未验证 提交 848cabfc 编写于 作者: L liym27 提交者: GitHub

Polish code for setitem and getitem (#32911)

上级 738bf20e
......@@ -39,6 +39,7 @@ from . import unique_name
import paddle.version as fluid_version
import warnings
import functools
from .variable_index import _getitem_impl_, _setitem_impl_
__all__ = [
'Program',
......@@ -778,141 +779,6 @@ class ParameterMetaClass(VariableMetaClass):
return issubclass(t, Parameter)
def _getitem_impl_(var, item):
"""
Slice the variable.
Args:
item(int/slice/tuple) : the index.
Returns:
Sliced variable
"""
if not isinstance(item, tuple):
item = [item]
decrease_axes = []
axes = []
starts = []
ends = []
steps = []
use_strided_slice = False
reverse_axis = []
max_integer = 2**31 - 1
for dim, slice_item in enumerate(item):
if isinstance(slice_item, slice):
start = slice_item.start
end = slice_item.stop
step = slice_item.step
if start is None and end is None and step is None:
continue
step = 1 if step is None else step
if start is None and end is None:
assert (step == -1)
reverse_axis.append(dim)
continue
if start is None:
start = 0
if end is None:
end = max_integer
else:
decrease_axes.append(dim)
start = slice_item
step = 1
end = slice_item + 1 if slice_item != -1 else max_integer
axes.append(dim)
starts.append(start)
ends.append(end)
steps.append(step)
use_strided_slice = True if step != 1 else use_strided_slice
inputs = {'Input': [var]}
attrs = {
'axes': axes,
'starts': [],
'ends': [],
'decrease_axis': decrease_axes
}
if use_strided_slice == True:
attrs['strides'] = []
infer_flags = list(1 for i in range(len(axes)))
from .layers import utils
def deal_attrs(attr, attr_name, tensor_attr_name, inputs, infer_flags):
if utils._contain_var(attr):
inputs[tensor_attr_name] = utils._convert_to_tensor_list(
attr, dtype="int64")
for i, dim in enumerate(attr):
if isinstance(dim, Variable):
attrs[attr_name].append(-1)
infer_flags[i] = -1
else:
attrs[attr_name].append(dim)
else:
attrs[attr_name] = attr
deal_attrs(starts, "starts", "StartsTensorList", inputs, infer_flags)
deal_attrs(ends, "ends", "EndsTensorList", inputs, infer_flags)
deal_attrs(steps, "strides", "StridesTensorList", inputs, infer_flags)
# infer_flags
attrs['infer_flags'] = infer_flags
out = var
target_block = default_main_program().current_block()
if use_strided_slice == False and len(axes) > 0:
# append slice_op here
slice_out_var = target_block.create_var(
name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
dtype=var.dtype)
target_block.append_op(
type="slice",
inputs=inputs,
outputs={'Out': [slice_out_var]},
attrs=attrs)
out = slice_out_var
elif use_strided_slice == True and len(axes) > 0:
strided_slice_out_var = target_block.create_var(
name=unique_name.generate_with_ignorable_key(var.name +
"_strided_slice"),
dtype=var.dtype)
target_block.append_op(
type="strided_slice",
inputs=inputs,
outputs={'Out': [strided_slice_out_var]},
attrs=attrs)
out = strided_slice_out_var
if len(reverse_axis) > 0:
reverse_out_var = target_block.create_var(
name=unique_name.generate_with_ignorable_key(var.name +
"_slice_reverse"),
dtype=var.dtype)
target_block.append_op(
type="reverse",
inputs={'X': out},
outputs={'Out': [reverse_out_var]},
attrs={'axis': reverse_axis})
out = reverse_out_var
return out
@six.add_metaclass(VariableMetaClass)
class Variable(object):
"""
......@@ -1768,160 +1634,7 @@ class Variable(object):
return _getitem_impl_(self, item)
def __setitem__(self, item, value):
inputs = {'Input': self}
# 1. Parse item
if not isinstance(item, tuple):
item = [item]
decrease_axes = []
axes = []
starts = []
ends = []
steps = []
max_integer = sys.maxsize
def replace_ellipsis(item):
# Use slice(None) to replace Ellipsis.
# For var, var.shape = [3,4,5,6]
#
# var[..., 1:2] -> var[:, :, :, 1:2]
# var[0, ...] -> var[0]
# var[0, ..., 1:2] -> var[0, :, :, 1:2]
item = list(item)
# Remove Variable to skip bug when counting Ellipsis
item_remove_var = [
ele for ele in item if not isinstance(ele, Variable)
]
ell_count = item_remove_var.count(Ellipsis)
if ell_count == 0:
return item
elif ell_count > 1:
raise IndexError(
"An index can only have a single ellipsis ('...')")
ell_idx = item.index(Ellipsis)
if ell_idx == len(item) - 1:
return item[:-1]
else:
item[ell_idx:ell_idx + 1] = [slice(None)] * (
len(self.shape) - len(item) + 1)
return item
item = replace_ellipsis(item)
for dim, slice_item in enumerate(item):
if isinstance(slice_item, slice):
start = slice_item.start
end = slice_item.stop
step = slice_item.step
if start is None and end is None and step is None:
continue
step = 1 if step is None else step
# TODO: support cases when step < 1
if not isinstance(step, Variable) and step == 0:
raise ValueError(
"When assign a value to a paddle.Tensor, step can not be 0, "
"but received step is {}.".format(step))
if isinstance(step, Variable) and (start is None or
end is None):
raise ValueError(
"When assign a value to a paddle.Tensor, it's not supported that "
"the start or end is None when the type of step is paddle.Tensor."
)
if start is None:
start = 0 if step > 0 else max_integer
if end is None:
end = max_integer if step > 0 else (0 - max_integer)
else:
decrease_axes.append(dim)
start = slice_item
end = slice_item + 1 if slice_item != -1 else max_integer
step = 1
axes.append(dim)
starts.append(start)
ends.append(end)
steps.append(step)
attrs = {
'axes': axes,
'starts': starts,
'ends': ends,
'steps': steps,
'decrease_axes': decrease_axes
}
from .layers import utils
if utils._contain_var(starts):
inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
del attrs['starts']
if utils._contain_var(ends):
inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
del attrs['ends']
if utils._contain_var(steps):
inputs['StepsTensorList'] = utils._convert_to_tensor_list(steps)
del attrs['steps']
# 2. Parse value
dtype = self.dtype
attrs['dtype'] = dtype
from .data_feeder import convert_dtype
# 2.1 value is an integer of float
if isinstance(value, (int, float)):
value = np.array([value]).astype(convert_dtype(dtype))
# 2.2 value is a np.ndarray
if isinstance(value, np.ndarray):
shape = list(value.shape)
if dtype == core.VarDesc.VarType.BOOL:
value_name = "bool_values"
values = [bool(v) for v in value.flat]
elif dtype == core.VarDesc.VarType.FP32:
value_name = "fp32_values"
values = [float(v) for v in value.flat]
elif dtype == core.VarDesc.VarType.FP64:
value_name = "fp64_values"
values = [float(v) for v in value.flat]
elif dtype == core.VarDesc.VarType.INT32:
value_name = "int32_values"
values = [int(v) for v in value.flat]
elif dtype == core.VarDesc.VarType.INT64:
value_name = "int64_values"
values = [int(v) for v in value.flat]
else:
raise TypeError(
"When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
"the data type of the paddle.Tensor must be bool, float32, int32 or int64, but "
"received %s." % convert_dtype(dtype))
attrs[value_name] = values
attrs["shape"] = shape
elif isinstance(value, Variable):
inputs["ValueTensor"] = value
else:
raise TypeError(
"Only support to assign an integer, float, numpy.ndarray or "
"paddle.Tensor to a paddle.Tensor, but received {}".format(
type(value)))
cur_block = default_main_program().current_block()
cur_block.append_op(
type="set_value", inputs=inputs, outputs={'Out': self}, attrs=attrs)
return self
return _setitem_impl_(self, item, value)
def get_value(self, scope=None):
"""
......
......@@ -15,12 +15,15 @@
from __future__ import print_function
import unittest
import paddle
from paddle.fluid.framework import default_main_program, Program, convert_np_dtype_to_dtype_, in_dygraph_mode
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import numpy as np
paddle.enable_static()
class TestVariable(unittest.TestCase):
def test_np_dtype_convert(self):
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import numpy as np
from . import unique_name
from . import core
MAX_INTEGER = 2**31 - 1
def replace_ellipsis(var, item):
from .framework import Variable
# Use slice(None) to replace Ellipsis.
# For var, var.shape = [3,4,5,6]
#
# var[..., 1:2] -> var[:, :, :, 1:2]
# var[0, ...] -> var[0]
# var[0, ..., 1:2] -> var[0, :, :, 1:2]
item = list(item)
# Remove Variable to skip bug when counting Ellipsis
item_remove_var = [ele for ele in item if not isinstance(ele, Variable)]
ell_count = item_remove_var.count(Ellipsis)
if ell_count == 0:
return item
elif ell_count > 1:
raise IndexError("An index can only have a single ellipsis ('...')")
ell_idx = item.index(Ellipsis)
if ell_idx == len(item) - 1:
return item[:-1]
else:
item[ell_idx:ell_idx + 1] = [slice(None)] * (
len(var.shape) - len(item) + 1)
return item
def is_integer_or_scalar_tensor(ele):
from .framework import Variable
if isinstance(ele, int):
return True
elif isinstance(ele, Variable):
if len(ele.shape) == 1 and ele.shape[0] == 1:
return True
return False
def deal_attrs(attrs, attr, attr_name, tensor_attr_name, inputs, infer_flags):
from .framework import Variable
from .layers import utils
if utils._contain_var(attr):
inputs[tensor_attr_name] = utils._convert_to_tensor_list(
attr, dtype="int64")
for i, dim in enumerate(attr):
if isinstance(dim, Variable):
attrs[attr_name].append(-1)
infer_flags[i] = -1
else:
attrs[attr_name].append(dim)
else:
attrs[attr_name] = attr
def _getitem_impl_(var, item):
"""
Slice the variable.
Args:
item(int/slice/tuple) : the index.
Returns:
Sliced variable
"""
from .framework import default_main_program
if not isinstance(item, tuple):
item = (item, )
decrease_axes = []
axes = []
starts = []
ends = []
steps = []
reverse_axis = []
use_strided_slice = False
for dim, slice_item in enumerate(item):
if is_integer_or_scalar_tensor(slice_item):
decrease_axes.append(dim)
start = slice_item
step = 1
end = slice_item + 1 if slice_item != -1 else MAX_INTEGER
elif isinstance(slice_item, slice):
start = slice_item.start
end = slice_item.stop
step = slice_item.step
if start is None and end is None and step is None:
continue
step = 1 if step is None else step
if start is None and end is None:
assert (step == -1)
reverse_axis.append(dim)
continue
start = 0 if start is None else start
end = MAX_INTEGER if end is None else end
else:
raise IndexError(
"Valid index accept int or slice or ellipsis, but received {}.".
format(slice_item))
axes.append(dim)
starts.append(start)
ends.append(end)
steps.append(step)
use_strided_slice = True if step != 1 else use_strided_slice
inputs = {'Input': [var]}
attrs = {
'axes': axes,
'starts': [],
'ends': [],
'decrease_axis': decrease_axes
}
if use_strided_slice:
attrs['strides'] = []
infer_flags = [1] * len(axes)
deal_attrs(attrs, starts, "starts", "StartsTensorList", inputs, infer_flags)
deal_attrs(attrs, ends, "ends", "EndsTensorList", inputs, infer_flags)
deal_attrs(attrs, steps, "strides", "StridesTensorList", inputs,
infer_flags)
attrs['infer_flags'] = infer_flags
out = var
if len(axes) > 0:
target_block = default_main_program().current_block()
op_type = "strided_slice" if use_strided_slice else "slice"
slice_out_var = target_block.create_var(
name=unique_name.generate_with_ignorable_key(var.name + "_" +
op_type),
dtype=var.dtype)
target_block.append_op(
type=op_type,
inputs=inputs,
outputs={'Out': [slice_out_var]},
attrs=attrs)
out = slice_out_var
if len(reverse_axis) > 0:
from .layers.tensor import reverse
out = reverse(out, axis=reverse_axis)
return out
def _setitem_impl_(var, item, value):
from .framework import default_main_program, Variable
inputs = {'Input': var}
# 1. Parse item
if not isinstance(item, tuple):
item = (item, )
decrease_axes = []
axes = []
starts = []
ends = []
steps = []
item = replace_ellipsis(var, item)
for dim, slice_item in enumerate(item):
if is_integer_or_scalar_tensor(slice_item):
decrease_axes.append(dim)
start = slice_item
end = slice_item + 1 if slice_item != -1 else MAX_INTEGER
step = 1
elif isinstance(slice_item, slice):
start = slice_item.start
end = slice_item.stop
step = slice_item.step
if start is None and end is None and step is None:
continue
step = 1 if step is None else step
if not isinstance(step, Variable) and step == 0:
raise ValueError(
"When assign a value to a paddle.Tensor, step can not be 0, "
"but received step is {}.".format(step))
if isinstance(step, Variable) and (start is None or end is None):
raise ValueError(
"When assign a value to a paddle.Tensor, it's not supported that "
"the start or end is None when the type of step is paddle.Tensor."
)
if start is None:
start = 0 if step > 0 else MAX_INTEGER
if end is None:
end = MAX_INTEGER if step > 0 else (0 - MAX_INTEGER)
else:
raise IndexError(
"Valid index accept int or slice or ellipsis, but received {}.".
format(slice_item))
axes.append(dim)
starts.append(start)
ends.append(end)
steps.append(step)
attrs = {
'axes': axes,
'starts': starts,
'ends': ends,
'steps': steps,
'decrease_axes': decrease_axes
}
from .layers import utils
if utils._contain_var(starts):
inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
del attrs['starts']
if utils._contain_var(ends):
inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
del attrs['ends']
if utils._contain_var(steps):
inputs['StepsTensorList'] = utils._convert_to_tensor_list(steps)
del attrs['steps']
# 2. Parse value
dtype = var.dtype
attrs['dtype'] = dtype
from .data_feeder import convert_dtype
# 2.1 value is an integer of float
if isinstance(value, (int, float)):
value = np.array([value]).astype(convert_dtype(dtype))
# 2.2 value is a np.ndarray
if isinstance(value, np.ndarray):
shape = list(value.shape)
if dtype == core.VarDesc.VarType.BOOL:
value_name = "bool_values"
values = [bool(v) for v in value.flat]
elif dtype == core.VarDesc.VarType.FP32:
value_name = "fp32_values"
values = [float(v) for v in value.flat]
elif dtype == core.VarDesc.VarType.FP64:
value_name = "fp64_values"
values = [float(v) for v in value.flat]
elif dtype == core.VarDesc.VarType.INT32:
value_name = "int32_values"
values = [int(v) for v in value.flat]
elif dtype == core.VarDesc.VarType.INT64:
value_name = "int64_values"
values = [int(v) for v in value.flat]
else:
raise TypeError(
"When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
"the data type of the paddle.Tensor must be bool, float32, int32 or int64, but "
"received %s." % convert_dtype(dtype))
attrs[value_name] = values
attrs["shape"] = shape
elif isinstance(value, Variable):
inputs["ValueTensor"] = value
else:
raise TypeError(
"Only support to assign an integer, float, numpy.ndarray or "
"paddle.Tensor to a paddle.Tensor, but received {}".format(
type(value)))
cur_block = default_main_program().current_block()
cur_block.append_op(
type="set_value", inputs=inputs, outputs={'Out': var}, attrs=attrs)
return var
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册