framework.py 192.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
Y
Yu Yang 已提交
40

41
__all__ = [
42 43 44 45
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
46
    'name_scope',
S
sneaxiy 已提交
47 48 49
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
50
    'in_dygraph_mode',
C
chengduo 已提交
51
    'is_compiled_with_cuda',
52
    'is_compiled_with_xpu',
53
    'Variable',
54
    'ComplexVariable',
55
    'load_op_library',
56
    'require_version',
57
    'device_guard',
G
guofei 已提交
58 59
    'set_flags',
    'get_flags',
60
]
Y
Yu Yang 已提交
61

Q
qiaolongfei 已提交
62 63 64 65
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
66 67
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
68
_dygraph_tracer_ = None
69
_global_expected_place_ = None
70
_current_device = None
71 72
global_prog_seed = 0

73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
181
def in_dygraph_mode():
L
lujun 已提交
182
    """
183 184 185 186
    :alias_main: paddle.in_dygraph_mode
	:alias: paddle.in_dygraph_mode
	:old_api: paddle.fluid.framework.in_dygraph_mode

Y
Youwei Song 已提交
187
    This function checks whether the program runs in dynamic graph mode or not.
188 189 190
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
191 192

    Returns:
Y
Youwei Song 已提交
193
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
194 195 196 197

    Examples:
        .. code-block:: python

198
            import paddle.fluid as fluid
L
lujun 已提交
199

200 201 202 203
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
204
    """
L
lujun 已提交
205
    return _dygraph_tracer_ is not None
206 207


208 209 210
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
211
        ), "We don't support %s in imperative mode" % func.__name__
212 213 214 215 216 217 218 219
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
220 221 222 223 224 225 226 227 228 229
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We only support '%s()' in static graph mode, please call 'paddle.enable_static()' to enter static graph mode." % func.__name__
230 231 232 233 234
        return func(*args, **kwargs)

    return __impl__


235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict) 
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without 
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


270 271
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
272
static_only = wrap_decorator(_static_only_)
273
fake_interface_only = wrap_decorator(_fake_interface_only_)
274 275


L
lujun 已提交
276 277
def _dygraph_tracer():
    return _dygraph_tracer_
278

W
Wu Yi 已提交
279

M
minqiyang 已提交
280
def _current_expected_place():
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
            _global_expected_place_ = core.CUDAPlace(0)
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
301 302


L
Leo Chen 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
320
def _cpu_num():
321
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
322 323 324 325 326 327 328 329
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
330
        os.environ['CPU_NUM'] = str(1)
331
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
332 333 334 335 336 337 338 339 340 341
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
342 343


344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
374
def cuda_places(device_ids=None):
L
lujun 已提交
375
    """
376 377 378 379 380
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
381 382

    If :code:`device_ids` is None, environment variable of
383
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
384 385 386
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
387
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
388 389

    If :code:`device_ids` is not None, it should be the device
390
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
391 392 393
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
394 395
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
396 397

    Returns:
398
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
399 400 401 402

    Examples:
        .. code-block:: python

403
            import paddle.fluid as fluid
L
lujun 已提交
404 405 406
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
407 408 409
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
410
        device_ids = _cuda_ids()
S
sneaxiy 已提交
411 412 413 414 415 416
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
417
    """
418
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
419 420 421
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
422 423
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
424 425
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
426

427 428
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
429 430

    Returns:
431
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
432 433 434 435

    Examples:
        .. code-block:: python

436
            import paddle.fluid as fluid
L
lujun 已提交
437 438 439
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
440 441 442 443 444 445
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
446
    """
447
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
448 449 450

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
451 452 453 454
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
455

456 457
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
458 459

    Returns:
460
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
461 462 463 464

    Examples:
        .. code-block:: python

465
            import paddle.fluid as fluid
L
lujun 已提交
466 467 468 469 470
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
471 472 473
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
474 475
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
476 477


478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
504
@signature_safe_contextmanager
505 506
def name_scope(prefix=None):
    """
507 508
    :api_attr: Static Graph

509 510
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
511 512 513
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
514 515

    Args:
T
Tao Luo 已提交
516
        prefix(str, optional): prefix. Default is none.
517 518 519

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
520

521
          import paddle.fluid as fluid
522
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
523 524 525 526 527 528
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
529
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
530
                f = fluid.layers.pow(d, 2.0)
531
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
551 552
    """
    # TODO(panyx0718): Only [0-9a-z].
553
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
554 555 556
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
557
        assert prefix, "namescope prefix can not be empty."
558 559
        global _name_scope
        _name_scope = _name_scope.child(prefix)
560 561 562 563
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
564 565 566 567 568 569 570 571 572 573 574 575


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
576 577 578
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
579 580 581 582


def grad_var_name(var_name):
    """
583 584
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
585 586 587
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
588

589
def convert_np_dtype_to_dtype_(np_dtype):
590 591
    """
    Convert the data type in numpy to the data type in Paddle
592

593
    Args:
594
        np_dtype(np.dtype): the data type in numpy.
595

596 597
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
598 599

    """
600 601
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
602
        return core.VarDesc.VarType.FP32
603
    elif dtype == np.float64:
604
        return core.VarDesc.VarType.FP64
605
    elif dtype == np.float16:
606
        return core.VarDesc.VarType.FP16
607
    elif dtype == np.int32:
608
        return core.VarDesc.VarType.INT32
609
    elif dtype == np.int16:
610
        return core.VarDesc.VarType.INT16
611
    elif dtype == np.int64:
612
        return core.VarDesc.VarType.INT64
613
    elif dtype == np.bool:
614
        return core.VarDesc.VarType.BOOL
615 616
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
617 618
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
619 620
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
621
    else:
M
minqiyang 已提交
622
        raise ValueError("Not supported numpy dtype %s" % dtype)
623 624 625


def dtype_is_floating(dtype):
626 627 628
    """
    Check the data type is floating or not.
    Args:
629
        dtype(np.dtype|core.VarDesc.VarType): data type.
630 631 632 633 634
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
635
    if not isinstance(dtype, core.VarDesc.VarType):
636 637
        dtype = convert_np_dtype_to_dtype_(dtype)

638 639 640 641
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
642 643


Y
Yang Yang(Tony) 已提交
644
def _debug_string_(proto, throw_on_error=True):
645 646 647 648 649 650 651 652 653 654 655
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
656
    error_fields = list()
Y
Yang Yang(Tony) 已提交
657
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
658 659
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
660 661 662
    return proto.__str__()


663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
720
    target_block = default_main_program().current_block()
721 722 723 724 725 726 727 728 729 730 731

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
732
            })
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
772
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
773
                fill_constant([1], 1, force_cpu=True, out=temp_1)
774
                temp_end = target_block.create_var(dtype=slice_item.dtype)
775
                target_block.append_op(
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
815

816
    # starts
L
Leo Chen 已提交
817
    if contain_var(slice_start):
818 819 820 821 822 823 824 825
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
826 827 828 829
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
830 831 832 833 834 835 836
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
837 838 839
    else:
        attrs['ends'] = slice_end

840 841
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
842
        if contain_var(slice_step):
843 844 845 846 847 848 849
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
850 851
        else:
            attrs['strides'] = slice_step
852 853 854 855 856 857
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
858
        slice_out_var = target_block.create_var(
859 860 861
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

862
        target_block.append_op(
863 864 865 866 867 868 869
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
870
        strided_slice_out_var = target_block.create_var(
871 872 873
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
874
        target_block.append_op(
875 876 877 878 879 880 881 882
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
883
        reverse_out_var = target_block.create_var(
884 885 886
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
887
        target_block.append_op(
888 889 890 891 892 893 894 895 896 897 898
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
899
class Variable(object):
900
    """
J
Jiabin Yang 已提交
901
    **Notes**:
902
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
903

904 905
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
906 907 908
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
909
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
910 911
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
912

913
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
914
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
915

T
tianshuo78520a 已提交
916
    Most of a Variable's member variables can be set to be None. It mean
917
    it is not available or will be specified later.
918

919
    Examples:
920 921
        In Static Graph Mode:

922 923
        .. code-block:: python

924
            import paddle.fluid as fluid
925
            cur_program = fluid.Program()
926 927 928 929
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
930
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
931 932 933 934 935 936 937 938 939

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

940 941
    """

Y
Yu Yang 已提交
942 943
    def __init__(self,
                 block,
Y
Yu Yang 已提交
944
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
945 946 947 948
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
949
                 capacity=None,
Q
QI JUN 已提交
950
                 persistable=None,
F
fengjiayi 已提交
951
                 error_clip=None,
Y
Yu Yang 已提交
952
                 stop_gradient=False,
F
fengjiayi 已提交
953
                 is_data=False,
H
Huihuang Zheng 已提交
954
                 need_check_feed=False,
H
hong 已提交
955
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
956
                 **kwargs):
Y
Yu Yang 已提交
957 958
        self.block = block
        if name is None:
Y
Yu Yang 已提交
959
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
960

Y
Yu Yang 已提交
961
        if dtype is not None:
962
            if not isinstance(dtype, core.VarDesc.VarType):
963
                dtype = convert_np_dtype_to_dtype_(dtype)
964

H
hong 已提交
965 966
        self.belong_to_optimizer = belong_to_optimizer

967 968 969 970 971
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
972

973 974 975
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
976

977 978 979 980 981 982 983
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
984

985
        if shape is not None:
986
            if is_new_var:
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1028

1029 1030
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1031

1032 1033 1034 1035 1036 1037 1038
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1039

1040 1041 1042 1043
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1044

1045
    @fake_interface_only
1046 1047
    def detach(self):
        """
J
Jiabin Yang 已提交
1048
        **Notes**:
T
tianshuo78520a 已提交
1049
            **This API is ONLY available in Dygraph mode**
1050

1051
        Returns a new Variable, detached from the current graph.
1052

1053
        Returns:
J
Jiabin Yang 已提交
1054
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1055

1056

1057 1058 1059 1060 1061
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1062
                from paddle.fluid.dygraph import Linear
1063 1064 1065 1066
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1067
                    linear = Linear(32, 64)
1068
                    data = to_variable(data)
1069
                    x = linear(data)
1070 1071 1072
                    y = x.detach()

        """
1073
        pass
1074

1075
    @fake_interface_only
1076
    def numpy(self):
1077
        """
J
Jiabin Yang 已提交
1078
        **Notes**:
T
tianshuo78520a 已提交
1079
            **This API is ONLY available in Dygraph mode**
1080

J
Jiabin Yang 已提交
1081
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1082 1083 1084 1085 1086

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1087
            ndarray: dtype is same as current Variable
1088 1089 1090 1091 1092 1093

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1094
                from paddle.fluid.dygraph import Linear
1095 1096 1097 1098
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1099
                    linear = Linear(32, 64)
1100
                    data = to_variable(data)
1101
                    x = linear(data)
1102 1103 1104
                    print(x.numpy())

        """
1105
        pass
1106

1107
    @fake_interface_only
1108 1109
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1110
        **Notes**:
T
tianshuo78520a 已提交
1111
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1123
                from paddle.fluid.dygraph import Linear
1124 1125
                import numpy as np

1126
                data = np.ones([3, 1024], dtype='float32')
1127
                with fluid.dygraph.guard():
1128
                    linear = fluid.dygraph.Linear(1024, 4)
1129
                    t = to_variable(data)
1130
                    linear(t)  # call with default weight
1131
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1132 1133
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1134 1135

        """
1136
        pass
1137

1138
    @fake_interface_only
1139
    def backward(self, retain_graph=False):
1140
        """
J
Jiabin Yang 已提交
1141
        **Notes**:
T
tianshuo78520a 已提交
1142
            **This API is ONLY available in Dygraph mode**
1143

1144
        Run backward of current Graph which starts from current Tensor.
1145

J
Jiabin Yang 已提交
1146
        Args:
1147 1148 1149 1150
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1151

J
Jiabin Yang 已提交
1152 1153
        Returns:
            NoneType: None
1154 1155 1156 1157 1158

        Examples:
            .. code-block:: python

                import numpy as np
1159 1160
                import paddle
                paddle.disable_static()
1161 1162

                x = np.ones([2, 2], np.float32)
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
                ret = paddle.sums(inputs)
                loss = paddle.reduce_sum(ret)
                loss.backward()
1173 1174

        """
1175
        pass
1176

1177
    @fake_interface_only
1178
    def gradient(self):
1179
        """
J
Jiabin Yang 已提交
1180
        **Notes**:
T
tianshuo78520a 已提交
1181
            **This API is ONLY available in Dygraph mode**
1182 1183 1184

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1185
        Returns:
1186
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1187 1188 1189 1190 1191 1192 1193

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1194
                # example1: return ndarray
1195 1196 1197 1198 1199 1200 1201 1202 1203
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1204
                    loss2.backward()
1205 1206
                    print(loss2.gradient())

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1220
        """
1221
        pass
1222

1223
    @fake_interface_only
1224
    def clear_gradient(self):
1225
        """
J
Jiabin Yang 已提交
1226
        **Notes**:
T
tianshuo78520a 已提交
1227
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1228 1229

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1230

J
Jiabin Yang 已提交
1231
        Clear  (set to ``0`` ) the Gradient of Current Variable
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1250
                    loss2.backward()
1251 1252 1253 1254 1255
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1256
        pass
X
Xin Pan 已提交
1257

1258
    def __str__(self):
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
            var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})".\
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
            var_str = "{name} : fluid.{type})".\
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1303

F
update  
fengjiayi 已提交
1304
    def to_string(self, throw_on_error, with_details=False):
1305 1306 1307
        """
        Get debug string.

J
Jiabin Yang 已提交
1308 1309 1310 1311 1312
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1313

1314 1315
        Returns:
            str: The debug string.
1316 1317 1318 1319 1320

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1321

1322 1323 1324 1325 1326
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1327
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1328
                print("=============with detail===============")
1329
                print(new_variable.to_string(True, True))
1330
        """
F
update  
fengjiayi 已提交
1331 1332
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1333
        protostr = self.desc.serialize_to_string()
1334
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1335 1336 1337 1338
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1339 1340 1341
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1342
        return res_str
1343 1344 1345

    __repr__ = __str__

1346
    @property
1347
    def stop_gradient(self):
J
Jiabin Yang 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1363 1364
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1365 1366 1367
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1368 1369
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1370 1371 1372 1373
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1374
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1375 1376
                assert (out1.gradient() == 0).all()
        """
1377
        return self._stop_gradient
1378

1379 1380
    @stop_gradient.setter
    def stop_gradient(self, s):
1381
        self._stop_gradient = s
1382

1383 1384
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1406
        return self.desc.persistable()
1407

Y
Yu Yang 已提交
1408 1409
    @persistable.setter
    def persistable(self, p):
1410
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1411

Y
Yu Yang 已提交
1412 1413
    @property
    def name(self):
J
Jiabin Yang 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1430
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1452 1453
    @name.setter
    def name(self, new_name):
1454
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1455

Y
Yu Yang 已提交
1456 1457
    @property
    def shape(self):
J
Jiabin Yang 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1475
        # convert to tuple, make it as same as numpy API.
1476
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1477 1478

    @property
F
fengjiayi 已提交
1479
    def dtype(self):
J
Jiabin Yang 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1496
        return self.desc.dtype()
Y
Yu Yang 已提交
1497 1498 1499

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1521 1522 1523
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1524
        return self.desc.lod_level()
Y
Yu Yang 已提交
1525

Y
Yu Yang 已提交
1526 1527
    @property
    def type(self):
J
Jiabin Yang 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1544
        return self.desc.type()
Y
Yu Yang 已提交
1545

W
Wu Yi 已提交
1546
    def _set_error_clip(self, error_clip):
1547 1548 1549 1550 1551 1552 1553 1554 1555
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1556 1557
        self.error_clip = error_clip

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1598
            raise ValueError("slice step can not be zero")
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1674
    def _cloneVar(self, copy=False):
1675 1676
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1677 1678
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1679 1680 1681 1682
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1683
        new_var = self._cloneVar()
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1694
        new_var = self._cloneVar()
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1705
                return self._cloneVar(True)
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1724
                return self._cloneVar(True)
1725
            index = int(item)
1726
            if (index > 0 and index >= self.shape[axis]) \
1727 1728 1729 1730 1731 1732 1733
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1734
        return _getitem_impl_(self, item)
1735

Y
Yu Yang 已提交
1736

F
fengjiayi 已提交
1737 1738 1739
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1740

1741 1742
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1743 1744 1745 1746
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1747
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1748 1749 1750 1751
        ret_values.append(op_proto)
    return ret_values


1752 1753
class ComplexVariable(object):
    """
1754 1755
    The ComplexTensor defined on the complex number domain. It contains two common 
    real number Tensor as its members, :attr:`real` and :attr:`imag` 
1756 1757 1758
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
1759
        **The constructor of ComplexTensor should not be invoked directly.**
1760

1761
        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph ComplexTensor with complex number data.**
1762 1763

    Args:
1764 1765
        real (Tensor): The Tensor holding real-part data.
        imag (Tensor): The Tensor holding imaginery-part data.
1766 1767 1768 1769
    
    Examples:
        .. code-block:: python

1770
            import paddle
1771 1772
            import numpy as np

1773 1774 1775 1776 1777 1778 1779 1780
            paddle.enable_imperative()
            x = paddle.to_tensor([1.0+2.0j, 0.2])
            print(x.name, x.dtype, x.shape)
            # ({'real': 'generated_tensor_0.real', 'imag': 'generated_tensor_0.imag'}, 'complex128', [2L])
            print(x.numpy())
            # [1. +2.j 0.2+0.j]
            print(type(x))
            # <class 'paddle.ComplexTensor'>
1781 1782
    """

1783 1784 1785 1786 1787
    def __new__(cls, *arg, **kwargs):
        cls.__module__ = "paddle"
        cls.__name__ = "ComplexTensor"
        return super(ComplexVariable, cls).__new__(cls)

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
1834 1835 1836
        return "ComplexTensor[real]: %s\n%s\nComplexTensor[imag]: %s\n%s" % (
            self.real.name, str(self.real.value().get_tensor()), self.imag.name,
            str(self.imag.value().get_tensor()))
1837 1838 1839 1840

    __repr__ = __str__


F
fengjiayi 已提交
1841
class OpProtoHolder(object):
1842 1843 1844 1845
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1855
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1856 1857 1858 1859 1860 1861
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1862 1863 1864 1865 1866 1867 1868 1869
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1870 1871
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1872 1873
        return self.op_proto_map[type]

1874 1875 1876 1877 1878 1879
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1880 1881 1882 1883
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1884
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1885
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1886 1887
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1888 1889
        }

F
fengjiayi 已提交
1890

X
Xin Pan 已提交
1891
class Operator(object):
1892
    """
1893 1894 1895 1896 1897 1898 1899
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1900
        type(str): The type of operator. Default None.
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1921
        Block.append_op or Block._prepend_op instead.
1922 1923 1924 1925

    Examples:
        .. code-block:: python

1926
            import paddle.fluid as fluid
1927
            cur_program = fluid.Program()
1928 1929 1930 1931 1932
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1933
    """
1934
    OP_WITHOUT_KERNEL_SET = {
1935 1936
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1937 1938
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1939
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue'
1940
    }
1941

Y
Yu Yang 已提交
1942 1943
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1944
                 desc,
Y
Yu Yang 已提交
1945 1946 1947
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1948
                 attrs=None):
L
lujun 已提交
1949
        if in_dygraph_mode():
1950 1951
            if type is None:
                raise ValueError(
1952
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1953
            self._type = type
M
minqiyang 已提交
1954
            self.attrs = attrs if attrs else {}
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1969
                )] = self.block.program._op_role
1970 1971 1972

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1973 1974
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1975 1976 1977 1978 1979 1980 1981 1982

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1983
                    "`type` to initialized an Operator can not be None.")
1984 1985
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
1986 1987 1988 1989 1990 1991 1992
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
1993 1994 1995 1996 1997 1998 1999

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2031
                        if not isinstance(in_args, (list, tuple)):
2032 2033 2034 2035 2036 2037
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2038
                        for index, arg in enumerate(in_args):
2039 2040 2041 2042
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2043
                            elif isinstance(arg, (Variable, core.VarBase)):
2044
                                in_arg_names.append(cpt.to_text(arg.name))
2045
                            else:
2046 2047 2048 2049
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2050 2051
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2078
                        if not in_dygraph_mode():
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2098
    def _has_kernel(self, op_type):
2099 2100
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2101
    def to_string(self, throw_on_error):
2102
        """
2103 2104
        Get debug string.

2105
        Args:
2106 2107
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2108

2109 2110
        Returns:
            str: The debug string.
2111 2112

        """
2113
        protostr = self.desc.serialize_to_string()
2114
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2115 2116
        return _debug_string_(proto, throw_on_error)

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2210
    def __str__(self):
2211
        return self._to_readable_code()
2212 2213 2214

    __repr__ = __str__

F
fengjiayi 已提交
2215 2216
    @property
    def type(self):
2217
        return self.desc.type()
F
fengjiayi 已提交
2218 2219

    def input(self, name):
2220
        """
2221
        Get the input arguments according to the input parameter name.
2222

2223 2224
        Args:
            name(str): The input parameter name.
2225

2226 2227 2228
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2229
        """
F
fengjiayi 已提交
2230 2231
        return self.desc.input(name)

W
Wu Yi 已提交
2232
    def _rename_input(self, old_name, new_name):
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2243
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2244

W
Wu Yi 已提交
2245
    def _rename_output(self, old_name, new_name):
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2256
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2257

F
fengjiayi 已提交
2258 2259 2260 2261
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2262 2263 2264 2265 2266 2267 2268 2269
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2270
    def output(self, name):
2271
        """
2272
        Get output arguments by the output parameter name.
2273

2274 2275
        Args:
            name(str): The output parameter name.
2276

2277 2278 2279
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2280
        """
F
fengjiayi 已提交
2281 2282 2283 2284 2285 2286
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2287 2288 2289 2290 2291 2292 2293 2294
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2295
    def has_attr(self, name):
2296
        """
2297 2298
        Whether this Operator has the attribute with name or not.

2299
        Args:
2300
            name(str): the attribute name.
2301

2302 2303
        Returns:
            bool: True if has this attribute.
2304 2305

        """
F
fengjiayi 已提交
2306 2307 2308
        return self.desc.has_attr(name)

    def attr_type(self, name):
2309
        """
2310
        Get the type of attribute by attribute's name.
2311

2312 2313
        Args:
            name(str): the attribute name.
2314

2315 2316
        Returns:
            core.AttrType: the attribute type.
2317
        """
F
fengjiayi 已提交
2318 2319
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2320
    def _set_attr(self, name, val):
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2331 2332
        self._update_desc_attr(name, val)

2333 2334 2335
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2347 2348
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2349 2350
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2351
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2352 2353 2354 2355
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2356
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2357

F
fengjiayi 已提交
2358 2359 2360 2361 2362
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2363
        """
2364 2365
        Get the attribute by name.

2366
        Args:
2367
            name(str): the attribute name.
2368

2369 2370
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2371 2372
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2373
        return self.desc.attr(name)
Y
Yu Yang 已提交
2374

W
Wu Yi 已提交
2375
    def _block_attr_id(self, name):
2376
        """
G
gongweibao 已提交
2377
        Get the block attribute's id by name.
2378

2379 2380
        Args:
            name(str): the attribute name.
2381

2382 2383
        Returns:
            int: the block index.
2384
        """
W
Wu Yi 已提交
2385
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2386

W
Wu Yi 已提交
2387
    def _block_attr(self, name):
G
gongweibao 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2398
        id = self._block_attr_id(name)
G
gongweibao 已提交
2399 2400 2401
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2402
    def _blocks_attr(self, name):
G
gongweibao 已提交
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2413
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2414 2415 2416 2417 2418
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2419
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2430
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2431

J
JiayiFeng 已提交
2432
    def all_attrs(self):
F
fengjiayi 已提交
2433
        """
2434 2435 2436
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2437
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2438 2439 2440 2441
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2442 2443
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2444
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2445 2446 2447
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2448
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2449 2450 2451 2452
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2453 2454
        return attr_map

2455 2456 2457
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2458 2459 2460 2461

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2462 2463 2464
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2465 2466 2467 2468 2469 2470 2471 2472

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2473 2474
            return False

2475 2476 2477 2478 2479 2480
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2481

Y
Yu Yang 已提交
2482
class Block(object):
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2497
        use `Program._create_block()` to create a block.
2498 2499 2500 2501

    Examples:
        .. code-block:: python

2502 2503 2504
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2505 2506 2507 2508 2509 2510 2511 2512 2513
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2514
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2515
        self.desc = program.desc.block(idx)
2516
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2517
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2518
        self.program = program
2519
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2520

2521
    def __str__(self):
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2568

F
fengjiayi 已提交
2569 2570
    def to_string(self, throw_on_error, with_details=False):
        """
2571 2572
        Get debug string.

F
fengjiayi 已提交
2573 2574
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2575
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2576
            with_details(bool): more details about variables and parameters
2577 2578
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2579

2580 2581
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2582 2583 2584 2585
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2586
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2587 2588
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2589
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2590
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2591
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2592
            for op in self.ops:
F
fengjiayi 已提交
2593 2594
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2595 2596 2597
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2598 2599
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2600 2601
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2602 2603 2604

    __repr__ = __str__

Y
Yu Yang 已提交
2605 2606
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2607
        return self.desc.parent
Y
Yu Yang 已提交
2608

Y
Yu Yang 已提交
2609 2610 2611 2612
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2613
    def _set_forward_block_idx(self, idx):
2614 2615 2616 2617 2618 2619 2620 2621 2622
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2623
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2624

2625 2626 2627 2628 2629 2630 2631 2632
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2633 2634
    @property
    def idx(self):
Y
Yu Yang 已提交
2635
        return self.desc.id
Y
Yu Yang 已提交
2636

Q
Qiao Longfei 已提交
2637
    def var(self, name):
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2651
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2652 2653 2654
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2655 2656
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2657
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2658
        return v
Q
Qiao Longfei 已提交
2659

X
Xin Pan 已提交
2660
    def _find_var_recursive(self, name):
2661 2662 2663 2664 2665 2666 2667
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2668
            Variable: the Variable with the giving name. Or None if not found.
2669
        """
Y
Yu Yang 已提交
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2694
        return None
Y
Yu Yang 已提交
2695

X
Xin Pan 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2715

Q
Qiao Longfei 已提交
2716
    def all_parameters(self):
2717
        return list(self.iter_parameters())
2718

2719
    def iter_parameters(self):
M
minqiyang 已提交
2720
        return (item[1] for item in six.iteritems(self.vars)
2721
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2722

Y
Yu Yang 已提交
2723
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2724 2725 2726
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2727 2728 2729
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2730
        return var
Y
Yu Yang 已提交
2731

Q
Qiao Longfei 已提交
2732 2733 2734
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2735
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2736 2737
        """
        Rename variable in vars and ops' inputs and outputs
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2750
        """
M
minqiyang 已提交
2751 2752
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2753

T
typhoonzero 已提交
2754
        if not self.has_var(name):
2755
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2756 2757
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2758
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2759 2760 2761 2762 2763 2764
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2765
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2766 2767 2768 2769
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2770
        orig_var_type = v.type
M
minqiyang 已提交
2771
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2772
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2773
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2774
        if var_type == "Parameter":
L
Leo Chen 已提交
2775 2776
            if in_dygraph_mode():
                var = ParamBase(
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2787 2788
                var = Parameter(
                    self,
2789 2790 2791 2792 2793 2794 2795 2796 2797
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2798
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2799 2800
            var = Variable(
                self,
T
typhoonzero 已提交
2801
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2802 2803 2804 2805
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2806
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2807 2808 2809
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2810
        self._sync_with_cpp()
2811
        return var
T
typhoonzero 已提交
2812

W
Wu Yi 已提交
2813 2814
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2815
        self.desc._remove_var(cpt.to_bytes(name))
2816 2817
        del self.vars[name]

Y
Yu Yang 已提交
2818 2819
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2820
        param = None
L
Leo Chen 已提交
2821
        if in_dygraph_mode():
2822
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2823 2824
        else:
            param = Parameter(global_block, *args, **kwargs)
2825
        if 'initializer' in kwargs:
2826 2827 2828 2829 2830

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2831 2832 2833 2834 2835
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2847
                # TODO already inited, do nothing, should log a warning
2848 2849 2850
                pass
            else:
                initializer(param, self)
2851
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2852
        return param
Y
Yu Yang 已提交
2853

Y
Yu Yang 已提交
2854
    def append_op(self, *args, **kwargs):
2855 2856 2857 2858 2859 2860
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2861
        if in_dygraph_mode():
2862
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2863
            type = kwargs.get("type", None)
2864 2865 2866
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2867
                type=type,
M
minqiyang 已提交
2868 2869
                inputs=None,
                outputs=None,
2870
                attrs=attrs)
2871

M
minqiyang 已提交
2872 2873 2874
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2875
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2876 2877

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2878
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2879 2880
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2881
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2882
        else:
2883 2884 2885 2886 2887 2888 2889 2890 2891
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2892
            self.ops.append(op)
M
minqiyang 已提交
2893

2894 2895
        return op

W
Wu Yi 已提交
2896
    def _insert_op(self, index, *args, **kwargs):
2897 2898 2899 2900 2901 2902 2903 2904 2905
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2906 2907
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2908 2909 2910 2911
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2912
    def _remove_op(self, index):
2913 2914 2915 2916 2917 2918 2919 2920 2921
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2922 2923
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2924 2925
        del self.ops[index]

W
Wu Yi 已提交
2926
    def _slice_ops(self, start, end):
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2937
        return self.ops[start:end]
Y
Yancey1989 已提交
2938

W
Wu Yi 已提交
2939
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2940
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2941 2942
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2943
            op = Operator(
J
Jiabin Yang 已提交
2944
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2945

J
Jiabin Yang 已提交
2946
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2947
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2948 2949
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2950
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2951
        else:
2952 2953 2954 2955 2956 2957 2958 2959
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2960
            self.ops.insert(0, op)
2961

Y
Yu Yang 已提交
2962 2963
        return op

W
Wu Yi 已提交
2964
    def _sync_with_cpp(self):
2965
        """
2966 2967
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2968
        """
Q
Qiao Longfei 已提交
2969 2970 2971 2972 2973
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2974
        # sync variables removed from c++ end
2975
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2976
            if not self.desc.find_var(cpt.to_bytes(var)):
2977 2978
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2979
        # sync operators from cpp
2980 2981 2982 2983
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3000 3001 3002 3003 3004

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3005
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3006 3007 3008 3009 3010 3011 3012

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3026 3027 3028 3029
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3030
    def _copy_param_info_from(self, other):
3031
        """
3032 3033
        Copy the information of parameters from the other block.

3034
        Args:
3035 3036 3037 3038 3039
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3040 3041 3042 3043 3044

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3045 3046
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3047
        for p in other.iter_parameters():
3048 3049 3050
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3051 3052
                # if the Parameter is pruned, v may be None
                continue
3053
            assert isinstance(v, Variable)
3054
            new_p = None
L
Leo Chen 已提交
3055 3056
            if in_dygraph_mode():
                new_p = ParamBase(
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3068 3069
                new_p = Parameter(
                    block=self,
3070 3071 3072
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3073 3074
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3075 3076 3077 3078 3079 3080
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3081 3082
            self.vars[new_p.name] = new_p

3083
    def _clone_variable(self, var, force_persistable=True):
3084 3085
        """
        Clone a variable into current block.
3086

3087 3088
        Args:
            var: the variable to be cloned.
3089 3090 3091
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3092 3093

        Returns:
3094
            Variable: the new  variable cloned from 'var' in current block.
3095 3096
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3097 3098 3099 3100 3101
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3102 3103
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3104
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3105 3106 3107 3108 3109 3110
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3111
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3112 3113
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3114 3115 3116 3117 3118 3119 3120
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3121
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3122 3123
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3124
        return ret_var
3125

Y
Yu Yang 已提交
3126

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3222
    def remove_input_by_id(self, node_id):
3223 3224 3225 3226 3227 3228
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3229
        self.node.remove_input(node_id)
3230

3231
    def remove_input(self, node):
3232 3233 3234 3235
        """
        Remove a node from inputs.

        Args:
3236
            node(IrNode): the node being removed.
3237
        """
3238
        self.node.remove_input(node.node)
3239

3240
    def append_input(self, node):
3241 3242 3243 3244
        """
        Append a node in inputs.

        Args:
3245
            node(IrNode): the node being appended.
3246
        """
3247
        self.node.append_input(node.node)
3248 3249 3250 3251 3252 3253 3254 3255

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3256
    def remove_output_by_id(self, node_id):
3257 3258 3259 3260 3261 3262
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3263
        self.node.remove_output(node_id)
3264

3265
    def remove_output(self, node):
3266 3267 3268 3269
        """
        Remove a node from outputs.

        Args:
3270
            node(IrNode): the node being removed.
3271
        """
3272
        self.node.remove_output(node.node)
3273

3274
    def append_output(self, node):
3275 3276 3277 3278
        """
        Append a node in outputs.

        Args:
3279
            node(IrNode): the node being appended.
3280
        """
3281
        self.node.append_output(node.node)
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3329
            "The node variable description can not be None."
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3340
            "The node variable description can not be None."
3341 3342
        return self.node.var().persistable()

3343 3344 3345 3346 3347 3348 3349 3350
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3351
            "The node variable description can not be None."
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3362
            "The node variable description can not be None."
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3373
            "The node variable description can not be None."
3374 3375
        return self.node.var().shape()

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3423
            "The node operator description can not be None."
3424 3425
        self.node.op()._rename_input(old_input_name, new_input_name)

3426 3427 3428 3429 3430 3431 3432 3433 3434
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3435
            "The node operator description can not be None."
3436 3437
        self.node.op()._rename_output(old_output_name, new_output_name)

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3449
            "The node operator description can not be None."
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3463
            "The node operator description can not be None."
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3474
            "The node operator description can not be None."
3475 3476
        return self.node.op().set_type(new_type)

3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3492
            "The node operator description can not be None."
3493 3494 3495 3496
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3497
                all(isinstance(v, Block) for v in val):
3498 3499
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3500
                isinstance(val, core.ProgramDesc):
3501 3502 3503 3504
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3505 3506 3507 3508 3509 3510 3511 3512
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3513
            "The node operator description can not be None."
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3524
            "The node operator description can not be None."
3525 3526
        return self.node.op().output_arg_names()

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3548 3549
class IrGraph(object):
    """
3550
    Python IrGraph. Beneath it is a core.Graph, which is used for
3551
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3552 3553
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3554 3555 3556 3557
    """

    def __init__(self, graph, for_test=False):
        """
3558 3559
        Construct an IrGraph using core.Graph.

3560 3561 3562 3563 3564 3565 3566 3567 3568
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3569 3570 3571 3572
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3573 3574 3575
        Warns:
            The method only clones the graph structure, not its attributes.

3576 3577 3578
        Returns:
            IrGraph: A new and duplicated graph.
        """
3579
        g = self.graph.clone()
3580 3581
        return IrGraph(g, self._for_test)

3582
    def is_test(self):
3583 3584 3585
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3586 3587
        return self._for_test

W
WangZhen 已提交
3588
    def all_nodes(self):
3589 3590 3591
        """
        Return all nodes included in the graph as a set.
        """
3592
        return {IrNode(node) for node in self.graph.nodes()}
3593

3594
    def all_var_nodes(self):
3595 3596 3597
        """
        Return all variable nodes included in the graph as a set.
        """
3598
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3599

3600
    def all_persistable_nodes(self):
3601 3602 3603
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3604 3605 3606 3607 3608
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3609
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3610

3611
    def all_op_nodes(self):
3612 3613 3614
        """
        Return all operator nodes included in the graph as a set.
        """
3615
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3616

3617
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3629
            IrVarNode: the created persistable variable node.
3630
        """
3631 3632 3633 3634 3635
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3636
        return IrVarNode(self.graph.create_var_node(var_desc))
3637 3638

    def create_var_node(self, name, var_type, shape, var_dtype):
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3650
            IrVarNode: the created variable node.
3651 3652
        """

3653 3654 3655 3656
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3657
        return IrVarNode(self.graph.create_var_node(var_desc))
3658

3659 3660 3661 3662 3663 3664
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3665
    def create_var_node_from_desc(self, var_desc):
3666 3667 3668 3669 3670 3671 3672 3673
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3674
            IrVarNode: the created variable node.
3675
        """
3676
        return IrVarNode(self.graph.create_var_node(var_desc))
3677 3678

    def create_op_node(self, op_type, attrs, inputs, outputs):
3679 3680 3681 3682 3683 3684 3685
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3686
            outputs(dict): the outputs of the operator node.
3687 3688

        Returns:
3689
            IrOpNode: the created operator node.
3690
        """
3691 3692
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3693
        for attr, value in six.iteritems(attrs):
3694
            self._update_desc_attr(op_desc, attr, value)
3695
        for input_name, var_nodes in six.iteritems(inputs):
3696 3697 3698 3699
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3700
        for output_name, var_nodes in six.iteritems(outputs):
3701 3702 3703 3704
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3705
        return IrOpNode(self.graph.create_op_node(op_desc))
3706 3707

    def create_op_node_from_desc(self, op_desc):
3708 3709 3710 3711 3712 3713 3714
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3715
            IrOpNode: the created operator node.
3716
        """
3717
        return IrOpNode(self.graph.create_op_node(op_desc))
3718 3719

    def update_input_link(self, old_input_node, new_input_node, op_node):
3720 3721 3722 3723
        """
        Update the input's link of a operator node.

        Args:
3724 3725 3726
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3727
        """
3728
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3729 3730
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3731 3732 3733 3734
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3735
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3736

3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3747 3748
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3749 3750 3751 3752 3753 3754
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3755
    def link_to(self, node_in, node_out):
3756 3757 3758 3759
        """
        Connect two nodes.

        Args:
3760 3761
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3762
        """
3763
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3764
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3765 3766
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3767 3768

    def safe_remove_nodes(self, remove_nodes):
3769 3770 3771 3772 3773 3774 3775
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3776
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3777 3778 3779 3780
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3781 3782
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3783

Z
Zhen Wang 已提交
3784 3785 3786 3787 3788 3789 3790 3791
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3792
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3793 3794 3795 3796
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3797
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3798 3799 3800
                        ]
                    else:
                        var_nodes[each_var_name].append(
3801 3802
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3803 3804
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3805
    def has_circle(self):
3806 3807 3808 3809 3810 3811
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3812 3813 3814
        return core.has_circle(self.graph)

    def graph_num(self):
3815 3816 3817 3818 3819 3820
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3821 3822 3823
        return core.graph_num(self.graph)

    def topology_sort(self):
3824 3825 3826
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3827
        Notes: the `graph` can not contain a circle.
3828 3829

        Returns:
Z
Zhen Wang 已提交
3830
            list(IrNode): nodes in topology order.
3831
        """
3832
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3833
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3834 3835

    def build_adjacency_list(self):
3836 3837 3838 3839
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3840
            dict{IrNode: set(IrNode)}: the adjacency list.
3841
        """
3842 3843 3844 3845 3846
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3847

3848 3849 3850 3851 3852 3853 3854 3855
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3856
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3857 3858 3859 3860 3861
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3862 3863 3864
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3865
                                          + ' -o ' + pdf_save_path, shell=True)
3866 3867 3868 3869 3870
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3871
        remove_ctr_vars = set()
3872
        if remove_ctr_var:
3873
            for node in self.all_var_nodes():
3874 3875 3876
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3877 3878
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3879 3880
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3881 3882 3883 3884 3885 3886
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3887 3888 3889 3890
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3891 3892
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3893 3894 3895 3896 3897 3898 3899
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3900 3901 3902
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3903
        WARN: When the graph includes backward operator nodes, the
3904 3905 3906 3907 3908 3909
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3910
        convert_pass = core.get_pass('graph_to_program_pass')
3911 3912
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3913 3914 3915 3916
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3944
class Program(object):
D
dzhwinter 已提交
3945
    """
3946 3947
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3948
    it will contain nested block.
3949

J
Jiabin Yang 已提交
3950 3951 3952
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3953

J
Jiabin Yang 已提交
3954
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3955
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3956 3957 3958 3959 3960 3961 3962
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3963 3964 3965 3966
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3967 3968

    Returns:
J
Jiabin Yang 已提交
3969
        Program: An empty Program.
D
dzhwinter 已提交
3970 3971

    Examples:
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3985 3986 3987

    """

3988 3989
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3990 3991
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
3992 3993
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
3994
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3995
        self.__op_role_var = []
T
tangwei12 已提交
3996

3997 3998
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3999
        self._is_distributed = False
4000
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4001
        self._is_chief = False
4002 4003 4004
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4005
        self._endpoints = []
4006 4007 4008
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4009
        self._trainers_endpoints = []
4010
        # the distributed lookup table names
T
tangwei12 已提交
4011
        self._distributed_lookup_table = None
4012 4013 4014

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4015 4016
        self._use_lamb = False

4017 4018 4019
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4020

4021 4022 4023
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4024
        self._program_config = None
4025

H
hutuxian 已提交
4026 4027 4028
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4029 4030 4031
        # appending gradients times
        self._appending_grad_times = 0

4032 4033 4034 4035
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4036 4037 4038
        # compiled program, i.e. Graph
        self._graph = None

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
                prog1 = fluid.default_main_program()
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4066
    @property
4067
    def _op_role(self):
Y
yuyang18 已提交
4068 4069 4070 4071 4072 4073 4074 4075
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4076
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4077 4078 4079 4080
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4081 4082
        return self._current_role

4083 4084
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4085 4086 4087
        self._current_role = role

    @property
4088
    def _op_role_var(self):
Y
yuyang18 已提交
4089
        """
4090
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4091

4092
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4093 4094 4095

        Notes: This is a very low-level API. Users should not use it directly.
        """
4096
        return self.__op_role_var
Y
yuyang18 已提交
4097

4098
    @signature_safe_contextmanager
4099 4100 4101 4102 4103
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4104 4105 4106 4107
        try:
            yield
        finally:
            self._current_role = tmp_role
4108

S
rename  
sneaxiy 已提交
4109
    @signature_safe_contextmanager
W
Wu Yi 已提交
4110
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4111 4112 4113 4114 4115 4116 4117
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4118
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4119 4120 4121

        Examples:

4122
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4123
            >>> p, g = backward(...)
W
Wu Yi 已提交
4124
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4125 4126
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4127
        tmp_role = self._current_role
4128
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4129

Y
yuyang18 已提交
4130 4131
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4132
        self.__op_role_var = [
4133 4134 4135
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4136 4137 4138 4139 4140
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4141

S
rename  
sneaxiy 已提交
4142
    @signature_safe_contextmanager
X
Xin Pan 已提交
4143
    def _lr_schedule_guard(self, is_with_opt=False):
4144 4145 4146 4147 4148 4149 4150
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4151 4152 4153 4154
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4155 4156 4157

        Examples:

4158
            >>> import paddle.fluid as fluid
4159 4160 4161 4162
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4163 4164

        tmp_role = self._current_role
4165
        tmp_var = self.__op_role_var
4166

4167 4168
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4169 4170
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4171
        # TODO(typhoonzero): how to set target learning rate var
4172
        self.__op_role_var = []
4173 4174 4175 4176 4177
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4178

4179
    def __str__(self):
Y
yuyang18 已提交
4180 4181 4182 4183 4184 4185 4186 4187 4188
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4228
            program_str += '\n'
4229
        return program_str
Y
Yang Yang(Tony) 已提交
4230

F
fengjiayi 已提交
4231 4232 4233
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4234

J
Jiabin Yang 已提交
4235 4236 4237
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4238

J
Jiabin Yang 已提交
4239
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4240

H
haowang101779990 已提交
4241
        Returns:
J
Jiabin Yang 已提交
4242
            str: The debug string describe current Program.
Y
yuyang18 已提交
4243 4244

        Raises:
J
Jiabin Yang 已提交
4245
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4246

4247 4248 4249 4250 4251 4252
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
4253 4254
                x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
                pred = fluid.layers.fc(x, size=3)
4255
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4256
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4257
                print("program string without detail: {}".format(prog_string))
4258
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4259
        """
4260 4261 4262 4263 4264 4265 4266 4267 4268
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4269 4270 4271 4272 4273 4274
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4275 4276
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4277 4278
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4279

W
Wu Yi 已提交
4280
    def _get_desc(self):
Y
yuyang18 已提交
4281 4282 4283 4284 4285 4286 4287
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4288 4289
        return self.desc

X
version  
Xin Pan 已提交
4290 4291 4292
    def _version(self):
        return self.desc._version()

4293
    def clone(self, for_test=False):
Y
yuyang18 已提交
4294
        """
4295
        **Notes**:
J
Jiabin Yang 已提交
4296 4297 4298 4299
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

4300
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
4301

4302
        Create a new Program with forward content of original one when ``for_test=True``.
4303
        Create a new Program as same as the original one when ``for_test=False``.
4304

J
Jiabin Yang 已提交
4305
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4306 4307 4308
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4309

4310 4311
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4312 4313
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4314
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4315

J
Jiabin Yang 已提交
4316
        For Example:
4317
          ::
L
Luo Tao 已提交
4318

4319 4320 4321 4322 4323 4324 4325 4326
            import paddle.fluid as fluid
            img = fluid.layers.data(name='image', shape=[784])
            pred = fluid.layers.fc(input=img, size=10, act='relu')
            loss = fluid.layers.mean(pred)
            # Here we use clone before Momentum
            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize(loss)
4327

J
Jiabin Yang 已提交
4328
        Args:
4329

4330 4331
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4332

J
Jiabin Yang 已提交
4333
        Returns:
4334
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4335

Y
yuyang18 已提交
4336 4337 4338

        Examples:

J
Jiabin Yang 已提交
4339
        **Notes: The Program's order maybe different after** :code:`clone` **and
4340
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
4341
        example we give you an simple method** :code:`print_prog(program)` **to
4342
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
4343
        after** :code:`clone`:
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
            .. code-block:: python

                import paddle.fluid as fluid
                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
4380 4381 4382

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4383 4384 4385 4386 4387 4388 4389 4390 4391
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
4392
                            test_program = train_program.clone(for_test=True)
4393
                    print_prog(test_program)
J
Jiabin Yang 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4425 4426
                    
                    def network():
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss

                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
4441 4442 4443
                            avg_loss = network()
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)
4444
                    # the test startup program is not used.
4445
                    with fluid.program_guard(test_program_2, startup_program_2):
4446
                        with fluid.unique_name.guard():
4447 4448
                            avg_loss = network()
                    print_prog(test_program_2)
4449 4450

        The two code snippets above will generate and print same programs.
4451
        """
4452 4453 4454 4455 4456

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4457
        pruned_origin_block_id_map = None
4458
        if for_test:
4459 4460 4461 4462 4463 4464 4465 4466 4467
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4468
        else:
4469
            p = Program()
G
gongweibao 已提交
4470 4471
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4472
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4473 4474 4475
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4476 4477

            p._current_role = self._current_role
4478
            p.__op_role_var = self.__op_role_var
4479
            p._appending_grad_times = self._appending_grad_times
4480 4481
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4482

4483 4484
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4485
            p._sync_with_cpp()
4486

W
Wu Yi 已提交
4487
        p._copy_param_info_from(self)
4488
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4489
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4490
        return p
4491

4492
    def _prune(self, targets):
Y
yuyang18 已提交
4493 4494 4495 4496 4497 4498 4499 4500
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4501
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4502 4503 4504 4505
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4506
        """
4507
        return self._prune_with_input([], targets)
4508 4509

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4510
        """
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4521
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4522 4523 4524 4525 4526 4527
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4528 4529 4530 4531
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4532 4533
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4534 4535
        if not isinstance(targets, list):
            targets = [targets]
4536 4537 4538

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4539 4540 4541
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4542

4543 4544 4545 4546
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4547 4548 4549
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4550
                else:
4551 4552 4553
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4554 4555 4556 4557 4558 4559 4560 4561

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4578 4579 4580 4581 4582 4583 4584 4585
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4586

4587
        res = Program()
4588 4589 4590
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4591 4592 4593
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4594
        res._sync_with_cpp()
4595 4596 4597 4598 4599

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4600 4601
        return res

X
Xin Pan 已提交
4602
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4603
        """
F
fengjiayi 已提交
4604 4605 4606 4607 4608
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4609
        3. change the :code:`is_test`
Y
yuyang18 已提交
4610 4611 4612
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4613
        Args:
X
Xin Pan 已提交
4614 4615
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4616

Y
yuyang18 已提交
4617 4618 4619 4620 4621 4622
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4623
        res = Program()
4624
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4625 4626 4627 4628

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4629
        if prune_read_op:
4630 4631 4632 4633 4634 4635 4636 4637 4638
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4639
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4640 4641

        # change all `is_test` attributes to True
M
minqiyang 已提交
4642
        for i in six.moves.range(res.desc.num_blocks()):
4643
            block = res.desc.block(i)
M
minqiyang 已提交
4644
            for j in six.moves.range(block.op_size()):
4645 4646
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4647
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4648 4649 4650
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4651
        res._sync_with_cpp()
4652 4653
        return res

4654 4655
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4656
        """
J
Jiabin Yang 已提交
4657 4658 4659 4660
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4661

4662 4663
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4664

J
Jiabin Yang 已提交
4665
        Args:
Y
yuyang18 已提交
4666

J
Jiabin Yang 已提交
4667
            binary_str_type (str): the binary prootbuf string.
4668

J
Jiabin Yang 已提交
4669 4670
        Returns:
            Program: A deserialized Program.
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4693
        """
4694 4695
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4696
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4697
        p._sync_with_cpp()
4698
        return p
Y
Yu Yang 已提交
4699

4700
    @staticmethod
4701
    def _construct_from_desc(desc):
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4717 4718
    @property
    def random_seed(self):
Y
yuyang18 已提交
4719
        """
J
Jiabin Yang 已提交
4720
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4721 4722
        the random seed from random device.

J
Jiabin Yang 已提交
4723 4724 4725 4726
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4727

4728 4729 4730 4731 4732 4733 4734 4735

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4736
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
4737 4738 4739
                print(random_seed)
                ## 0
                ## the default random seed is 0
4740 4741

                # Here we need to set random seed before we use fluid.layers.dropout
4742
                prog.random_seed = 1
4743 4744
                z_var = fluid.layers.dropout(x_var, 0.7)

4745
                print(prog.random_seed)
4746 4747
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4748
        """
D
dzhwinter 已提交
4749 4750
        return self._seed

Q
qiaolongfei 已提交
4751 4752
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4753
        """
4754 4755
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4756 4757 4758 4759
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4760

4761 4762 4763 4764 4765 4766 4767 4768 4769

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4770 4771


Y
yuyang18 已提交
4772
        """
Q
qiaolongfei 已提交
4773 4774
        return self.desc.num_blocks()

D
dzhwinter 已提交
4775 4776 4777
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4778 4779 4780
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4781 4782
        self._seed = seed

Y
Yu Yang 已提交
4783
    def __repr__(self):
4784
        return self.__str__()
4785

Y
Yu Yang 已提交
4786
    def global_block(self):
Y
yuyang18 已提交
4787
        """
J
Jiabin Yang 已提交
4788 4789
        **Notes**:
            **This API has no effect in Dygraph mode**
4790 4791 4792

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4793 4794
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4795

4796 4797 4798 4799 4800 4801 4802 4803 4804

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4805

Y
yuyang18 已提交
4806
        """
Y
Yu Yang 已提交
4807 4808
        return self.blocks[0]

Q
Qiao Longfei 已提交
4809
    def block(self, index):
Y
yuyang18 已提交
4810
        """
J
Jiabin Yang 已提交
4811 4812
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4813

4814 4815
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4816 4817
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4818

J
Jiabin Yang 已提交
4819 4820
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4821 4822 4823 4824 4825 4826 4827 4828 4829

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4830
        """
Q
Qiao Longfei 已提交
4831 4832
        return self.blocks[index]

Y
Yu Yang 已提交
4833
    def current_block(self):
Y
yuyang18 已提交
4834
        """
J
Jiabin Yang 已提交
4835 4836
        **Notes**:
            **This API has no effect in Dygraph mode**
4837

J
Jiabin Yang 已提交
4838 4839
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4840

J
Jiabin Yang 已提交
4841 4842
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4843

4844 4845 4846 4847 4848 4849 4850 4851
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4852
        """
Y
Yu Yang 已提交
4853 4854
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4855
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4856 4857 4858 4859 4860
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4861

Y
yuyang18 已提交
4862 4863 4864 4865 4866
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4867
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4868 4869 4870
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4871 4872 4873 4874
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4875
    def _rollback(self):
Y
yuyang18 已提交
4876 4877 4878 4879 4880
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4881 4882
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4883
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4894 4895 4896
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4897
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4898

W
Wu Yi 已提交
4899
    def _copy_param_info_from(self, other):
4900
        """
4901
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4902

Y
yuyang18 已提交
4903 4904 4905
        Notes: This is a very low level API. Users should not invoke it
        directly.

4906 4907 4908 4909 4910 4911 4912
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4913 4914 4915
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4916

W
Wu Yi 已提交
4917
        self.global_block()._copy_param_info_from(other.global_block())
4918

4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4930 4931 4932
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4933 4934
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4935
        self._parameters_on_pservers = other._parameters_on_pservers
4936
        self._endpoints = other._endpoints
4937
        self._ps_endpoint = other._ps_endpoint
4938 4939
        self._distributed_lookup_table = other._distributed_lookup_table

4940
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4941 4942
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4943

Y
yuyang18 已提交
4944 4945 4946
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4947 4948
        Args:
            other(Program): Other program
4949 4950 4951 4952
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4953 4954 4955 4956 4957

        Returns:
            None
        """
        if not isinstance(other, Program):
4958 4959 4960
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4961

4962 4963 4964 4965 4966
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4967 4968 4969

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4970 4971
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4972
            for var in list(block.vars.values()):
4973 4974 4975 4976 4977 4978 4979
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4980

4981
    def list_vars(self):
Y
yuyang18 已提交
4982
        """
J
Jiabin Yang 已提交
4983
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4984

J
Jiabin Yang 已提交
4985 4986
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4998
        """
4999
        for each_block in self.blocks:
5000
            for each_var in list(each_block.vars.values()):
5001 5002
                yield each_var

5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5061

5062
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5063
class Parameter(Variable):
5064
    """
5065
    Parameter is derived from Variable. A parameter is a persistable
5066
    Variable, and will be updated by optimizers after each iteration.
5067
    The training of a neural network is essentially the updating of
5068 5069
    its parameters.

5070
    Relative to a general Variable, a Parameter has several its own
5071 5072
    member variables:

5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5083 5084
    """

5085 5086 5087 5088 5089 5090
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5091 5092 5093 5094 5095
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5096
        if len(shape) == 0:
5097 5098
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5099 5100 5101

        for each in shape:
            if each < 0:
5102 5103 5104
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5105 5106

        Variable.__init__(
5107 5108 5109 5110 5111 5112 5113
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5114 5115 5116 5117
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5118 5119
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5120
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5121

5122 5123
        self.is_distributed = False

F
fengjiayi 已提交
5124
    def __str__(self):
5125
        return self._to_readable_code()
F
fengjiayi 已提交
5126

F
update  
fengjiayi 已提交
5127 5128 5129
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5130

F
update  
fengjiayi 已提交
5131 5132 5133 5134 5135 5136 5137 5138
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5139 5140 5141 5142 5143 5144 5145 5146 5147
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5148 5149 5150 5151 5152 5153
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5154
                               "do_model_average")
F
update  
fengjiayi 已提交
5155
            for attr_name in additional_attr:
5156 5157
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5158 5159
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5160 5161 5162 5163
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5164

5165 5166
class ParamBase(core.VarBase):
    """
5167 5168 5169
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5170 5171 5172
    The training of a neural network is essentially the updating of
    its ParamBase.

5173
    Relative to a general Tensor, a ParamBase has several its own
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5216 5217
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5218 5219 5220 5221 5222 5223 5224 5225

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False
5226
        # self.block = default_main_program().global_block()
5227

5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5241
    def __str__(self):
5242
        """
5243
        Convert a ParamBase object to a readable string.
5244

5245
        Returns(str): A readable string.
5246 5247 5248 5249

        Examples:
            .. code-block:: python

5250
                import paddle
5251
                paddle.disable_static()
5252 5253 5254 5255 5256 5257 5258 5259
                conv = paddle.nn.Conv2D(3, 3, 5)
                print(conv.weight)
                # Parameter: conv2d_0.w_0
                #   - place: CUDAPlace(0)
                #   - shape: [3, 3, 5, 5]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [...] 
5260
                paddle.enable_static()
5261
        """
5262 5263
        return "Parameter containing:\n  {}\n  - stop_gradient: {}".format(
            super(ParamBase, self).__str__(), self.stop_gradient)
5264 5265 5266 5267

    __repr__ = __str__


Y
Yu Yang 已提交
5268
# program is a global instance.
Y
Yu Yang 已提交
5269 5270
_main_program_ = Program()
_startup_program_ = Program()
5271

5272

5273
def default_startup_program():
Y
Yu Yang 已提交
5274
    """
Y
yuyang18 已提交
5275 5276
    Get default/global startup program.

J
Jiabin Yang 已提交
5277 5278 5279
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
5280 5281 5282
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
5283
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
5284

J
Jiabin Yang 已提交
5285
    Returns: current default startup :ref:`api_fluid_Program`
5286

J
Jiabin Yang 已提交
5287
    Returns type: :ref:`api_fluid_Program`
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
5303
    """
Y
Yu Yang 已提交
5304
    return _startup_program_
5305

5306

5307
def default_main_program():
Y
Yu Yang 已提交
5308
    """
5309 5310 5311 5312 5313
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
5314

5315 5316
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5317
    :code:`default_main_program` when the program is not specified.
5318

5319 5320
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
5321
    Returns:
5322
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
5323 5324 5325 5326 5327

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
5328

5329
            # Sample Network:
5330 5331
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
5351
            #print the number of blocks in the program, 1 in this case
5352
            print(fluid.default_main_program().num_blocks)
5353 5354

            #print the description of variable 'image'
5355
            print(fluid.default_main_program().blocks[0].var('image'))
5356

Y
Yu Yang 已提交
5357
    """
Y
Yu Yang 已提交
5358
    return _main_program_
Y
Yu Yang 已提交
5359 5360 5361 5362 5363


def switch_main_program(program):
    """
    Switch the main program to a new program.
5364

Y
Yu Yang 已提交
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5379
    Switch the startup program to a new program
Y
Yu Yang 已提交
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5392
@signature_safe_contextmanager
Y
Yu Yang 已提交
5393 5394
def program_guard(main_program, startup_program=None):
    """
5395 5396
    :api_attr: Static Graph

5397 5398
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
5399
    variables to the new main programs.
5400

G
guofei 已提交
5401 5402 5403 5404 5405 5406 5407
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5408
    Examples:
5409 5410 5411
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
5412

5413 5414 5415
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
5416
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
5417
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
5418 5419 5420

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5421

Y
Yu Yang 已提交
5422
    Examples:
5423
       .. code-block:: python
Y
yuyang18 已提交
5424

5425 5426 5427 5428 5429
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
5430 5431
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
5432
    """
5433 5434
    from .data_feeder import check_type
    check_type(main_program, 'main_program', Program, 'fluid.program_guard')
Y
Yu Yang 已提交
5435 5436
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5437 5438
        check_type(startup_program, 'startup_program', Program,
                   'fluid.program_guard')
Y
Yu Yang 已提交
5439
        startup_program = switch_startup_program(startup_program)
5440 5441 5442 5443 5444 5445
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5446 5447


W
Wu Yi 已提交
5448
def _get_var(name, program=None):
X
xuwei06 已提交
5449
    """
Y
yuyang18 已提交
5450
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5451

X
xuwei06 已提交
5452 5453 5454
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5455
        If None, default_global_program() will be used.
X
xuwei06 已提交
5456 5457 5458 5459 5460 5461 5462

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5463
    assert isinstance(program, Program)
X
xuwei06 已提交
5464 5465

    return program.global_block().var(name)
5466 5467


S
rename  
sneaxiy 已提交
5468
@signature_safe_contextmanager
L
lujun 已提交
5469 5470 5471 5472
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5473
    core._switch_tracer(tracer)
M
minqiyang 已提交
5474

5475 5476 5477 5478 5479
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5480 5481


S
rename  
sneaxiy 已提交
5482
@signature_safe_contextmanager
L
lujun 已提交
5483
def _dygraph_place_guard(place):
5484 5485 5486
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5487

5488 5489 5490
    try:
        yield
    finally:
5491
        _global_expected_place_ = tmp_place
5492 5493 5494 5495


def load_op_library(lib_filename):
    """
5496 5497
    :api_attr: Static Graph
    
5498 5499 5500
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5501
    Please note, the type of custom operators can't have the same type
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5568 5569 5570 5571 5572
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5573 5574 5575 5576
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5577 5578
    if index:
        device = ":".join([device, index])
5579
    pre_device = switch_device(device)
5580 5581 5582 5583
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value