framework.py 236.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
43
from paddle import _C_ops
Y
Yu Yang 已提交
44

45
__all__ = [
46 47 48 49
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
50
    'name_scope',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
L
lujun 已提交
55
    'in_dygraph_mode',
56
    'is_compiled_with_cinn',
C
chengduo 已提交
57
    'is_compiled_with_cuda',
58
    'is_compiled_with_rocm',
59
    'is_compiled_with_xpu',
60
    'is_compiled_with_npu',
61
    'Variable',
62
    'require_version',
63
    'device_guard',
G
guofei 已提交
64 65
    'set_flags',
    'get_flags',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
74
_dygraph_tracer_ = None
75
_global_expected_place_ = None
76
_current_device = None
77
global_prog_seed = 0
78
_current_pipeline_stage = None
79
_global_flags_ = core.globals()
J
Jiabin Yang 已提交
80
core._disable_eager_mode()
81 82 83


@signature_safe_contextmanager
J
Jiabin Yang 已提交
84 85
def _test_eager_guard():
    core._enable_eager_mode()
86
    _C_ops.switch_to_eager_ops()
87
    core._switch_tracer(_dygraph_tracer_)
88
    try:
J
Jiabin Yang 已提交
89
        yield
90
    finally:
J
Jiabin Yang 已提交
91
        core._disable_eager_mode()
92
        _C_ops.switch_to_core_ops()
93 94


95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
202
def in_dygraph_mode():
L
lujun 已提交
203
    """
204

205 206 207 208 209 210 211
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
212 213

    Returns:
214
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
215 216 217 218

    Examples:
        .. code-block:: python

219 220 221 222 223 224 225 226
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
227 228

    """
L
lujun 已提交
229
    return _dygraph_tracer_ is not None
230 231


J
Jiabin Yang 已提交
232 233 234 235
def _in_eager_mode():
    return core._in_eager_mode() and in_dygraph_mode()


236 237 238
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
239
        ), "We don't support %s in imperative mode" % func.__name__
240 241 242 243 244 245 246 247
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
248 249 250 251 252 253 254 255 256
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
257
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
258 259 260 261 262
        return func(*args, **kwargs)

    return __impl__


263 264 265 266 267
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


268 269 270 271 272 273
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
274
# same base class.
275 276 277
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
278 279 280 281 282
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
283 284 285 286

    return __impl__


T
tangwei12 已提交
287 288
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


306 307
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
308
static_only = wrap_decorator(_static_only_)
309
fake_interface_only = wrap_decorator(_fake_interface_only_)
310 311


L
lujun 已提交
312 313
def _dygraph_tracer():
    return _dygraph_tracer_
314

W
Wu Yi 已提交
315

316 317 318 319
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
320
def _current_expected_place():
321 322 323
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
324 325 326 327 328 329 330 331 332 333 334
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
335 336 337 338 339 340 341 342 343 344 345 346
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
362
    if _in_eager_mode():
363
        return core.eager._set_expected_place(place)
J
Jiabin Yang 已提交
364
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
365 366


L
Leo Chen 已提交
367 368 369 370
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
371

L
Leo Chen 已提交
372 373 374 375 376 377 378 379 380 381 382 383
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
384
def _cpu_num():
385
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
386 387 388 389 390 391 392 393
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
394
        os.environ['CPU_NUM'] = str(1)
395
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
396 397 398 399 400 401 402 403 404 405
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
406 407


408 409 410 411 412 413 414 415 416
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


417 418 419 420 421 422 423 424 425
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
496 497 498 499
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

500
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
501 502 503 504

    Examples:
        .. code-block:: python

505
            import paddle
506
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
507 508 509 510
    """
    return core.is_compiled_with_cuda()


511 512 513 514 515 516 517 518 519 520
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
521
            support_gpu = paddle.device.is_compiled_with_rocm()
522 523 524 525
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
526
def cuda_places(device_ids=None):
L
lujun 已提交
527
    """
528 529 530 531
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
532
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
533 534

    If :code:`device_ids` is None, environment variable of
535
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
536
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
537
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
538
    If :code:`FLAGS_selected_gpus` is not set, all visible
539
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
540 541

    If :code:`device_ids` is not None, it should be the device
542
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
543
    the returned list would be 
C
Chen Weihang 已提交
544
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
545

546
    Parameters:
547
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
548 549

    Returns:
C
Chen Weihang 已提交
550
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
551 552 553 554

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
555 556
            import paddle
            import paddle.static as static
T
tangwei12 已提交
557

558 559
            # required: gpu
            
C
Chen Weihang 已提交
560 561 562
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
563 564

    """
S
sneaxiy 已提交
565 566 567
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
568
        device_ids = _cuda_ids()
S
sneaxiy 已提交
569 570 571 572 573
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


574 575 576 577
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
578 579 580 581 582 583 584 585 586 587 588
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
589 590 591 592 593 594 595
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
596

597 598
            # required: xpu

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
655
def cpu_places(device_count=None):
L
lujun 已提交
656
    """
C
Chen Weihang 已提交
657
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
658

S
add doc  
sneaxiy 已提交
659 660
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
661 662
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
663 664
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
665

666 667
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
668 669

    Returns:
C
Chen Weihang 已提交
670
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
671 672 673 674

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
675 676
            import paddle
            import paddle.static as static
T
tangwei12 已提交
677

C
Chen Weihang 已提交
678 679 680
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
681 682
    """

S
sneaxiy 已提交
683 684 685 686 687 688
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
689
    """
690
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
691 692 693

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
694 695 696 697
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
698

699 700
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
701 702

    Returns:
703
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
704 705 706 707

    Examples:
        .. code-block:: python

708
            import paddle.fluid as fluid
L
lujun 已提交
709 710 711 712 713
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
714 715 716
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
717 718
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
719 720


721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
747
@signature_safe_contextmanager
748 749
def name_scope(prefix=None):
    """
750 751
    :api_attr: Static Graph

752
    Generate hierarchical name prefix for the operators in Static Graph.
753

T
Tao Luo 已提交
754 755 756
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
757
        Don't use it in dygraph, since it will cause memory leak.
758 759

    Args:
T
Tao Luo 已提交
760
        prefix(str, optional): prefix. Default is none.
761 762 763

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
764

765 766 767
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
768
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
769
             b = a + 1
770
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
771
                c = b * 1
772
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
773
                d = c / 1
774 775 776
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
777 778 779
                g = f - 1

          # Op are created in the default main program.  
780
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
796 797
    """
    # TODO(panyx0718): Only [0-9a-z].
798
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
799 800 801
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
802
        assert prefix, "namescope prefix can not be empty."
803 804
        global _name_scope
        _name_scope = _name_scope.child(prefix)
805 806 807 808
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
809 810 811 812 813 814 815 816 817 818 819 820


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
821 822 823
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
824 825 826 827


def grad_var_name(var_name):
    """
828 829
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
830 831 832
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
833

834
def convert_np_dtype_to_dtype_(np_dtype):
835 836
    """
    Convert the data type in numpy to the data type in Paddle
837

838
    Args:
839
        np_dtype(np.dtype): the data type in numpy.
840

841 842
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
843 844

    """
845 846
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
847
        return core.VarDesc.VarType.FP32
848
    elif dtype == np.float64:
849
        return core.VarDesc.VarType.FP64
850
    elif dtype == np.float16:
851
        return core.VarDesc.VarType.FP16
852
    elif dtype == np.int32:
853
        return core.VarDesc.VarType.INT32
854
    elif dtype == np.int16:
855
        return core.VarDesc.VarType.INT16
856
    elif dtype == np.int64:
857
        return core.VarDesc.VarType.INT64
858
    elif dtype == np.bool:
859
        return core.VarDesc.VarType.BOOL
860
    elif dtype == np.uint16:
861 862 863
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
864 865
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
866 867
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
868 869 870 871
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
872
    else:
M
minqiyang 已提交
873
        raise ValueError("Not supported numpy dtype %s" % dtype)
874 875 876


def dtype_is_floating(dtype):
877 878 879
    """
    Check the data type is floating or not.
    Args:
880
        dtype(np.dtype|core.VarDesc.VarType): data type.
881 882 883 884 885
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
886
    if not isinstance(dtype, core.VarDesc.VarType):
887 888
        dtype = convert_np_dtype_to_dtype_(dtype)

889 890 891 892
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
893 894


Y
Yang Yang(Tony) 已提交
895
def _debug_string_(proto, throw_on_error=True):
896 897 898 899 900 901 902 903 904 905 906
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
907
    error_fields = list()
Y
Yang Yang(Tony) 已提交
908
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
909 910
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
911 912 913
    return proto.__str__()


914 915 916 917 918 919 920 921 922 923
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

924 925 926 927 928 929 930 931
    if _in_eager_mode():
        eager_tensor = core.eager.EagerTensor(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [], name, type
            if type else core.VarDesc.VarType.LOD_TENSOR, True
            if persistable else False)
        eager_tensor.retain_grads()
        return eager_tensor
932 933 934 935 936 937 938 939 940 941 942
    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
943 944
            if _in_eager_mode():
                return issubclass(t, core.eager.EagerTensor)
945 946 947 948 949 950 951 952 953 954
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
955 956
            if _in_eager_mode():
                return issubclass(t, EagerParamBase)
957 958 959 960 961 962
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
963
class Variable(object):
964
    """
J
Jiabin Yang 已提交
965
    **Notes**:
966
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
967

968 969
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
970 971 972
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
973
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
974 975
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
976

977
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
978
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
979

T
tianshuo78520a 已提交
980
    Most of a Variable's member variables can be set to be None. It mean
981
    it is not available or will be specified later.
982

983
    Examples:
984 985
        In Static Graph Mode:

986 987
        .. code-block:: python

988
            import paddle.fluid as fluid
989
            cur_program = fluid.Program()
990 991 992 993
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
994

J
Jiabin Yang 已提交
995
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
996 997 998 999 1000 1001 1002 1003 1004

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1005 1006
    """

Y
Yu Yang 已提交
1007 1008
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1009
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1010 1011 1012 1013
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1014
                 capacity=None,
Q
QI JUN 已提交
1015
                 persistable=None,
F
fengjiayi 已提交
1016
                 error_clip=None,
Y
Yu Yang 已提交
1017
                 stop_gradient=False,
F
fengjiayi 已提交
1018
                 is_data=False,
H
Huihuang Zheng 已提交
1019
                 need_check_feed=False,
H
hong 已提交
1020
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1021
                 **kwargs):
Y
Yu Yang 已提交
1022 1023
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1024
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1025

Y
Yu Yang 已提交
1026
        if dtype is not None:
1027
            if not isinstance(dtype, core.VarDesc.VarType):
1028
                dtype = convert_np_dtype_to_dtype_(dtype)
1029

S
Steffy-zxf 已提交
1030 1031 1032 1033
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1034 1035
        self.belong_to_optimizer = belong_to_optimizer

1036 1037 1038 1039 1040
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1041

1042 1043 1044
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1045

1046 1047 1048
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1049 1050
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1051 1052
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1053

1054
        if shape is not None:
1055
            if is_new_var:
1056 1057 1058 1059 1060 1061
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1062 1063
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1064 1065 1066 1067 1068 1069 1070
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1071 1072
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1073 1074 1075 1076 1077 1078 1079 1080 1081
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1082 1083
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1084 1085 1086 1087 1088 1089 1090 1091 1092
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1093 1094
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1095 1096
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1097

1098 1099
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1100

1101 1102 1103 1104 1105 1106 1107
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1108

1109 1110
        self.block.vars[name] = self
        self.op = None
1111
        self.stop_gradient = stop_gradient
1112
        self.is_data = is_data
Y
Yu Yang 已提交
1113

1114 1115 1116
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1117 1118
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1119

1120
        Returns:
J
Jiabin Yang 已提交
1121
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1122 1123 1124 1125

        Examples:
            .. code-block:: python

1126
                import paddle
1127

1128 1129 1130 1131
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1132

1133 1134
                # create a detached Variable
                y = x.detach()
1135
        """
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1151

1152
    @fake_interface_only
1153
    def numpy(self):
1154
        """
J
Jiabin Yang 已提交
1155
        **Notes**:
T
tianshuo78520a 已提交
1156
            **This API is ONLY available in Dygraph mode**
1157

J
Jiabin Yang 已提交
1158
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1159 1160 1161 1162 1163

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1164
            ndarray: dtype is same as current Variable
1165 1166 1167 1168 1169 1170

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1171
                from paddle.fluid.dygraph import Linear
1172 1173 1174 1175
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1176
                    linear = Linear(32, 64)
1177
                    data = to_variable(data)
1178
                    x = linear(data)
1179 1180 1181
                    print(x.numpy())

        """
1182
        pass
1183

1184
    @fake_interface_only
1185
    def backward(self, retain_graph=False):
1186
        """
J
Jiabin Yang 已提交
1187
        **Notes**:
T
tianshuo78520a 已提交
1188
            **This API is ONLY available in Dygraph mode**
1189

1190
        Run backward of current Graph which starts from current Tensor.
1191

J
Jiabin Yang 已提交
1192
        Args:
1193 1194 1195 1196
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1197

J
Jiabin Yang 已提交
1198 1199
        Returns:
            NoneType: None
1200 1201 1202 1203 1204

        Examples:
            .. code-block:: python

                import numpy as np
1205 1206
                import paddle
                paddle.disable_static()
1207 1208

                x = np.ones([2, 2], np.float32)
1209 1210 1211 1212 1213 1214 1215
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1216 1217
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1218
                loss.backward()
1219 1220

        """
1221
        pass
1222

1223
    @fake_interface_only
1224
    def gradient(self):
1225
        """
J
Jiabin Yang 已提交
1226
        **Notes**:
T
tianshuo78520a 已提交
1227
            **This API is ONLY available in Dygraph mode**
1228 1229 1230

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1231
        Returns:
1232
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1233 1234 1235 1236 1237 1238 1239

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1240
                # example1: return ndarray
1241 1242 1243 1244 1245 1246 1247 1248 1249
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1250
                    loss2.backward()
1251 1252
                    print(loss2.gradient())

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1266
        """
1267
        pass
1268

1269
    @fake_interface_only
1270
    def clear_gradient(self):
1271
        """
J
Jiabin Yang 已提交
1272
        **Notes**:
T
tianshuo78520a 已提交
1273
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1274 1275

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1276

J
Jiabin Yang 已提交
1277
        Clear  (set to ``0`` ) the Gradient of Current Variable
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1296
                    loss2.backward()
1297 1298 1299 1300 1301
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1302
        pass
X
Xin Pan 已提交
1303

1304 1305 1306 1307
    @fake_interface_only
    def register_hook(self, hook):
        pass

1308
    def __str__(self):
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1325 1326
                import paddle
                import paddle.static as static
1327

1328 1329 1330
                paddle.enable_static()

                cur_program = static.Program()
1331 1332 1333 1334 1335 1336
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1337 1338
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1339
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1340 1341
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1342 1343
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1344
        else:
1345 1346
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1347

1348
        if self.is_parameter:
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1359
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1360
        dist_context = get_default_distributed_context()
1361 1362
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1363
            var_str += ", {name} = {value}".format(
1364
                name="dist_attr", value=dist_tensor)
1365

1366
        return var_str
Y
Yang Yang(Tony) 已提交
1367

F
update  
fengjiayi 已提交
1368
    def to_string(self, throw_on_error, with_details=False):
1369 1370 1371
        """
        Get debug string.

J
Jiabin Yang 已提交
1372 1373 1374 1375 1376
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1377

1378 1379
        Returns:
            str: The debug string.
1380 1381 1382 1383 1384

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1385
                import paddle
1386

1387
                paddle.enable_static()
1388 1389 1390 1391 1392
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1393
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1394
                print("=============with detail===============")
1395
                print(new_variable.to_string(True, True))
1396
        """
F
update  
fengjiayi 已提交
1397 1398
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1399
        protostr = self.desc.serialize_to_string()
1400
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1401 1402
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1403
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1404
            for attr_name in additional_attr:
1405 1406 1407
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1408
        return res_str
1409 1410 1411

    __repr__ = __str__

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1439
    @property
1440
    def stop_gradient(self):
J
Jiabin Yang 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1456 1457
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1458 1459 1460
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1461 1462
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1463 1464 1465 1466
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1467
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1468 1469
                assert (out1.gradient() == 0).all()
        """
1470
        return self.desc.stop_gradient()
1471

1472 1473
    @stop_gradient.setter
    def stop_gradient(self, s):
1474
        self.desc.set_stop_gradient(s)
1475

1476 1477
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1499
        return self.desc.persistable()
1500

Y
Yu Yang 已提交
1501 1502
    @persistable.setter
    def persistable(self, p):
1503
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1504

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1530 1531
    @property
    def name(self):
J
Jiabin Yang 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1548
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1549

1550 1551 1552 1553 1554 1555
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1556 1557
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1558

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1570 1571
    @name.setter
    def name(self, new_name):
1572
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1573

Y
Yu Yang 已提交
1574 1575
    @property
    def shape(self):
J
Jiabin Yang 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1593
        # convert to tuple, make it as same as numpy API.
1594
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1595 1596

    @property
F
fengjiayi 已提交
1597
    def dtype(self):
J
Jiabin Yang 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1614
        return self.desc.dtype()
Y
Yu Yang 已提交
1615 1616 1617

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1639 1640 1641
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1642
        return self.desc.lod_level()
Y
Yu Yang 已提交
1643

Y
Yu Yang 已提交
1644 1645
    @property
    def type(self):
J
Jiabin Yang 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1662
        return self.desc.type()
Y
Yu Yang 已提交
1663

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1747
    def _set_error_clip(self, error_clip):
1748 1749 1750 1751 1752 1753 1754 1755 1756
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1757 1758
        self.error_clip = error_clip

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1799
            raise ValueError("slice step can not be zero")
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1875
    def _cloneVar(self, copy=False):
1876 1877
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1878 1879
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1880 1881 1882 1883
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1884
        new_var = self._cloneVar()
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1895
        new_var = self._cloneVar()
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1906
                return self._cloneVar(True)
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1925
                return self._cloneVar(True)
1926
            index = int(item)
1927
            if (index > 0 and index >= self.shape[axis]) \
1928 1929 1930 1931 1932 1933 1934
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1935
        return _getitem_impl_(self, item)
1936

1937
    def __setitem__(self, item, value):
1938
        return _setitem_impl_(self, item, value)
1939

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2086 2087 2088 2089
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2090 2091 2092 2093 2094 2095 2096
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2206

F
fengjiayi 已提交
2207 2208 2209
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2210

2211 2212
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2213 2214 2215 2216
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2217
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2218 2219 2220 2221 2222
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2223 2224 2225 2226
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2236
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2237 2238 2239 2240 2241 2242
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2243 2244 2245 2246 2247 2248 2249 2250
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2251 2252
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2253 2254
        return self.op_proto_map[type]

2255 2256
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2257
        custom_op_names = []
2258 2259 2260
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2261 2262 2263
                custom_op_names.append(proto.type)

        return custom_op_names
2264

2265 2266 2267 2268
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2269
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2270
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2271 2272
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2273 2274
        }

F
fengjiayi 已提交
2275

X
Xin Pan 已提交
2276
class Operator(object):
2277
    """
2278 2279 2280 2281 2282 2283 2284
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2285
        type(str): The type of operator. Default None.
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2306
        Block.append_op or Block._prepend_op instead.
2307 2308 2309 2310

    Examples:
        .. code-block:: python

2311
            import paddle.fluid as fluid
2312
            cur_program = fluid.Program()
2313 2314 2315 2316 2317
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2318
    """
2319
    OP_WITHOUT_KERNEL_SET = {
2320 2321
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2322
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2323 2324
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2325
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2326 2327
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2328
    }
2329

Y
Yu Yang 已提交
2330 2331
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2332
                 desc,
Y
Yu Yang 已提交
2333 2334 2335
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2336
                 attrs=None):
L
lujun 已提交
2337
        if in_dygraph_mode():
2338 2339
            if type is None:
                raise ValueError(
2340
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2341
            self._type = type
M
minqiyang 已提交
2342
            self.attrs = attrs if attrs else {}
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2357
                )] = self.block.program._op_role
2358 2359 2360

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2361 2362
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2363 2364 2365 2366 2367

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2368 2369 2370 2371 2372
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2373 2374 2375
                return
            if type is None:
                raise ValueError(
2376
                    "`type` to initialized an Operator can not be None.")
2377 2378
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2379 2380 2381 2382 2383 2384 2385
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2386 2387 2388 2389 2390 2391 2392

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2410 2411 2412 2413 2414
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2415

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2429
                        if not isinstance(in_args, (list, tuple)):
2430 2431 2432 2433 2434 2435
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2436
                        for index, arg in enumerate(in_args):
2437 2438 2439 2440
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2441
                            elif isinstance(arg, (Variable, core.VarBase)):
2442
                                in_arg_names.append(cpt.to_text(arg.name))
2443
                            else:
2444 2445 2446 2447
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2448 2449
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2474 2475 2476 2477
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2478
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2479
                        if not in_dygraph_mode():
2480 2481 2482 2483
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2502
    def _has_kernel(self, op_type):
2503 2504
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2505
    def to_string(self, throw_on_error):
2506
        """
2507 2508
        Get debug string.

2509
        Args:
2510 2511
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2512

2513 2514
        Returns:
            str: The debug string.
2515 2516

        """
2517
        protostr = self.desc.serialize_to_string()
2518
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2519 2520
        return _debug_string_(proto, throw_on_error)

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2553
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2606
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2607
        dist_context = get_default_distributed_context()
2608 2609
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2610
            attrs_str += ", {name} = {value}".format(
2611
                name="dist_attr", value=dist_op)
2612

2613 2614
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2615 2616
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2617 2618 2619 2620 2621
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2622
    def __str__(self):
2623
        return self._to_readable_code()
2624 2625 2626

    __repr__ = __str__

F
fengjiayi 已提交
2627 2628
    @property
    def type(self):
2629
        return self.desc.type()
F
fengjiayi 已提交
2630 2631

    def input(self, name):
2632
        r"""
2633
        Get the input arguments according to the input parameter name.
2634

2635 2636
        Args:
            name(str): The input parameter name.
2637

2638 2639 2640
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2641
        """
F
fengjiayi 已提交
2642 2643
        return self.desc.input(name)

W
Wu Yi 已提交
2644
    def _rename_input(self, old_name, new_name):
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2655
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2656

W
Wu Yi 已提交
2657
    def _rename_output(self, old_name, new_name):
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2668
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2669

F
fengjiayi 已提交
2670 2671 2672 2673
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2674 2675 2676 2677 2678 2679 2680 2681
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2682
    def output(self, name):
2683
        r"""
2684
        Get output arguments by the output parameter name.
2685

2686 2687
        Args:
            name(str): The output parameter name.
2688

2689 2690 2691
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2692
        """
F
fengjiayi 已提交
2693 2694 2695 2696 2697 2698
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2699 2700 2701 2702 2703 2704 2705 2706
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2707
    def has_attr(self, name):
2708
        """
2709 2710
        Whether this Operator has the attribute with name or not.

2711
        Args:
2712
            name(str): the attribute name.
2713

2714 2715
        Returns:
            bool: True if has this attribute.
2716 2717

        """
F
fengjiayi 已提交
2718 2719 2720
        return self.desc.has_attr(name)

    def attr_type(self, name):
2721
        """
2722
        Get the type of attribute by attribute's name.
2723

2724 2725
        Args:
            name(str): the attribute name.
2726

2727 2728
        Returns:
            core.AttrType: the attribute type.
2729
        """
F
fengjiayi 已提交
2730 2731
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2732
    def _set_attr(self, name, val):
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2743 2744
        self._update_desc_attr(name, val)

2745 2746 2747
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2759 2760
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2761 2762
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2763
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2764 2765 2766 2767
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2768
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2769

F
fengjiayi 已提交
2770 2771 2772 2773 2774
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2775
        """
2776 2777
        Get the attribute by name.

2778
        Args:
2779
            name(str): the attribute name.
2780

2781 2782
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2783 2784
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2785
        return self.desc.attr(name)
Y
Yu Yang 已提交
2786

W
Wu Yi 已提交
2787
    def _block_attr_id(self, name):
2788
        """
G
gongweibao 已提交
2789
        Get the block attribute's id by name.
2790

2791 2792
        Args:
            name(str): the attribute name.
2793

2794 2795
        Returns:
            int: the block index.
2796
        """
W
Wu Yi 已提交
2797
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2798

W
Wu Yi 已提交
2799
    def _block_attr(self, name):
G
gongweibao 已提交
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2810
        id = self._block_attr_id(name)
G
gongweibao 已提交
2811 2812 2813
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2814
    def _blocks_attr(self, name):
G
gongweibao 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2825
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2826 2827 2828 2829 2830
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2831
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2842
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2843

J
JiayiFeng 已提交
2844
    def all_attrs(self):
F
fengjiayi 已提交
2845
        """
2846 2847 2848
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2849
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2850 2851 2852 2853
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2854 2855
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2856
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2857 2858 2859
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2860
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2861 2862 2863 2864
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2865 2866
        return attr_map

2867 2868 2869
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2870 2871 2872 2873

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2874 2875 2876
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2877 2878 2879 2880 2881 2882 2883 2884

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2885 2886
            return False

2887 2888 2889 2890 2891 2892
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
2918

Y
Yu Yang 已提交
2919
class Block(object):
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2934
        use `Program._create_block()` to create a block.
2935 2936 2937 2938

    Examples:
        .. code-block:: python

2939 2940 2941
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2942 2943 2944 2945 2946 2947 2948 2949 2950
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2951
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2952
        self.desc = program.desc.block(idx)
2953
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2954
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2955
        self.program = program
2956
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2957

2958
    def __str__(self):
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2993
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3005

F
fengjiayi 已提交
3006 3007
    def to_string(self, throw_on_error, with_details=False):
        """
3008 3009
        Get debug string.

F
fengjiayi 已提交
3010 3011
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3012
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3013
            with_details(bool): more details about variables and parameters
3014 3015
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3016

3017 3018
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3019 3020 3021 3022
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
3023
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3024 3025
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3026
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3027
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3028
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3029
            for op in self.ops:
F
fengjiayi 已提交
3030 3031
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3032 3033 3034
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3035 3036
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3037 3038
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3039 3040 3041

    __repr__ = __str__

Y
Yu Yang 已提交
3042 3043
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3044
        return self.desc.parent
Y
Yu Yang 已提交
3045

Y
Yu Yang 已提交
3046 3047 3048 3049
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3050
    def _set_forward_block_idx(self, idx):
3051 3052 3053 3054 3055 3056 3057 3058 3059
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3060
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3061

3062 3063 3064 3065 3066 3067 3068 3069
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3070 3071
    @property
    def idx(self):
Y
Yu Yang 已提交
3072
        return self.desc.id
Y
Yu Yang 已提交
3073

Q
Qiao Longfei 已提交
3074
    def var(self, name):
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3088
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3089 3090 3091
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3092 3093
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3094
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3095
        return v
Q
Qiao Longfei 已提交
3096

X
Xin Pan 已提交
3097
    def _find_var_recursive(self, name):
3098 3099 3100 3101 3102 3103 3104
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3105
            Variable: the Variable with the giving name. Or None if not found.
3106
        """
Y
Yu Yang 已提交
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3131
        return None
Y
Yu Yang 已提交
3132

X
Xin Pan 已提交
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3152

Q
Qiao Longfei 已提交
3153
    def all_parameters(self):
3154
        return list(self.iter_parameters())
3155

3156
    def iter_parameters(self):
M
minqiyang 已提交
3157
        return (item[1] for item in six.iteritems(self.vars)
3158
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3159

Y
Yu Yang 已提交
3160
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3161 3162 3163
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3164 3165 3166
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3167
        return var
Y
Yu Yang 已提交
3168

Q
Qiao Longfei 已提交
3169 3170 3171
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3172
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3173 3174
        """
        Rename variable in vars and ops' inputs and outputs
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3187
        """
M
minqiyang 已提交
3188 3189
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3190

T
typhoonzero 已提交
3191
        if not self.has_var(name):
3192
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3193 3194
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3195
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3196 3197 3198 3199 3200 3201
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3202
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3203 3204 3205 3206
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3207
        orig_var_type = v.type
M
minqiyang 已提交
3208
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3209
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3210
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3211
        if var_type == "Parameter":
L
Leo Chen 已提交
3212 3213
            if in_dygraph_mode():
                var = ParamBase(
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3224 3225
                var = Parameter(
                    self,
3226 3227 3228 3229 3230 3231 3232 3233 3234
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3235
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3236 3237
            var = Variable(
                self,
T
typhoonzero 已提交
3238
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3239 3240 3241 3242
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3243
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3244 3245 3246
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3247
        self._sync_with_cpp()
3248
        return var
T
typhoonzero 已提交
3249

3250 3251 3252
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3253
        self.desc._remove_var(cpt.to_bytes(name))
3254 3255
        del self.vars[name]

Y
Yu Yang 已提交
3256 3257
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3258
        param = None
L
Leo Chen 已提交
3259
        if in_dygraph_mode():
3260 3261 3262 3263
            if _in_eager_mode():
                param = EagerParamBase(*args, **kwargs)
            else:
                param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3264 3265
        else:
            param = Parameter(global_block, *args, **kwargs)
3266

3267
        if 'initializer' in kwargs:
3268 3269 3270 3271 3272

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3273
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3274
                        # are treated as initialization ops that cause error.
3275
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3276 3277 3278 3279 3280
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3281
                            continue
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3293
                # TODO already inited, do nothing, should log a warning
3294 3295 3296
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3297
        return param
Y
Yu Yang 已提交
3298

Y
Yu Yang 已提交
3299
    def append_op(self, *args, **kwargs):
3300 3301 3302 3303 3304 3305
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3306
        if in_dygraph_mode():
3307
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3308
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3309
            type = kwargs.get("type", None)
3310 3311 3312
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3313
                type=type,
M
minqiyang 已提交
3314 3315
                inputs=None,
                outputs=None,
3316
                attrs=attrs)
3317

M
minqiyang 已提交
3318 3319 3320
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3321
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3322 3323

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3324
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3325 3326
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
Z
zyfncg 已提交
3327 3328
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3329
        else:
3330 3331
            from paddle.fluid.dygraph.base import param_guard

3332
            op_desc = self.desc.append_op()
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3346

M
minqiyang 已提交
3347
            self.ops.append(op)
M
minqiyang 已提交
3348

3349 3350
        return op

W
Wu Yi 已提交
3351
    def _insert_op(self, index, *args, **kwargs):
3352 3353 3354 3355 3356 3357 3358 3359 3360
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3361
        self._sync_with_cpp()
F
fangshuixun007 已提交
3362
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3363

3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3381 3382 3383 3384 3385 3386 3387 3388 3389
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3390 3391
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3392
        self.desc._remove_op(index, index + 1)
3393 3394
        del self.ops[index]

W
Wu Yi 已提交
3395
    def _slice_ops(self, start, end):
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3406
        return self.ops[start:end]
Y
Yancey1989 已提交
3407

W
Wu Yi 已提交
3408
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3409
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3410 3411
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3412
            op = Operator(
J
Jiabin Yang 已提交
3413
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3414

J
Jiabin Yang 已提交
3415
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3416
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3417 3418
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3419
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3420
        else:
3421 3422 3423 3424 3425 3426 3427 3428
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3429
            self.ops.insert(0, op)
3430

Y
Yu Yang 已提交
3431 3432
        return op

W
Wu Yi 已提交
3433
    def _sync_with_cpp(self):
3434
        """
3435 3436
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3437
        """
Q
Qiao Longfei 已提交
3438 3439 3440
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3458

3459
        # sync variables removed from c++ end
3460
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3461
            if not self.desc.find_var(cpt.to_bytes(var)):
3462 3463
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3464
        # sync operators from cpp
3465 3466 3467 3468
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3485 3486 3487 3488 3489

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3490
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3491 3492 3493 3494 3495 3496 3497

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3511 3512 3513 3514
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3515
    def _copy_param_info_from(self, other):
3516
        """
3517 3518
        Copy the information of parameters from the other block.

3519
        Args:
3520 3521 3522 3523 3524
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3525 3526 3527 3528 3529

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3530 3531
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3532
        for p in other.iter_parameters():
3533 3534 3535
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3536 3537
                # if the Parameter is pruned, v may be None
                continue
3538
            assert isinstance(v, Variable)
3539
            new_p = None
L
Leo Chen 已提交
3540 3541
            if in_dygraph_mode():
                new_p = ParamBase(
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3553 3554
                new_p = Parameter(
                    block=self,
3555 3556 3557
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3558 3559
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3560 3561 3562 3563 3564 3565
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3566 3567
            self.vars[new_p.name] = new_p

3568
    def _clone_variable(self, var, force_persistable=True):
3569 3570
        """
        Clone a variable into current block.
3571

3572 3573
        Args:
            var: the variable to be cloned.
3574 3575 3576
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3577 3578

        Returns:
3579
            Variable: the new  variable cloned from 'var' in current block.
3580 3581
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3582 3583 3584 3585 3586
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3587 3588
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3589
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3590 3591 3592 3593 3594 3595
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3596
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3597 3598
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3599 3600 3601 3602 3603 3604 3605
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3606
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3607 3608
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3609
        return ret_var
3610

Y
Yu Yang 已提交
3611

3612 3613 3614 3615 3616 3617
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3729
    def remove_input_by_id(self, node_id):
3730 3731 3732 3733 3734 3735
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3736
        self.node.remove_input(node_id)
3737

3738
    def remove_input(self, node):
3739 3740 3741 3742
        """
        Remove a node from inputs.

        Args:
3743
            node(IrNode): the node being removed.
3744
        """
3745
        self.node.remove_input(node.node)
3746

3747
    def append_input(self, node):
3748 3749 3750 3751
        """
        Append a node in inputs.

        Args:
3752
            node(IrNode): the node being appended.
3753
        """
3754
        self.node.append_input(node.node)
3755 3756 3757 3758 3759 3760 3761 3762

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3763
    def remove_output_by_id(self, node_id):
3764 3765 3766 3767 3768 3769
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3770
        self.node.remove_output(node_id)
3771

3772
    def remove_output(self, node):
3773 3774 3775 3776
        """
        Remove a node from outputs.

        Args:
3777
            node(IrNode): the node being removed.
3778
        """
3779
        self.node.remove_output(node.node)
3780

3781
    def append_output(self, node):
3782 3783 3784 3785
        """
        Append a node in outputs.

        Args:
3786
            node(IrNode): the node being appended.
3787
        """
3788
        self.node.append_output(node.node)
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3836
            "The node variable description can not be None."
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3847
            "The node variable description can not be None."
3848 3849
        return self.node.var().persistable()

3850 3851 3852 3853 3854 3855 3856 3857
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3858
            "The node variable description can not be None."
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3869
            "The node variable description can not be None."
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3880
            "The node variable description can not be None."
3881 3882
        return self.node.var().shape()

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3930
            "The node operator description can not be None."
3931 3932
        self.node.op()._rename_input(old_input_name, new_input_name)

3933 3934 3935 3936 3937 3938 3939 3940 3941
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3942
            "The node operator description can not be None."
3943 3944
        self.node.op()._rename_output(old_output_name, new_output_name)

3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3956
            "The node operator description can not be None."
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3970
            "The node operator description can not be None."
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3981
            "The node operator description can not be None."
3982 3983
        return self.node.op().set_type(new_type)

3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3999
            "The node operator description can not be None."
4000 4001 4002 4003
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
4004
                all(isinstance(v, Block) for v in val):
4005 4006
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4007
                isinstance(val, core.ProgramDesc):
4008 4009 4010 4011
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4012 4013 4014 4015 4016 4017 4018 4019
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4020
            "The node operator description can not be None."
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4031
            "The node operator description can not be None."
4032 4033
        return self.node.op().output_arg_names()

4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4055 4056
class IrGraph(object):
    """
4057
    Python IrGraph. Beneath it is a core.Graph, which is used for
4058
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4059 4060
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4061 4062 4063 4064
    """

    def __init__(self, graph, for_test=False):
        """
4065 4066
        Construct an IrGraph using core.Graph.

4067 4068 4069 4070 4071 4072 4073 4074 4075
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4076 4077 4078 4079
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4080 4081 4082
        Warns:
            The method only clones the graph structure, not its attributes.

4083 4084 4085
        Returns:
            IrGraph: A new and duplicated graph.
        """
4086
        g = self.graph.clone()
4087 4088
        return IrGraph(g, self._for_test)

4089
    def is_test(self):
4090 4091 4092
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4093 4094
        return self._for_test

W
WangZhen 已提交
4095
    def all_nodes(self):
4096 4097 4098
        """
        Return all nodes included in the graph as a set.
        """
4099
        return {IrNode(node) for node in self.graph.nodes()}
4100

4101
    def all_var_nodes(self):
4102 4103 4104
        """
        Return all variable nodes included in the graph as a set.
        """
4105
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4106

4107
    def all_persistable_nodes(self):
4108 4109 4110
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4111 4112 4113 4114 4115
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4116
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4117

4118
    def all_op_nodes(self):
4119 4120 4121
        """
        Return all operator nodes included in the graph as a set.
        """
4122
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4123

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4141
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4153
            IrVarNode: the created persistable variable node.
4154
        """
4155 4156 4157 4158 4159
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4160
        return IrVarNode(self.graph.create_var_node(var_desc))
4161 4162

    def create_var_node(self, name, var_type, shape, var_dtype):
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4174
            IrVarNode: the created variable node.
4175 4176
        """

4177 4178 4179 4180
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4181
        return IrVarNode(self.graph.create_var_node(var_desc))
4182

4183 4184 4185 4186 4187 4188
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4189
    def create_var_node_from_desc(self, var_desc):
4190 4191 4192 4193 4194 4195 4196 4197
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4198
            IrVarNode: the created variable node.
4199
        """
4200
        return IrVarNode(self.graph.create_var_node(var_desc))
4201 4202

    def create_op_node(self, op_type, attrs, inputs, outputs):
4203 4204 4205 4206 4207 4208 4209
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4210
            outputs(dict): the outputs of the operator node.
4211 4212

        Returns:
4213
            IrOpNode: the created operator node.
4214
        """
4215 4216
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4217
        for attr, value in six.iteritems(attrs):
4218
            self._update_desc_attr(op_desc, attr, value)
4219
        for input_name, var_nodes in six.iteritems(inputs):
4220 4221 4222 4223
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4224
        for output_name, var_nodes in six.iteritems(outputs):
4225 4226 4227 4228
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4229
        return IrOpNode(self.graph.create_op_node(op_desc))
4230 4231

    def create_op_node_from_desc(self, op_desc):
4232 4233 4234 4235 4236 4237 4238
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4239
            IrOpNode: the created operator node.
4240
        """
4241
        return IrOpNode(self.graph.create_op_node(op_desc))
4242 4243

    def update_input_link(self, old_input_node, new_input_node, op_node):
4244 4245 4246 4247
        """
        Update the input's link of a operator node.

        Args:
4248 4249 4250
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4251
        """
4252
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4253
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4254
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4255 4256 4257 4258
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4259
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4260

4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4271
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4272
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4273 4274 4275 4276 4277 4278
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4279
    def link_to(self, node_in, node_out):
4280 4281 4282 4283
        """
        Connect two nodes.

        Args:
4284 4285
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4286
        """
4287 4288 4289 4290
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4291 4292
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4293 4294

    def safe_remove_nodes(self, remove_nodes):
4295 4296 4297 4298 4299 4300 4301
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4302
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4303 4304 4305 4306
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4307 4308
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4309

Z
Zhen Wang 已提交
4310 4311 4312 4313 4314 4315 4316 4317
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4318
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4319 4320 4321 4322
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4323
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4324 4325 4326
                        ]
                    else:
                        var_nodes[each_var_name].append(
4327 4328
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4329 4330
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4331
    def has_circle(self):
4332 4333 4334 4335 4336 4337
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4338 4339 4340
        return core.has_circle(self.graph)

    def graph_num(self):
4341 4342 4343 4344 4345 4346
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4347 4348 4349
        return core.graph_num(self.graph)

    def topology_sort(self):
4350 4351 4352
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4353
        Notes: the `graph` can not contain a circle.
4354 4355

        Returns:
Z
Zhen Wang 已提交
4356
            list(IrNode): nodes in topology order.
4357
        """
4358
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4359
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4360 4361

    def build_adjacency_list(self):
4362 4363 4364 4365
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4366
            dict{IrNode: set(IrNode)}: the adjacency list.
4367
        """
4368 4369 4370 4371 4372
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4373

4374 4375 4376 4377 4378 4379 4380 4381
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4382
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4383 4384 4385 4386 4387
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4388 4389
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4390 4391 4392
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4393 4394 4395 4396 4397
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4398
        remove_ctr_vars = set()
4399
        if remove_ctr_var:
4400
            for node in self.all_var_nodes():
4401 4402 4403
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4404 4405
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4406 4407
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4408 4409 4410 4411 4412 4413
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4414 4415 4416 4417
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4418 4419
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4420 4421 4422 4423 4424 4425 4426
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4427 4428 4429
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4430
        WARN: When the graph includes backward operator nodes, the
4431 4432 4433 4434 4435 4436
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4437
        convert_pass = core.get_pass('graph_to_program_pass')
4438 4439
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4440 4441 4442 4443
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4444 4445 4446 4447 4448 4449 4450 4451
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4452 4453
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4454 4455
        return target_node

4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4472
class Program(object):
D
dzhwinter 已提交
4473
    """
4474
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4475
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4476
    it will contain nested block.
4477

J
Jiabin Yang 已提交
4478 4479 4480
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4481

J
Jiabin Yang 已提交
4482
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4483
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4484 4485 4486 4487 4488 4489 4490
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4491
    **Notes**:
4492 4493 4494
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4495 4496

    Returns:
J
Jiabin Yang 已提交
4497
        Program: An empty Program.
D
dzhwinter 已提交
4498 4499

    Examples:
4500 4501
        .. code-block:: python

4502 4503 4504 4505
            import paddle
            import paddle.static as static

            paddle.enable_static()
4506

4507 4508 4509 4510 4511
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4512
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4513 4514 4515

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4516 4517 4518

    """

4519 4520
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4521 4522
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4523 4524
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4525
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4526
        self.__op_role_var = []
T
tangwei12 已提交
4527

4528 4529
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4530
        self._is_distributed = False
4531
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4532
        self._is_chief = False
4533 4534 4535
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4536
        self._endpoints = []
4537 4538 4539
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4540
        self._trainers_endpoints = []
4541
        # the distributed lookup table names
T
tangwei12 已提交
4542
        self._distributed_lookup_table = None
4543 4544 4545

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4546 4547
        self._use_lamb = False

4548 4549 4550
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4551

4552 4553 4554
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4555
        self._program_config = None
4556

H
hutuxian 已提交
4557 4558 4559
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4560 4561 4562
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4563 4564 4565
        # appending gradients times
        self._appending_grad_times = 0

4566 4567 4568 4569
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4570 4571
        # compiled program, i.e. Graph
        self._graph = None
4572 4573
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4574

4575
    def _find_var_class_kwargs(self, new_desc):
4576 4577 4578 4579 4580 4581 4582 4583
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4653
        assert block_num == self.desc.num_blocks()
4654 4655

        # clear old blocks and desc
4656 4657 4658 4659 4660 4661 4662 4663 4664
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4665

4666
        del desc
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4696 4697
                import paddle
                import paddle.static as static
4698

4699 4700 4701
                paddle.enable_static()

                prog = static.default_main_program()
4702 4703 4704 4705 4706
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4707
                prog1 = static.default_main_program()
4708 4709 4710 4711 4712 4713 4714 4715
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4716
    @property
4717
    def _op_role(self):
Y
yuyang18 已提交
4718 4719 4720 4721 4722 4723 4724 4725
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4726
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4727 4728 4729 4730
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4731 4732
        return self._current_role

4733 4734
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4735 4736 4737
        self._current_role = role

    @property
4738
    def _op_role_var(self):
Y
yuyang18 已提交
4739
        """
4740
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4741

4742
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4743 4744 4745

        Notes: This is a very low-level API. Users should not use it directly.
        """
4746
        return self.__op_role_var
Y
yuyang18 已提交
4747

4748
    @signature_safe_contextmanager
4749 4750 4751 4752 4753
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4754 4755 4756 4757
        try:
            yield
        finally:
            self._current_role = tmp_role
4758

S
rename  
sneaxiy 已提交
4759
    @signature_safe_contextmanager
W
Wu Yi 已提交
4760
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4761 4762 4763 4764 4765 4766 4767
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4768
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4769 4770 4771

        Examples:

4772
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4773
            >>> p, g = backward(...)
W
Wu Yi 已提交
4774
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4775 4776
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4777
        tmp_role = self._current_role
4778
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4779

Y
yuyang18 已提交
4780 4781
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4782
        self.__op_role_var = [
4783 4784 4785
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4786 4787 4788 4789 4790
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4791

S
rename  
sneaxiy 已提交
4792
    @signature_safe_contextmanager
X
Xin Pan 已提交
4793
    def _lr_schedule_guard(self, is_with_opt=False):
4794 4795 4796 4797 4798 4799 4800
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4801 4802 4803 4804
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4805 4806 4807

        Examples:

4808
            >>> import paddle.fluid as fluid
4809 4810 4811 4812
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4813 4814

        tmp_role = self._current_role
4815
        tmp_var = self.__op_role_var
4816

4817 4818
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4819 4820
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4821
        # TODO(typhoonzero): how to set target learning rate var
4822
        self.__op_role_var = []
4823 4824 4825 4826 4827
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4828

4829
    def __str__(self):
Y
yuyang18 已提交
4830 4831 4832 4833 4834 4835 4836 4837 4838
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4859 4860
            import paddle
            import paddle.static as static
4861

4862 4863 4864
            paddle.enable_static()

            cur_program = static.Program()
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4876
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4877 4878 4879 4880
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4881
            program_str += '\n'
4882
        return program_str
Y
Yang Yang(Tony) 已提交
4883

F
fengjiayi 已提交
4884 4885 4886
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4887

J
Jiabin Yang 已提交
4888 4889 4890
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4891

J
Jiabin Yang 已提交
4892
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4893

H
haowang101779990 已提交
4894
        Returns:
J
Jiabin Yang 已提交
4895
            str: The debug string describe current Program.
Y
yuyang18 已提交
4896 4897

        Raises:
J
Jiabin Yang 已提交
4898
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4899

4900 4901 4902
        Examples:
            .. code-block:: python

4903 4904 4905 4906
                import paddle
                import paddle.static as static

                paddle.enable_static()
4907

4908 4909 4910
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4911
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4912
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4913
                print("program string without detail: {}".format(prog_string))
4914
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4915
        """
4916 4917 4918 4919 4920 4921 4922 4923 4924
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4925 4926 4927 4928 4929 4930
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4931 4932
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4933 4934
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4935

W
Wu Yi 已提交
4936
    def _get_desc(self):
Y
yuyang18 已提交
4937 4938 4939 4940 4941 4942 4943
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4944 4945
        return self.desc

X
version  
Xin Pan 已提交
4946 4947 4948
    def _version(self):
        return self.desc._version()

4949
    def clone(self, for_test=False):
Y
yuyang18 已提交
4950
        """
4951 4952 4953 4954
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4955

4956
        Create a new Program with forward content of original one when ``for_test=True``.
4957
        Create a new Program as same as the original one when ``for_test=False``.
4958

4959
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4960 4961 4962
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4963

4964 4965
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4966 4967
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4968
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4969

J
Jiabin Yang 已提交
4970
        For Example:
4971
          ::
L
Luo Tao 已提交
4972

4973 4974 4975 4976 4977 4978
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4979
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4980
            loss = paddle.mean(pred)
4981
            # Here we use clone before Momentum
4982 4983
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4984
            optimizer.minimize(loss)
4985

J
Jiabin Yang 已提交
4986
        Args:
4987

4988 4989
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4990

J
Jiabin Yang 已提交
4991
        Returns:
4992
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4993

Y
yuyang18 已提交
4994 4995 4996

        Examples:

4997 4998 4999 5000 5001 5002 5003
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5020
            1. To clone a test program, the sample code is:
5021 5022 5023
                .. code-block:: python

                    import six
5024 5025 5026 5027 5028 5029
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5042 5043
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5044 5045 5046

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5047 5048 5049
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5050
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5051 5052
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5053
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5054 5055
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5056
                            test_program = train_program.clone(for_test=True)
5057
                    print_prog(test_program)
J
Jiabin Yang 已提交
5058 5059 5060 5061

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5062
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5063 5064 5065 5066
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5067 5068 5069
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5070 5071 5072
                            sgd.minimize(avg_loss)


5073
            2. The clone method can be avoid if you create program for training and program for testing individually.
5074 5075 5076
                .. code-block:: python

                    import six
5077 5078 5079 5080 5081 5082
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5094

5095
                    def network():
5096
                        img = static.data(name='image', shape=[None, 784])
5097
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5098 5099
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5100
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5101 5102
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5103 5104
                        return avg_loss

5105 5106 5107 5108 5109
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5110
                            avg_loss = network()
5111
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5112
                            sgd.minimize(avg_loss)
5113
                    # the test startup program is not used.
5114 5115
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5116 5117
                            avg_loss = network()
                    print_prog(test_program_2)
5118

5119
            The two code snippets above will generate and print same programs.
5120
        """
5121

T
tangwei12 已提交
5122
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5123 5124 5125
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5126
        pruned_origin_block_id_map = None
5127
        if for_test:
5128 5129 5130 5131 5132 5133 5134 5135 5136
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5137
        else:
5138
            p = Program()
G
gongweibao 已提交
5139 5140
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5141
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5142 5143 5144
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5145 5146

            p._current_role = self._current_role
5147
            p.__op_role_var = self.__op_role_var
5148
            p._appending_grad_times = self._appending_grad_times
5149 5150
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5151

T
tangwei12 已提交
5152
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5153
            # its desc.
W
Wu Yi 已提交
5154
            p._sync_with_cpp()
5155

W
Wu Yi 已提交
5156
        p._copy_param_info_from(self)
5157
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5158
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5159
        return p
5160

5161
    def _prune(self, targets):
Y
yuyang18 已提交
5162 5163 5164 5165 5166 5167 5168 5169
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5170
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5171 5172 5173 5174
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5175
        """
5176
        return self._prune_with_input([], targets)
5177 5178

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5179
        """
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5190
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5191 5192 5193 5194 5195 5196
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5197
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5198 5199 5200
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5201 5202
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5203 5204
        if not isinstance(targets, list):
            targets = [targets]
5205 5206 5207

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5208 5209 5210
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5211

5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5228 5229 5230 5231
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5232 5233 5234
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5235
                else:
5236 5237 5238
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5239 5240 5241 5242 5243 5244

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5245 5246 5247
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5248

5249 5250 5251 5252 5253 5254 5255 5256 5257
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5258
                        # Skip optimize op except for optimize op in targets,
5259 5260 5261 5262 5263
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5264

5265
                if target_op is not None:
5266 5267 5268
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5269

5270
        res = Program()
5271 5272 5273
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5274 5275 5276
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5277
        res._sync_with_cpp()
5278 5279 5280 5281 5282

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5283 5284
        return res

X
Xin Pan 已提交
5285
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5286
        """
F
fengjiayi 已提交
5287 5288 5289 5290 5291
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5292
        3. change the :code:`is_test`
Y
yuyang18 已提交
5293 5294 5295
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5296
        Args:
X
Xin Pan 已提交
5297 5298
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5299

Y
yuyang18 已提交
5300 5301 5302 5303 5304 5305
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5306
        res = Program()
5307
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5308 5309 5310 5311

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5312
        if prune_read_op:
5313 5314 5315 5316 5317 5318 5319 5320 5321
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5322
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5323 5324

        # change all `is_test` attributes to True
M
minqiyang 已提交
5325
        for i in six.moves.range(res.desc.num_blocks()):
5326
            block = res.desc.block(i)
M
minqiyang 已提交
5327
            for j in six.moves.range(block.op_size()):
5328 5329
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5330
                    op._set_attr('is_test', True)
5331 5332 5333
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5334 5335 5336
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5337
        res._sync_with_cpp()
5338 5339
        return res

5340
    def _remove_training_info(self, clip_extra=True):
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5430 5431
        return res

5432 5433
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5434
        """
5435 5436 5437
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5438

5439 5440
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5441

J
Jiabin Yang 已提交
5442
        Args:
Y
yuyang18 已提交
5443

J
Jiabin Yang 已提交
5444
            binary_str_type (str): the binary prootbuf string.
5445

J
Jiabin Yang 已提交
5446 5447
        Returns:
            Program: A deserialized Program.
5448 5449 5450 5451

        Examples:
            .. code-block:: python

5452 5453 5454 5455
                import paddle
                import paddle.static as static

                paddle.enable_static()
5456

5457 5458 5459 5460
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5461

5462
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5463

5464
                    z = paddle.matmul(x=x, y=y)
5465

5466 5467
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5468

5469
                    print(static.default_main_program())
5470
                    print(prog_restored)
Y
yuyang18 已提交
5471
        """
5472 5473
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5474
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5475
        p._sync_with_cpp()
5476
        return p
Y
Yu Yang 已提交
5477

5478
    @staticmethod
5479
    def _construct_from_desc(desc):
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5495 5496
    @property
    def random_seed(self):
Y
yuyang18 已提交
5497
        """
J
Jiabin Yang 已提交
5498
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5499 5500
        the random seed from random device.

5501 5502
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5503 5504 5505

        Returns:
            int64: Random seed in current Program
5506

5507 5508 5509 5510

        Examples:
            .. code-block:: python

5511 5512 5513
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5514

5515 5516 5517
                paddle.enable_static()

                prog = static.default_main_program()
5518
                random_seed = prog.random_seed
5519
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5520 5521 5522
                print(random_seed)
                ## 0
                ## the default random seed is 0
5523

5524
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5525
                prog.random_seed = 1
5526
                z_var = F.dropout(x_var, 0.7)
5527

5528
                print(prog.random_seed)
5529 5530
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5531
        """
D
dzhwinter 已提交
5532 5533
        return self._seed

Q
qiaolongfei 已提交
5534 5535
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5536
        """
5537 5538
        The number of :ref:`api_guide_Block_en`  in this Program.

5539 5540
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5541 5542 5543

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5544

5545 5546 5547 5548

        Examples:
            .. code-block:: python

5549 5550 5551 5552
                import paddle
                import paddle.static as static

                paddle.enable_static()
5553

5554
                prog = static.default_main_program()
5555 5556
                num_blocks = prog.num_blocks
                print(num_blocks)
5557

5558 5559
                # print result:
                # 1
Y
yuyang18 已提交
5560
        """
Q
qiaolongfei 已提交
5561 5562
        return self.desc.num_blocks()

D
dzhwinter 已提交
5563 5564 5565
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5566 5567 5568
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5569 5570
        self._seed = seed

Y
Yu Yang 已提交
5571
    def __repr__(self):
5572
        return self.__str__()
5573

Y
Yu Yang 已提交
5574
    def global_block(self):
Y
yuyang18 已提交
5575
        """
5576 5577
        .. note::
            This API has no effect in Dygraph mode.
5578 5579 5580

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5581 5582
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5583

5584 5585 5586 5587

        Examples:
            .. code-block:: python

5588 5589 5590 5591
                import paddle
                import paddle.static as static

                paddle.enable_static()
5592

5593
                prog = static.default_main_program()
5594 5595
                gb_block = prog.global_block()
                print(gb_block)
5596

Y
yuyang18 已提交
5597
        """
Y
Yu Yang 已提交
5598 5599
        return self.blocks[0]

Q
Qiao Longfei 已提交
5600
    def block(self, index):
Y
yuyang18 已提交
5601
        """
5602 5603
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5604

5605 5606
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5607 5608
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5609

J
Jiabin Yang 已提交
5610 5611
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5612 5613 5614 5615

        Examples:
            .. code-block:: python

5616 5617 5618 5619
                import paddle
                import paddle.static as static

                paddle.enable_static()
5620

5621
                prog = static.default_main_program()
5622 5623
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5624
        """
Q
Qiao Longfei 已提交
5625 5626
        return self.blocks[index]

Y
Yu Yang 已提交
5627
    def current_block(self):
Y
yuyang18 已提交
5628
        """
5629 5630
        .. note::
            This API has no effect in Dygraph mode.
5631

J
Jiabin Yang 已提交
5632 5633
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5634

J
Jiabin Yang 已提交
5635 5636
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5637

5638 5639 5640
        Examples:
            .. code-block:: python

5641 5642 5643 5644
                import paddle
                import paddle.static as static

                paddle.enable_static()
5645

5646
                prog = static.default_main_program()
5647 5648
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5649
        """
Y
Yu Yang 已提交
5650 5651
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5652
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5653 5654 5655 5656 5657
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5658

Y
yuyang18 已提交
5659 5660 5661 5662 5663
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5664
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5665 5666 5667
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5668 5669 5670 5671
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5672
    def _rollback(self):
Y
yuyang18 已提交
5673 5674 5675 5676 5677
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5678 5679
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5680
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5691 5692 5693
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5694
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5695

W
Wu Yi 已提交
5696
    def _copy_param_info_from(self, other):
5697
        """
5698
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5699

Y
yuyang18 已提交
5700 5701 5702
        Notes: This is a very low level API. Users should not invoke it
        directly.

5703 5704 5705 5706 5707 5708 5709
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5710 5711 5712
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5713

W
Wu Yi 已提交
5714
        self.global_block()._copy_param_info_from(other.global_block())
5715

5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5727 5728 5729
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5730 5731
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5732
        self._parameters_on_pservers = other._parameters_on_pservers
5733
        self._endpoints = other._endpoints
5734
        self._ps_endpoint = other._ps_endpoint
5735 5736
        self._distributed_lookup_table = other._distributed_lookup_table

5737
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5738 5739
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5740

Y
yuyang18 已提交
5741 5742 5743
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5744 5745
        Args:
            other(Program): Other program
5746 5747 5748 5749
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5750 5751 5752 5753 5754

        Returns:
            None
        """
        if not isinstance(other, Program):
5755 5756 5757
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5758

5759 5760 5761 5762 5763
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5764 5765 5766

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5767 5768
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5769
            for var in list(block.vars.values()):
5770 5771 5772 5773 5774 5775 5776
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5777

5778
    def list_vars(self):
Y
yuyang18 已提交
5779
        """
5780
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5781

J
Jiabin Yang 已提交
5782
        Returns:
5783
            iterable Tensors: The Generator will yield every Tensor in this program.
5784 5785 5786 5787

        Examples:
            .. code-block:: python

5788 5789
                import paddle
                import paddle.static as static
5790

5791 5792 5793 5794 5795
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5796 5797
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5798

5799 5800
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5801
        """
5802
        for each_block in self.blocks:
5803
            for each_var in list(each_block.vars.values()):
5804 5805
                yield each_var

5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5816 5817 5818 5819
                import paddle
                import paddle.static as static

                paddle.enable_static()
5820

5821 5822
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5823
                hidden = static.nn.fc(x=data, size=10)
5824 5825
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5826 5827 5828 5829 5830 5831 5832

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5833 5834
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
6012

6013
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6014
class Parameter(Variable):
6015
    """
6016
    Parameter is derived from Variable. A parameter is a persistable
6017
    Variable, and will be updated by optimizers after each iteration.
6018
    The training of a neural network is essentially the updating of
6019 6020
    its parameters.

6021
    Relative to a general Variable, a Parameter has several its own
6022 6023
    member variables:

6024 6025 6026 6027 6028 6029 6030 6031 6032 6033
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6034 6035
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6036 6037
    """

6038 6039 6040 6041 6042 6043
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6044 6045 6046 6047 6048
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6049
        if len(shape) == 0:
6050 6051
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6052 6053 6054

        for each in shape:
            if each < 0:
6055 6056 6057
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6058 6059

        Variable.__init__(
6060 6061 6062 6063 6064 6065 6066
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6067 6068 6069 6070
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6071 6072
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6073
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6074

6075 6076
        self.need_clip = kwargs.get('need_clip', True)

6077 6078
        self.is_distributed = False

6079 6080
        self.is_parameter = True

F
fengjiayi 已提交
6081
    def __str__(self):
6082
        return self._to_readable_code()
F
fengjiayi 已提交
6083

F
update  
fengjiayi 已提交
6084 6085 6086
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6087

F
update  
fengjiayi 已提交
6088 6089 6090 6091 6092 6093 6094 6095
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6096 6097 6098 6099 6100 6101 6102 6103 6104
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6105 6106 6107 6108 6109 6110
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6111
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6112
            for attr_name in additional_attr:
6113 6114
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6115 6116
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6117 6118 6119 6120
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6121

6122 6123
class ParamBase(core.VarBase):
    """
6124 6125 6126
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6127 6128 6129
    The training of a neural network is essentially the updating of
    its ParamBase.

6130
    Relative to a general Tensor, a ParamBase has several its own
6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6143 6144
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6175 6176
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6177 6178 6179 6180 6181 6182 6183

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6184 6185
        self.need_clip = kwargs.get('need_clip', True)

6186
        self.is_distributed = kwargs.get('is_distributed', False)
6187
        # self.block = default_main_program().global_block()
6188

6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6202
    def __str__(self):
6203
        """
6204
        Convert a ParamBase object to a readable string.
6205

6206
        Returns(str): A readable string.
6207 6208 6209 6210

        Examples:
            .. code-block:: python

6211
                import paddle
6212 6213 6214 6215 6216 6217 6218
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6219
        """
6220 6221
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6222

6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6234

6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6253 6254 6255 6256
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
    _core_eager_eagertensor = core.eager.EagerTensor
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

        super(EagerParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape)
            if shape else [], name, core.VarDesc.VarType.LOD_TENSOR, True)
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6404 6405
        return new_param

6406 6407 6408
    __repr__ = __str__


Y
Yu Yang 已提交
6409
# program is a global instance.
Y
Yu Yang 已提交
6410 6411
_main_program_ = Program()
_startup_program_ = Program()
6412
_startup_program_._is_start_up_program_ = True
6413

6414

6415
def default_startup_program():
Y
Yu Yang 已提交
6416
    """
Y
yuyang18 已提交
6417 6418
    Get default/global startup program.

6419 6420
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6421

6422 6423
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6424

6425 6426
    Returns:
        Program: current default startup program.
6427

6428
    Returns type: 
6429 6430 6431 6432

    Examples:
        .. code-block:: python

6433
            import paddle
6434

6435
            paddle.enable_static()
6436 6437 6438 6439
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6440
    """
Y
Yu Yang 已提交
6441
    return _startup_program_
6442

6443

6444
def default_main_program():
Y
Yu Yang 已提交
6445
    """
6446
    This API can be used to get ``default main program`` which store the 
6447
    descriptions of Ops and tensors.
T
tangwei12 已提交
6448

6449
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6450
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6451

6452 6453
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6454
    :code:`default_main_program` when the program is not specified.
6455

6456
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6457

Y
Yu Yang 已提交
6458
    Returns:
6459
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6460 6461 6462 6463

    Examples:
        ..  code-block:: python

6464
            import paddle
6465

6466
            paddle.enable_static()
6467
            # Sample Network:
6468 6469 6470
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6471

6472 6473 6474
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6475
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6476
    """
Y
Yu Yang 已提交
6477
    return _main_program_
Y
Yu Yang 已提交
6478 6479 6480 6481 6482


def switch_main_program(program):
    """
    Switch the main program to a new program.
6483

Y
Yu Yang 已提交
6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6498
    Switch the startup program to a new program
Y
Yu Yang 已提交
6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6511
@signature_safe_contextmanager
Y
Yu Yang 已提交
6512 6513
def program_guard(main_program, startup_program=None):
    """
6514 6515
    :api_attr: Static Graph

6516 6517 6518
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6519

G
guofei 已提交
6520
    Args:
6521 6522
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6523 6524 6525 6526
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6527
    Examples:
6528
       .. code-block:: python
T
tangwei12 已提交
6529

6530
          import paddle
Y
yuyang18 已提交
6531

6532 6533 6534 6535 6536
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6537
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6538 6539 6540

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6541

Y
Yu Yang 已提交
6542
    Examples:
6543
       .. code-block:: python
Y
yuyang18 已提交
6544

6545
          import paddle
6546

6547 6548 6549 6550 6551
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6552

Y
Yu Yang 已提交
6553
    """
6554
    from .data_feeder import check_type
6555 6556
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6557 6558
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6559
        check_type(startup_program, 'startup_program', Program,
6560
                   'paddle.static.program_guard')
6561 6562
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6563
        startup_program = switch_startup_program(startup_program)
6564 6565 6566 6567 6568 6569
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6570 6571


W
Wu Yi 已提交
6572
def _get_var(name, program=None):
X
xuwei06 已提交
6573
    """
Y
yuyang18 已提交
6574
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6575

X
xuwei06 已提交
6576 6577 6578
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6579
        If None, default_global_program() will be used.
X
xuwei06 已提交
6580 6581 6582 6583 6584 6585 6586

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6587
    assert isinstance(program, Program)
X
xuwei06 已提交
6588 6589

    return program.global_block().var(name)
6590 6591


S
rename  
sneaxiy 已提交
6592
@signature_safe_contextmanager
L
lujun 已提交
6593 6594
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6595
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6596
    _dygraph_tracer_ = tracer
6597
    core._switch_tracer(tracer)
M
minqiyang 已提交
6598

6599 6600 6601
    try:
        yield
    finally:
6602 6603
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6604 6605


S
rename  
sneaxiy 已提交
6606
@signature_safe_contextmanager
L
lujun 已提交
6607
def _dygraph_place_guard(place):
6608 6609 6610
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
6611 6612
    if _in_eager_mode():
        core.eager._set_expected_place(place)
6613 6614
    _set_dygraph_tracer_expected_place(place)

6615 6616 6617
    try:
        yield
    finally:
6618
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
6619 6620 6621
        if _in_eager_mode():
            core.eager._set_expected_place(_global_expected_place_)
        _set_dygraph_tracer_expected_place(_global_expected_place_)
6622 6623


6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6640 6641
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6642 6643 6644 6645 6646 6647 6648 6649 6650
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6651
            import paddle
6652

Z
Zhang Ting 已提交
6653 6654 6655
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6656
            if support_gpu:
Z
Zhang Ting 已提交
6657
                place = paddle.CUDAPlace(0)
6658 6659

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6660 6661 6662
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6663

Z
Zhang Ting 已提交
6664
            with paddle.static.device_guard("cpu"):
6665
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6666 6667
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6668
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6669
                out = paddle.reshape(data1, shape=shape)
6670

Z
Zhang Ting 已提交
6671 6672
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6673 6674 6675
            result = exe.run(fetch_list=[out])
    """

6676 6677 6678 6679 6680
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6681
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6682
        raise ValueError(
6683
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6684
            "when there is no need to specify device. But received %s" % device)
6685 6686
    if index:
        device = ":".join([device, index])
6687
    pre_device = switch_device(device)
6688 6689 6690 6691
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6692 6693 6694 6695 6696


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6697
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6698 6699 6700 6701 6702 6703 6704

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6705 6706
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6707 6708 6709 6710
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6711 6712
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6713 6714 6715 6716 6717 6718 6719 6720
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6721
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6722 6723 6724 6725 6726 6727 6728 6729 6730 6731

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6732
            import paddle
G
guofei 已提交
6733 6734

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6735
            res = paddle.get_flags(flags)
G
guofei 已提交
6736 6737 6738 6739 6740 6741
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6742 6743
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6744 6745 6746 6747 6748 6749 6750
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6751 6752
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6753 6754 6755 6756 6757 6758 6759 6760
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6761 6762 6763 6764 6765 6766 6767


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6768
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
6769 6770 6771 6772 6773 6774 6775 6776 6777
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6778

6779 6780 6781
    if (place == "device"):
        return core.Place()

6782
    # GPU
6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6798 6799

    # XPU
6800 6801 6802 6803 6804 6805 6806 6807 6808 6809
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6823
    raise ValueError(
6824 6825
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret