Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
017bba16
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
017bba16
编写于
5月 15, 2018
作者:
Y
yuyang18
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add op role
上级
dfdcb7ea
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
194 addition
and
68 deletion
+194
-68
paddle/fluid/framework/details/op_registry.h
paddle/fluid/framework/details/op_registry.h
+1
-4
paddle/fluid/framework/op_proto_maker.cc
paddle/fluid/framework/op_proto_maker.cc
+20
-0
paddle/fluid/framework/op_proto_maker.h
paddle/fluid/framework/op_proto_maker.h
+14
-6
paddle/fluid/pybind/const_value.cc
paddle/fluid/pybind/const_value.cc
+16
-0
python/paddle/fluid/backward.py
python/paddle/fluid/backward.py
+41
-8
python/paddle/fluid/clip.py
python/paddle/fluid/clip.py
+15
-12
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+55
-9
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+7
-5
python/paddle/fluid/regularizer.py
python/paddle/fluid/regularizer.py
+25
-24
未找到文件。
paddle/fluid/framework/details/op_registry.h
浏览文件 @
017bba16
...
...
@@ -96,10 +96,7 @@ struct OpInfoFiller<T, kOpProtoAndCheckerMaker> {
info
->
proto_
=
new
proto
::
OpProto
;
info
->
checker_
=
new
OpAttrChecker
();
T
maker
;
maker
.
SetProto
(
info
->
proto_
);
maker
.
SetChecker
(
info
->
checker_
);
maker
.
Make
();
maker
.
Validate
();
maker
(
info
->
proto_
,
info
->
checker_
);
info
->
proto_
->
set_type
(
op_type
);
PADDLE_ENFORCE
(
info
->
proto_
->
IsInitialized
(),
...
...
paddle/fluid/framework/op_proto_maker.cc
浏览文件 @
017bba16
...
...
@@ -55,5 +55,25 @@ void OpProtoAndCheckerMaker::CheckNoDuplicatedInOutAttrs() {
}
}
void
OpProtoAndCheckerMaker
::
operator
()(
proto
::
OpProto
*
proto
,
OpAttrChecker
*
attr_checker
)
{
proto_
=
proto
;
op_checker_
=
attr_checker
;
Make
();
AddAttr
<
int
>
(
OpRoleAttrName
(),
"The role of this operator"
)
.
InEnum
(
{
static_cast
<
int
>
(
OpRole
::
kForward
),
static_cast
<
int
>
(
OpRole
::
kBackward
),
static_cast
<
int
>
(
OpRole
::
kOptimize
),
static_cast
<
int
>
(
OpRole
::
kLoss
)
|
static_cast
<
int
>
(
OpRole
::
kForward
),
static_cast
<
int
>
(
OpRole
::
kLoss
)
|
static_cast
<
int
>
(
OpRole
::
kBackward
)});
AddAttr
<
std
::
string
>
(
OpRoleVarAttrName
(),
"Optimized for variable"
)
.
SetDefault
(
""
);
Validate
();
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/op_proto_maker.h
浏览文件 @
017bba16
...
...
@@ -20,21 +20,28 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
enum
class
OpRole
{
kForward
=
0x0000
,
kBackward
=
0x0001
,
kOptimize
=
0x0002
,
kLoss
=
0x0100
,
};
// this class not only make proto but also init attribute checkers.
class
OpProtoAndCheckerMaker
{
public:
static
const
char
*
OpRoleAttrName
()
{
return
"op_role"
;
}
static
const
char
*
OpRoleVarAttrName
()
{
return
"op_role_var"
;
}
void
operator
()(
proto
::
OpProto
*
proto
,
OpAttrChecker
*
attr_checker
);
virtual
void
Make
()
=
0
;
virtual
~
OpProtoAndCheckerMaker
()
{
CHECK
(
validated_
)
<<
"should call Validate after build"
;
}
void
SetProto
(
proto
::
OpProto
*
proto
)
{
proto_
=
proto
;
}
void
SetChecker
(
OpAttrChecker
*
attr_checker
)
{
op_checker_
=
attr_checker
;
}
void
Validate
();
protected:
struct
VariableBuilder
{
proto
::
OpProto
::
Var
*
var_
;
...
...
@@ -76,6 +83,7 @@ class OpProtoAndCheckerMaker {
private:
void
CheckNoDuplicatedInOutAttrs
();
void
Validate
();
proto
::
OpProto
*
proto_
;
OpAttrChecker
*
op_checker_
;
...
...
paddle/fluid/pybind/const_value.cc
浏览文件 @
017bba16
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/pybind/const_value.h"
#include <paddle/fluid/framework/op_proto_maker.h>
#include "paddle/fluid/framework/operator.h"
namespace
paddle
{
...
...
@@ -23,6 +24,21 @@ void BindConstValue(pybind11::module* m) {
m
->
def
(
"kTempVarName"
,
[]
{
return
framework
::
kTempVarName
;
});
m
->
def
(
"kGradVarSuffix"
,
[]
{
return
framework
::
kGradVarSuffix
;
});
m
->
def
(
"kZeroVarSuffix"
,
[]
{
return
framework
::
kZeroVarSuffix
;
});
auto
op_proto_and_checker_maker
=
m
->
def_submodule
(
"op_proto_and_checker_maker"
);
pybind11
::
enum_
<
framework
::
OpRole
>
(
op_proto_and_checker_maker
,
"OpRole"
)
.
value
(
"Forward"
,
framework
::
OpRole
::
kForward
)
.
value
(
"Backward"
,
framework
::
OpRole
::
kBackward
)
.
value
(
"Optimize"
,
framework
::
OpRole
::
kOptimize
)
.
value
(
"Loss"
,
framework
::
OpRole
::
kLoss
);
op_proto_and_checker_maker
.
def
(
"kOpRoleAttrName"
,
framework
::
OpProtoAndCheckerMaker
::
OpRoleAttrName
);
op_proto_and_checker_maker
.
def
(
"kOpRoleVarAttrName"
,
framework
::
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
);
}
}
// namespace pybind
...
...
python/paddle/fluid/backward.py
浏览文件 @
017bba16
...
...
@@ -51,6 +51,12 @@ def _create_op_desc_(op_type, inputs, outputs, attrs):
op_desc
.
set_input
(
para
,
args
)
for
para
,
args
in
outputs
.
iteritems
():
op_desc
.
set_output
(
para
,
args
)
op_role_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
()
if
op_role_attr_name
not
in
attrs
:
attrs
[
op_role_attr_name
]
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Backward
for
name
,
val
in
attrs
.
iteritems
():
if
isinstance
(
val
,
framework
.
Block
):
op_desc
.
set_block_attr
(
name
,
val
.
desc
)
...
...
@@ -141,7 +147,7 @@ def _addup_repetitive_outputs_(op_descs):
else
:
if
len
(
renamed_vars
[
var_name
])
==
1
:
new_name
=
var_name
+
"@RENAME@"
+
\
str
(
var_rename_count
[
var_name
])
str
(
var_rename_count
[
var_name
])
var_rename_count
[
var_name
]
+=
1
# rename original var_name
renamed_vars
[
var_name
][
0
]
=
new_name
...
...
@@ -149,7 +155,7 @@ def _addup_repetitive_outputs_(op_descs):
_rename_arg_
(
pending_sum_ops
,
var_name
,
new_name
)
new_name
=
var_name
+
"@RENAME@"
+
\
str
(
var_rename_count
[
var_name
])
str
(
var_rename_count
[
var_name
])
var_rename_count
[
var_name
]
+=
1
op_desc
.
rename_output
(
var_name
,
new_name
)
renamed_vars
[
var_name
].
append
(
new_name
)
...
...
@@ -335,9 +341,12 @@ def _append_backward_ops_(block,
no_grad_dict
[
block
.
idx
])
# append op_desc in grad_op_descs to target_block
op_role_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
()
backward
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Backward
for
op_desc
in
grad_op_descs
:
new_op_desc
=
target_block
.
desc
.
append_op
()
new_op_desc
.
copy_from
(
op_desc
)
new_op_desc
.
set_attr
(
op_role_attr_name
,
backward
)
grad_to_var
[
"__current_op_desc__"
]
=
new_op_desc
if
callbacks
is
not
None
:
assert
(
isinstance
(
callbacks
,
list
))
...
...
@@ -439,6 +448,11 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
(list[(Variable,Variable)]): list of (parameter, gradient) pair.
"""
assert
isinstance
(
loss
,
framework
.
Variable
)
loss
.
op
.
set_attr
(
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
(),
int
(
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
)
|
int
(
core
.
op_proto_and_checker_maker
.
OpRole
.
Loss
))
if
callbacks
is
not
None
:
isinstance
(
callbacks
,
list
)
...
...
@@ -456,12 +470,16 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
current_block_idx
=
program
.
current_block_idx
grad_to_var
=
dict
()
op_desc
=
_create_op_desc_
(
"fill_constant"
,
{},
{
"Out"
:
[
_append_grad_suffix_
(
loss
.
name
)]
},
{
"shape"
:
[
1
],
"value"
:
1.0
,
"dtype"
:
loss
.
dtype
,
"force_cpu"
:
False
})
op_desc
=
_create_op_desc_
(
"fill_constant"
,
{},
{
"Out"
:
[
_append_grad_suffix_
(
loss
.
name
)]},
{
"shape"
:
[
1
],
"value"
:
1.0
,
"dtype"
:
loss
.
dtype
,
"force_cpu"
:
False
,
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
():
int
(
core
.
op_proto_and_checker_maker
.
OpRole
.
Backward
)
|
int
(
core
.
op_proto_and_checker_maker
.
OpRole
.
Loss
),
})
root_block
.
desc
.
append_op
().
copy_from
(
op_desc
)
block_no_grad_set
=
set
(
map
(
_strip_grad_suffix_
,
no_grad_dict
[
0
]))
...
...
@@ -503,6 +521,21 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
params_and_grads
.
append
((
param_var
,
grad_var
))
else
:
params_and_grads
.
append
((
param_var
,
None
))
op_role_var_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleVarAttrName
()
for
p
,
g
in
params_and_grads
:
if
g
is
None
:
continue
for
op
in
reversed
(
program
.
global_block
().
ops
):
assert
isinstance
(
op
,
framework
.
Operator
)
if
g
.
name
in
op
.
output_arg_names
:
g
.
op
=
op
break
if
g
.
op
is
None
:
raise
ValueError
(
"Unexpected branch"
)
g
.
op
.
set_attr
(
op_role_var_attr_name
,
p
.
name
)
return
params_and_grads
...
...
python/paddle/fluid/clip.py
浏览文件 @
017bba16
...
...
@@ -214,21 +214,24 @@ def set_gradient_clip(clip, param_list=None, program=None):
def
append_gradient_clip_ops
(
param_grad
):
context
=
dict
()
create_op_callbacks
=
[]
for
p
,
g
in
param_grad
:
clip_attr
=
getattr
(
p
,
'gradient_clip_attr'
,
NullGradientClipAttr
())
if
clip_attr
is
None
:
clip_attr
=
NullGradientClipAttr
()
if
not
isinstance
(
clip_attr
,
BaseGradientClipAttr
):
raise
TypeError
(
"clip attribute should be an instance of BaseGradientClipAttr"
)
with
p
.
block
.
program
.
optimized_guard
(
p
):
clip_attr
=
getattr
(
p
,
'gradient_clip_attr'
,
NullGradientClipAttr
())
if
clip_attr
is
None
:
clip_attr
=
NullGradientClipAttr
()
if
not
isinstance
(
clip_attr
,
BaseGradientClipAttr
):
raise
TypeError
(
"clip attribute should be an instance of BaseGradientClipAttr"
)
clip_attr
.
process_context
(
context
=
context
,
param
=
p
,
grad
=
g
)
create_op_callbacks
.
append
(
functools
.
partial
(
clip_attr
.
create_operators
,
param
=
p
,
grad
=
g
))
clip_attr
.
process_context
(
context
=
context
,
param
=
p
,
grad
=
g
)
res
=
[]
for
p
,
g
in
param_grad
:
with
p
.
block
.
program
.
optimized_guard
(
p
):
res
.
append
(
clip_attr
.
create_operators
(
param
=
p
,
grad
=
g
))
return
[
each_callback
()
for
each_callback
in
create_op_callbacks
]
return
res
ClipByValue
=
GradientClipByValue
...
...
python/paddle/fluid/framework.py
浏览文件 @
017bba16
...
...
@@ -402,6 +402,19 @@ class Operator(object):
self
.
block
=
block
self
.
desc
=
desc
self
.
attrs
=
attrs
if
self
.
attrs
is
None
:
self
.
attrs
=
dict
()
del
attrs
op_maker
=
core
.
op_proto_and_checker_maker
if
op_maker
.
kOpRoleAttrName
()
not
in
self
.
attrs
:
self
.
attrs
[
op_maker
.
kOpRoleAttrName
()]
=
self
.
block
.
program
.
op_role
if
len
(
self
.
block
.
program
.
op_role_var
)
!=
0
and
op_maker
.
kOpRoleVarAttrName
()
not
in
self
.
attrs
:
self
.
attrs
[
op_maker
.
kOpRoleVarAttrName
(
)]
=
self
.
block
.
program
.
op_role_var
if
len
(
self
.
desc
.
type
())
!=
0
:
return
if
type
is
None
:
...
...
@@ -467,21 +480,23 @@ class Operator(object):
arg
.
op
=
self
self
.
desc
.
set_output
(
out_proto
.
name
,
out_arg_names
)
if
attrs
is
not
None
:
if
not
isinstance
(
attrs
,
dict
):
if
self
.
attrs
is
not
None
:
if
not
isinstance
(
self
.
attrs
,
dict
):
raise
TypeError
(
"'attrs' should be a dict."
)
for
attr
in
proto
.
attrs
:
attr_name
=
attr
.
name
if
(
attr_name
not
in
attrs
)
or
(
attrs
[
attr_name
]
is
None
):
if
(
attr_name
not
in
self
.
attrs
)
or
(
self
.
attrs
[
attr_name
]
is
None
):
continue
if
isinstance
(
attrs
[
attr_name
],
Block
):
self
.
desc
.
set_block_attr
(
attr_name
,
attrs
[
attr_name
].
desc
)
elif
isinstance
(
attrs
[
attr_name
],
core
.
BlockDesc
)
or
\
isinstance
(
attrs
[
attr_name
],
core
.
ProgramDesc
):
if
isinstance
(
self
.
attrs
[
attr_name
],
Block
):
self
.
desc
.
set_block_attr
(
attr_name
,
self
.
attrs
[
attr_name
].
desc
)
elif
isinstance
(
self
.
attrs
[
attr_name
],
core
.
BlockDesc
)
or
\
isinstance
(
self
.
attrs
[
attr_name
],
core
.
ProgramDesc
):
self
.
desc
.
set_serialized_attr
(
attr_name
,
attrs
[
attr_name
].
serialize_to_string
())
attr_name
,
self
.
attrs
[
attr_name
].
serialize_to_string
())
else
:
self
.
desc
.
set_attr
(
attr_name
,
attrs
[
attr_name
])
self
.
desc
.
set_attr
(
attr_name
,
self
.
attrs
[
attr_name
])
self
.
desc
.
check_attrs
()
no_kernel_op_set
=
{
...
...
@@ -610,6 +625,10 @@ class Operator(object):
"""
return
self
.
desc
.
attr_type
(
name
)
def
set_attr
(
self
,
name
,
val
):
self
.
attrs
[
name
]
=
val
self
.
desc
.
set_attr
(
name
,
val
)
@
property
def
attr_names
(
self
):
"""
...
...
@@ -1000,6 +1019,33 @@ class Program(object):
self
.
blocks
=
[
Block
(
self
,
0
)]
self
.
current_block_idx
=
0
self
.
_seed
=
0
self
.
_current_role
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
self
.
_op_role_var
=
""
@
property
def
op_role
(
self
):
return
self
.
_current_role
@
op_role
.
setter
def
set_op_role
(
self
,
role
):
self
.
_current_role
=
role
@
property
def
op_role_var
(
self
):
return
self
.
_op_role_var
@
op_role_var
.
setter
def
set_op_role_var
(
self
,
var_name
):
self
.
_op_role_var
=
var_name
@
contextlib
.
contextmanager
def
optimized_guard
(
self
,
var
):
OpRole
=
core
.
op_proto_and_checker_maker
.
OpRole
self
.
_current_role
=
OpRole
.
Optimize
self
.
_op_role_var
=
var
.
name
if
isinstance
(
var
,
Variable
)
else
var
yield
self
.
_op_role_var
=
""
self
.
_current_role
=
OpRole
.
Forward
def
__str__
(
self
):
return
self
.
to_string
(
True
)
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
017bba16
...
...
@@ -213,11 +213,13 @@ class Optimizer(object):
optimize_ops
=
[]
for
param_and_grad
in
parameters_and_grads
:
if
param_and_grad
[
0
].
trainable
is
True
and
param_and_grad
[
1
]
is
not
None
:
optimize_op
=
self
.
_append_optimize_op
(
loss
.
block
,
param_and_grad
)
optimize_ops
.
append
(
optimize_op
)
with
param_and_grad
[
0
].
block
.
program
.
optimized_guard
(
param_and_grad
[
0
]):
if
param_and_grad
[
0
].
trainable
is
True
and
param_and_grad
[
1
]
is
not
None
:
optimize_op
=
self
.
_append_optimize_op
(
loss
.
block
,
param_and_grad
)
optimize_ops
.
append
(
optimize_op
)
# Get custom finish ops for subclasses
# FIXME: Need to fix this once we figure out how to handle dependencies
...
...
python/paddle/fluid/regularizer.py
浏览文件 @
017bba16
...
...
@@ -43,31 +43,32 @@ def append_regularization_ops(parameters_and_grads, regularization=None):
"""
params_and_grads
=
[]
for
param
,
grad
in
parameters_and_grads
:
# If no gradient then we don't need to do anything
if
grad
is
None
:
with
param
.
block
.
program
.
optimized_guard
(
param
):
# If no gradient then we don't need to do anything
if
grad
is
None
:
params_and_grads
.
append
((
param
,
grad
))
continue
regularization_term
=
None
if
param
.
regularizer
is
not
None
:
# Add variable for regularization term in grad block
regularization_term
=
param
.
regularizer
(
param
,
grad
,
grad
.
block
)
elif
regularization
is
not
None
:
regularization_term
=
regularization
(
param
,
grad
,
grad
.
block
)
# If no regularization specified, then we don't need to do anything
if
regularization_term
is
None
:
params_and_grads
.
append
((
param
,
grad
))
continue
assert
grad
.
shape
==
regularization_term
.
shape
grad
.
block
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
"X"
:
grad
,
"Y"
:
regularization_term
},
outputs
=
{
"Out"
:
grad
})
params_and_grads
.
append
((
param
,
grad
))
continue
regularization_term
=
None
if
param
.
regularizer
is
not
None
:
# Add variable for regularization term in grad block
regularization_term
=
param
.
regularizer
(
param
,
grad
,
grad
.
block
)
elif
regularization
is
not
None
:
regularization_term
=
regularization
(
param
,
grad
,
grad
.
block
)
# If no regularization specified, then we don't need to do anything
if
regularization_term
is
None
:
params_and_grads
.
append
((
param
,
grad
))
continue
assert
grad
.
shape
==
regularization_term
.
shape
grad
.
block
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
"X"
:
grad
,
"Y"
:
regularization_term
},
outputs
=
{
"Out"
:
grad
})
params_and_grads
.
append
((
param
,
grad
))
return
params_and_grads
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录