framework.py 190.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'ComplexVariable',
53
    'load_op_library',
54
    'require_version',
55
    'device_guard',
G
guofei 已提交
56 57
    'set_flags',
    'get_flags',
58
]
Y
Yu Yang 已提交
59

Q
qiaolongfei 已提交
60 61 62 63
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
64 65
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
66 67
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
68
_current_device = None
69 70
global_prog_seed = 0

71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
179
def in_dygraph_mode():
L
lujun 已提交
180
    """
181 182 183 184
    :alias_main: paddle.in_dygraph_mode
	:alias: paddle.in_dygraph_mode
	:old_api: paddle.fluid.framework.in_dygraph_mode

Y
Youwei Song 已提交
185
    This function checks whether the program runs in dynamic graph mode or not.
186 187 188
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
189 190

    Returns:
Y
Youwei Song 已提交
191
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
192 193 194 195

    Examples:
        .. code-block:: python

196
            import paddle.fluid as fluid
L
lujun 已提交
197

198 199 200 201
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
202
    """
L
lujun 已提交
203
    return _dygraph_tracer_ is not None
204 205


206 207 208
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
209
        ), "We don't support %s in imperative mode" % func.__name__
210 211 212 213 214 215 216 217
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
218
        ), "We Only support %s in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative Mode" % func.__name__
219 220 221 222 223
        return func(*args, **kwargs)

    return __impl__


224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


240 241
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
242
fake_interface_only = wrap_decorator(_fake_interface_only_)
243 244


L
lujun 已提交
245 246
def _dygraph_tracer():
    return _dygraph_tracer_
247

W
Wu Yi 已提交
248

M
minqiyang 已提交
249
def _current_expected_place():
L
lujun 已提交
250
    return _dygraph_current_expected_place_
M
minqiyang 已提交
251 252


L
Leo Chen 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
270
def _cpu_num():
271
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
272 273 274 275 276 277 278 279
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
280
        os.environ['CPU_NUM'] = str(1)
281
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
282 283 284 285 286 287 288 289 290 291
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
292 293


C
chengduo 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
309
def cuda_places(device_ids=None):
L
lujun 已提交
310
    """
311 312 313 314 315
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
316 317

    If :code:`device_ids` is None, environment variable of
318
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
319 320 321
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
322
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
323 324

    If :code:`device_ids` is not None, it should be the device
325
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
326 327 328
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
329 330
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
331 332

    Returns:
333
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
334 335 336 337

    Examples:
        .. code-block:: python

338
            import paddle.fluid as fluid
L
lujun 已提交
339 340 341
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
342 343 344
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
345
        device_ids = _cuda_ids()
S
sneaxiy 已提交
346 347 348 349 350 351
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
352
    """
353
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
354 355 356
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
357 358
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
359 360
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
361

362 363
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
364 365

    Returns:
366
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
367 368 369 370

    Examples:
        .. code-block:: python

371
            import paddle.fluid as fluid
L
lujun 已提交
372 373 374
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
375 376 377 378 379 380
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
381
    """
382
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
383 384 385

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
386 387 388 389
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
390

391 392
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
393 394

    Returns:
395
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
396 397 398 399

    Examples:
        .. code-block:: python

400
            import paddle.fluid as fluid
L
lujun 已提交
401 402 403 404 405
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
406 407 408
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
409 410
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
411 412


413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
439
@signature_safe_contextmanager
440 441
def name_scope(prefix=None):
    """
442 443
    :api_attr: Static Graph

444 445
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
446 447 448
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
449 450

    Args:
T
Tao Luo 已提交
451
        prefix(str, optional): prefix. Default is none.
452 453 454

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
455

456
          import paddle.fluid as fluid
457
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
458 459 460 461 462 463
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
464
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
465
                f = fluid.layers.pow(d, 2.0)
466
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
486 487
    """
    # TODO(panyx0718): Only [0-9a-z].
488
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
489 490 491
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
492
        assert prefix, "namescope prefix can not be empty."
493 494
        global _name_scope
        _name_scope = _name_scope.child(prefix)
495 496 497 498
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
499 500 501 502 503 504 505 506 507 508 509 510


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
511 512 513
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
514 515 516 517


def grad_var_name(var_name):
    """
518 519
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
520 521 522
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
523

524
def convert_np_dtype_to_dtype_(np_dtype):
525 526
    """
    Convert the data type in numpy to the data type in Paddle
527

528
    Args:
529
        np_dtype(np.dtype): the data type in numpy.
530

531 532
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
533 534

    """
535 536
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
537
        return core.VarDesc.VarType.FP32
538
    elif dtype == np.float64:
539
        return core.VarDesc.VarType.FP64
540
    elif dtype == np.float16:
541
        return core.VarDesc.VarType.FP16
542
    elif dtype == np.int32:
543
        return core.VarDesc.VarType.INT32
544
    elif dtype == np.int16:
545
        return core.VarDesc.VarType.INT16
546
    elif dtype == np.int64:
547
        return core.VarDesc.VarType.INT64
548
    elif dtype == np.bool:
549
        return core.VarDesc.VarType.BOOL
550 551
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
552 553
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
554 555
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
556
    else:
M
minqiyang 已提交
557
        raise ValueError("Not supported numpy dtype %s" % dtype)
558 559 560


def dtype_is_floating(dtype):
561 562 563
    """
    Check the data type is floating or not.
    Args:
564
        dtype(np.dtype|core.VarDesc.VarType): data type.
565 566 567 568 569
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
570
    if not isinstance(dtype, core.VarDesc.VarType):
571 572
        dtype = convert_np_dtype_to_dtype_(dtype)

573 574 575 576
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
577 578


Y
Yang Yang(Tony) 已提交
579
def _debug_string_(proto, throw_on_error=True):
580 581 582 583 584 585 586 587 588 589 590
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
591
    error_fields = list()
Y
Yang Yang(Tony) 已提交
592
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
593 594
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
595 596 597
    return proto.__str__()


598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
655
    target_block = default_main_program().current_block()
656 657 658 659 660 661 662 663 664 665 666

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
667
            })
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
707
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
708
                fill_constant([1], 1, force_cpu=True, out=temp_1)
709
                temp_end = target_block.create_var(dtype=slice_item.dtype)
710
                target_block.append_op(
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
750

751
    # starts
L
Leo Chen 已提交
752
    if contain_var(slice_start):
753 754 755 756 757 758 759 760
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
761 762 763 764
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
765 766 767 768 769 770 771
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
772 773 774
    else:
        attrs['ends'] = slice_end

775 776
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
777
        if contain_var(slice_step):
778 779 780 781 782 783 784
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
785 786
        else:
            attrs['strides'] = slice_step
787 788 789 790 791 792
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
793
        slice_out_var = target_block.create_var(
794 795 796
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

797
        target_block.append_op(
798 799 800 801 802 803 804
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
805
        strided_slice_out_var = target_block.create_var(
806 807 808
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
809
        target_block.append_op(
810 811 812 813 814 815 816 817
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
818
        reverse_out_var = target_block.create_var(
819 820 821
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
822
        target_block.append_op(
823 824 825 826 827 828 829 830 831 832 833
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
834
class Variable(object):
835
    """
J
Jiabin Yang 已提交
836
    **Notes**:
837
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
838

839 840
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
841 842 843
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
844
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
845 846
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
847

848
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
849
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
850

T
tianshuo78520a 已提交
851
    Most of a Variable's member variables can be set to be None. It mean
852
    it is not available or will be specified later.
853

854
    Examples:
855 856
        In Static Graph Mode:

857 858
        .. code-block:: python

859
            import paddle.fluid as fluid
860
            cur_program = fluid.Program()
861 862 863 864
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
865
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
866 867 868 869 870 871 872 873 874

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

875 876
    """

Y
Yu Yang 已提交
877 878
    def __init__(self,
                 block,
Y
Yu Yang 已提交
879
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
880 881 882 883
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
884
                 capacity=None,
Q
QI JUN 已提交
885
                 persistable=None,
F
fengjiayi 已提交
886
                 error_clip=None,
Y
Yu Yang 已提交
887
                 stop_gradient=False,
F
fengjiayi 已提交
888
                 is_data=False,
H
Huihuang Zheng 已提交
889
                 need_check_feed=False,
H
hong 已提交
890
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
891
                 **kwargs):
Y
Yu Yang 已提交
892 893
        self.block = block
        if name is None:
Y
Yu Yang 已提交
894
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
895

Y
Yu Yang 已提交
896
        if dtype is not None:
897
            if not isinstance(dtype, core.VarDesc.VarType):
898
                dtype = convert_np_dtype_to_dtype_(dtype)
899

H
hong 已提交
900 901
        self.belong_to_optimizer = belong_to_optimizer

902 903 904 905 906
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
907

908 909 910
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
911

912 913 914 915 916 917 918
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
919

920
        if shape is not None:
921
            if is_new_var:
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
963

964 965
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
966

967 968 969 970 971 972 973
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
974

975 976 977 978
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
979

980
    @fake_interface_only
981 982
    def detach(self):
        """
J
Jiabin Yang 已提交
983
        **Notes**:
T
tianshuo78520a 已提交
984
            **This API is ONLY available in Dygraph mode**
985

986
        Returns a new Variable, detached from the current graph.
987

988
        Returns:
J
Jiabin Yang 已提交
989
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
990

991

992 993 994 995 996
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
997
                from paddle.fluid.dygraph import Linear
998 999 1000 1001
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1002
                    linear = Linear(32, 64)
1003
                    data = to_variable(data)
1004
                    x = linear(data)
1005 1006 1007
                    y = x.detach()

        """
1008
        pass
1009

1010
    @fake_interface_only
1011
    def numpy(self):
1012
        """
J
Jiabin Yang 已提交
1013
        **Notes**:
T
tianshuo78520a 已提交
1014
            **This API is ONLY available in Dygraph mode**
1015

J
Jiabin Yang 已提交
1016
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1017 1018 1019 1020 1021

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1022
            ndarray: dtype is same as current Variable
1023 1024 1025 1026 1027 1028

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1029
                from paddle.fluid.dygraph import Linear
1030 1031 1032 1033
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1034
                    linear = Linear(32, 64)
1035
                    data = to_variable(data)
1036
                    x = linear(data)
1037 1038 1039
                    print(x.numpy())

        """
1040
        pass
1041

1042
    @fake_interface_only
1043 1044
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1045
        **Notes**:
T
tianshuo78520a 已提交
1046
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1058
                from paddle.fluid.dygraph import Linear
1059 1060
                import numpy as np

1061
                data = np.ones([3, 1024], dtype='float32')
1062
                with fluid.dygraph.guard():
1063
                    linear = fluid.dygraph.Linear(1024, 4)
1064
                    t = to_variable(data)
1065
                    linear(t)  # call with default weight
1066
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1067 1068
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1069 1070

        """
1071
        pass
1072

1073
    @fake_interface_only
1074
    def backward(self, backward_strategy=None):
1075
        """
J
Jiabin Yang 已提交
1076
        **Notes**:
T
tianshuo78520a 已提交
1077
            **This API is ONLY available in Dygraph mode**
1078 1079 1080

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
1081 1082
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
1083

J
Jiabin Yang 已提交
1084 1085
        Returns:
            NoneType: None
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
1098 1099
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
1100 1101 1102 1103 1104 1105 1106 1107 1108
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
1109
        pass
1110

1111
    @fake_interface_only
1112
    def gradient(self):
1113
        """
J
Jiabin Yang 已提交
1114
        **Notes**:
T
tianshuo78520a 已提交
1115
            **This API is ONLY available in Dygraph mode**
1116 1117 1118

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1119
        Returns:
1120
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1121 1122 1123 1124 1125 1126 1127

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1128
                # example1: return ndarray
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1156
        """
1157
        pass
1158

1159
    @fake_interface_only
1160
    def clear_gradient(self):
1161
        """
J
Jiabin Yang 已提交
1162
        **Notes**:
T
tianshuo78520a 已提交
1163
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1164 1165

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1166

J
Jiabin Yang 已提交
1167
        Clear  (set to ``0`` ) the Gradient of Current Variable
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1194
        pass
X
Xin Pan 已提交
1195

1196
    def __str__(self):
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
            var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})".\
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
            var_str = "{name} : fluid.{type})".\
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1241

F
update  
fengjiayi 已提交
1242
    def to_string(self, throw_on_error, with_details=False):
1243 1244 1245
        """
        Get debug string.

J
Jiabin Yang 已提交
1246 1247 1248 1249 1250
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1251

1252 1253
        Returns:
            str: The debug string.
1254 1255 1256 1257 1258

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1259

1260 1261 1262 1263 1264
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1265
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1266
                print("=============with detail===============")
1267
                print(new_variable.to_string(True, True))
1268
        """
F
update  
fengjiayi 已提交
1269 1270
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1271
        protostr = self.desc.serialize_to_string()
1272
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1273 1274 1275 1276
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1277 1278 1279
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1280
        return res_str
1281 1282 1283

    __repr__ = __str__

1284
    @property
1285
    def stop_gradient(self):
J
Jiabin Yang 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1301 1302
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1303 1304 1305
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1306 1307
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1308 1309 1310 1311
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1312
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1313 1314
                assert (out1.gradient() == 0).all()
        """
1315
        return self._stop_gradient
1316

1317 1318
    @stop_gradient.setter
    def stop_gradient(self, s):
1319
        self._stop_gradient = s
1320

1321 1322
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1344
        return self.desc.persistable()
1345

Y
Yu Yang 已提交
1346 1347
    @persistable.setter
    def persistable(self, p):
1348
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1349

Y
Yu Yang 已提交
1350 1351
    @property
    def name(self):
J
Jiabin Yang 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1368
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1369

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1390 1391
    @name.setter
    def name(self, new_name):
1392
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1393

Y
Yu Yang 已提交
1394 1395
    @property
    def shape(self):
J
Jiabin Yang 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1413
        # convert to tuple, make it as same as numpy API.
1414
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1415 1416

    @property
F
fengjiayi 已提交
1417
    def dtype(self):
J
Jiabin Yang 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1434
        return self.desc.dtype()
Y
Yu Yang 已提交
1435 1436 1437

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1459 1460 1461
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1462
        return self.desc.lod_level()
Y
Yu Yang 已提交
1463

Y
Yu Yang 已提交
1464 1465
    @property
    def type(self):
J
Jiabin Yang 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1482
        return self.desc.type()
Y
Yu Yang 已提交
1483

W
Wu Yi 已提交
1484
    def _set_error_clip(self, error_clip):
1485 1486 1487 1488 1489 1490 1491 1492 1493
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1494 1495
        self.error_clip = error_clip

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1536
            raise ValueError("slice step can not be zero")
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1612
    def _cloneVar(self, copy=False):
1613 1614
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1615 1616
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1617 1618 1619 1620
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1621
        new_var = self._cloneVar()
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1632
        new_var = self._cloneVar()
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1643
                return self._cloneVar(True)
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1662
                return self._cloneVar(True)
1663
            index = int(item)
1664
            if (index > 0 and index >= self.shape[axis]) \
1665 1666 1667 1668 1669 1670 1671
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1672
        return _getitem_impl_(self, item)
1673

Y
Yu Yang 已提交
1674

F
fengjiayi 已提交
1675 1676 1677
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1678

1679 1680
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1681 1682 1683 1684
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1685
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1686 1687 1688 1689
        ret_values.append(op_proto)
    return ret_values


1690 1691 1692 1693 1694 1695 1696
class ComplexVariable(object):
    """
    The Variable defined on the complex number domain. It contains two common 
    real number Variables as its members, :attr:`real` and :attr:`imag` 
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
1697
        **The constructor of ComplexVariable should not be invoked directly.**
1698

1699
        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph ComplexVariable with complex number data.**
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

    Args:
        real (Variable): The Variable holding real-part data.
        imag (Variable): The Variable holding imaginery-part data.
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            a = np.array([1.0+2.0j, 0.2])
            with fluid.dygraph.guard():
                var = fluid.dygraph.to_variable(a, name="new_var")
                print(var.name, var.dtype, var.shape)
                # ({'real': u'new_var.real', 'imag': u'new_var.imag'}, 'complex128', [2L]) 
                print(var.numpy())
                # [1. +2.j 0.2+0.j]
    """

    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
        return "REAL: " + self.real.__str__() + "IMAG: " + self.imag.__str__()

    __repr__ = __str__


F
fengjiayi 已提交
1771
class OpProtoHolder(object):
1772 1773 1774 1775
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1785
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1786 1787 1788 1789 1790 1791
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1792 1793 1794 1795 1796 1797 1798 1799
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1800 1801
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1802 1803
        return self.op_proto_map[type]

1804 1805 1806 1807 1808 1809
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1810 1811 1812 1813
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1814
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1815
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1816 1817
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1818 1819
        }

F
fengjiayi 已提交
1820

X
Xin Pan 已提交
1821
class Operator(object):
1822
    """
1823 1824 1825 1826 1827 1828 1829
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1830
        type(str): The type of operator. Default None.
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1851
        Block.append_op or Block._prepend_op instead.
1852 1853 1854 1855

    Examples:
        .. code-block:: python

1856
            import paddle.fluid as fluid
1857
            cur_program = fluid.Program()
1858 1859 1860 1861 1862
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1863
    """
1864
    OP_WITHOUT_KERNEL_SET = {
1865 1866
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1867 1868
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1869
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue'
1870
    }
1871

Y
Yu Yang 已提交
1872 1873
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1874
                 desc,
Y
Yu Yang 已提交
1875 1876 1877
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1878
                 attrs=None):
L
lujun 已提交
1879
        if in_dygraph_mode():
1880 1881
            if type is None:
                raise ValueError(
1882
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1883
            self._type = type
M
minqiyang 已提交
1884
            self.attrs = attrs if attrs else {}
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1899
                )] = self.block.program._op_role
1900 1901 1902

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1903 1904
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1905 1906 1907 1908 1909 1910 1911 1912

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1913
                    "`type` to initialized an Operator can not be None.")
1914 1915
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
1916 1917 1918 1919 1920 1921 1922
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
1923 1924 1925 1926 1927 1928 1929

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
1961
                        if not isinstance(in_args, (list, tuple)):
1962 1963 1964 1965 1966 1967
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1968
                        for index, arg in enumerate(in_args):
1969 1970 1971 1972
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1973
                            elif isinstance(arg, (Variable, core.VarBase)):
1974
                                in_arg_names.append(cpt.to_text(arg.name))
1975
                            else:
1976 1977 1978 1979
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
1980 1981
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2008
                        if not in_dygraph_mode():
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2028
    def _has_kernel(self, op_type):
2029 2030
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2031
    def to_string(self, throw_on_error):
2032
        """
2033 2034
        Get debug string.

2035
        Args:
2036 2037
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2038

2039 2040
        Returns:
            str: The debug string.
2041 2042

        """
2043
        protostr = self.desc.serialize_to_string()
2044
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2045 2046
        return _debug_string_(proto, throw_on_error)

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2140
    def __str__(self):
2141
        return self._to_readable_code()
2142 2143 2144

    __repr__ = __str__

F
fengjiayi 已提交
2145 2146
    @property
    def type(self):
2147
        return self.desc.type()
F
fengjiayi 已提交
2148 2149

    def input(self, name):
2150
        """
2151
        Get the input arguments according to the input parameter name.
2152

2153 2154
        Args:
            name(str): The input parameter name.
2155

2156 2157 2158
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2159
        """
F
fengjiayi 已提交
2160 2161
        return self.desc.input(name)

W
Wu Yi 已提交
2162
    def _rename_input(self, old_name, new_name):
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2173
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2174

W
Wu Yi 已提交
2175
    def _rename_output(self, old_name, new_name):
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2186
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2187

F
fengjiayi 已提交
2188 2189 2190 2191
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2192 2193 2194 2195 2196 2197 2198 2199
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2200
    def output(self, name):
2201
        """
2202
        Get output arguments by the output parameter name.
2203

2204 2205
        Args:
            name(str): The output parameter name.
2206

2207 2208 2209
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2210
        """
F
fengjiayi 已提交
2211 2212 2213 2214 2215 2216
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2217 2218 2219 2220 2221 2222 2223 2224
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2225
    def has_attr(self, name):
2226
        """
2227 2228
        Whether this Operator has the attribute with name or not.

2229
        Args:
2230
            name(str): the attribute name.
2231

2232 2233
        Returns:
            bool: True if has this attribute.
2234 2235

        """
F
fengjiayi 已提交
2236 2237 2238
        return self.desc.has_attr(name)

    def attr_type(self, name):
2239
        """
2240
        Get the type of attribute by attribute's name.
2241

2242 2243
        Args:
            name(str): the attribute name.
2244

2245 2246
        Returns:
            core.AttrType: the attribute type.
2247
        """
F
fengjiayi 已提交
2248 2249
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2250
    def _set_attr(self, name, val):
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2261 2262
        self._update_desc_attr(name, val)

2263 2264 2265
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2277 2278
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2279 2280
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2281
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2282 2283 2284 2285
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2286
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2287

F
fengjiayi 已提交
2288 2289 2290 2291 2292
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2293
        """
2294 2295
        Get the attribute by name.

2296
        Args:
2297
            name(str): the attribute name.
2298

2299 2300
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2301 2302
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2303
        return self.desc.attr(name)
Y
Yu Yang 已提交
2304

W
Wu Yi 已提交
2305
    def _block_attr_id(self, name):
2306
        """
G
gongweibao 已提交
2307
        Get the block attribute's id by name.
2308

2309 2310
        Args:
            name(str): the attribute name.
2311

2312 2313
        Returns:
            int: the block index.
2314
        """
W
Wu Yi 已提交
2315
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2316

W
Wu Yi 已提交
2317
    def _block_attr(self, name):
G
gongweibao 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2328
        id = self._block_attr_id(name)
G
gongweibao 已提交
2329 2330 2331
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2332
    def _blocks_attr(self, name):
G
gongweibao 已提交
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2343
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2344 2345 2346 2347 2348
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2349
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2360
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2361

J
JiayiFeng 已提交
2362
    def all_attrs(self):
F
fengjiayi 已提交
2363
        """
2364 2365 2366
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2367
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2368 2369 2370 2371
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2372 2373
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2374
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2375 2376 2377
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2378
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2379 2380 2381 2382
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2383 2384
        return attr_map

2385 2386 2387 2388 2389 2390 2391 2392 2393
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
        else:
            return False

Y
Yu Yang 已提交
2394

Y
Yu Yang 已提交
2395
class Block(object):
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2410
        use `Program._create_block()` to create a block.
2411 2412 2413 2414

    Examples:
        .. code-block:: python

2415 2416 2417
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2418 2419 2420 2421 2422 2423 2424 2425 2426
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2427
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2428
        self.desc = program.desc.block(idx)
2429
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2430
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2431
        self.program = program
2432
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2433

2434
    def __str__(self):
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2481

F
fengjiayi 已提交
2482 2483
    def to_string(self, throw_on_error, with_details=False):
        """
2484 2485
        Get debug string.

F
fengjiayi 已提交
2486 2487
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2488
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2489
            with_details(bool): more details about variables and parameters
2490 2491
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2492

2493 2494
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2495 2496 2497 2498
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2499
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2500 2501
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2502
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2503
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2504
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2505
            for op in self.ops:
F
fengjiayi 已提交
2506 2507
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2508 2509 2510
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2511 2512
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2513 2514
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2515 2516 2517

    __repr__ = __str__

Y
Yu Yang 已提交
2518 2519
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2520
        return self.desc.parent
Y
Yu Yang 已提交
2521

Y
Yu Yang 已提交
2522 2523 2524 2525
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2526
    def _set_forward_block_idx(self, idx):
2527 2528 2529 2530 2531 2532 2533 2534 2535
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2536
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2537

2538 2539 2540 2541 2542 2543 2544 2545
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2546 2547
    @property
    def idx(self):
Y
Yu Yang 已提交
2548
        return self.desc.id
Y
Yu Yang 已提交
2549

Q
Qiao Longfei 已提交
2550
    def var(self, name):
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2564
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2565 2566 2567
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2568 2569
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2570
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2571
        return v
Q
Qiao Longfei 已提交
2572

X
Xin Pan 已提交
2573
    def _find_var_recursive(self, name):
2574 2575 2576 2577 2578 2579 2580
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2581
            Variable: the Variable with the giving name. Or None if not found.
2582
        """
Y
Yu Yang 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2607
        return None
Y
Yu Yang 已提交
2608

X
Xin Pan 已提交
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2628

Q
Qiao Longfei 已提交
2629
    def all_parameters(self):
2630
        return list(self.iter_parameters())
2631

2632
    def iter_parameters(self):
M
minqiyang 已提交
2633
        return (item[1] for item in six.iteritems(self.vars)
2634
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2635

Y
Yu Yang 已提交
2636
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2637 2638 2639
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2640 2641 2642
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2643
        return var
Y
Yu Yang 已提交
2644

Q
Qiao Longfei 已提交
2645 2646 2647
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2648
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2649 2650
        """
        Rename variable in vars and ops' inputs and outputs
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2663
        """
M
minqiyang 已提交
2664 2665
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2666

T
typhoonzero 已提交
2667
        if not self.has_var(name):
2668
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2669 2670
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2671
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2672 2673 2674 2675 2676 2677
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2678
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2679 2680 2681 2682
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2683
        orig_var_type = v.type
M
minqiyang 已提交
2684
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2685
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2686
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2687
        if var_type == "Parameter":
L
Leo Chen 已提交
2688 2689
            if in_dygraph_mode():
                var = ParamBase(
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2700 2701
                var = Parameter(
                    self,
2702 2703 2704 2705 2706 2707 2708 2709 2710
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2711
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2712 2713
            var = Variable(
                self,
T
typhoonzero 已提交
2714
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2715 2716 2717 2718
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2719
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2720 2721 2722
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2723
        self._sync_with_cpp()
2724
        return var
T
typhoonzero 已提交
2725

W
Wu Yi 已提交
2726 2727
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2728
        self.desc._remove_var(cpt.to_bytes(name))
2729 2730
        del self.vars[name]

Y
Yu Yang 已提交
2731 2732
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2733
        param = None
L
Leo Chen 已提交
2734
        if in_dygraph_mode():
2735
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2736 2737
        else:
            param = Parameter(global_block, *args, **kwargs)
2738
        if 'initializer' in kwargs:
2739 2740 2741 2742 2743

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2744 2745 2746 2747 2748
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2760
                # TODO already inited, do nothing, should log a warning
2761 2762 2763
                pass
            else:
                initializer(param, self)
2764
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2765
        return param
Y
Yu Yang 已提交
2766

Y
Yu Yang 已提交
2767
    def append_op(self, *args, **kwargs):
2768 2769 2770 2771 2772 2773
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2774
        if in_dygraph_mode():
2775
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2776
            type = kwargs.get("type", None)
2777 2778 2779
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2780
                type=type,
M
minqiyang 已提交
2781 2782
                inputs=None,
                outputs=None,
2783
                attrs=attrs)
2784

M
minqiyang 已提交
2785 2786 2787
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2788
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2789 2790

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2791
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2792 2793
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2794
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2795
        else:
2796 2797 2798 2799 2800 2801 2802 2803 2804
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2805
            self.ops.append(op)
M
minqiyang 已提交
2806

2807 2808
        return op

W
Wu Yi 已提交
2809
    def _insert_op(self, index, *args, **kwargs):
2810 2811 2812 2813 2814 2815 2816 2817 2818
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2819 2820
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2821 2822 2823 2824
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2825
    def _remove_op(self, index):
2826 2827 2828 2829 2830 2831 2832 2833 2834
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2835 2836
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2837 2838
        del self.ops[index]

W
Wu Yi 已提交
2839
    def _slice_ops(self, start, end):
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2850
        return self.ops[start:end]
Y
Yancey1989 已提交
2851

W
Wu Yi 已提交
2852
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2853
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2854 2855
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2856
            op = Operator(
J
Jiabin Yang 已提交
2857
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2858

J
Jiabin Yang 已提交
2859
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2860
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2861 2862
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2863
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2864
        else:
2865 2866 2867 2868 2869 2870 2871 2872
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2873
            self.ops.insert(0, op)
2874

Y
Yu Yang 已提交
2875 2876
        return op

W
Wu Yi 已提交
2877
    def _sync_with_cpp(self):
2878
        """
2879 2880
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2881
        """
Q
Qiao Longfei 已提交
2882 2883 2884 2885 2886
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2887
        # sync variables removed from c++ end
2888
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2889
            if not self.desc.find_var(cpt.to_bytes(var)):
2890 2891
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2892
        # sync operators from cpp
2893 2894 2895 2896
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2913 2914 2915 2916 2917

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2918
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2919 2920 2921 2922 2923 2924 2925

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2939 2940 2941 2942
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2943
    def _copy_param_info_from(self, other):
2944
        """
2945 2946
        Copy the information of parameters from the other block.

2947
        Args:
2948 2949 2950 2951 2952
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2953 2954 2955 2956 2957

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2958 2959
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2960
        for p in other.iter_parameters():
2961 2962 2963
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
2964 2965
                # if the Parameter is pruned, v may be None
                continue
2966
            assert isinstance(v, Variable)
2967
            new_p = None
L
Leo Chen 已提交
2968 2969
            if in_dygraph_mode():
                new_p = ParamBase(
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
2981 2982
                new_p = Parameter(
                    block=self,
2983 2984 2985
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
2986 2987
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
2988 2989 2990 2991 2992 2993
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
2994 2995
            self.vars[new_p.name] = new_p

2996
    def _clone_variable(self, var, force_persistable=True):
2997 2998
        """
        Clone a variable into current block.
2999

3000 3001
        Args:
            var: the variable to be cloned.
3002 3003 3004
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3005 3006

        Returns:
3007
            Variable: the new  variable cloned from 'var' in current block.
3008 3009
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3010 3011 3012 3013 3014
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3015 3016
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3017
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3018 3019 3020 3021 3022 3023
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3024
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3025 3026
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3027 3028 3029 3030 3031 3032 3033
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3034
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3035 3036
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3037
        return ret_var
3038

Y
Yu Yang 已提交
3039

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3135
    def remove_input_by_id(self, node_id):
3136 3137 3138 3139 3140 3141
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3142
        self.node.remove_input(node_id)
3143

3144
    def remove_input(self, node):
3145 3146 3147 3148
        """
        Remove a node from inputs.

        Args:
3149
            node(IrNode): the node being removed.
3150
        """
3151
        self.node.remove_input(node.node)
3152

3153
    def append_input(self, node):
3154 3155 3156 3157
        """
        Append a node in inputs.

        Args:
3158
            node(IrNode): the node being appended.
3159
        """
3160
        self.node.append_input(node.node)
3161 3162 3163 3164 3165 3166 3167 3168

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3169
    def remove_output_by_id(self, node_id):
3170 3171 3172 3173 3174 3175
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3176
        self.node.remove_output(node_id)
3177

3178
    def remove_output(self, node):
3179 3180 3181 3182
        """
        Remove a node from outputs.

        Args:
3183
            node(IrNode): the node being removed.
3184
        """
3185
        self.node.remove_output(node.node)
3186

3187
    def append_output(self, node):
3188 3189 3190 3191
        """
        Append a node in outputs.

        Args:
3192
            node(IrNode): the node being appended.
3193
        """
3194
        self.node.append_output(node.node)
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3242
            "The node variable description can not be None."
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3253
            "The node variable description can not be None."
3254 3255
        return self.node.var().persistable()

3256 3257 3258 3259 3260 3261 3262 3263
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3264
            "The node variable description can not be None."
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3275
            "The node variable description can not be None."
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3286
            "The node variable description can not be None."
3287 3288
        return self.node.var().shape()

3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3336
            "The node operator description can not be None."
3337 3338
        self.node.op()._rename_input(old_input_name, new_input_name)

3339 3340 3341 3342 3343 3344 3345 3346 3347
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3348
            "The node operator description can not be None."
3349 3350
        self.node.op()._rename_output(old_output_name, new_output_name)

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3362
            "The node operator description can not be None."
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3376
            "The node operator description can not be None."
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3387
            "The node operator description can not be None."
3388 3389
        return self.node.op().set_type(new_type)

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3405
            "The node operator description can not be None."
3406 3407 3408 3409
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3410
                all(isinstance(v, Block) for v in val):
3411 3412
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3413
                isinstance(val, core.ProgramDesc):
3414 3415 3416 3417
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3418 3419 3420 3421 3422 3423 3424 3425
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3426
            "The node operator description can not be None."
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3437
            "The node operator description can not be None."
3438 3439
        return self.node.op().output_arg_names()

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3461 3462
class IrGraph(object):
    """
3463
    Python IrGraph. Beneath it is a core.Graph, which is used for
3464
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3465 3466
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3467 3468 3469 3470
    """

    def __init__(self, graph, for_test=False):
        """
3471 3472
        Construct an IrGraph using core.Graph.

3473 3474 3475 3476 3477 3478 3479 3480 3481
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3482 3483 3484 3485
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3486 3487 3488
        Warns:
            The method only clones the graph structure, not its attributes.

3489 3490 3491
        Returns:
            IrGraph: A new and duplicated graph.
        """
3492
        g = self.graph.clone()
3493 3494
        return IrGraph(g, self._for_test)

3495
    def is_test(self):
3496 3497 3498
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3499 3500
        return self._for_test

W
WangZhen 已提交
3501
    def all_nodes(self):
3502 3503 3504
        """
        Return all nodes included in the graph as a set.
        """
3505
        return {IrNode(node) for node in self.graph.nodes()}
3506

3507
    def all_var_nodes(self):
3508 3509 3510
        """
        Return all variable nodes included in the graph as a set.
        """
3511
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3512

3513
    def all_persistable_nodes(self):
3514 3515 3516
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3517 3518 3519 3520 3521
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3522
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3523

3524
    def all_op_nodes(self):
3525 3526 3527
        """
        Return all operator nodes included in the graph as a set.
        """
3528
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3529

3530
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3542
            IrVarNode: the created persistable variable node.
3543
        """
3544 3545 3546 3547 3548
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3549
        return IrVarNode(self.graph.create_var_node(var_desc))
3550 3551

    def create_var_node(self, name, var_type, shape, var_dtype):
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3563
            IrVarNode: the created variable node.
3564 3565
        """

3566 3567 3568 3569
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3570
        return IrVarNode(self.graph.create_var_node(var_desc))
3571

3572 3573 3574 3575 3576 3577
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3578
    def create_var_node_from_desc(self, var_desc):
3579 3580 3581 3582 3583 3584 3585 3586
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3587
            IrVarNode: the created variable node.
3588
        """
3589
        return IrVarNode(self.graph.create_var_node(var_desc))
3590 3591

    def create_op_node(self, op_type, attrs, inputs, outputs):
3592 3593 3594 3595 3596 3597 3598
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3599
            outputs(dict): the outputs of the operator node.
3600 3601

        Returns:
3602
            IrOpNode: the created operator node.
3603
        """
3604 3605
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3606
        for attr, value in six.iteritems(attrs):
3607
            self._update_desc_attr(op_desc, attr, value)
3608
        for input_name, var_nodes in six.iteritems(inputs):
3609 3610 3611 3612
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3613
        for output_name, var_nodes in six.iteritems(outputs):
3614 3615 3616 3617
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3618
        return IrOpNode(self.graph.create_op_node(op_desc))
3619 3620

    def create_op_node_from_desc(self, op_desc):
3621 3622 3623 3624 3625 3626 3627
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3628
            IrOpNode: the created operator node.
3629
        """
3630
        return IrOpNode(self.graph.create_op_node(op_desc))
3631 3632

    def update_input_link(self, old_input_node, new_input_node, op_node):
3633 3634 3635 3636
        """
        Update the input's link of a operator node.

        Args:
3637 3638 3639
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3640
        """
3641
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3642 3643
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3644 3645 3646 3647
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3648
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3649

3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3660 3661
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3662 3663 3664 3665 3666 3667
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3668
    def link_to(self, node_in, node_out):
3669 3670 3671 3672
        """
        Connect two nodes.

        Args:
3673 3674
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3675
        """
3676
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3677
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3678 3679
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3680 3681

    def safe_remove_nodes(self, remove_nodes):
3682 3683 3684 3685 3686 3687 3688
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3689
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3690 3691 3692 3693
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3694 3695
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3696

Z
Zhen Wang 已提交
3697 3698 3699 3700 3701 3702 3703 3704
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3705
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3706 3707 3708 3709
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3710
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3711 3712 3713
                        ]
                    else:
                        var_nodes[each_var_name].append(
3714 3715
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3716 3717
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3718
    def has_circle(self):
3719 3720 3721 3722 3723 3724
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3725 3726 3727
        return core.has_circle(self.graph)

    def graph_num(self):
3728 3729 3730 3731 3732 3733
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3734 3735 3736
        return core.graph_num(self.graph)

    def topology_sort(self):
3737 3738 3739
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3740
        Notes: the `graph` can not contain a circle.
3741 3742

        Returns:
Z
Zhen Wang 已提交
3743
            list(IrNode): nodes in topology order.
3744
        """
3745
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3746
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3747 3748

    def build_adjacency_list(self):
3749 3750 3751 3752
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3753
            dict{IrNode: set(IrNode)}: the adjacency list.
3754
        """
3755 3756 3757 3758 3759
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3760

3761 3762 3763 3764 3765 3766 3767 3768
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3769
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3770 3771 3772 3773 3774
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3775 3776 3777
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3778
                                          + ' -o ' + pdf_save_path, shell=True)
3779 3780 3781 3782 3783
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3784
        remove_ctr_vars = set()
3785
        if remove_ctr_var:
3786
            for node in self.all_var_nodes():
3787 3788 3789
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3790 3791
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3792 3793
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3794 3795 3796 3797 3798 3799
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3800 3801 3802 3803
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3804 3805
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3806 3807 3808 3809 3810 3811 3812
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3813 3814 3815
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3816
        WARN: When the graph includes backward operator nodes, the
3817 3818 3819 3820 3821 3822
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3823
        convert_pass = core.get_pass('graph_to_program_pass')
3824 3825
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3826 3827 3828 3829
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3857
class Program(object):
D
dzhwinter 已提交
3858
    """
3859 3860
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3861
    it will contain nested block.
3862

J
Jiabin Yang 已提交
3863 3864 3865
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3866

J
Jiabin Yang 已提交
3867
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3868
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3869 3870 3871 3872 3873 3874 3875
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3876 3877 3878 3879
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3880 3881

    Returns:
J
Jiabin Yang 已提交
3882
        Program: An empty Program.
D
dzhwinter 已提交
3883 3884

    Examples:
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3898 3899 3900

    """

3901 3902
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3903 3904
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
3905 3906
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
3907
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3908
        self.__op_role_var = []
T
tangwei12 已提交
3909

3910 3911
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3912
        self._is_distributed = False
3913
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3914
        self._is_chief = False
3915 3916 3917
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3918
        self._endpoints = []
3919 3920 3921
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3922
        self._trainers_endpoints = []
3923
        # the distributed lookup table names
T
tangwei12 已提交
3924
        self._distributed_lookup_table = None
3925 3926 3927

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3928 3929
        self._use_lamb = False

3930 3931 3932
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3933

3934 3935 3936
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3937
        self._program_config = None
3938

H
hutuxian 已提交
3939 3940 3941
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3942 3943 3944
        # appending gradients times
        self._appending_grad_times = 0

3945 3946 3947
        # compiled program, i.e. Graph
        self._graph = None

3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
                prog1 = fluid.default_main_program()
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
3975
    @property
3976
    def _op_role(self):
Y
yuyang18 已提交
3977 3978 3979 3980 3981 3982 3983 3984
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3985
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3986 3987 3988 3989
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3990 3991
        return self._current_role

3992 3993
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3994 3995 3996
        self._current_role = role

    @property
3997
    def _op_role_var(self):
Y
yuyang18 已提交
3998
        """
3999
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4000

4001
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4002 4003 4004

        Notes: This is a very low-level API. Users should not use it directly.
        """
4005
        return self.__op_role_var
Y
yuyang18 已提交
4006

4007
    @signature_safe_contextmanager
4008 4009 4010 4011 4012
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4013 4014 4015 4016
        try:
            yield
        finally:
            self._current_role = tmp_role
4017

S
rename  
sneaxiy 已提交
4018
    @signature_safe_contextmanager
W
Wu Yi 已提交
4019
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4020 4021 4022 4023 4024 4025 4026
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4027
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4028 4029 4030

        Examples:

4031
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4032
            >>> p, g = backward(...)
W
Wu Yi 已提交
4033
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4034 4035
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4036
        tmp_role = self._current_role
4037
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4038

Y
yuyang18 已提交
4039 4040
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4041
        self.__op_role_var = [
4042 4043 4044
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4045 4046 4047 4048 4049
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4050

S
rename  
sneaxiy 已提交
4051
    @signature_safe_contextmanager
X
Xin Pan 已提交
4052
    def _lr_schedule_guard(self, is_with_opt=False):
4053 4054 4055 4056 4057 4058 4059
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4060 4061 4062 4063
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4064 4065 4066

        Examples:

4067
            >>> import paddle.fluid as fluid
4068 4069 4070 4071
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4072 4073

        tmp_role = self._current_role
4074
        tmp_var = self.__op_role_var
4075

4076 4077
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4078 4079
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4080
        # TODO(typhoonzero): how to set target learning rate var
4081
        self.__op_role_var = []
4082 4083 4084 4085 4086
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4087

4088
    def __str__(self):
Y
yuyang18 已提交
4089 4090 4091 4092 4093 4094 4095 4096 4097
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4137
            program_str += '\n'
4138
        return program_str
Y
Yang Yang(Tony) 已提交
4139

F
fengjiayi 已提交
4140 4141 4142
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4143

J
Jiabin Yang 已提交
4144 4145 4146
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4147

J
Jiabin Yang 已提交
4148
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4149

H
haowang101779990 已提交
4150
        Returns:
J
Jiabin Yang 已提交
4151
            str: The debug string describe current Program.
Y
yuyang18 已提交
4152 4153

        Raises:
J
Jiabin Yang 已提交
4154
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4155

4156 4157 4158 4159 4160 4161
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
4162 4163
                x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
                pred = fluid.layers.fc(x, size=3)
4164
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4165
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4166
                print("program string without detail: {}".format(prog_string))
4167
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4168
        """
4169 4170 4171 4172 4173 4174 4175 4176 4177
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4178 4179 4180 4181 4182 4183
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4184 4185
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4186 4187
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4188

W
Wu Yi 已提交
4189
    def _get_desc(self):
Y
yuyang18 已提交
4190 4191 4192 4193 4194 4195 4196
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4197 4198
        return self.desc

X
version  
Xin Pan 已提交
4199 4200 4201
    def _version(self):
        return self.desc._version()

4202
    def clone(self, for_test=False):
Y
yuyang18 已提交
4203
        """
4204
        **Notes**:
J
Jiabin Yang 已提交
4205 4206 4207 4208
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

4209
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
4210

4211
        Create a new Program with forward content of original one when ``for_test=True``.
4212
        Create a new Program as same as the original one when ``for_test=False``.
4213

J
Jiabin Yang 已提交
4214
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4215 4216 4217
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4218

4219 4220
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4221 4222
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4223
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4224

J
Jiabin Yang 已提交
4225
        For Example:
4226
          ::
L
Luo Tao 已提交
4227

4228 4229 4230 4231 4232 4233 4234 4235
            import paddle.fluid as fluid
            img = fluid.layers.data(name='image', shape=[784])
            pred = fluid.layers.fc(input=img, size=10, act='relu')
            loss = fluid.layers.mean(pred)
            # Here we use clone before Momentum
            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize(loss)
4236

J
Jiabin Yang 已提交
4237
        Args:
4238

4239 4240
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4241

J
Jiabin Yang 已提交
4242
        Returns:
4243
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4244

Y
yuyang18 已提交
4245 4246 4247

        Examples:

J
Jiabin Yang 已提交
4248
        **Notes: The Program's order maybe different after** :code:`clone` **and
4249
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
4250
        example we give you an simple method** :code:`print_prog(program)` **to
4251
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
4252
        after** :code:`clone`:
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
            .. code-block:: python

                import paddle.fluid as fluid
                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
4289 4290 4291

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4292 4293 4294 4295 4296 4297 4298 4299 4300
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
4301
                            test_program = train_program.clone(for_test=True)
4302
                    print_prog(test_program)
J
Jiabin Yang 已提交
4303 4304 4305 4306 4307 4308 4309 4310 4311

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4334 4335
                    
                    def network():
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss

                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
4350 4351 4352
                            avg_loss = network()
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)
4353
                    # the test startup program is not used.
4354
                    with fluid.program_guard(test_program_2, startup_program_2):
4355
                        with fluid.unique_name.guard():
4356 4357
                            avg_loss = network()
                    print_prog(test_program_2)
4358 4359

        The two code snippets above will generate and print same programs.
4360
        """
4361 4362 4363 4364 4365

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4366
        pruned_origin_block_id_map = None
4367
        if for_test:
4368 4369 4370 4371 4372 4373 4374 4375 4376
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4377
        else:
4378
            p = Program()
G
gongweibao 已提交
4379 4380
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4381
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4382 4383 4384
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4385 4386

            p._current_role = self._current_role
4387
            p.__op_role_var = self.__op_role_var
4388
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
4389

4390 4391
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4392
            p._sync_with_cpp()
4393

W
Wu Yi 已提交
4394
        p._copy_param_info_from(self)
4395
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4396
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4397
        return p
4398

4399
    def _prune(self, targets):
Y
yuyang18 已提交
4400 4401 4402 4403 4404 4405 4406 4407
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4408
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4409 4410 4411 4412
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4413
        """
4414
        return self._prune_with_input([], targets)
4415 4416

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4417
        """
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4428
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4429 4430 4431 4432 4433 4434
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4435 4436 4437 4438
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4439 4440
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4441 4442
        if not isinstance(targets, list):
            targets = [targets]
4443 4444 4445

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4446 4447 4448
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4449

4450 4451 4452 4453
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4454 4455 4456
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4457
                else:
4458 4459 4460
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4461 4462 4463 4464 4465 4466 4467 4468

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4485 4486 4487 4488 4489 4490 4491 4492
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4493

4494
        res = Program()
4495 4496 4497
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4498 4499 4500
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4501
        res._sync_with_cpp()
4502 4503 4504 4505 4506

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4507 4508
        return res

X
Xin Pan 已提交
4509
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4510
        """
F
fengjiayi 已提交
4511 4512 4513 4514 4515
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4516
        3. change the :code:`is_test`
Y
yuyang18 已提交
4517 4518 4519
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4520
        Args:
X
Xin Pan 已提交
4521 4522
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4523

Y
yuyang18 已提交
4524 4525 4526 4527 4528 4529
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4530
        res = Program()
4531
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4532 4533 4534 4535

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4536
        if prune_read_op:
4537 4538 4539 4540 4541 4542 4543 4544 4545
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4546
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4547 4548

        # change all `is_test` attributes to True
M
minqiyang 已提交
4549
        for i in six.moves.range(res.desc.num_blocks()):
4550
            block = res.desc.block(i)
M
minqiyang 已提交
4551
            for j in six.moves.range(block.op_size()):
4552 4553
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4554
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4555 4556 4557
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4558
        res._sync_with_cpp()
4559 4560
        return res

4561 4562
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4563
        """
J
Jiabin Yang 已提交
4564 4565 4566 4567
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4568

4569 4570
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4571

J
Jiabin Yang 已提交
4572
        Args:
Y
yuyang18 已提交
4573

J
Jiabin Yang 已提交
4574
            binary_str_type (str): the binary prootbuf string.
4575

J
Jiabin Yang 已提交
4576 4577
        Returns:
            Program: A deserialized Program.
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4600
        """
4601 4602
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4603
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4604
        p._sync_with_cpp()
4605
        return p
Y
Yu Yang 已提交
4606

4607
    @staticmethod
4608
    def _construct_from_desc(desc):
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4624 4625
    @property
    def random_seed(self):
Y
yuyang18 已提交
4626
        """
J
Jiabin Yang 已提交
4627
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4628 4629
        the random seed from random device.

J
Jiabin Yang 已提交
4630 4631 4632 4633
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4634

4635 4636 4637 4638 4639 4640 4641 4642

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4643
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
4644 4645 4646
                print(random_seed)
                ## 0
                ## the default random seed is 0
4647 4648

                # Here we need to set random seed before we use fluid.layers.dropout
4649
                prog.random_seed = 1
4650 4651
                z_var = fluid.layers.dropout(x_var, 0.7)

4652
                print(prog.random_seed)
4653 4654
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4655
        """
D
dzhwinter 已提交
4656 4657
        return self._seed

Q
qiaolongfei 已提交
4658 4659
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4660
        """
4661 4662
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4663 4664 4665 4666
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4667

4668 4669 4670 4671 4672 4673 4674 4675 4676

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4677 4678


Y
yuyang18 已提交
4679
        """
Q
qiaolongfei 已提交
4680 4681
        return self.desc.num_blocks()

D
dzhwinter 已提交
4682 4683 4684
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4685 4686 4687
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4688 4689
        self._seed = seed

Y
Yu Yang 已提交
4690
    def __repr__(self):
4691
        return self.__str__()
4692

Y
Yu Yang 已提交
4693
    def global_block(self):
Y
yuyang18 已提交
4694
        """
J
Jiabin Yang 已提交
4695 4696
        **Notes**:
            **This API has no effect in Dygraph mode**
4697 4698 4699

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4700 4701
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4702

4703 4704 4705 4706 4707 4708 4709 4710 4711

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4712

Y
yuyang18 已提交
4713
        """
Y
Yu Yang 已提交
4714 4715
        return self.blocks[0]

Q
Qiao Longfei 已提交
4716
    def block(self, index):
Y
yuyang18 已提交
4717
        """
J
Jiabin Yang 已提交
4718 4719
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4720

4721 4722
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4723 4724
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4725

J
Jiabin Yang 已提交
4726 4727
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4728 4729 4730 4731 4732 4733 4734 4735 4736

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4737
        """
Q
Qiao Longfei 已提交
4738 4739
        return self.blocks[index]

Y
Yu Yang 已提交
4740
    def current_block(self):
Y
yuyang18 已提交
4741
        """
J
Jiabin Yang 已提交
4742 4743
        **Notes**:
            **This API has no effect in Dygraph mode**
4744

J
Jiabin Yang 已提交
4745 4746
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4747

J
Jiabin Yang 已提交
4748 4749
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4750

4751 4752 4753 4754 4755 4756 4757 4758
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4759
        """
Y
Yu Yang 已提交
4760 4761
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4762
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4763 4764 4765 4766 4767
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4768

Y
yuyang18 已提交
4769 4770 4771 4772 4773
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4774
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4775 4776 4777
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4778 4779 4780 4781
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4782
    def _rollback(self):
Y
yuyang18 已提交
4783 4784 4785 4786 4787
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4788 4789
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4790
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4801 4802 4803
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4804
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4805

W
Wu Yi 已提交
4806
    def _copy_param_info_from(self, other):
4807
        """
4808
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4809

Y
yuyang18 已提交
4810 4811 4812
        Notes: This is a very low level API. Users should not invoke it
        directly.

4813 4814 4815 4816 4817 4818 4819
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4820 4821 4822
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4823

W
Wu Yi 已提交
4824
        self.global_block()._copy_param_info_from(other.global_block())
4825

4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4837 4838 4839
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4840 4841
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4842
        self._parameters_on_pservers = other._parameters_on_pservers
4843
        self._endpoints = other._endpoints
4844
        self._ps_endpoint = other._ps_endpoint
4845 4846
        self._distributed_lookup_table = other._distributed_lookup_table

4847
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4848 4849
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4850

Y
yuyang18 已提交
4851 4852 4853
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4854 4855
        Args:
            other(Program): Other program
4856 4857 4858 4859
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4860 4861 4862 4863 4864

        Returns:
            None
        """
        if not isinstance(other, Program):
4865 4866 4867
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4868

4869 4870 4871 4872 4873
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4874 4875 4876

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4877 4878
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4879
            for var in list(block.vars.values()):
4880 4881 4882 4883 4884 4885 4886
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4887

4888
    def list_vars(self):
Y
yuyang18 已提交
4889
        """
J
Jiabin Yang 已提交
4890
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4891

J
Jiabin Yang 已提交
4892 4893
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4905
        """
4906
        for each_block in self.blocks:
4907
            for each_var in list(each_block.vars.values()):
4908 4909
                yield each_var

4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
4968

4969
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
4970
class Parameter(Variable):
4971
    """
4972
    Parameter is derived from Variable. A parameter is a persistable
4973
    Variable, and will be updated by optimizers after each iteration.
4974
    The training of a neural network is essentially the updating of
4975 4976
    its parameters.

4977
    Relative to a general Variable, a Parameter has several its own
4978 4979
    member variables:

4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4990 4991
    """

4992 4993 4994 4995 4996 4997
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
4998 4999 5000 5001 5002
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5003
        if len(shape) == 0:
5004 5005
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5006 5007 5008

        for each in shape:
            if each < 0:
5009 5010 5011
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5012 5013

        Variable.__init__(
5014 5015 5016 5017 5018 5019 5020
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5021 5022 5023 5024
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5025 5026
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5027
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5028

5029 5030
        self.is_distributed = False

F
fengjiayi 已提交
5031
    def __str__(self):
5032
        return self._to_readable_code()
F
fengjiayi 已提交
5033

F
update  
fengjiayi 已提交
5034 5035 5036
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5037

F
update  
fengjiayi 已提交
5038 5039 5040 5041 5042 5043 5044 5045
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5046 5047 5048 5049 5050 5051 5052 5053 5054
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5055 5056 5057 5058 5059 5060
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5061
                               "do_model_average")
F
update  
fengjiayi 已提交
5062
            for attr_name in additional_attr:
5063 5064
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5065 5066
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5067 5068 5069 5070
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5071

5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
class ParamBase(core.VarBase):
    """
    ParamBase is derived from VarBase( Which is the Variable in Dygraph Mode ). A ParamBase is a persistable
    VarBase, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of
    its ParamBase.

    Relative to a general Variable, a ParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5122 5123
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5124 5125 5126 5127 5128 5129 5130 5131

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False
5132
        # self.block = default_main_program().global_block()
5133

5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5147
    def __str__(self):
5148
        """
5149
        Convert a ParamBase object to a readable string.
5150

5151
        Returns(str): A readable string.
5152 5153 5154 5155

        Examples:
            .. code-block:: python

5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
                import paddle
                paddle.enable_imperative()
                conv = paddle.nn.Conv2D(3, 3, 5)
                print(conv.weight)
                # Parameter: conv2d_0.w_0
                #   - place: CUDAPlace(0)
                #   - shape: [3, 3, 5, 5]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [...] 
                paddle.disable_imperative()
5167 5168 5169
        """
        tensor = self.value().get_tensor()
        if tensor._is_initialized():
5170
            return 'Parameter: %s\n%s' % (self.name, str(tensor))
5171
        else:
5172
            return 'Parameter: %s, not initialized' % (self.name)
5173 5174 5175 5176

    __repr__ = __str__


Y
Yu Yang 已提交
5177
# program is a global instance.
Y
Yu Yang 已提交
5178 5179
_main_program_ = Program()
_startup_program_ = Program()
5180

5181

5182
def default_startup_program():
Y
Yu Yang 已提交
5183
    """
Y
yuyang18 已提交
5184 5185
    Get default/global startup program.

J
Jiabin Yang 已提交
5186 5187 5188
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
5189 5190 5191
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
5192
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
5193

J
Jiabin Yang 已提交
5194
    Returns: current default startup :ref:`api_fluid_Program`
5195

J
Jiabin Yang 已提交
5196
    Returns type: :ref:`api_fluid_Program`
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
5212
    """
Y
Yu Yang 已提交
5213
    return _startup_program_
5214

5215

5216
def default_main_program():
Y
Yu Yang 已提交
5217
    """
5218 5219 5220 5221 5222
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
5223

5224 5225
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5226
    :code:`default_main_program` when the program is not specified.
5227

5228 5229
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
5230
    Returns:
5231
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
5232 5233 5234 5235 5236

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
5237

5238
            # Sample Network:
5239 5240
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
5260
            #print the number of blocks in the program, 1 in this case
5261
            print(fluid.default_main_program().num_blocks)
5262 5263

            #print the description of variable 'image'
5264
            print(fluid.default_main_program().blocks[0].var('image'))
5265

Y
Yu Yang 已提交
5266
    """
Y
Yu Yang 已提交
5267
    return _main_program_
Y
Yu Yang 已提交
5268 5269 5270 5271 5272


def switch_main_program(program):
    """
    Switch the main program to a new program.
5273

Y
Yu Yang 已提交
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5288
    Switch the startup program to a new program
Y
Yu Yang 已提交
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5301
@signature_safe_contextmanager
Y
Yu Yang 已提交
5302 5303
def program_guard(main_program, startup_program=None):
    """
5304 5305
    :api_attr: Static Graph

5306 5307
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
5308
    variables to the new main programs.
5309

G
guofei 已提交
5310 5311 5312 5313 5314 5315 5316
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5317
    Examples:
5318 5319 5320
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
5321

5322 5323 5324
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
5325
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
5326
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
5327 5328 5329

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5330

Y
Yu Yang 已提交
5331
    Examples:
5332
       .. code-block:: python
Y
yuyang18 已提交
5333

5334 5335 5336 5337 5338
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
5339 5340
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
5341
    """
5342 5343
    from .data_feeder import check_type
    check_type(main_program, 'main_program', Program, 'fluid.program_guard')
Y
Yu Yang 已提交
5344 5345
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5346 5347
        check_type(startup_program, 'startup_program', Program,
                   'fluid.program_guard')
Y
Yu Yang 已提交
5348
        startup_program = switch_startup_program(startup_program)
5349 5350 5351 5352 5353 5354
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5355 5356


W
Wu Yi 已提交
5357
def _get_var(name, program=None):
X
xuwei06 已提交
5358
    """
Y
yuyang18 已提交
5359
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5360

X
xuwei06 已提交
5361 5362 5363
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5364
        If None, default_global_program() will be used.
X
xuwei06 已提交
5365 5366 5367 5368 5369 5370 5371

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5372
    assert isinstance(program, Program)
X
xuwei06 已提交
5373 5374

    return program.global_block().var(name)
5375 5376


S
rename  
sneaxiy 已提交
5377
@signature_safe_contextmanager
L
lujun 已提交
5378 5379 5380 5381
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5382
    core._switch_tracer(tracer)
M
minqiyang 已提交
5383

5384 5385 5386 5387 5388
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5389 5390


S
rename  
sneaxiy 已提交
5391
@signature_safe_contextmanager
L
lujun 已提交
5392 5393 5394 5395
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
5396

5397 5398 5399 5400
    try:
        yield
    finally:
        _dygraph_current_expected_place_ = tmp_place
5401 5402 5403 5404


def load_op_library(lib_filename):
    """
5405 5406
    :api_attr: Static Graph
    
5407 5408 5409
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5410
    Please note, the type of custom operators can't have the same type
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5477 5478 5479 5480 5481
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5482 5483 5484 5485
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5486 5487
    if index:
        device = ":".join([device, index])
5488
    pre_device = switch_device(device)
5489 5490 5491 5492
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value