idx, big_left))
5175
            elif 1.0 - big_left > 0:
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5205 5206 5207 5208
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5209 5210 5211 5212 5213
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5214 5215 5216 5217
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5218

Y
Yang Yu 已提交
5219 5220
    attrs = {
        'num_total_classes': int(num_total_classes),
5221 5222
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5223
        'sampler': sampler,
5224 5225
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5226
    }
Y
Yang Yu 已提交
5227 5228 5229

    helper.append_op(
        type='nce',
C
chengduo 已提交
5230
        inputs=inputs,
Y
Yang Yu 已提交
5231 5232 5233 5234 5235 5236
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5237
    return cost / (num_neg_samples + 1)
5238 5239


C
chengduo 已提交
5240 5241
def hsigmoid(input,
             label,
5242
             num_classes,
C
chengduo 已提交
5243 5244
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5245
             name=None,
5246 5247 5248
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5249
             is_sparse=False):
W
weixing02 已提交
5250 5251
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5252
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5253
    complete binary tree, or you can use is_custom to pass your own tree to
5254
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5255 5256 5257 5258 5259 5260
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5261
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5262
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5263

5264 5265
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5266 5267 5268 5269
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5270
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5271
       related to the same batch of inputs.
5272

W
weixing02 已提交
5273
    Args:
M
minqiyang 已提交
5274
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5275 5276 5277 5278
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5279 5280
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5281
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5293
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5294
            it should be in leaf -> root order
M
minqiyang 已提交
5295 5296 5297
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5298
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5299
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5300
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5301
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5302
             of W and input will be sparse.
W
weixing02 已提交
5303 5304

    Returns:
J
JiabinYang 已提交
5305
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5306 5307 5308 5309 5310

    Examples:

        .. code-block:: python

G
guosheng 已提交
5311 5312 5313
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5314 5315 5316 5317
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5318 5319
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5320
    dim = input.shape[1]
5321
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5322 5323 5324
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5325 5326 5327 5328
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5329 5330
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5331 5332 5333
    else:
        pass

J
JiabinYang 已提交
5334
    weights = None
5335 5336 5337 5338
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5339
    if not is_custom:
J
JiabinYang 已提交
5340 5341 5342 5343 5344 5345 5346 5347
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5348
            shape=[num_classes, dim],
J
JiabinYang 已提交
5349 5350
            is_bias=False,
            dtype=input.dtype)
5351 5352 5353
    inputs = {
        "X": input,
        "W": weights,
5354
        "PathTable": path_table,
5355
        "PathCode": path_code,
5356 5357
        "Label": label
    }
W
weixing02 已提交
5358
    if helper.bias_attr:
5359
        if not is_custom:
J
JiabinYang 已提交
5360 5361
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5362
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5363 5364 5365 5366 5367 5368
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5369
                shape=[num_classes, 1],
J
JiabinYang 已提交
5370 5371 5372
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5373 5374
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5375
        inputs=inputs,
W
weixing02 已提交
5376
        outputs={"Out": out,
5377 5378 5379 5380 5381 5382 5383
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5384 5385 5386
    return out


Y
fix ci.  
ying 已提交
5387
def transpose(x, perm, name=None):
Y
ying 已提交
5388 5389 5390 5391 5392 5393 5394
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5395 5396 5397
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5398 5399 5400 5401 5402 5403 5404

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5405
            # use append_batch_size=False to avoid prepending extra
5406
            # batch size in shape
5407
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5408
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5409
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5410 5411
    """

Y
fix ci.  
ying 已提交
5412
    if len(perm) != len(x.shape):
Y
ying 已提交
5413 5414 5415
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5416 5417 5418 5419 5420 5421
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5422 5423

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5424 5425
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5426
    helper.append_op(
5427
        type='transpose2',
Y
fix ci.  
ying 已提交
5428
        inputs={'X': [x]},
5429 5430
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5431 5432
        attrs={'axis': perm})
    return out
5433 5434


5435 5436 5437 5438 5439 5440 5441
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5442
    """
5443 5444 5445 5446 5447 5448 5449
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5478 5479 5480 5481 5482 5483 5484 5485 5486
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5487 5488 5489
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5490 5491 5492 5493 5494
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5522 5523 5524
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5537
            output.dims = {8, 8}
5538

5539
            output.lod = [[4, 4]]
5540

T
Tink_Y 已提交
5541
    Examples:
5542 5543 5544

        .. code-block:: python

5545 5546
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5547 5548

    """
W
wanghaoshuang 已提交
5549 5550 5551 5552 5553 5554 5555 5556 5557 5558

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5559 5560 5561 5562 5563 5564 5565
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5566
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5567
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5568
    helper.append_op(
5569
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5570
    return out
5571 5572


Y
yuyang18 已提交
5573
@templatedoc()
5574
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5575 5576
    """
    ${comment}
5577 5578

    Args:
Y
yuyang18 已提交
5579
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5580 5581
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5582 5583 5584 5585 5586
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5587
        ${out_comment}.
5588 5589

    Examples:
Y
yuyang18 已提交
5590 5591 5592 5593
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5594 5595 5596 5597 5598 5599
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5600
    out = helper.create_variable_for_type_inference(dtype)
5601 5602 5603 5604 5605
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5606
    return helper.append_activation(out)
5607 5608


Y
yuyang18 已提交
5609
@templatedoc()
5610 5611
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5612 5613 5614 5615 5616 5617 5618
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5619 5620

    Args:
Y
yuyang18 已提交
5621 5622
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5623 5624

    Returns:
Y
yuyang18 已提交
5625
        ${out_comment}.
5626 5627
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5628 5629 5630 5631 5632

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5633
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5634 5635 5636 5637 5638 5639
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5640 5641


5642 5643 5644
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5645
                               ignore_index=kIgnoreIndex,
5646 5647
                               numeric_stable_mode=False,
                               return_softmax=False):
5648 5649
    """
    **Softmax With Cross Entropy Operator.**
5650

5651 5652 5653 5654
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5655

5656 5657 5658
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5659

5660 5661 5662
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5663

5664
    The equation is as follows:
5665

5666
    1) Hard label (one-hot label, so every sample has exactly one class)
5667

5668 5669 5670 5671
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5672

5673 5674 5675
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5676

5677 5678 5679 5680
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5681 5682 5683
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5684

H
haowang101779990 已提交
5685
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5686

H
haowang101779990 已提交
5687
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5688

H
haowang101779990 已提交
5689
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5690 5691 5692

    and then cross entropy loss is calculated by softmax and label.

5693 5694 5695 5696 5697 5698 5699 5700
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5701 5702
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5703
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5704 5705 5706
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5707 5708 5709
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5710
                                    stable algorithm. Default: False
5711
        return_softmax (bool): A flag indicating whether to return the softmax
5712
                               along with the cross entropy loss. Default: False
5713

5714
    Returns:
H
haowang101779990 已提交
5715 5716 5717 5718 5719
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5720 5721 5722 5723 5724 5725 5726

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5727 5728
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5729 5730
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5731 5732
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5733 5734 5735 5736 5737 5738
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5739 5740 5741 5742 5743
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5744 5745 5746 5747

    if return_softmax:
        return loss, softmax

5748 5749 5750 5751 5752
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5753 5754
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5755
    For each instance, it computes the smooth L1 loss element by element first
5756
    and then sums all the losses. So the shape of ouput Variable is
5757
    [batch_size, 1].
5758

5759 5760
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5761
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5762
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5763
            L1 loss op with same shape as :attr:`x`.
5764
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5765 5766
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5767
            by this tensor element by element.
5768
        outside_weight (Variable|None): A tensor with rank at least 2. This
5769 5770
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5771
            element by element.
5772
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5773 5774
           scalar with default value 1.0.

5775
    Returns:
5776
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5777 5778 5779 5780 5781

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5782 5783
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5784
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5785
            out = fluid.layers.smooth_l1(x=fc, y=label)
5786
    """
5787

5788
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5789 5790
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5803 5804 5805 5806


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5807
    This layer creates the one-hot representations for input indices.
5808 5809

    Args:
Y
Yibing Liu 已提交
5810 5811
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5812 5813

    Returns:
Y
Yibing Liu 已提交
5814
        Variable: The one-hot representations of input.
5815 5816

    Examples:
C
caoying03 已提交
5817
        .. code-block:: python
5818

Y
Yibing Liu 已提交
5819 5820
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5821 5822
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5823
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5824 5825 5826 5827 5828 5829
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5830 5831


Y
Yu Yang 已提交
5832
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5833
    """
Y
yi.wu 已提交
5834 5835 5836
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5837 5838 5839 5840 5841 5842

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5843 5844
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5845 5846 5847 5848 5849 5850

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5851 5852
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5853 5854
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5855 5856 5857 5858 5859
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5860
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5861
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5862 5863
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5864
            outputs={'Out': [counter]},
M
minqiyang 已提交
5865 5866
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
5867 5868 5869
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5870 5871


5872
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5873
    """
C
caoying03 已提交
5874 5875
    Gives a new shape to the input Tensor without changing its data.

5876 5877 5878 5879 5880
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5881

5882
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5883

5884 5885 5886 5887
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5888
    2. 0 means the actual dimension value is going to be copied from the
5889 5890 5891 5892
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5893 5894

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5895
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5896
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5897

5898
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5899 5900
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5901 5902
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5903
    dimensions.
C
caoying03 已提交
5904

5905
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5906 5907 5908 5909
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5910 5911

    Args:
5912
        x(variable): The input tensor.
C
caoying03 已提交
5913 5914
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5915 5916 5917 5918 5919
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5920 5921
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5922 5923 5924 5925 5926 5927 5928
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5929
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5930

5931
    Returns:
G
guosheng 已提交
5932 5933 5934 5935
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5936

X
Xin Pan 已提交
5937 5938 5939
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5940 5941
    Examples:
        .. code-block:: python
G
guosheng 已提交
5942

5943
            data = fluid.layers.data(
5944
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5945
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5946
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5947 5948 5949
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5950
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5951 5952 5953 5954 5955
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5956

5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5972
    helper = LayerHelper("reshape2", **locals())
5973 5974
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5975
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5976
    helper.append_op(
5977
        type="reshape2",
X
Xin Pan 已提交
5978
        inputs=inputs,
D
dzhwinter 已提交
5979
        attrs={"shape": shape},
5980 5981
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5982

D
dzhwinter 已提交
5983
    return helper.append_activation(out)
5984

5985

5986
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5987
    """
M
minqiyang 已提交
5988 5989 5990
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5991
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5992

H
haowang101779990 已提交
5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6014

Y
Yibing Liu 已提交
6015
    Args:
6016
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6017
        axes (list): List of integers, indicating the dimensions to be squeezed.
6018
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6019 6020 6021 6022 6023 6024 6025 6026

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6027
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6028 6029
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6030 6031
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6032
    helper.append_op(
6033
        type="squeeze2",
6034
        inputs={"X": input},
Y
Yibing Liu 已提交
6035
        attrs={"axes": axes},
6036 6037
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6038

6039 6040 6041
    return out


6042
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6043
    """
M
minqiyang 已提交
6044 6045 6046
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6047

M
minqiyang 已提交
6048
    For example:
H
haowang101779990 已提交
6049 6050 6051

    .. code-block:: text

M
minqiyang 已提交
6052
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6053
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6054

Y
Yibing Liu 已提交
6055
    Args:
6056
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6057
        axes (list): List of integers, indicating the dimensions to be inserted.
6058
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6059 6060 6061 6062 6063 6064 6065 6066

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6067
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6068 6069
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6070 6071
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6072
    helper.append_op(
6073
        type="unsqueeze2",
6074
        inputs={"X": input},
Y
Yibing Liu 已提交
6075
        attrs={"axes": axes},
6076 6077
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6078

6079 6080
    return out

6081

Y
yangyaming 已提交
6082
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6083
    """
Y
Yibing Liu 已提交
6084
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6085 6086 6087 6088
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6089
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6090 6091 6092 6093 6094 6095

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6096
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6097 6098 6099
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6100
            target_lod: [4, 2]
Y
yangyaming 已提交
6101 6102

            then we get a 1-level LoDTensor:
6103
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6104 6105 6106 6107 6108 6109
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6110
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6111 6112 6113 6114
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6115
                y.data = [[2, 4]]
Y
yangyaming 已提交
6116 6117 6118
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6119
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6120 6121 6122 6123 6124 6125
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6126
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6127 6128 6129 6130
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6131
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6132 6133 6134 6135
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6136
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6137 6138 6139 6140 6141
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6142
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6143
                           from :attr:`y`.
Y
yangyaming 已提交
6144
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6145
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6146 6147

    Returns:
Y
Yibing Liu 已提交
6148
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6149 6150

    Raises:
Y
Yibing Liu 已提交
6151
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6152 6153 6154 6155 6156 6157 6158 6159 6160

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6161
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6187
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6216 6217
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6230 6231 6232
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6246 6247 6248 6249


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6250
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6251
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6252

G
guosheng 已提交
6253 6254 6255 6256
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6279
                         The length of :attr:paddings must be
G
guosheng 已提交
6280 6281 6282 6283 6284 6285 6286 6287 6288 6289
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6290

G
guosheng 已提交
6291 6292 6293 6294 6295 6296
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6297
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6298 6299 6300 6301 6302 6303 6304
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6305 6306


C
chengduo 已提交
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6338 6339
		And
            pad_value = -1,
C
chengduo 已提交
6340

T
Tink_Y 已提交
6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6376
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6377 6378 6379 6380 6381 6382 6383 6384 6385
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6386 6387 6388 6389 6390 6391 6392
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6393 6394
    called label-smoothing regularization (LSR).

6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6418
                              be :math:`(1, class\_num)`.
6419 6420
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6421
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6441
    smooth_label = helper.create_variable_for_type_inference(dtype)
6442 6443 6444 6445 6446 6447 6448
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6449 6450


W
wopeizl 已提交
6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6487 6488


J
jerrywgz 已提交
6489 6490 6491 6492 6493 6494
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6495 6496
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6513 6514 6515
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6516 6517 6518 6519 6520 6521
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6522
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6563 6564
        .. code-block:: python

W
whs 已提交
6565 6566 6567 6568
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6569
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6570 6571 6572 6573 6574 6575
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6576 6577


6578 6579 6580 6581
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6582 6583
                 resample='BILINEAR',
                 actual_shape=None):
6584
    """
Q
qiaolongfei 已提交
6585
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6586

6587
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6588 6589 6590
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6591

6592
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6593

6594
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6595

6596
    Args:
6597
        input (Variable): The input tensor of image resize layer,
6598 6599
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6600
        out_shape(list|tuple|Variable|None): Output shape of image resize
6601 6602
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6603
        scale(float|None): The multiplier for the input height or width.
6604 6605 6606
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6607 6608
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6609
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6610
                       currently.
6611
                       Default: 'BILINEAR'
6612 6613 6614
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6615
                                :attr:`out_shape` and :attr:`scale` specifying
6616 6617 6618 6619 6620 6621 6622
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6623 6624
                                constructing stage.
                                Default: None
6625 6626

    Returns:
Q
update  
qiaolongfei 已提交
6627 6628
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6629

6630 6631 6632
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6633
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6634 6635 6636 6637
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6638 6639 6640
    Examples:
        .. code-block:: python

6641
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6642
    """
6643 6644 6645 6646
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6647 6648
    if resample not in resample_methods:
        raise ValueError(
6649
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6650
        )
6651
    resample_type = resample_methods[resample]
6652
    if out_shape is None and scale is None:
6653
        raise ValueError("One of out_shape and scale must not be None.")
6654
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6655
    dtype = helper.input_dtype()
6656 6657 6658 6659

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6660 6661 6662
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6663
    if out_shape is not None:
6664 6665 6666 6667
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6668
            inputs['OutSize'] = out_shape
6669 6670 6671 6672 6673 6674 6675 6676
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6677 6678 6679 6680
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6681 6682 6683 6684 6685
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6686
    out = helper.create_variable_for_type_inference(dtype)
6687
    helper.append_op(
6688
        type='{}_interp'.format(resample_type),
6689
        inputs=inputs,
6690
        outputs={"Out": out},
6691 6692 6693
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6694
    return out
F
stash  
fengjiayi 已提交
6695 6696


6697
@templatedoc(op_type="bilinear_interp")
6698 6699 6700 6701 6702
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6703
    """
6704 6705
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6706 6707
    in priority order.

6708 6709 6710 6711
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6712 6713
    again in the other direction.

6714
    For details of bilinear interpolation, please refer to Wikipedia:
6715
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6716 6717 6718 6719 6720

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6721

Y
yuyang18 已提交
6722 6723 6724 6725 6726
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6727 6728 6729
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6730
                                :attr:`out_shape` and :attr:`scale` specifying
6731 6732 6733 6734 6735 6736 6737
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6738 6739
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6740 6741 6742

    Returns:
        ${out_comment}.
6743 6744 6745 6746 6747

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6748 6749
    """

6750
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6751 6752


6753
@templatedoc(op_type="nearest_interp")
6754 6755 6756 6757 6758
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6759
    """
6760
    Resize input by performing nearest neighbor interpolation in both the
6761 6762
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6763 6764
    out_shape and scale in priority order.

6765
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6766
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6767 6768 6769 6770 6771

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6772

Y
yuyang18 已提交
6773 6774 6775 6776 6777
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6778 6779 6780
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6781
                                :attr:`out_shape` and :attr:`scale` specifying
6782 6783 6784 6785 6786 6787 6788
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6789 6790
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6791 6792 6793

    Returns:
        ${out_comment}.
6794 6795 6796 6797 6798

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6799 6800
    """

6801
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6802 6803 6804 6805


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6806 6807 6808
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6809 6810 6811 6812 6813 6814 6815
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6816
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6817

6818
    Returns:
Q
update  
qiaolongfei 已提交
6819
        Variable: The output is a 4-D tensor of the shape
6820
        (num_batches, channls, out_h, out_w).
6821 6822 6823 6824 6825 6826 6827 6828 6829 6830
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6831 6832 6833
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6834 6835 6836
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6837 6838
def gather(input, index):
    """
Q
qiaolongfei 已提交
6839 6840
    **Gather Layer**

6841
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6842 6843 6844 6845
    of X indexed by `index` and concatenate them together.

    .. math::

6846
        Out = X[Index]
W
whs 已提交
6847 6848 6849 6850 6851 6852 6853


    .. code-block:: text


                Given:

6854 6855
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6866
        input (Variable): The source input with rank>=1.
W
whs 已提交
6867 6868 6869 6870 6871 6872
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6873

W
whs 已提交
6874 6875 6876 6877 6878 6879
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6880
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6881 6882 6883 6884 6885 6886 6887 6888
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6920
    out = helper.create_variable_for_type_inference(dtype)
6921 6922 6923 6924 6925 6926 6927 6928 6929
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6930 6931 6932 6933 6934 6935 6936 6937 6938
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
6939

Q
Qingsheng Li 已提交
6940
    Given the following input:
H
haowang101779990 已提交
6941

Q
Qingsheng Li 已提交
6942
    .. code-block:: text
H
haowang101779990 已提交
6943

Q
Qingsheng Li 已提交
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
6956

Q
Qingsheng Li 已提交
6957
    .. code-block:: text
H
haowang101779990 已提交
6958

Q
Qingsheng Li 已提交
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
6974
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
6975 6976 6977 6978 6979 6980 6981 6982 6983 6984

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6985
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6986 6987 6988 6989 6990 6991 6992 6993 6994
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7008

7009 7010 7011
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7012
    """
F
stash  
fengjiayi 已提交
7013
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7014
    dtype = x.dtype
X
Xin Pan 已提交
7015
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7016
    if seed is None:
7017
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7018
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7019
    if isinstance(seed, int):
F
fengjiayi 已提交
7020 7021 7022 7023 7024
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7025 7026 7027 7028
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7029
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7030 7031
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7032 7033
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7034
    return out
W
whs 已提交
7035 7036


7037
def log(x, name=None):
W
wanghaoshuang 已提交
7038 7039 7040 7041 7042
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7043
        Out = \\ln(x)
W
wanghaoshuang 已提交
7044 7045

    Args:
7046
        x (Variable): Input tensor.
7047 7048
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7049 7050 7051 7052 7053 7054 7055 7056

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7057
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7058 7059
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7060
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7061
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7062
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7063 7064 7065
    return out


7066
def relu(x, name=None):
W
wanghaoshuang 已提交
7067 7068
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7069
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7070 7071 7072 7073
    the tensor elementwise.

    .. math::

7074
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7075 7076

    Args:
7077
        x (Variable): The input tensor.
7078 7079
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7080 7081 7082 7083 7084 7085 7086 7087

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7088
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7089 7090
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7091
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7092
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7093 7094
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7095
    return out
7096 7097


C
chengduo 已提交
7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7139 7140 7141
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7142 7143 7144 7145
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7146
    .. math::
7147

H
haowang101779990 已提交
7148
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7149

7150
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7151 7152 7153 7154 7155
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7156
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7157
                           Its shape should be the same as input.
7158
        num_classes (int): The possible number of labels.
W
whs 已提交
7159 7160

    Returns:
M
minqiyang 已提交
7161 7162
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7163
                     Three variables:
M
minqiyang 已提交
7164

H
haowang101779990 已提交
7165 7166 7167
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7168 7169 7170 7171

    Examples:

        .. code-block:: python
7172

W
whs 已提交
7173 7174 7175 7176
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7177 7178 7179
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7180 7181
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7182 7183
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7184
        outputs={
W
whs 已提交
7185 7186 7187
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7188 7189 7190
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7259
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7260 7261 7262 7263 7264

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7265
            isinstance(shape, Variable)):
7266 7267 7268 7269 7270
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7271
    out = helper.create_variable_for_type_inference(x.dtype)
7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7289 7290


W
whs 已提交
7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7308

W
whs 已提交
7309
              out_shape = [2, 3, 5, 5]
7310

W
whs 已提交
7311
          Step 1:
7312

W
whs 已提交
7313 7314 7315
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7316

W
whs 已提交
7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7362
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7363
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7376

W
whs 已提交
7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7388
            isinstance(out_shape, Variable)):
W
whs 已提交
7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7410 7411
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7412

7413 7414
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7415
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7416 7417 7418
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7419

7420 7421
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7422

H
haowang101779990 已提交
7423 7424
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7425 7426
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7427

H
haowang101779990 已提交
7428 7429 7430 7431 7432 7433 7434 7435
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7436 7437 7438

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7473
    out = helper.create_variable_for_type_inference("float32")
7474 7475 7476 7477 7478 7479 7480 7481

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7482 7483


M
minqiyang 已提交
7484 7485
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7486
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7487
    which compares left score and right score passed in.
M
minqiyang 已提交
7488
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7489 7490 7491

    .. math::

H
haowang101779990 已提交
7492
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7493 7494

    Args:
M
minqiyang 已提交
7495
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7496 7497
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7498
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7499 7500
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
7501

M
minqiyang 已提交
7502
    Returns:
M
minqiyang 已提交
7503
       Variable: The ranking loss.
H
haowang101779990 已提交
7504

M
minqiyang 已提交
7505
    Raises:
M
minqiyang 已提交
7506
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
7507

M
minqiyang 已提交
7508
    Examples:
H
haowang101779990 已提交
7509

M
minqiyang 已提交
7510
        .. code-block:: python
H
haowang101779990 已提交
7511

M
minqiyang 已提交
7512 7513 7514 7515 7516
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7517
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7518 7519 7520 7521 7522 7523
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7524 7525
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7549
        .. code-block:: text
W
whs 已提交
7550

T
Tink_Y 已提交
7551
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7552

T
Tink_Y 已提交
7553 7554
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7555

T
Tink_Y 已提交
7556
	      Case 0:
M
minqiyang 已提交
7557

T
Tink_Y 已提交
7558 7559 7560
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7561

T
Tink_Y 已提交
7562 7563 7564
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7565

T
Tink_Y 已提交
7566
	      Case 1:
M
minqiyang 已提交
7567

T
Tink_Y 已提交
7568 7569
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7570

T
Tink_Y 已提交
7571 7572 7573
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7574

T
Tink_Y 已提交
7575
	      Case 2:
M
minqiyang 已提交
7576

T
Tink_Y 已提交
7577 7578
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7579

T
Tink_Y 已提交
7580 7581 7582
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7583 7584


W
whs 已提交
7585 7586
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7587
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7611
    out = helper.create_variable_for_type_inference(dtype)
7612 7613 7614 7615 7616 7617 7618 7619 7620
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7621
    helper.append_op(
7622
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7623 7624 7625 7626

    return out


7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7639 7640 7641 7642 7643

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7644 7645
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7646 7647
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7648
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7669 7670 7671 7672 7673

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7674 7675
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7676 7677
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7678
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7699 7700 7701 7702 7703

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7704 7705
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7706 7707
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7708
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7730 7731 7732 7733 7734

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7735
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7736
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7737 7738
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7739
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7762 7763 7764 7765 7766

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7767 7768
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7769 7770
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7771
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7793 7794 7795 7796 7797

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7798 7799
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7800 7801
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7802
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7803 7804 7805 7806 7807 7808 7809 7810
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7811 7812 7813 7814
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
7815 7816
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
7817 7818 7819

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7820
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7821
          weight (alpha).
J
jerrywgz 已提交
7822
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7823 7824 7825
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7826
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7827
          will be named automatically.
J
jerrywgz 已提交
7828 7829 7830 7831 7832 7833 7834 7835

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7836
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7850
        attr=helper.param_attr,
J
jerrywgz 已提交
7851 7852 7853 7854
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7855
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7856 7857 7858 7859 7860 7861 7862 7863 7864
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7865 7866 7867 7868 7869 7870 7871 7872 7873 7874
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7875
    Returns:
7876
        output(${out_type}): ${out_comment}
7877 7878 7879

    Examples:

7880
    .. code-block:: python
7881

H
haowang101779990 已提交
7882 7883
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7884 7885
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7886
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7905
    Returns:
7906
        output(${out_type}): ${out_comment}
7907 7908 7909 7910 7911

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
7912 7913
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
7914 7915
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7916
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7934
    Returns:
7935
        output(${out_type}): ${out_comment}
7936 7937 7938 7939 7940

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
7941 7942
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
7943 7944
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7945
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7946 7947 7948 7949 7950 7951 7952 7953
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7954 7955 7956 7957
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
7958

H
haowang101779990 已提交
7959
    For Example:
M
minqiyang 已提交
7960

H
haowang101779990 已提交
7961
    .. code-block:: text
7962

H
haowang101779990 已提交
7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
7984 7985 7986

    Args:
        x (Variable): A tensor of rank >= axis.
7987 7988
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7989 7990 7991 7992 7993 7994 7995 7996
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
7997 7998 7999
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8000 8001 8002 8003
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8004
        ValueError: If axis is not in range [0, rank(x)].
8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8021 8022
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8023
    helper.append_op(
8024
        type='flatten2',
8025
        inputs={"X": x},
8026 8027
        outputs={'Out': out,
                 'XShape': x_shape},
8028 8029
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8030 8031


C
chenweihang 已提交
8032
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8033
    """
C
chenweihang 已提交
8034
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8035
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8036 8037
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8038

H
haowang101779990 已提交
8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8056 8057

    Args:
C
chenweihang 已提交
8058 8059 8060
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8072 8073
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8074 8075 8076 8077 8078 8079
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8080
    return out
8081

8082

S
sneaxiy 已提交
8083 8084 8085 8086 8087 8088 8089 8090 8091
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8092

S
sneaxiy 已提交
8093
    .. math::
8094

S
sneaxiy 已提交
8095 8096 8097
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8098
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8099 8100 8101 8102
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8103 8104 8105
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8106 8107
    Returns:
        Variable: The output sequence mask.
8108

S
sneaxiy 已提交
8109 8110
    """

Q
qingqing01 已提交
8111
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8112
    if name is None:
X
Xin Pan 已提交
8113
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8114
    else:
X
Xin Pan 已提交
8115
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8116

Q
qingqing01 已提交
8117 8118 8119
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8120 8121
        outputs={'Y': out},
        attrs={
8122
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8123 8124 8125
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8126 8127


X
Xin Pan 已提交
8128
def stack(x, axis=0):
S
sneaxiy 已提交
8129 8130 8131 8132
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8133 8134 8135 8136 8137 8138 8139

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8140
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8141
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8142 8143

    Args:
8144
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8145
        axis (int|None): The axis along which all inputs are stacked.
8146

S
sneaxiy 已提交
8147 8148
    Returns:
        Variable: The stacked variable.
8149

S
sneaxiy 已提交
8150 8151
    """

X
Xin Pan 已提交
8152 8153 8154 8155 8156 8157
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8158
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8159
    helper.append_op(
S
sneaxiy 已提交
8160 8161
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8162

X
Xin Pan 已提交
8163
    return out
D
dzhwinter 已提交
8164 8165 8166 8167 8168 8169 8170


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8171

D
dzhwinter 已提交
8172 8173 8174
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8175
    raised.
D
dzhwinter 已提交
8176 8177

    Args:
M
minqiyang 已提交
8178
        x (Variable): Input variable.
D
dzhwinter 已提交
8179 8180
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8181

D
dzhwinter 已提交
8182 8183
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8184

D
dzhwinter 已提交
8185 8186 8187 8188 8189 8190 8191 8192 8193 8194
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8195
    for _ in range(num):
X
Xin Pan 已提交
8196
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8197 8198 8199 8200 8201 8202 8203 8204

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8217

W
whs 已提交
8218 8219 8220 8221
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8222

W
whs 已提交
8223
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8224

W
whs 已提交
8225
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8226

W
whs 已提交
8227 8228 8229 8230
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8231

W
whs 已提交
8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8248
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8249 8250 8251 8252 8253 8254
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8255 8256


G
fix  
gongweibao 已提交
8257 8258 8259
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8260
@templatedoc()
G
fix  
gongweibao 已提交
8261 8262 8263 8264 8265 8266 8267 8268 8269
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8270
    ${comment}
G
fix  
gongweibao 已提交
8271 8272

    Args:
G
gongweibao 已提交
8273 8274 8275
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8276
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8277 8278 8279
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8280 8281
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8282
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8283

8284 8285 8286 8287 8288
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8289 8290 8291
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8292
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8309 8310


G
gongweibao 已提交
8311
@templatedoc()
X
Xin Pan 已提交
8312
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8313
    """
G
gongweibao 已提交
8314
    ${comment}
G
fix  
gongweibao 已提交
8315 8316

    Args:
G
gongweibao 已提交
8317 8318 8319 8320
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8321 8322 8323
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8324
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8325

8326 8327 8328 8329
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8330 8331 8332
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8333
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8334 8335 8336 8337 8338 8339 8340 8341 8342 8343
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8344
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8345 8346 8347 8348 8349
        })

    return out


G
gongweibao 已提交
8350
@templatedoc()
G
fix  
gongweibao 已提交
8351
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8352
    """
G
gongweibao 已提交
8353
    ${comment}
G
fix  
gongweibao 已提交
8354 8355

    Args:
G
gongweibao 已提交
8356 8357 8358 8359
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8360
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8361 8362

    Returns:
G
gongweibao 已提交
8363
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8364

8365 8366 8367 8368 8369 8370 8371 8372 8373 8374
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8375 8376 8377
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8378
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8390
@templatedoc()
G
fix  
gongweibao 已提交
8391 8392 8393 8394 8395 8396 8397 8398 8399
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8400
    ${comment}
G
fix  
gongweibao 已提交
8401 8402

    Args:
G
gongweibao 已提交
8403 8404
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8405
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8406 8407 8408 8409
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8410
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8411 8412

    Returns:
G
gongweibao 已提交
8413
        out (Variable): ${out_comment}
8414 8415 8416 8417 8418 8419 8420 8421

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8422 8423 8424
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8425
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8444
@templatedoc()
X
Xin Pan 已提交
8445
def sum(x):
G
fix  
gongweibao 已提交
8446
    """
G
gongweibao 已提交
8447
    ${comment}
G
fix  
gongweibao 已提交
8448 8449

    Args:
G
gongweibao 已提交
8450
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8451 8452

    Returns:
G
gongweibao 已提交
8453
        out (Variable): ${out_comment}
8454 8455 8456 8457 8458 8459

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8460 8461 8462
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8463 8464
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8465 8466 8467 8468
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8469
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8470 8471 8472 8473

    return out


G
gongweibao 已提交
8474
@templatedoc()
G
fix  
gongweibao 已提交
8475 8476
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8477
    ${comment}
G
fix  
gongweibao 已提交
8478 8479

    Args:
G
gongweibao 已提交
8480 8481 8482 8483
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8484 8485

    Returns:
G
gongweibao 已提交
8486
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8487

8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8499 8500 8501
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8502 8503
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8515
@templatedoc()
G
fix  
gongweibao 已提交
8516 8517
def shape(input):
    """
G
gongweibao 已提交
8518
    ${comment}
G
fix  
gongweibao 已提交
8519 8520

    Args:
G
gongweibao 已提交
8521
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8522 8523

    Returns:
G
gongweibao 已提交
8524
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8525

8526 8527 8528 8529 8530 8531
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8532 8533 8534
    """

    helper = LayerHelper('shape', **locals())
8535
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
8536
    helper.append_op(
G
fix  
gongweibao 已提交
8537
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8538 8539

    return out
G
merge  
gongweibao 已提交
8540 8541


S
sneaxiy 已提交
8542 8543 8544 8545 8546 8547 8548 8549
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8550 8551
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8552
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8553 8554 8555
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8556

S
sneaxiy 已提交
8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8568
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8569 8570 8571 8572 8573 8574 8575 8576
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8577
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8578
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8579 8580 8581 8582 8583 8584

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8585
    if name is None:
X
Xin Pan 已提交
8586
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8587 8588 8589
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8590 8591 8592 8593 8594 8595 8596 8597 8598 8599

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8600
    return helper.append_activation(out)
S
sneaxiy 已提交
8601 8602


X
Xin Pan 已提交
8603
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8604 8605 8606
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8607
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8608 8609 8610
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8611
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8612 8613 8614
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8615
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8616 8617 8618
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8619
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8620 8621 8622
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8623
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8624 8625 8626
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8627
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8639 8640
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8641
        ])
M
minqiyang 已提交
8642 8643


8644
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8645 8646
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8647 8648
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8649 8650 8651

    if out is None:
        if name is None:
X
Xin Pan 已提交
8652
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8668
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8680 8681 8682 8683 8684 8685 8686 8687 8688

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8689 8690 8691 8692 8693 8694 8695
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8696
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8708 8709 8710 8711 8712 8713 8714 8715 8716

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8717 8718 8719 8720 8721 8722 8723
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8724
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8736 8737 8738 8739 8740 8741 8742 8743 8744

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8745 8746 8747 8748 8749 8750 8751
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8752
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8753 8754 8755 8756 8757 8758 8759 8760 8761 8762
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8763 8764 8765 8766 8767 8768 8769

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8770 8771 8772 8773
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8789 8790 8791 8792 8793 8794 8795

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8796 8797 8798 8799 8800
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8801 8802 8803 8804
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8828 8829 8830 8831 8832 8833 8834

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8835 8836 8837 8838 8839
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8840 8841 8842 8843
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8844 8845 8846 8847 8848 8849 8850 8851

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8870
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8871 8872 8873 8874 8875 8876 8877 8878 8879 8880
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8923
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8924 8925 8926 8927 8928 8929 8930 8931 8932
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8933 8934
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8935 8936 8937 8938 8939 8940
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8941 8942 8943
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
8944 8945
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
8946 8947 8948 8949 8950 8951
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8952
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8953
        name(basestring|None): Name of the output.
8954 8955
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
8956 8957 8958

    Returns:
        out(${out_type}): ${out_comment}
8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
8973 8974 8975 8976 8977
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8978
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8979 8980 8981 8982 8983 8984 8985 8986
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8987 8988
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9009
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9010 9011 9012 9013 9014 9015 9016 9017 9018 9019
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9020 9021


J
JiabinYang 已提交
9022
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9023
    """
J
JiabinYang 已提交
9024
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9025 9026 9027

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9028
    The attr blocksize indicates the input block size.
9029 9030

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9031
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9032 9033

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9034
    (but keeping all data)
J
JiabinYang 已提交
9035

J
JiabinYang 已提交
9036
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9037
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9038 9039 9040 9041 9042
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9043
    Args:
J
JiabinYang 已提交
9044
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9045
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9046 9047

    Returns:
J
JiabinYang 已提交
9048
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9049 9050

    Raises:
J
JiabinYang 已提交
9051
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9052 9053 9054 9055 9056 9057

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9058
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9059
                x=data, blocksize=2)
J
JiabinYang 已提交
9060 9061
    """

J
JiabinYang 已提交
9062
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9063

J
JiabinYang 已提交
9064 9065
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9066 9067

    if name is None:
J
JiabinYang 已提交
9068 9069
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9070 9071 9072 9073 9074
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9075
        type="space_to_depth",
J
JiabinYang 已提交
9076
        inputs={"X": x},
J
JiabinYang 已提交
9077
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9078
        outputs={"Out": out})
J
JiabinYang 已提交
9079 9080
    return out

J
JiabinYang 已提交
9081

S
sneaxiy 已提交
9082 9083
@templatedoc()
def sequence_reverse(x, name=None):
9084
    """
S
sneaxiy 已提交
9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9096
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9097 9098 9099 9100 9101 9102 9103 9104 9105 9106
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9107 9108


9109 9110 9111 9112 9113 9114
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9115

9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9135
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9148 9149


B
barrierye 已提交
9150
def similarity_focus(input, axis, indexes, name=None):
9151
    """
B
barrierye 已提交
9152
    SimilarityFocus Operator
B
barrierye 已提交
9153 9154

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9155

9156 9157 9158
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9159
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9160 9161 9162 9163 9164 9165 9166
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9167
       each index.
B
barrierye 已提交
9168 9169 9170 9171
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9221
    Args:
9222
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9223
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9224
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9225
            1, 2 or 3.
B
barrierye 已提交
9226
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9227 9228

    Returns:
H
haowang101779990 已提交
9229 9230
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9231

B
barrierye 已提交
9232 9233
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9234

B
barrierye 已提交
9235
            data = fluid.layers.data(
B
barrierye 已提交
9236 9237
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9238

B
barrierye 已提交
9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9251 9252 9253 9254 9255
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9256 9257 9258 9259 9260 9261 9262
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9263 9264


M
minqiyang 已提交
9265 9266
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9267 9268
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9269 9270
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9309
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9310
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9311 9312 9313 9314 9315 9316

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9317

M
minqiyang 已提交
9318 9319 9320
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9321 9322
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9323 9324
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9325 9326 9327 9328 9329 9330 9331
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9332 9333


D
dengkaipeng 已提交
9334
@templatedoc()
9335 9336
def grid_sampler(x, grid, name=None):
    """
9337
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9338
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9339 9340 9341 9342
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9343
    interpolation value of 4 nearest corner points.
9344

H
haowang101779990 已提交
9345
    .. code-block:: text
9346

H
haowang101779990 已提交
9347 9348
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9349

H
haowang101779990 已提交
9350 9351
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9352

H
haowang101779990 已提交
9353 9354 9355
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9356

H
haowang101779990 已提交
9357 9358 9359 9360 9361 9362 9363 9364 9365
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9366

H
haowang101779990 已提交
9367 9368 9369 9370
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9371

H
haowang101779990 已提交
9372 9373 9374 9375
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9376

H
haowang101779990 已提交
9377 9378 9379 9380
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9381

H
haowang101779990 已提交
9382 9383
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9384 9385

    Args:
9386 9387 9388
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9389 9390

    Returns:
H
haowang101779990 已提交
9391
        Variable: Output of shape [N, C, H, W] data samples input X
9392 9393
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9394 9395 9396 9397 9398 9399 9400 9401
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9402

D
dengkaipeng 已提交
9403 9404 9405 9406 9407 9408 9409 9410 9411
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9412
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9413 9414
    ipts = {'X': x, 'Grid': grid}

9415
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9416 9417 9418
    return out


G
gmcather 已提交
9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
9485
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
9507 9508 9509 9510
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
9511
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
9512 9513
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
9514
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
9515 9516

    .. math::
H
haowang101779990 已提交
9517 9518 9519
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
9520 9521

    Where:
H
haowang101779990 已提交
9522 9523
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
9538

G
gmcather 已提交
9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9555 9556 9557 9558 9559 9560 9561 9562 9563 9564


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9565
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9566

Q
Qiao Longfei 已提交
9567
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9568 9569 9570
    For example:

    .. math::
H
haowang101779990 已提交
9571
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9572

Q
Qiao Longfei 已提交
9573
    In this formula:
9574 9575
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9576
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
9577
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9578 9579 9580
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9581 9582
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9583 9584 9585
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9586
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9587
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9588
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9589 9590 9591 9592
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9593
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9594 9595 9596 9597

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9598
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9599 9600
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9601
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9602 9603 9604 9605

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9606
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9647 9648


S
sneaxiy 已提交
9649
class PyFuncRegistry(object):
S
sneaxiy 已提交
9650 9651 9652
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
9653
        if func is None or not callable(func):
S
sneaxiy 已提交
9654 9655 9656
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
9657
        # find named args using reflection
S
sneaxiy 已提交
9658 9659 9660 9661 9662 9663 9664
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
9665 9666 9667
        '''
        Why record self here?

M
minqiyang 已提交
9668 9669
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
9670
           to find the registered function corresponding
M
minqiyang 已提交
9671
           to :code:`idx`.
S
sneaxiy 已提交
9672

M
minqiyang 已提交
9673 9674
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
9675
           whose reference count is 1 would cause
M
minqiyang 已提交
9676
           segmentation fault error in C++ side.
S
sneaxiy 已提交
9677 9678
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
9679
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
9694 9695 9696 9697 9698 9699 9700 9701 9702
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
9703

S
sneaxiy 已提交
9704 9705
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
9706 9707

        ret = []
S
sneaxiy 已提交
9708 9709 9710
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
9711 9712
                continue

S
sneaxiy 已提交
9713 9714
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
9715

S
sneaxiy 已提交
9716 9717 9718
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
9719

S
sneaxiy 已提交
9720
        return tuple(ret)
S
sneaxiy 已提交
9721 9722


S
sneaxiy 已提交
9723 9724 9725 9726
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
9727

S
sneaxiy 已提交
9728 9729 9730 9731 9732 9733 9734 9735
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
9736
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
9737

S
sneaxiy 已提交
9738 9739
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
9740 9741 9742 9743
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
9744
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
9745
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
9746 9747
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
9748 9749 9750 9751 9752
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
9753
            should create :code:`out` beforehand.
S
sneaxiy 已提交
9754
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
9755
                                       None means no backward. Default None.
S
sneaxiy 已提交
9756
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
9757
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
9758 9759
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
9760
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
9761 9762 9763

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
9764 9765

    Examples:
M
minqiyang 已提交
9766

S
sneaxiy 已提交
9767 9768 9769 9770 9771
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
9772
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
9773 9774
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
9775
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
9776 9777 9778
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
9779
        >>>
S
sneaxiy 已提交
9780 9781 9782 9783 9784
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
9785
        >>>     print(x)
S
sneaxiy 已提交
9786 9787 9788 9789 9790 9791
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
9792
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
9793 9794
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
9795 9796
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
9797 9798 9799 9800 9801 9802 9803 9804
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
9805
    """
S
sneaxiy 已提交
9806
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
9807 9808 9809
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
9810
        x = [x]
S
sneaxiy 已提交
9811 9812
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9813

S
sneaxiy 已提交
9814 9815 9816
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
9817
        out_list = [out]
S
sneaxiy 已提交
9818
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
9819
        out_list = out
S
sneaxiy 已提交
9820 9821 9822
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9823

S
sneaxiy 已提交
9824 9825
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
9826
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
9827 9828

    for each_out in out_list:
S
sneaxiy 已提交
9829 9830
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
9831 9832
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
9833

S
sneaxiy 已提交
9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
9849 9850 9851 9852

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
9853 9854
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
9855 9856 9857
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
9858
        })
S
sneaxiy 已提交
9859
    return out
S
sneaxiy 已提交
9860 9861 9862


# For debug usage
S
sneaxiy 已提交
9863 9864 9865 9866
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
9919

M
minqiyang 已提交
9920

M
minqiyang 已提交
9921
def huber_loss(input, label, delta):
9922
    """
M
minqiyang 已提交
9923 9924 9925
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
9926 9927 9928 9929

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
9930
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
9931 9932 9933 9934

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
9935
        huber\_loss = 0.5 * (label - input) * (label - input)
9936 9937 9938 9939 9940 9941 9942


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
9943
        delta (float): The parameter of huber loss, which controls
9944 9945 9946
                       the range of outliers

    Returns:
M
minqiyang 已提交
9947
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
9948 9949 9950 9951 9952

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
9953
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
9954
    """
M
minqiyang 已提交
9955
    helper = LayerHelper('huber_loss', **locals())
9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)