framework.py 239.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
43
from paddle import _C_ops
Y
Yu Yang 已提交
44

45
__all__ = [
46 47 48 49
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
50
    'name_scope',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
54
    'mlu_places',
S
sneaxiy 已提交
55
    'cuda_pinned_places',
L
lujun 已提交
56
    'in_dygraph_mode',
57
    'is_compiled_with_cinn',
C
chengduo 已提交
58
    'is_compiled_with_cuda',
59
    'is_compiled_with_rocm',
60
    'is_compiled_with_xpu',
61
    'is_compiled_with_npu',
62
    'Variable',
63
    'require_version',
64
    'device_guard',
G
guofei 已提交
65 66
    'set_flags',
    'get_flags',
67
]
Y
Yu Yang 已提交
68

Q
qiaolongfei 已提交
69 70 71 72
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
73 74
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
75
_dygraph_tracer_ = None
76
_global_expected_place_ = None
77
_current_device = None
78
global_prog_seed = 0
79
_current_pipeline_stage = None
80
_already_patch_eager_tensor = False
81
_global_flags_ = core.globals()
J
Jiabin Yang 已提交
82
core._disable_eager_mode()
83 84 85


@signature_safe_contextmanager
86
def _test_eager_guard(tracer=None):
J
Jiabin Yang 已提交
87
    core._enable_eager_mode()
88
    _C_ops.switch_to_eager_ops()
89 90 91 92
    global _already_patch_eager_tensor
    if not _already_patch_eager_tensor:
        from .dygraph.varbase_patch_methods import monkey_patch_varbase
        monkey_patch_varbase()
93 94
        from .dygraph import monkey_patch_math_varbase
        monkey_patch_math_varbase()
95
        _already_patch_eager_tensor = True
96 97 98 99
    if tracer is None:
        core._set_eager_tracer(_dygraph_tracer_)
    else:
        core._set_eager_tracer(tracer)
100
    try:
J
Jiabin Yang 已提交
101
        yield
102
    finally:
J
Jiabin Yang 已提交
103
        core._disable_eager_mode()
104
        _C_ops.switch_to_core_ops()
105 106


107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
214
def in_dygraph_mode():
L
lujun 已提交
215
    """
216

217 218 219 220 221 222 223
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
224 225

    Returns:
226
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
227 228 229 230

    Examples:
        .. code-block:: python

231 232 233 234 235 236 237 238
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
239 240

    """
L
lujun 已提交
241
    return _dygraph_tracer_ is not None
242 243


J
Jiabin Yang 已提交
244 245 246 247
def _in_eager_mode():
    return core._in_eager_mode() and in_dygraph_mode()


248 249 250
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
251
        ), "We don't support %s in imperative mode" % func.__name__
252 253 254 255 256 257 258 259
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
260 261 262 263 264 265 266 267 268
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
269
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
270 271 272 273 274
        return func(*args, **kwargs)

    return __impl__


275 276 277 278 279
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


280 281 282 283 284 285
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
286
# same base class.
287 288 289
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
290 291 292 293 294
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
295 296 297 298

    return __impl__


T
tangwei12 已提交
299 300
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


318 319
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
320
static_only = wrap_decorator(_static_only_)
321
fake_interface_only = wrap_decorator(_fake_interface_only_)
322 323


L
lujun 已提交
324 325
def _dygraph_tracer():
    return _dygraph_tracer_
326

W
Wu Yi 已提交
327

328 329 330 331
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
332
def _current_expected_place():
333 334 335
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
336 337 338 339 340 341 342 343 344 345 346
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
347 348 349 350 351 352 353 354 355 356 357 358
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
359 360 361 362 363 364 365 366 367 368 369 370
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.MLUPlace(0)
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
386
    if _in_eager_mode():
387
        return core.eager._set_expected_place(place)
J
Jiabin Yang 已提交
388
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
389 390


L
Leo Chen 已提交
391 392 393 394
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
395

L
Leo Chen 已提交
396 397 398 399 400 401 402 403 404 405 406 407
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
408
def _cpu_num():
409
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
410 411 412 413 414 415 416 417
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
418
        os.environ['CPU_NUM'] = str(1)
419
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
420 421 422 423 424 425 426 427 428 429
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
430 431


432 433 434 435 436 437 438 439 440
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


441 442 443 444 445 446 447 448 449
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


450 451 452 453 454 455 456 457 458
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
529 530 531 532
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

533
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
534 535 536 537

    Examples:
        .. code-block:: python

538
            import paddle
539
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
540 541 542 543
    """
    return core.is_compiled_with_cuda()


544 545 546 547 548 549 550 551 552 553
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
554
            support_gpu = paddle.device.is_compiled_with_rocm()
555 556 557 558
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
559
def cuda_places(device_ids=None):
L
lujun 已提交
560
    """
561 562 563 564
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
565
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
566 567

    If :code:`device_ids` is None, environment variable of
568
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
569
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
570
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
571
    If :code:`FLAGS_selected_gpus` is not set, all visible
572
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
573 574

    If :code:`device_ids` is not None, it should be the device
575
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
576
    the returned list would be 
C
Chen Weihang 已提交
577
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
578

579
    Parameters:
580
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
581 582

    Returns:
C
Chen Weihang 已提交
583
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
584 585 586 587

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
588 589
            import paddle
            import paddle.static as static
T
tangwei12 已提交
590

591 592
            # required: gpu
            
C
Chen Weihang 已提交
593 594 595
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
596 597

    """
S
sneaxiy 已提交
598 599 600
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
601
        device_ids = _cuda_ids()
S
sneaxiy 已提交
602 603 604 605 606
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


607 608 609 610
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
611 612 613 614 615 616 617 618 619 620 621
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
622 623 624 625 626 627 628
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
629

630 631
            # required: xpu

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
688
def cpu_places(device_count=None):
L
lujun 已提交
689
    """
C
Chen Weihang 已提交
690
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
691

S
add doc  
sneaxiy 已提交
692 693
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
694 695
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
696 697
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
698

699 700
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
701 702

    Returns:
C
Chen Weihang 已提交
703
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
704 705 706 707

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
708 709
            import paddle
            import paddle.static as static
T
tangwei12 已提交
710

C
Chen Weihang 已提交
711 712 713
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
714 715
    """

S
sneaxiy 已提交
716 717 718 719 720 721
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
722
    """
723
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
724 725 726

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
727 728 729 730
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
731

732 733
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
734 735

    Returns:
736
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
737 738 739 740

    Examples:
        .. code-block:: python

741
            import paddle.fluid as fluid
L
lujun 已提交
742 743 744 745 746
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
747 748 749
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
750 751
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
752 753


754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
822
@signature_safe_contextmanager
823 824
def name_scope(prefix=None):
    """
825 826
    :api_attr: Static Graph

827
    Generate hierarchical name prefix for the operators in Static Graph.
828

T
Tao Luo 已提交
829 830 831
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
832
        Don't use it in dygraph, since it will cause memory leak.
833 834

    Args:
T
Tao Luo 已提交
835
        prefix(str, optional): prefix. Default is none.
836 837 838

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
839

840 841 842
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
843
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
844
             b = a + 1
845
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
846
                c = b * 1
847
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
848
                d = c / 1
849 850 851
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
852 853 854
                g = f - 1

          # Op are created in the default main program.  
855
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
871 872
    """
    # TODO(panyx0718): Only [0-9a-z].
873
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
874 875 876
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
877
        assert prefix, "namescope prefix can not be empty."
878 879
        global _name_scope
        _name_scope = _name_scope.child(prefix)
880 881 882 883
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
884 885 886 887 888 889 890 891 892 893 894 895


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
896 897 898
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
899 900 901 902


def grad_var_name(var_name):
    """
903 904
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
905 906 907
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
908

909
def convert_np_dtype_to_dtype_(np_dtype):
910 911
    """
    Convert the data type in numpy to the data type in Paddle
912

913
    Args:
914
        np_dtype(np.dtype): the data type in numpy.
915

916 917
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
918 919

    """
920 921
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
922
        return core.VarDesc.VarType.FP32
923
    elif dtype == np.float64:
924
        return core.VarDesc.VarType.FP64
925
    elif dtype == np.float16:
926
        return core.VarDesc.VarType.FP16
927
    elif dtype == np.int32:
928
        return core.VarDesc.VarType.INT32
929
    elif dtype == np.int16:
930
        return core.VarDesc.VarType.INT16
931
    elif dtype == np.int64:
932
        return core.VarDesc.VarType.INT64
933
    elif dtype == np.bool:
934
        return core.VarDesc.VarType.BOOL
935
    elif dtype == np.uint16:
936 937 938
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
939 940
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
941 942
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
943 944 945 946
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
947
    else:
M
minqiyang 已提交
948
        raise ValueError("Not supported numpy dtype %s" % dtype)
949 950 951


def dtype_is_floating(dtype):
952 953 954
    """
    Check the data type is floating or not.
    Args:
955
        dtype(np.dtype|core.VarDesc.VarType): data type.
956 957 958 959 960
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
961
    if not isinstance(dtype, core.VarDesc.VarType):
962 963
        dtype = convert_np_dtype_to_dtype_(dtype)

964 965 966 967
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
968 969


Y
Yang Yang(Tony) 已提交
970
def _debug_string_(proto, throw_on_error=True):
971 972 973 974 975 976 977 978 979 980 981
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
982
    error_fields = list()
Y
Yang Yang(Tony) 已提交
983
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
984 985
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
986 987 988
    return proto.__str__()


989 990 991 992 993 994 995 996 997 998
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

999 1000 1001 1002 1003 1004 1005 1006
    if _in_eager_mode():
        eager_tensor = core.eager.EagerTensor(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [], name, type
            if type else core.VarDesc.VarType.LOD_TENSOR, True
            if persistable else False)
        eager_tensor.retain_grads()
        return eager_tensor
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
1018 1019
            if _in_eager_mode():
                return issubclass(t, core.eager.EagerTensor)
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
1030 1031
            if _in_eager_mode():
                return issubclass(t, EagerParamBase)
1032 1033 1034 1035 1036 1037
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1038
class Variable(object):
1039
    """
J
Jiabin Yang 已提交
1040
    **Notes**:
1041
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1042

1043 1044
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1045 1046 1047
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1048
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1049 1050
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1051

1052
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1053
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1054

T
tianshuo78520a 已提交
1055
    Most of a Variable's member variables can be set to be None. It mean
1056
    it is not available or will be specified later.
1057

1058
    Examples:
1059 1060
        In Static Graph Mode:

1061 1062
        .. code-block:: python

1063
            import paddle.fluid as fluid
1064
            cur_program = fluid.Program()
1065 1066 1067 1068
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1069

J
Jiabin Yang 已提交
1070
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1071 1072 1073 1074 1075 1076 1077 1078 1079

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1080 1081
    """

Y
Yu Yang 已提交
1082 1083
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1084
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1085 1086 1087 1088
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1089
                 capacity=None,
Q
QI JUN 已提交
1090
                 persistable=None,
F
fengjiayi 已提交
1091
                 error_clip=None,
Y
Yu Yang 已提交
1092
                 stop_gradient=False,
F
fengjiayi 已提交
1093
                 is_data=False,
H
Huihuang Zheng 已提交
1094
                 need_check_feed=False,
H
hong 已提交
1095
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1096
                 **kwargs):
Y
Yu Yang 已提交
1097 1098
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1099
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1100

Y
Yu Yang 已提交
1101
        if dtype is not None:
1102
            if not isinstance(dtype, core.VarDesc.VarType):
1103
                dtype = convert_np_dtype_to_dtype_(dtype)
1104

S
Steffy-zxf 已提交
1105 1106 1107 1108
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1109 1110
        self.belong_to_optimizer = belong_to_optimizer

1111 1112 1113 1114 1115
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1116

1117 1118 1119
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1120

1121 1122 1123
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1124 1125
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1126 1127
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1128

1129
        if shape is not None:
1130
            if is_new_var:
1131 1132 1133 1134 1135 1136
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1137 1138
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1139 1140 1141 1142 1143 1144 1145
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1146 1147
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1148 1149 1150 1151 1152 1153 1154 1155 1156
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1157 1158
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1159 1160 1161 1162 1163 1164 1165 1166 1167
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1168 1169
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1170 1171
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1172

1173 1174
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1175

1176 1177 1178 1179 1180 1181 1182
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1183

1184 1185
        self.block.vars[name] = self
        self.op = None
1186
        self.stop_gradient = stop_gradient
1187
        self.is_data = is_data
Y
Yu Yang 已提交
1188

1189 1190 1191
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1192 1193
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1194

1195
        Returns:
J
Jiabin Yang 已提交
1196
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1197 1198 1199 1200

        Examples:
            .. code-block:: python

1201
                import paddle
1202

1203 1204 1205 1206
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1207

1208 1209
                # create a detached Variable
                y = x.detach()
1210
        """
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1226

1227
    @fake_interface_only
1228
    def numpy(self):
1229
        """
J
Jiabin Yang 已提交
1230
        **Notes**:
T
tianshuo78520a 已提交
1231
            **This API is ONLY available in Dygraph mode**
1232

J
Jiabin Yang 已提交
1233
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1234 1235 1236 1237 1238

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1239
            ndarray: dtype is same as current Variable
1240 1241 1242 1243 1244 1245

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1246
                from paddle.fluid.dygraph import Linear
1247 1248 1249 1250
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1251
                    linear = Linear(32, 64)
1252
                    data = to_variable(data)
1253
                    x = linear(data)
1254 1255 1256
                    print(x.numpy())

        """
1257
        pass
1258

1259
    @fake_interface_only
1260
    def backward(self, retain_graph=False):
1261
        """
J
Jiabin Yang 已提交
1262
        **Notes**:
T
tianshuo78520a 已提交
1263
            **This API is ONLY available in Dygraph mode**
1264

1265
        Run backward of current Graph which starts from current Tensor.
1266

J
Jiabin Yang 已提交
1267
        Args:
1268 1269 1270 1271
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1272

J
Jiabin Yang 已提交
1273 1274
        Returns:
            NoneType: None
1275 1276 1277 1278 1279

        Examples:
            .. code-block:: python

                import numpy as np
1280 1281
                import paddle
                paddle.disable_static()
1282 1283

                x = np.ones([2, 2], np.float32)
1284 1285 1286 1287 1288 1289 1290
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1291 1292
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1293
                loss.backward()
1294 1295

        """
1296
        pass
1297

1298
    @fake_interface_only
1299
    def gradient(self):
1300
        """
J
Jiabin Yang 已提交
1301
        **Notes**:
T
tianshuo78520a 已提交
1302
            **This API is ONLY available in Dygraph mode**
1303 1304 1305

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1306
        Returns:
1307
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1308 1309 1310 1311 1312 1313 1314

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1315
                # example1: return ndarray
1316 1317 1318 1319 1320 1321 1322 1323 1324
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1325
                    loss2.backward()
1326 1327
                    print(loss2.gradient())

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1341
        """
1342
        pass
1343

1344
    @fake_interface_only
1345
    def clear_gradient(self):
1346
        """
J
Jiabin Yang 已提交
1347
        **Notes**:
T
tianshuo78520a 已提交
1348
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1349 1350

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1351

J
Jiabin Yang 已提交
1352
        Clear  (set to ``0`` ) the Gradient of Current Variable
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1371
                    loss2.backward()
1372 1373 1374 1375 1376
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1377
        pass
X
Xin Pan 已提交
1378

1379 1380 1381 1382
    @fake_interface_only
    def register_hook(self, hook):
        pass

1383
    def __str__(self):
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1400 1401
                import paddle
                import paddle.static as static
1402

1403 1404 1405
                paddle.enable_static()

                cur_program = static.Program()
1406 1407 1408 1409 1410 1411
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1412 1413
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1414
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1415 1416
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1417 1418
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1419
        else:
1420 1421
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1422

1423
        if self.is_parameter:
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1434
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1435
        dist_context = get_default_distributed_context()
1436 1437
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1438
            var_str += ", {name} = {value}".format(
1439
                name="dist_attr", value=dist_tensor)
1440

1441
        return var_str
Y
Yang Yang(Tony) 已提交
1442

F
update  
fengjiayi 已提交
1443
    def to_string(self, throw_on_error, with_details=False):
1444 1445 1446
        """
        Get debug string.

J
Jiabin Yang 已提交
1447 1448 1449 1450 1451
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1452

1453 1454
        Returns:
            str: The debug string.
1455 1456 1457 1458 1459

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1460
                import paddle
1461

1462
                paddle.enable_static()
1463 1464 1465 1466 1467
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1468
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1469
                print("=============with detail===============")
1470
                print(new_variable.to_string(True, True))
1471
        """
F
update  
fengjiayi 已提交
1472 1473
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1474
        protostr = self.desc.serialize_to_string()
1475
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1476 1477
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1478
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1479
            for attr_name in additional_attr:
1480 1481 1482
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1483
        return res_str
1484 1485 1486

    __repr__ = __str__

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1514
    @property
1515
    def stop_gradient(self):
J
Jiabin Yang 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1531 1532
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1533 1534 1535
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1536 1537
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1538 1539 1540 1541
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1542
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1543 1544
                assert (out1.gradient() == 0).all()
        """
1545
        return self.desc.stop_gradient()
1546

1547 1548
    @stop_gradient.setter
    def stop_gradient(self, s):
1549
        self.desc.set_stop_gradient(s)
1550

1551 1552
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1574
        return self.desc.persistable()
1575

Y
Yu Yang 已提交
1576 1577
    @persistable.setter
    def persistable(self, p):
1578
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1579

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1605 1606
    @property
    def name(self):
J
Jiabin Yang 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1623
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1624

1625 1626 1627 1628 1629 1630
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1631 1632
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1633

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1645 1646
    @name.setter
    def name(self, new_name):
1647
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1648

Y
Yu Yang 已提交
1649 1650
    @property
    def shape(self):
J
Jiabin Yang 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1668
        # convert to tuple, make it as same as numpy API.
1669
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1670 1671

    @property
F
fengjiayi 已提交
1672
    def dtype(self):
J
Jiabin Yang 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1689
        return self.desc.dtype()
Y
Yu Yang 已提交
1690 1691 1692

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1714 1715 1716
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1717
        return self.desc.lod_level()
Y
Yu Yang 已提交
1718

Y
Yu Yang 已提交
1719 1720
    @property
    def type(self):
J
Jiabin Yang 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1737
        return self.desc.type()
Y
Yu Yang 已提交
1738

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1822
    def _set_error_clip(self, error_clip):
1823 1824 1825 1826 1827 1828 1829 1830 1831
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1832 1833
        self.error_clip = error_clip

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1874
            raise ValueError("slice step can not be zero")
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1950
    def _cloneVar(self, copy=False):
1951 1952
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1953 1954
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1955 1956 1957 1958
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1959
        new_var = self._cloneVar()
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1970
        new_var = self._cloneVar()
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1981
                return self._cloneVar(True)
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2000
                return self._cloneVar(True)
2001
            index = int(item)
2002
            if (index > 0 and index >= self.shape[axis]) \
2003 2004 2005 2006 2007 2008 2009
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2010
        return _getitem_impl_(self, item)
2011

2012
    def __setitem__(self, item, value):
2013
        return _setitem_impl_(self, item, value)
2014

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2161 2162 2163 2164
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2165 2166 2167 2168
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2169 2170 2171 2172 2173 2174 2175
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2285

F
fengjiayi 已提交
2286 2287 2288
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2289

2290 2291
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2292 2293 2294 2295
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2296
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2297 2298 2299 2300 2301
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2302 2303 2304 2305
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2315
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2316 2317 2318 2319 2320 2321
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2322 2323 2324 2325 2326 2327 2328 2329
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2330 2331
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2332 2333
        return self.op_proto_map[type]

2334 2335
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2336
        custom_op_names = []
2337 2338 2339
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2340 2341 2342
                custom_op_names.append(proto.type)

        return custom_op_names
2343

2344 2345 2346 2347
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2348
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2349
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2350 2351
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2352 2353
        }

F
fengjiayi 已提交
2354

X
Xin Pan 已提交
2355
class Operator(object):
2356
    """
2357 2358 2359 2360 2361 2362 2363
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2364
        type(str): The type of operator. Default None.
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2385
        Block.append_op or Block._prepend_op instead.
2386 2387 2388 2389

    Examples:
        .. code-block:: python

2390
            import paddle.fluid as fluid
2391
            cur_program = fluid.Program()
2392 2393 2394 2395 2396
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2397
    """
2398
    OP_WITHOUT_KERNEL_SET = {
2399 2400
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2401
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2402 2403
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2404
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2405 2406
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2407
    }
2408

Y
Yu Yang 已提交
2409 2410
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2411
                 desc,
Y
Yu Yang 已提交
2412 2413 2414
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2415
                 attrs=None):
L
lujun 已提交
2416
        if in_dygraph_mode():
2417 2418
            if type is None:
                raise ValueError(
2419
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2420
            self._type = type
M
minqiyang 已提交
2421
            self.attrs = attrs if attrs else {}
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2436
                )] = self.block.program._op_role
2437 2438 2439

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2440 2441
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2442 2443 2444 2445 2446

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2447 2448 2449 2450 2451
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2452 2453 2454
                return
            if type is None:
                raise ValueError(
2455
                    "`type` to initialized an Operator can not be None.")
2456 2457
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2458 2459 2460 2461 2462 2463 2464
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2465 2466 2467 2468 2469 2470 2471

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2489 2490 2491 2492 2493
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2494

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2508
                        if not isinstance(in_args, (list, tuple)):
2509 2510 2511 2512 2513 2514
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2515
                        for index, arg in enumerate(in_args):
2516 2517 2518 2519
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2520
                            elif isinstance(arg, (Variable, core.VarBase)):
2521
                                in_arg_names.append(cpt.to_text(arg.name))
2522
                            else:
2523 2524 2525 2526
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2527 2528
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2553 2554 2555 2556
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2557
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2558
                        if not in_dygraph_mode():
2559 2560 2561 2562
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2581
    def _has_kernel(self, op_type):
2582 2583
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2584
    def to_string(self, throw_on_error):
2585
        """
2586 2587
        Get debug string.

2588
        Args:
2589 2590
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2591

2592 2593
        Returns:
            str: The debug string.
2594 2595

        """
2596
        protostr = self.desc.serialize_to_string()
2597
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2598 2599
        return _debug_string_(proto, throw_on_error)

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2632
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2685
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2686
        dist_context = get_default_distributed_context()
2687 2688
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2689
            attrs_str += ", {name} = {value}".format(
2690
                name="dist_attr", value=dist_op)
2691

2692 2693
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2694 2695
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2696 2697 2698 2699 2700
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2701
    def __str__(self):
2702
        return self._to_readable_code()
2703 2704 2705

    __repr__ = __str__

F
fengjiayi 已提交
2706 2707
    @property
    def type(self):
2708
        return self.desc.type()
F
fengjiayi 已提交
2709 2710

    def input(self, name):
2711
        r"""
2712
        Get the input arguments according to the input parameter name.
2713

2714 2715
        Args:
            name(str): The input parameter name.
2716

2717 2718 2719
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2720
        """
F
fengjiayi 已提交
2721 2722
        return self.desc.input(name)

W
Wu Yi 已提交
2723
    def _rename_input(self, old_name, new_name):
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2734
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2735

W
Wu Yi 已提交
2736
    def _rename_output(self, old_name, new_name):
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2747
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2748

F
fengjiayi 已提交
2749 2750 2751 2752
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2753 2754 2755 2756 2757 2758 2759 2760
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2761
    def output(self, name):
2762
        r"""
2763
        Get output arguments by the output parameter name.
2764

2765 2766
        Args:
            name(str): The output parameter name.
2767

2768 2769 2770
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2771
        """
F
fengjiayi 已提交
2772 2773 2774 2775 2776 2777
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2778 2779 2780 2781 2782 2783 2784 2785
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2786
    def has_attr(self, name):
2787
        """
2788 2789
        Whether this Operator has the attribute with name or not.

2790
        Args:
2791
            name(str): the attribute name.
2792

2793 2794
        Returns:
            bool: True if has this attribute.
2795 2796

        """
F
fengjiayi 已提交
2797 2798 2799
        return self.desc.has_attr(name)

    def attr_type(self, name):
2800
        """
2801
        Get the type of attribute by attribute's name.
2802

2803 2804
        Args:
            name(str): the attribute name.
2805

2806 2807
        Returns:
            core.AttrType: the attribute type.
2808
        """
F
fengjiayi 已提交
2809 2810
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2811
    def _set_attr(self, name, val):
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2822 2823
        self._update_desc_attr(name, val)

2824 2825 2826
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2838 2839
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2840 2841
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2842
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2843 2844 2845 2846
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2847
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2848

F
fengjiayi 已提交
2849 2850 2851 2852 2853
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2854
        """
2855 2856
        Get the attribute by name.

2857
        Args:
2858
            name(str): the attribute name.
2859

2860 2861
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2862 2863
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2864
        return self.desc.attr(name)
Y
Yu Yang 已提交
2865

W
Wu Yi 已提交
2866
    def _block_attr_id(self, name):
2867
        """
G
gongweibao 已提交
2868
        Get the block attribute's id by name.
2869

2870 2871
        Args:
            name(str): the attribute name.
2872

2873 2874
        Returns:
            int: the block index.
2875
        """
W
Wu Yi 已提交
2876
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2877

W
Wu Yi 已提交
2878
    def _block_attr(self, name):
G
gongweibao 已提交
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2889
        id = self._block_attr_id(name)
G
gongweibao 已提交
2890 2891 2892
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2893
    def _blocks_attr(self, name):
G
gongweibao 已提交
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2904
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2905 2906 2907 2908 2909
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2910
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2921
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2922

J
JiayiFeng 已提交
2923
    def all_attrs(self):
F
fengjiayi 已提交
2924
        """
2925 2926 2927
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2928
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2929 2930 2931 2932
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2933 2934
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2935
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2936 2937 2938
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2939
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2940 2941 2942 2943
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2944 2945
        return attr_map

2946 2947 2948
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2949 2950 2951 2952

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2953 2954 2955
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2956 2957 2958 2959 2960 2961 2962 2963

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2964 2965
            return False

2966 2967 2968 2969 2970 2971
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
2997

Y
Yu Yang 已提交
2998
class Block(object):
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3013
        use `Program._create_block()` to create a block.
3014 3015 3016 3017

    Examples:
        .. code-block:: python

3018 3019 3020
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3021 3022 3023 3024 3025 3026 3027 3028 3029
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3030
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3031
        self.desc = program.desc.block(idx)
3032
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3033
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3034
        self.program = program
3035
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3036

3037
    def __str__(self):
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3072
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3084

F
fengjiayi 已提交
3085 3086
    def to_string(self, throw_on_error, with_details=False):
        """
3087 3088
        Get debug string.

F
fengjiayi 已提交
3089 3090
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3091
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3092
            with_details(bool): more details about variables and parameters
3093 3094
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3095

3096 3097
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3098 3099 3100 3101
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
3102
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3103 3104
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3105
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3106
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3107
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3108
            for op in self.ops:
F
fengjiayi 已提交
3109 3110
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3111 3112 3113
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3114 3115
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3116 3117
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3118 3119 3120

    __repr__ = __str__

Y
Yu Yang 已提交
3121 3122
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3123
        return self.desc.parent
Y
Yu Yang 已提交
3124

Y
Yu Yang 已提交
3125 3126 3127 3128
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3129
    def _set_forward_block_idx(self, idx):
3130 3131 3132 3133 3134 3135 3136 3137 3138
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3139
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3140

3141 3142 3143 3144 3145 3146 3147 3148
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3149 3150
    @property
    def idx(self):
Y
Yu Yang 已提交
3151
        return self.desc.id
Y
Yu Yang 已提交
3152

Q
Qiao Longfei 已提交
3153
    def var(self, name):
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3167
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3168 3169 3170
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3171 3172
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3173
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3174
        return v
Q
Qiao Longfei 已提交
3175

X
Xin Pan 已提交
3176
    def _find_var_recursive(self, name):
3177 3178 3179 3180 3181 3182 3183
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3184
            Variable: the Variable with the giving name. Or None if not found.
3185
        """
Y
Yu Yang 已提交
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3210
        return None
Y
Yu Yang 已提交
3211

X
Xin Pan 已提交
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3231

Q
Qiao Longfei 已提交
3232
    def all_parameters(self):
3233
        return list(self.iter_parameters())
3234

3235
    def iter_parameters(self):
M
minqiyang 已提交
3236
        return (item[1] for item in six.iteritems(self.vars)
3237
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3238

Y
Yu Yang 已提交
3239
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3240 3241 3242
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3243 3244 3245
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3246
        return var
Y
Yu Yang 已提交
3247

Q
Qiao Longfei 已提交
3248 3249 3250
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3251
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3252 3253
        """
        Rename variable in vars and ops' inputs and outputs
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3266
        """
M
minqiyang 已提交
3267 3268
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3269

T
typhoonzero 已提交
3270
        if not self.has_var(name):
3271
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3272 3273
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3274
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3275 3276 3277 3278 3279 3280
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3281
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3282 3283 3284 3285
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3286
        orig_var_type = v.type
M
minqiyang 已提交
3287
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3288
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3289
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3290
        if var_type == "Parameter":
L
Leo Chen 已提交
3291 3292
            if in_dygraph_mode():
                var = ParamBase(
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3303 3304
                var = Parameter(
                    self,
3305 3306 3307 3308 3309 3310 3311 3312 3313
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3314
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3315 3316
            var = Variable(
                self,
T
typhoonzero 已提交
3317
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3318 3319 3320 3321
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3322
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3323 3324 3325
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3326
        self._sync_with_cpp()
3327
        return var
T
typhoonzero 已提交
3328

3329 3330 3331
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3332
        self.desc._remove_var(cpt.to_bytes(name))
3333 3334
        del self.vars[name]

Y
Yu Yang 已提交
3335 3336
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3337
        param = None
L
Leo Chen 已提交
3338
        if in_dygraph_mode():
3339 3340 3341 3342
            if _in_eager_mode():
                param = EagerParamBase(*args, **kwargs)
            else:
                param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3343 3344
        else:
            param = Parameter(global_block, *args, **kwargs)
3345

3346
        if 'initializer' in kwargs:
3347 3348 3349 3350 3351

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3352
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3353
                        # are treated as initialization ops that cause error.
3354
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3355 3356 3357 3358 3359
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3360
                            continue
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3372
                # TODO already inited, do nothing, should log a warning
3373 3374 3375
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3376
        return param
Y
Yu Yang 已提交
3377

Y
Yu Yang 已提交
3378
    def append_op(self, *args, **kwargs):
3379 3380 3381 3382 3383 3384
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3385
        if in_dygraph_mode():
3386
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3387
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3388
            type = kwargs.get("type", None)
3389 3390 3391
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3392
                type=type,
M
minqiyang 已提交
3393 3394
                inputs=None,
                outputs=None,
3395
                attrs=attrs)
3396

M
minqiyang 已提交
3397 3398 3399
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3400
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3401 3402

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3403
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3404 3405
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
Z
zyfncg 已提交
3406 3407
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3408
        else:
3409 3410
            from paddle.fluid.dygraph.base import param_guard

3411
            op_desc = self.desc.append_op()
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3425

M
minqiyang 已提交
3426
            self.ops.append(op)
M
minqiyang 已提交
3427

3428 3429
        return op

W
Wu Yi 已提交
3430
    def _insert_op(self, index, *args, **kwargs):
3431 3432 3433 3434 3435 3436 3437 3438 3439
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3440
        self._sync_with_cpp()
F
fangshuixun007 已提交
3441
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3442

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3460 3461 3462 3463 3464 3465 3466 3467 3468
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3469 3470
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3471
        self.desc._remove_op(index, index + 1)
3472 3473
        del self.ops[index]

W
Wu Yi 已提交
3474
    def _slice_ops(self, start, end):
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3485
        return self.ops[start:end]
Y
Yancey1989 已提交
3486

W
Wu Yi 已提交
3487
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3488
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3489 3490
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3491
            op = Operator(
J
Jiabin Yang 已提交
3492
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3493

J
Jiabin Yang 已提交
3494
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3495
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3496 3497
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3498
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3499
        else:
3500 3501 3502 3503 3504 3505 3506 3507
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3508
            self.ops.insert(0, op)
3509

Y
Yu Yang 已提交
3510 3511
        return op

W
Wu Yi 已提交
3512
    def _sync_with_cpp(self):
3513
        """
3514 3515
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3516
        """
Q
Qiao Longfei 已提交
3517 3518 3519
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3537

3538
        # sync variables removed from c++ end
3539
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3540
            if not self.desc.find_var(cpt.to_bytes(var)):
3541 3542
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3543
        # sync operators from cpp
3544 3545 3546 3547
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3564 3565 3566 3567 3568

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3569
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3570 3571 3572 3573 3574 3575 3576

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3590 3591 3592 3593
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3594
    def _copy_param_info_from(self, other):
3595
        """
3596 3597
        Copy the information of parameters from the other block.

3598
        Args:
3599 3600 3601 3602 3603
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3604 3605 3606 3607 3608

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3609 3610
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3611
        for p in other.iter_parameters():
3612 3613 3614
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3615 3616
                # if the Parameter is pruned, v may be None
                continue
3617
            assert isinstance(v, Variable)
3618
            new_p = None
L
Leo Chen 已提交
3619 3620
            if in_dygraph_mode():
                new_p = ParamBase(
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3632 3633
                new_p = Parameter(
                    block=self,
3634 3635 3636
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3637 3638
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3639 3640 3641 3642 3643 3644
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3645 3646
            self.vars[new_p.name] = new_p

3647
    def _clone_variable(self, var, force_persistable=True):
3648 3649
        """
        Clone a variable into current block.
3650

3651 3652
        Args:
            var: the variable to be cloned.
3653 3654 3655
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3656 3657

        Returns:
3658
            Variable: the new  variable cloned from 'var' in current block.
3659 3660
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3661 3662 3663 3664 3665
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3666 3667
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3668
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3669 3670 3671 3672 3673 3674
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3675
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3676 3677
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3678 3679 3680 3681 3682 3683 3684
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3685
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3686 3687
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3688
        return ret_var
3689

Y
Yu Yang 已提交
3690

3691 3692 3693 3694 3695 3696
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3808
    def remove_input_by_id(self, node_id):
3809 3810 3811 3812 3813 3814
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3815
        self.node.remove_input(node_id)
3816

3817
    def remove_input(self, node):
3818 3819 3820 3821
        """
        Remove a node from inputs.

        Args:
3822
            node(IrNode): the node being removed.
3823
        """
3824
        self.node.remove_input(node.node)
3825

3826
    def append_input(self, node):
3827 3828 3829 3830
        """
        Append a node in inputs.

        Args:
3831
            node(IrNode): the node being appended.
3832
        """
3833
        self.node.append_input(node.node)
3834 3835 3836 3837 3838 3839 3840 3841

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3842
    def remove_output_by_id(self, node_id):
3843 3844 3845 3846 3847 3848
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3849
        self.node.remove_output(node_id)
3850

3851
    def remove_output(self, node):
3852 3853 3854 3855
        """
        Remove a node from outputs.

        Args:
3856
            node(IrNode): the node being removed.
3857
        """
3858
        self.node.remove_output(node.node)
3859

3860
    def append_output(self, node):
3861 3862 3863 3864
        """
        Append a node in outputs.

        Args:
3865
            node(IrNode): the node being appended.
3866
        """
3867
        self.node.append_output(node.node)
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3915
            "The node variable description can not be None."
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3926
            "The node variable description can not be None."
3927 3928
        return self.node.var().persistable()

3929 3930 3931 3932 3933 3934 3935 3936
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3937
            "The node variable description can not be None."
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3948
            "The node variable description can not be None."
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3959
            "The node variable description can not be None."
3960 3961
        return self.node.var().shape()

3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4009
            "The node operator description can not be None."
4010 4011
        self.node.op()._rename_input(old_input_name, new_input_name)

4012 4013 4014 4015 4016 4017 4018 4019 4020
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4021
            "The node operator description can not be None."
4022 4023
        self.node.op()._rename_output(old_output_name, new_output_name)

4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4035
            "The node operator description can not be None."
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4049
            "The node operator description can not be None."
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4060
            "The node operator description can not be None."
4061 4062
        return self.node.op().set_type(new_type)

4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4078
            "The node operator description can not be None."
4079 4080 4081 4082
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
4083
                all(isinstance(v, Block) for v in val):
4084 4085
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4086
                isinstance(val, core.ProgramDesc):
4087 4088 4089 4090
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4091 4092 4093 4094 4095 4096 4097 4098
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4099
            "The node operator description can not be None."
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4110
            "The node operator description can not be None."
4111 4112
        return self.node.op().output_arg_names()

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4134 4135
class IrGraph(object):
    """
4136
    Python IrGraph. Beneath it is a core.Graph, which is used for
4137
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4138 4139
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4140 4141 4142 4143
    """

    def __init__(self, graph, for_test=False):
        """
4144 4145
        Construct an IrGraph using core.Graph.

4146 4147 4148 4149 4150 4151 4152 4153 4154
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4155 4156 4157 4158
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4159 4160 4161
        Warns:
            The method only clones the graph structure, not its attributes.

4162 4163 4164
        Returns:
            IrGraph: A new and duplicated graph.
        """
4165
        g = self.graph.clone()
4166 4167
        return IrGraph(g, self._for_test)

4168
    def is_test(self):
4169 4170 4171
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4172 4173
        return self._for_test

W
WangZhen 已提交
4174
    def all_nodes(self):
4175 4176 4177
        """
        Return all nodes included in the graph as a set.
        """
4178
        return {IrNode(node) for node in self.graph.nodes()}
4179

4180
    def all_var_nodes(self):
4181 4182 4183
        """
        Return all variable nodes included in the graph as a set.
        """
4184
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4185

4186
    def all_persistable_nodes(self):
4187 4188 4189
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4190 4191 4192 4193 4194
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4195
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4196

4197
    def all_op_nodes(self):
4198 4199 4200
        """
        Return all operator nodes included in the graph as a set.
        """
4201
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4202

4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4220
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4232
            IrVarNode: the created persistable variable node.
4233
        """
4234 4235 4236 4237 4238
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4239
        return IrVarNode(self.graph.create_var_node(var_desc))
4240 4241

    def create_var_node(self, name, var_type, shape, var_dtype):
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4253
            IrVarNode: the created variable node.
4254 4255
        """

4256 4257 4258 4259
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4260
        return IrVarNode(self.graph.create_var_node(var_desc))
4261

4262 4263 4264 4265 4266 4267
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4268
    def create_var_node_from_desc(self, var_desc):
4269 4270 4271 4272 4273 4274 4275 4276
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4277
            IrVarNode: the created variable node.
4278
        """
4279
        return IrVarNode(self.graph.create_var_node(var_desc))
4280 4281

    def create_op_node(self, op_type, attrs, inputs, outputs):
4282 4283 4284 4285 4286 4287 4288
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4289
            outputs(dict): the outputs of the operator node.
4290 4291

        Returns:
4292
            IrOpNode: the created operator node.
4293
        """
4294 4295
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4296
        for attr, value in six.iteritems(attrs):
4297
            self._update_desc_attr(op_desc, attr, value)
4298
        for input_name, var_nodes in six.iteritems(inputs):
4299 4300 4301 4302
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4303
        for output_name, var_nodes in six.iteritems(outputs):
4304 4305 4306 4307
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4308
        return IrOpNode(self.graph.create_op_node(op_desc))
4309 4310

    def create_op_node_from_desc(self, op_desc):
4311 4312 4313 4314 4315 4316 4317
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4318
            IrOpNode: the created operator node.
4319
        """
4320
        return IrOpNode(self.graph.create_op_node(op_desc))
4321 4322

    def update_input_link(self, old_input_node, new_input_node, op_node):
4323 4324 4325 4326
        """
        Update the input's link of a operator node.

        Args:
4327 4328 4329
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4330
        """
4331
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4332
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4333
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4334 4335 4336 4337
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4338
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4339

4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4350
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4351
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4352 4353 4354 4355 4356 4357
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4358
    def link_to(self, node_in, node_out):
4359 4360 4361 4362
        """
        Connect two nodes.

        Args:
4363 4364
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4365
        """
4366 4367 4368 4369
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4370 4371
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4372 4373

    def safe_remove_nodes(self, remove_nodes):
4374 4375 4376 4377 4378 4379 4380
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4381
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4382 4383 4384 4385
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4386 4387
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4388

Z
Zhen Wang 已提交
4389 4390 4391 4392 4393 4394 4395 4396
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4397
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4398 4399 4400 4401
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4402
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4403 4404 4405
                        ]
                    else:
                        var_nodes[each_var_name].append(
4406 4407
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4408 4409
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4410
    def has_circle(self):
4411 4412 4413 4414 4415 4416
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4417 4418 4419
        return core.has_circle(self.graph)

    def graph_num(self):
4420 4421 4422 4423 4424 4425
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4426 4427 4428
        return core.graph_num(self.graph)

    def topology_sort(self):
4429 4430 4431
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4432
        Notes: the `graph` can not contain a circle.
4433 4434

        Returns:
Z
Zhen Wang 已提交
4435
            list(IrNode): nodes in topology order.
4436
        """
4437
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4438
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4439 4440

    def build_adjacency_list(self):
4441 4442 4443 4444
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4445
            dict{IrNode: set(IrNode)}: the adjacency list.
4446
        """
4447 4448 4449 4450 4451
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4452

4453 4454 4455 4456 4457 4458 4459 4460
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4461
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4462 4463 4464 4465 4466
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4467 4468
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4469 4470 4471
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4472 4473 4474 4475 4476
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4477
        remove_ctr_vars = set()
4478
        if remove_ctr_var:
4479
            for node in self.all_var_nodes():
4480 4481 4482
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4483 4484
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4485 4486
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4487 4488 4489 4490 4491 4492
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4493 4494 4495 4496
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4497 4498
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4499 4500 4501 4502 4503 4504 4505
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4506 4507 4508
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4509
        WARN: When the graph includes backward operator nodes, the
4510 4511 4512 4513 4514 4515
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4516
        convert_pass = core.get_pass('graph_to_program_pass')
4517 4518
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4519 4520 4521 4522
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4523 4524 4525 4526 4527 4528 4529 4530
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4531 4532
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4533 4534
        return target_node

4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4551
class Program(object):
D
dzhwinter 已提交
4552
    """
4553
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4554
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4555
    it will contain nested block.
4556

J
Jiabin Yang 已提交
4557 4558 4559
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4560

J
Jiabin Yang 已提交
4561
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4562
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4563 4564 4565 4566 4567 4568 4569
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4570
    **Notes**:
4571 4572 4573
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4574 4575

    Returns:
J
Jiabin Yang 已提交
4576
        Program: An empty Program.
D
dzhwinter 已提交
4577 4578

    Examples:
4579 4580
        .. code-block:: python

4581 4582 4583 4584
            import paddle
            import paddle.static as static

            paddle.enable_static()
4585

4586 4587 4588 4589 4590
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4591
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4592 4593 4594

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4595 4596 4597

    """

4598 4599
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4600 4601
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4602 4603
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4604
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4605
        self.__op_role_var = []
T
tangwei12 已提交
4606

4607 4608
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4609
        self._is_distributed = False
4610
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4611
        self._is_chief = False
4612 4613 4614
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4615
        self._endpoints = []
4616 4617 4618
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4619
        self._trainers_endpoints = []
4620
        # the distributed lookup table names
T
tangwei12 已提交
4621
        self._distributed_lookup_table = None
4622 4623 4624

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4625 4626
        self._use_lamb = False

4627 4628 4629
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4630

4631 4632 4633
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4634
        self._program_config = None
4635

H
hutuxian 已提交
4636 4637 4638
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4639 4640 4641
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4642 4643 4644
        # appending gradients times
        self._appending_grad_times = 0

4645 4646 4647 4648
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4649 4650
        # compiled program, i.e. Graph
        self._graph = None
4651 4652
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4653

4654
    def _find_var_class_kwargs(self, new_desc):
4655 4656 4657 4658 4659 4660 4661 4662
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4732
        assert block_num == self.desc.num_blocks()
4733 4734

        # clear old blocks and desc
4735 4736 4737 4738 4739 4740 4741 4742 4743
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4744

4745
        del desc
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4775 4776
                import paddle
                import paddle.static as static
4777

4778 4779 4780
                paddle.enable_static()

                prog = static.default_main_program()
4781 4782 4783 4784 4785
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4786
                prog1 = static.default_main_program()
4787 4788 4789 4790 4791 4792 4793 4794
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4795
    @property
4796
    def _op_role(self):
Y
yuyang18 已提交
4797 4798 4799 4800 4801 4802 4803 4804
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4805
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4806 4807 4808 4809
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4810 4811
        return self._current_role

4812 4813
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4814 4815 4816
        self._current_role = role

    @property
4817
    def _op_role_var(self):
Y
yuyang18 已提交
4818
        """
4819
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4820

4821
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4822 4823 4824

        Notes: This is a very low-level API. Users should not use it directly.
        """
4825
        return self.__op_role_var
Y
yuyang18 已提交
4826

4827
    @signature_safe_contextmanager
4828 4829 4830 4831 4832
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4833 4834 4835 4836
        try:
            yield
        finally:
            self._current_role = tmp_role
4837

S
rename  
sneaxiy 已提交
4838
    @signature_safe_contextmanager
W
Wu Yi 已提交
4839
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4840 4841 4842 4843 4844 4845 4846
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4847
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4848 4849 4850

        Examples:

4851
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4852
            >>> p, g = backward(...)
W
Wu Yi 已提交
4853
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4854 4855
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4856
        tmp_role = self._current_role
4857
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4858

Y
yuyang18 已提交
4859 4860
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4861
        self.__op_role_var = [
4862 4863 4864
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4865 4866 4867 4868 4869
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4870

S
rename  
sneaxiy 已提交
4871
    @signature_safe_contextmanager
X
Xin Pan 已提交
4872
    def _lr_schedule_guard(self, is_with_opt=False):
4873 4874 4875 4876 4877 4878 4879
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4880 4881 4882 4883
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4884 4885 4886

        Examples:

4887
            >>> import paddle.fluid as fluid
4888 4889 4890 4891
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4892 4893

        tmp_role = self._current_role
4894
        tmp_var = self.__op_role_var
4895

4896 4897
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4898 4899
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4900
        # TODO(typhoonzero): how to set target learning rate var
4901
        self.__op_role_var = []
4902 4903 4904 4905 4906
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4907

4908
    def __str__(self):
Y
yuyang18 已提交
4909 4910 4911 4912 4913 4914 4915 4916 4917
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4938 4939
            import paddle
            import paddle.static as static
4940

4941 4942 4943
            paddle.enable_static()

            cur_program = static.Program()
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4955
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4956 4957 4958 4959
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4960
            program_str += '\n'
4961
        return program_str
Y
Yang Yang(Tony) 已提交
4962

F
fengjiayi 已提交
4963 4964 4965
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4966

J
Jiabin Yang 已提交
4967 4968 4969
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4970

J
Jiabin Yang 已提交
4971
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4972

H
haowang101779990 已提交
4973
        Returns:
J
Jiabin Yang 已提交
4974
            str: The debug string describe current Program.
Y
yuyang18 已提交
4975 4976

        Raises:
J
Jiabin Yang 已提交
4977
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4978

4979 4980 4981
        Examples:
            .. code-block:: python

4982 4983 4984 4985
                import paddle
                import paddle.static as static

                paddle.enable_static()
4986

4987 4988 4989
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4990
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4991
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4992
                print("program string without detail: {}".format(prog_string))
4993
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4994
        """
4995 4996 4997 4998 4999 5000 5001 5002 5003
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5004 5005 5006 5007 5008 5009
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5010 5011
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5012 5013
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5014

W
Wu Yi 已提交
5015
    def _get_desc(self):
Y
yuyang18 已提交
5016 5017 5018 5019 5020 5021 5022
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5023 5024
        return self.desc

X
version  
Xin Pan 已提交
5025 5026 5027
    def _version(self):
        return self.desc._version()

5028
    def clone(self, for_test=False):
Y
yuyang18 已提交
5029
        """
5030 5031 5032 5033
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5034

5035
        Create a new Program with forward content of original one when ``for_test=True``.
5036
        Create a new Program as same as the original one when ``for_test=False``.
5037

5038
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5039 5040 5041
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5042

5043 5044
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5045 5046
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5047
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5048

J
Jiabin Yang 已提交
5049
        For Example:
5050
          ::
L
Luo Tao 已提交
5051

5052 5053 5054 5055 5056 5057
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5058
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5059
            loss = paddle.mean(pred)
5060
            # Here we use clone before Momentum
5061 5062
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5063
            optimizer.minimize(loss)
5064

J
Jiabin Yang 已提交
5065
        Args:
5066

5067 5068
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5069

J
Jiabin Yang 已提交
5070
        Returns:
5071
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5072

Y
yuyang18 已提交
5073 5074 5075

        Examples:

5076 5077 5078 5079 5080 5081 5082
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5099
            1. To clone a test program, the sample code is:
5100 5101 5102
                .. code-block:: python

                    import six
5103 5104 5105 5106 5107 5108
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5121 5122
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5123 5124 5125

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5126 5127 5128
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5129
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5130 5131
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5132
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5133 5134
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5135
                            test_program = train_program.clone(for_test=True)
5136
                    print_prog(test_program)
J
Jiabin Yang 已提交
5137 5138 5139 5140

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5141
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5142 5143 5144 5145
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5146 5147 5148
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5149 5150 5151
                            sgd.minimize(avg_loss)


5152
            2. The clone method can be avoid if you create program for training and program for testing individually.
5153 5154 5155
                .. code-block:: python

                    import six
5156 5157 5158 5159 5160 5161
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5173

5174
                    def network():
5175
                        img = static.data(name='image', shape=[None, 784])
5176
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5177 5178
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5179
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5180 5181
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5182 5183
                        return avg_loss

5184 5185 5186 5187 5188
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5189
                            avg_loss = network()
5190
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5191
                            sgd.minimize(avg_loss)
5192
                    # the test startup program is not used.
5193 5194
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5195 5196
                            avg_loss = network()
                    print_prog(test_program_2)
5197

5198
            The two code snippets above will generate and print same programs.
5199
        """
5200

T
tangwei12 已提交
5201
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5202 5203 5204
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5205
        pruned_origin_block_id_map = None
5206
        if for_test:
5207 5208 5209 5210 5211 5212 5213 5214 5215
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5216
        else:
5217
            p = Program()
G
gongweibao 已提交
5218 5219
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5220
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5221 5222 5223
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5224 5225

            p._current_role = self._current_role
5226
            p.__op_role_var = self.__op_role_var
5227
            p._appending_grad_times = self._appending_grad_times
5228 5229
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5230

T
tangwei12 已提交
5231
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5232
            # its desc.
W
Wu Yi 已提交
5233
            p._sync_with_cpp()
5234

W
Wu Yi 已提交
5235
        p._copy_param_info_from(self)
5236
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5237
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5238
        return p
5239

5240
    def _prune(self, targets):
Y
yuyang18 已提交
5241 5242 5243 5244 5245 5246 5247 5248
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5249
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5250 5251 5252 5253
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5254
        """
5255
        return self._prune_with_input([], targets)
5256 5257

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5258
        """
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5269
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5270 5271 5272 5273 5274 5275
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5276
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5277 5278 5279
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5280 5281
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5282 5283
        if not isinstance(targets, list):
            targets = [targets]
5284 5285 5286

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5287 5288 5289
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5290

5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5307 5308 5309 5310
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5311 5312 5313
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5314
                else:
5315 5316 5317
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5318 5319 5320 5321 5322 5323

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5324 5325 5326
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5327

5328 5329 5330 5331 5332 5333 5334 5335 5336
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5337
                        # Skip optimize op except for optimize op in targets,
5338 5339 5340 5341 5342
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5343

5344
                if target_op is not None:
5345 5346 5347
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5348

5349
        res = Program()
5350 5351 5352
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5353 5354 5355
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5356
        res._sync_with_cpp()
5357 5358 5359 5360 5361

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5362 5363
        return res

X
Xin Pan 已提交
5364
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5365
        """
F
fengjiayi 已提交
5366 5367 5368 5369 5370
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5371
        3. change the :code:`is_test`
Y
yuyang18 已提交
5372 5373 5374
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5375
        Args:
X
Xin Pan 已提交
5376 5377
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5378

Y
yuyang18 已提交
5379 5380 5381 5382 5383 5384
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5385
        res = Program()
5386
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5387 5388 5389 5390

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5391
        if prune_read_op:
5392 5393 5394 5395 5396 5397 5398 5399 5400
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5401
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5402 5403

        # change all `is_test` attributes to True
M
minqiyang 已提交
5404
        for i in six.moves.range(res.desc.num_blocks()):
5405
            block = res.desc.block(i)
M
minqiyang 已提交
5406
            for j in six.moves.range(block.op_size()):
5407 5408
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5409
                    op._set_attr('is_test', True)
5410 5411 5412
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5413 5414 5415
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5416
        res._sync_with_cpp()
5417 5418
        return res

5419
    def _remove_training_info(self, clip_extra=True):
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5509 5510
        return res

5511 5512
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5513
        """
5514 5515 5516
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5517

5518 5519
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5520

J
Jiabin Yang 已提交
5521
        Args:
Y
yuyang18 已提交
5522

J
Jiabin Yang 已提交
5523
            binary_str_type (str): the binary prootbuf string.
5524

J
Jiabin Yang 已提交
5525 5526
        Returns:
            Program: A deserialized Program.
5527 5528 5529 5530

        Examples:
            .. code-block:: python

5531 5532 5533 5534
                import paddle
                import paddle.static as static

                paddle.enable_static()
5535

5536 5537 5538 5539
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5540

5541
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5542

5543
                    z = paddle.matmul(x=x, y=y)
5544

5545 5546
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5547

5548
                    print(static.default_main_program())
5549
                    print(prog_restored)
Y
yuyang18 已提交
5550
        """
5551 5552
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5553
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5554
        p._sync_with_cpp()
5555
        return p
Y
Yu Yang 已提交
5556

5557
    @staticmethod
5558
    def _construct_from_desc(desc):
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5574 5575
    @property
    def random_seed(self):
Y
yuyang18 已提交
5576
        """
J
Jiabin Yang 已提交
5577
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5578 5579
        the random seed from random device.

5580 5581
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5582 5583 5584

        Returns:
            int64: Random seed in current Program
5585

5586 5587 5588 5589

        Examples:
            .. code-block:: python

5590 5591 5592
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5593

5594 5595 5596
                paddle.enable_static()

                prog = static.default_main_program()
5597
                random_seed = prog.random_seed
5598
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5599 5600 5601
                print(random_seed)
                ## 0
                ## the default random seed is 0
5602

5603
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5604
                prog.random_seed = 1
5605
                z_var = F.dropout(x_var, 0.7)
5606

5607
                print(prog.random_seed)
5608 5609
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5610
        """
D
dzhwinter 已提交
5611 5612
        return self._seed

Q
qiaolongfei 已提交
5613 5614
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5615
        """
5616 5617
        The number of :ref:`api_guide_Block_en`  in this Program.

5618 5619
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5620 5621 5622

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5623

5624 5625 5626 5627

        Examples:
            .. code-block:: python

5628 5629 5630 5631
                import paddle
                import paddle.static as static

                paddle.enable_static()
5632

5633
                prog = static.default_main_program()
5634 5635
                num_blocks = prog.num_blocks
                print(num_blocks)
5636

5637 5638
                # print result:
                # 1
Y
yuyang18 已提交
5639
        """
Q
qiaolongfei 已提交
5640 5641
        return self.desc.num_blocks()

D
dzhwinter 已提交
5642 5643 5644
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5645 5646 5647
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5648 5649
        self._seed = seed

Y
Yu Yang 已提交
5650
    def __repr__(self):
5651
        return self.__str__()
5652

Y
Yu Yang 已提交
5653
    def global_block(self):
Y
yuyang18 已提交
5654
        """
5655 5656
        .. note::
            This API has no effect in Dygraph mode.
5657 5658 5659

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5660 5661
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5662

5663 5664 5665 5666

        Examples:
            .. code-block:: python

5667 5668 5669 5670
                import paddle
                import paddle.static as static

                paddle.enable_static()
5671

5672
                prog = static.default_main_program()
5673 5674
                gb_block = prog.global_block()
                print(gb_block)
5675

Y
yuyang18 已提交
5676
        """
Y
Yu Yang 已提交
5677 5678
        return self.blocks[0]

Q
Qiao Longfei 已提交
5679
    def block(self, index):
Y
yuyang18 已提交
5680
        """
5681 5682
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5683

5684 5685
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5686 5687
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5688

J
Jiabin Yang 已提交
5689 5690
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5691 5692 5693 5694

        Examples:
            .. code-block:: python

5695 5696 5697 5698
                import paddle
                import paddle.static as static

                paddle.enable_static()
5699

5700
                prog = static.default_main_program()
5701 5702
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5703
        """
Q
Qiao Longfei 已提交
5704 5705
        return self.blocks[index]

Y
Yu Yang 已提交
5706
    def current_block(self):
Y
yuyang18 已提交
5707
        """
5708 5709
        .. note::
            This API has no effect in Dygraph mode.
5710

J
Jiabin Yang 已提交
5711 5712
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5713

J
Jiabin Yang 已提交
5714 5715
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5716

5717 5718 5719
        Examples:
            .. code-block:: python

5720 5721 5722 5723
                import paddle
                import paddle.static as static

                paddle.enable_static()
5724

5725
                prog = static.default_main_program()
5726 5727
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5728
        """
Y
Yu Yang 已提交
5729 5730
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5731
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5732 5733 5734 5735 5736
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5737

Y
yuyang18 已提交
5738 5739 5740 5741 5742
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5743
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5744 5745 5746
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5747 5748 5749 5750
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5751
    def _rollback(self):
Y
yuyang18 已提交
5752 5753 5754 5755 5756
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5757 5758
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5759
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5770 5771 5772
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5773
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5774

W
Wu Yi 已提交
5775
    def _copy_param_info_from(self, other):
5776
        """
5777
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5778

Y
yuyang18 已提交
5779 5780 5781
        Notes: This is a very low level API. Users should not invoke it
        directly.

5782 5783 5784 5785 5786 5787 5788
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5789 5790 5791
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5792

W
Wu Yi 已提交
5793
        self.global_block()._copy_param_info_from(other.global_block())
5794

5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5806 5807 5808
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5809 5810
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5811
        self._parameters_on_pservers = other._parameters_on_pservers
5812
        self._endpoints = other._endpoints
5813
        self._ps_endpoint = other._ps_endpoint
5814 5815
        self._distributed_lookup_table = other._distributed_lookup_table

5816
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5817 5818
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5819

Y
yuyang18 已提交
5820 5821 5822
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5823 5824
        Args:
            other(Program): Other program
5825 5826 5827 5828
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5829 5830 5831 5832 5833

        Returns:
            None
        """
        if not isinstance(other, Program):
5834 5835 5836
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5837

5838 5839 5840 5841 5842
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5843 5844 5845

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5846 5847
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5848
            for var in list(block.vars.values()):
5849 5850 5851 5852 5853 5854 5855
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5856

5857
    def list_vars(self):
Y
yuyang18 已提交
5858
        """
5859
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5860

J
Jiabin Yang 已提交
5861
        Returns:
5862
            iterable Tensors: The Generator will yield every Tensor in this program.
5863 5864 5865 5866

        Examples:
            .. code-block:: python

5867 5868
                import paddle
                import paddle.static as static
5869

5870 5871 5872 5873 5874
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5875 5876
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5877

5878 5879
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5880
        """
5881
        for each_block in self.blocks:
5882
            for each_var in list(each_block.vars.values()):
5883 5884
                yield each_var

5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5895 5896 5897 5898
                import paddle
                import paddle.static as static

                paddle.enable_static()
5899

5900 5901
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5902
                hidden = static.nn.fc(x=data, size=10)
5903 5904
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5905 5906 5907 5908 5909 5910 5911

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5912 5913
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5914 5915 5916 5917 5918 5919 5920 5921 5922 5923
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
6091

6092
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6093
class Parameter(Variable):
6094
    """
6095
    Parameter is derived from Variable. A parameter is a persistable
6096
    Variable, and will be updated by optimizers after each iteration.
6097
    The training of a neural network is essentially the updating of
6098 6099
    its parameters.

6100
    Relative to a general Variable, a Parameter has several its own
6101 6102
    member variables:

6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6113 6114
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6115 6116
    """

6117 6118 6119 6120 6121 6122
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6123 6124 6125 6126 6127
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6128
        if len(shape) == 0:
6129 6130
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6131 6132 6133

        for each in shape:
            if each < 0:
6134 6135 6136
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6137 6138

        Variable.__init__(
6139 6140 6141 6142 6143 6144 6145
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6146 6147 6148 6149
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6150 6151
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6152
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6153

6154 6155
        self.need_clip = kwargs.get('need_clip', True)

6156 6157
        self.is_distributed = False

6158 6159
        self.is_parameter = True

F
fengjiayi 已提交
6160
    def __str__(self):
6161
        return self._to_readable_code()
F
fengjiayi 已提交
6162

F
update  
fengjiayi 已提交
6163 6164 6165
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6166

F
update  
fengjiayi 已提交
6167 6168 6169 6170 6171 6172 6173 6174
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6175 6176 6177 6178 6179 6180 6181 6182 6183
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6184 6185 6186 6187 6188 6189
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6190
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6191
            for attr_name in additional_attr:
6192 6193
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6194 6195
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6196 6197 6198 6199
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6200

6201 6202
class ParamBase(core.VarBase):
    """
6203 6204 6205
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6206 6207 6208
    The training of a neural network is essentially the updating of
    its ParamBase.

6209
    Relative to a general Tensor, a ParamBase has several its own
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6222 6223
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6254 6255
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6256 6257 6258 6259 6260 6261 6262

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6263 6264
        self.need_clip = kwargs.get('need_clip', True)

6265
        self.is_distributed = kwargs.get('is_distributed', False)
6266
        # self.block = default_main_program().global_block()
6267

6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6281
    def __str__(self):
6282
        """
6283
        Convert a ParamBase object to a readable string.
6284

6285
        Returns(str): A readable string.
6286 6287 6288 6289

        Examples:
            .. code-block:: python

6290
                import paddle
6291 6292 6293 6294 6295 6296 6297
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6298
        """
6299 6300
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6301

6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6313

6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6332 6333 6334 6335
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
    _core_eager_eagertensor = core.eager.EagerTensor
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

        super(EagerParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape)
            if shape else [], name, core.VarDesc.VarType.LOD_TENSOR, True)
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6483 6484
        return new_param

6485 6486 6487
    __repr__ = __str__


Y
Yu Yang 已提交
6488
# program is a global instance.
Y
Yu Yang 已提交
6489 6490
_main_program_ = Program()
_startup_program_ = Program()
6491
_startup_program_._is_start_up_program_ = True
6492

6493

6494
def default_startup_program():
Y
Yu Yang 已提交
6495
    """
Y
yuyang18 已提交
6496 6497
    Get default/global startup program.

6498 6499
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6500

6501 6502
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6503

6504 6505
    Returns:
        Program: current default startup program.
6506

6507
    Returns type: 
6508 6509 6510 6511

    Examples:
        .. code-block:: python

6512
            import paddle
6513

6514
            paddle.enable_static()
6515 6516 6517 6518
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6519
    """
Y
Yu Yang 已提交
6520
    return _startup_program_
6521

6522

6523
def default_main_program():
Y
Yu Yang 已提交
6524
    """
6525
    This API can be used to get ``default main program`` which store the 
6526
    descriptions of Ops and tensors.
T
tangwei12 已提交
6527

6528
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6529
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6530

6531 6532
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6533
    :code:`default_main_program` when the program is not specified.
6534

6535
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6536

Y
Yu Yang 已提交
6537
    Returns:
6538
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6539 6540 6541 6542

    Examples:
        ..  code-block:: python

6543
            import paddle
6544

6545
            paddle.enable_static()
6546
            # Sample Network:
6547 6548 6549
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6550

6551 6552 6553
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6554
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6555
    """
Y
Yu Yang 已提交
6556
    return _main_program_
Y
Yu Yang 已提交
6557 6558 6559 6560 6561


def switch_main_program(program):
    """
    Switch the main program to a new program.
6562

Y
Yu Yang 已提交
6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6577
    Switch the startup program to a new program
Y
Yu Yang 已提交
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6590
@signature_safe_contextmanager
Y
Yu Yang 已提交
6591 6592
def program_guard(main_program, startup_program=None):
    """
6593 6594
    :api_attr: Static Graph

6595 6596 6597
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6598

G
guofei 已提交
6599
    Args:
6600 6601
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6602 6603 6604 6605
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6606
    Examples:
6607
       .. code-block:: python
T
tangwei12 已提交
6608

6609
          import paddle
Y
yuyang18 已提交
6610

6611 6612 6613 6614 6615
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6616
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6617 6618 6619

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6620

Y
Yu Yang 已提交
6621
    Examples:
6622
       .. code-block:: python
Y
yuyang18 已提交
6623

6624
          import paddle
6625

6626 6627 6628 6629 6630
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6631

Y
Yu Yang 已提交
6632
    """
6633
    from .data_feeder import check_type
6634 6635
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6636 6637
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6638
        check_type(startup_program, 'startup_program', Program,
6639
                   'paddle.static.program_guard')
6640 6641
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6642
        startup_program = switch_startup_program(startup_program)
6643 6644 6645 6646 6647 6648
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6649 6650


W
Wu Yi 已提交
6651
def _get_var(name, program=None):
X
xuwei06 已提交
6652
    """
Y
yuyang18 已提交
6653
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6654

X
xuwei06 已提交
6655 6656 6657
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6658
        If None, default_global_program() will be used.
X
xuwei06 已提交
6659 6660 6661 6662 6663 6664 6665

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6666
    assert isinstance(program, Program)
X
xuwei06 已提交
6667 6668

    return program.global_block().var(name)
6669 6670


S
rename  
sneaxiy 已提交
6671
@signature_safe_contextmanager
L
lujun 已提交
6672 6673
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6674
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6675
    _dygraph_tracer_ = tracer
6676
    core._switch_tracer(tracer)
M
minqiyang 已提交
6677

6678 6679 6680
    try:
        yield
    finally:
6681 6682
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6683 6684


S
rename  
sneaxiy 已提交
6685
@signature_safe_contextmanager
L
lujun 已提交
6686
def _dygraph_place_guard(place):
6687 6688 6689
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
6690 6691
    if _in_eager_mode():
        core.eager._set_expected_place(place)
6692 6693
    _set_dygraph_tracer_expected_place(place)

6694 6695 6696
    try:
        yield
    finally:
6697
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
6698 6699 6700
        if _in_eager_mode():
            core.eager._set_expected_place(_global_expected_place_)
        _set_dygraph_tracer_expected_place(_global_expected_place_)
6701 6702


6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6719 6720
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6721 6722 6723 6724 6725 6726 6727 6728 6729
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6730
            import paddle
6731

Z
Zhang Ting 已提交
6732 6733 6734
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6735
            if support_gpu:
Z
Zhang Ting 已提交
6736
                place = paddle.CUDAPlace(0)
6737 6738

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6739 6740 6741
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6742

Z
Zhang Ting 已提交
6743
            with paddle.static.device_guard("cpu"):
6744
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6745 6746
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6747
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6748
                out = paddle.reshape(data1, shape=shape)
6749

Z
Zhang Ting 已提交
6750 6751
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6752 6753 6754
            result = exe.run(fetch_list=[out])
    """

6755 6756 6757 6758 6759
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6760
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6761
        raise ValueError(
6762
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6763
            "when there is no need to specify device. But received %s" % device)
6764 6765
    if index:
        device = ":".join([device, index])
6766
    pre_device = switch_device(device)
6767 6768 6769 6770
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6771 6772 6773 6774 6775


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6776
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6777 6778 6779 6780 6781 6782 6783

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6784 6785
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6786 6787 6788 6789
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6790 6791
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6792 6793 6794 6795 6796 6797 6798 6799
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6800
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6801 6802 6803 6804 6805 6806 6807 6808 6809 6810

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6811
            import paddle
G
guofei 已提交
6812 6813

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6814
            res = paddle.get_flags(flags)
G
guofei 已提交
6815 6816 6817 6818 6819 6820
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6821 6822
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6823 6824 6825 6826 6827 6828 6829
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6830 6831
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6832 6833 6834 6835 6836 6837 6838 6839
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6840 6841 6842 6843 6844 6845 6846


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6847 6848
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
                          core.MLUPlace)):
6849 6850 6851 6852 6853 6854 6855 6856 6857
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6858

6859 6860 6861
    if (place == "device"):
        return core.Place()

6862
    # GPU
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6878 6879

    # XPU
6880 6881 6882 6883 6884 6885 6886 6887 6888 6889
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

6915
    raise ValueError(
6916
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, MLUPlace and NPUPlace, but received {}.".
6917
        format(place))
6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret