framework.py 207.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
S
sneaxiy 已提交
50 51
    'cuda_places',
    'cpu_places',
52
    'xpu_places',
S
sneaxiy 已提交
53
    'cuda_pinned_places',
L
lujun 已提交
54
    'in_dygraph_mode',
C
chengduo 已提交
55
    'is_compiled_with_cuda',
56
    'is_compiled_with_rocm',
57
    'is_compiled_with_xpu',
58
    'Variable',
59
    'require_version',
60
    'device_guard',
G
guofei 已提交
61 62
    'set_flags',
    'get_flags',
63
]
Y
Yu Yang 已提交
64

Q
qiaolongfei 已提交
65 66 67 68
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
69 70
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
71
_dygraph_tracer_ = None
72
_global_expected_place_ = None
73
_current_device = None
74
global_prog_seed = 0
75
_global_flags_ = core.globals()
76

77

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
185
def in_dygraph_mode():
L
lujun 已提交
186
    """
187

188 189 190 191 192 193 194
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
195 196

    Returns:
197
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
198 199 200 201

    Examples:
        .. code-block:: python

202 203 204 205 206 207 208 209
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
210 211

    """
L
lujun 已提交
212
    return _dygraph_tracer_ is not None
213 214


215 216 217
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
218
        ), "We don't support %s in imperative mode" % func.__name__
219 220 221 222 223 224 225 226
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
227 228 229 230 231 232 233 234 235
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
236
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
237 238 239 240 241
        return func(*args, **kwargs)

    return __impl__


242 243 244 245 246 247
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
248
# same base class.
249 250 251
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
252 253 254 255 256
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
257 258 259 260

    return __impl__


T
tangwei12 已提交
261 262
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


280 281
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
282
static_only = wrap_decorator(_static_only_)
283
fake_interface_only = wrap_decorator(_fake_interface_only_)
284 285


L
lujun 已提交
286 287
def _dygraph_tracer():
    return _dygraph_tracer_
288

W
Wu Yi 已提交
289

290 291 292 293
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
294
def _current_expected_place():
295 296 297
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
298 299 300 301 302 303 304 305 306 307 308
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
325 326


L
Leo Chen 已提交
327 328 329 330
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
331

L
Leo Chen 已提交
332 333 334 335 336 337 338 339 340 341 342 343
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
344
def _cpu_num():
345
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
346 347 348 349 350 351 352 353
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
354
        os.environ['CPU_NUM'] = str(1)
355
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
356 357 358 359 360 361 362 363 364 365
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
366 367


368 369 370 371 372 373 374 375 376
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
392 393 394 395
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

396
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
397 398 399 400

    Examples:
        .. code-block:: python

401 402
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
403 404 405 406
    """
    return core.is_compiled_with_cuda()


407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_gpu = paddle.is_compiled_with_rocm()
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
422
def cuda_places(device_ids=None):
L
lujun 已提交
423
    """
424 425 426 427
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
428
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
429 430

    If :code:`device_ids` is None, environment variable of
431
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
432
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
433
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
434
    If :code:`FLAGS_selected_gpus` is not set, all visible
435
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
436 437

    If :code:`device_ids` is not None, it should be the device
438
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
439
    the returned list would be 
C
Chen Weihang 已提交
440
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
441

442
    Parameters:
443
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
444 445

    Returns:
C
Chen Weihang 已提交
446
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
447 448 449 450

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
451 452
            import paddle
            import paddle.static as static
T
tangwei12 已提交
453

454 455
            # required: gpu
            
C
Chen Weihang 已提交
456 457 458
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
459 460

    """
S
sneaxiy 已提交
461 462 463
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
464
        device_ids = _cuda_ids()
S
sneaxiy 已提交
465 466 467 468 469
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
    This function creates a list of :code:`paddle.XPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_xpus` would be checked first. For example, if
    :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
    be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    If :code:`FLAGS_selected_xpus` is not set, all visible
    xpu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
492
        
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
508
def cpu_places(device_count=None):
L
lujun 已提交
509
    """
C
Chen Weihang 已提交
510
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
511

S
add doc  
sneaxiy 已提交
512 513
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
514 515
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
516 517
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
518

519 520
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
521 522

    Returns:
C
Chen Weihang 已提交
523
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
524 525 526 527

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
528 529
            import paddle
            import paddle.static as static
T
tangwei12 已提交
530

C
Chen Weihang 已提交
531 532 533
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
534 535
    """

S
sneaxiy 已提交
536 537 538 539 540 541
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
542
    """
543
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
544 545 546

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
547 548 549 550
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
551

552 553
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
554 555

    Returns:
556
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
557 558 559 560

    Examples:
        .. code-block:: python

561
            import paddle.fluid as fluid
L
lujun 已提交
562 563 564 565 566
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
567 568 569
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
570 571
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
572 573


574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
600
@signature_safe_contextmanager
601 602
def name_scope(prefix=None):
    """
603 604
    :api_attr: Static Graph

605
    Generate hierarchical name prefix for the operators in Static Graph.
606

T
Tao Luo 已提交
607 608 609
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
610
        Don't use it in dygraph, since it will cause memory leak.
611 612

    Args:
T
Tao Luo 已提交
613
        prefix(str, optional): prefix. Default is none.
614 615 616

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
617

618 619 620
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
621
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
622
             b = a + 1
623
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
624
                c = b * 1
625
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
626
                d = c / 1
627 628 629
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
630 631 632
                g = f - 1

          # Op are created in the default main program.  
633
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
649 650
    """
    # TODO(panyx0718): Only [0-9a-z].
651
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
652 653 654
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
655
        assert prefix, "namescope prefix can not be empty."
656 657
        global _name_scope
        _name_scope = _name_scope.child(prefix)
658 659 660 661
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
662 663 664 665 666 667 668 669 670 671 672 673


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
674 675 676
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
677 678 679 680


def grad_var_name(var_name):
    """
681 682
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
683 684 685
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
686

687
def convert_np_dtype_to_dtype_(np_dtype):
688 689
    """
    Convert the data type in numpy to the data type in Paddle
690

691
    Args:
692
        np_dtype(np.dtype): the data type in numpy.
693

694 695
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
696 697

    """
698 699
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
700
        return core.VarDesc.VarType.FP32
701
    elif dtype == np.float64:
702
        return core.VarDesc.VarType.FP64
703
    elif dtype == np.float16:
704
        return core.VarDesc.VarType.FP16
705
    elif dtype == np.int32:
706
        return core.VarDesc.VarType.INT32
707
    elif dtype == np.int16:
708
        return core.VarDesc.VarType.INT16
709
    elif dtype == np.int64:
710
        return core.VarDesc.VarType.INT64
711
    elif dtype == np.bool:
712
        return core.VarDesc.VarType.BOOL
713
    elif dtype == np.uint16:
714 715 716
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
717 718
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
719 720
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
721 722 723 724
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
725
    else:
M
minqiyang 已提交
726
        raise ValueError("Not supported numpy dtype %s" % dtype)
727 728 729


def dtype_is_floating(dtype):
730 731 732
    """
    Check the data type is floating or not.
    Args:
733
        dtype(np.dtype|core.VarDesc.VarType): data type.
734 735 736 737 738
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
739
    if not isinstance(dtype, core.VarDesc.VarType):
740 741
        dtype = convert_np_dtype_to_dtype_(dtype)

742 743 744 745
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
746 747


Y
Yang Yang(Tony) 已提交
748
def _debug_string_(proto, throw_on_error=True):
749 750 751 752 753 754 755 756 757 758 759
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
760
    error_fields = list()
Y
Yang Yang(Tony) 已提交
761
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
762 763
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
764 765 766
    return proto.__str__()


767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
804
class Variable(object):
805
    """
J
Jiabin Yang 已提交
806
    **Notes**:
807
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
808

809 810
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
811 812 813
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
814
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
815 816
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
817

818
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
819
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
820

T
tianshuo78520a 已提交
821
    Most of a Variable's member variables can be set to be None. It mean
822
    it is not available or will be specified later.
823

824
    Examples:
825 826
        In Static Graph Mode:

827 828
        .. code-block:: python

829
            import paddle.fluid as fluid
830
            cur_program = fluid.Program()
831 832 833 834
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
835
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
836 837 838 839 840 841 842 843 844

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

845 846
    """

Y
Yu Yang 已提交
847 848
    def __init__(self,
                 block,
Y
Yu Yang 已提交
849
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
850 851 852 853
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
854
                 capacity=None,
Q
QI JUN 已提交
855
                 persistable=None,
F
fengjiayi 已提交
856
                 error_clip=None,
Y
Yu Yang 已提交
857
                 stop_gradient=False,
F
fengjiayi 已提交
858
                 is_data=False,
H
Huihuang Zheng 已提交
859
                 need_check_feed=False,
H
hong 已提交
860
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
861
                 **kwargs):
Y
Yu Yang 已提交
862 863
        self.block = block
        if name is None:
Y
Yu Yang 已提交
864
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
865

Y
Yu Yang 已提交
866
        if dtype is not None:
867
            if not isinstance(dtype, core.VarDesc.VarType):
868
                dtype = convert_np_dtype_to_dtype_(dtype)
869

H
hong 已提交
870 871
        self.belong_to_optimizer = belong_to_optimizer

872 873 874 875 876
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
877

878 879 880
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
881

882 883 884
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
885 886
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
887 888
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
889

890
        if shape is not None:
891
            if is_new_var:
892 893 894 895 896 897
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
898 899
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
900 901 902 903 904 905 906
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
907 908
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
909 910 911 912 913 914 915 916 917
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
918 919
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
920 921 922 923 924 925 926 927 928
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
929 930
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
931 932
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
933

934 935
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
936

937 938 939 940 941 942 943
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
944

945 946 947 948
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
949

950 951 952
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
953 954
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
955

956
        Returns:
J
Jiabin Yang 已提交
957
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
958 959 960 961

        Examples:
            .. code-block:: python

962
                import paddle
963

964 965 966 967
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
968

969 970
                # create a detached Variable
                y = x.detach()
971
        """
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
987

988
    @fake_interface_only
989
    def numpy(self):
990
        """
J
Jiabin Yang 已提交
991
        **Notes**:
T
tianshuo78520a 已提交
992
            **This API is ONLY available in Dygraph mode**
993

J
Jiabin Yang 已提交
994
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
995 996 997 998 999

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1000
            ndarray: dtype is same as current Variable
1001 1002 1003 1004 1005 1006

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1007
                from paddle.fluid.dygraph import Linear
1008 1009 1010 1011
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1012
                    linear = Linear(32, 64)
1013
                    data = to_variable(data)
1014
                    x = linear(data)
1015 1016 1017
                    print(x.numpy())

        """
1018
        pass
1019

1020
    @fake_interface_only
1021
    def backward(self, retain_graph=False):
1022
        """
J
Jiabin Yang 已提交
1023
        **Notes**:
T
tianshuo78520a 已提交
1024
            **This API is ONLY available in Dygraph mode**
1025

1026
        Run backward of current Graph which starts from current Tensor.
1027

J
Jiabin Yang 已提交
1028
        Args:
1029 1030 1031 1032
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1033

J
Jiabin Yang 已提交
1034 1035
        Returns:
            NoneType: None
1036 1037 1038 1039 1040

        Examples:
            .. code-block:: python

                import numpy as np
1041 1042
                import paddle
                paddle.disable_static()
1043 1044

                x = np.ones([2, 2], np.float32)
1045 1046 1047 1048 1049 1050 1051
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1052 1053
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1054
                loss.backward()
1055 1056

        """
1057
        pass
1058

1059
    @fake_interface_only
1060
    def gradient(self):
1061
        """
J
Jiabin Yang 已提交
1062
        **Notes**:
T
tianshuo78520a 已提交
1063
            **This API is ONLY available in Dygraph mode**
1064 1065 1066

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1067
        Returns:
1068
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1069 1070 1071 1072 1073 1074 1075

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1076
                # example1: return ndarray
1077 1078 1079 1080 1081 1082 1083 1084 1085
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1086
                    loss2.backward()
1087 1088
                    print(loss2.gradient())

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1102
        """
1103
        pass
1104

1105
    @fake_interface_only
1106
    def clear_gradient(self):
1107
        """
J
Jiabin Yang 已提交
1108
        **Notes**:
T
tianshuo78520a 已提交
1109
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1110 1111

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1112

J
Jiabin Yang 已提交
1113
        Clear  (set to ``0`` ) the Gradient of Current Variable
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1132
                    loss2.backward()
1133 1134 1135 1136 1137
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1138
        pass
X
Xin Pan 已提交
1139

1140 1141 1142 1143
    @fake_interface_only
    def register_hook(self, hook):
        pass

1144
    def __str__(self):
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1161 1162
                import paddle
                import paddle.static as static
1163

1164 1165 1166
                paddle.enable_static()

                cur_program = static.Program()
1167 1168 1169 1170 1171 1172
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1173 1174
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1175
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1176 1177
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1178 1179
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1180
        else:
1181 1182
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1196

F
update  
fengjiayi 已提交
1197
    def to_string(self, throw_on_error, with_details=False):
1198 1199 1200
        """
        Get debug string.

J
Jiabin Yang 已提交
1201 1202 1203 1204 1205
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1206

1207 1208
        Returns:
            str: The debug string.
1209 1210 1211 1212 1213

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1214
                import paddle
1215

1216
                paddle.enable_static()
1217 1218 1219 1220 1221
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1222
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1223
                print("=============with detail===============")
1224
                print(new_variable.to_string(True, True))
1225
        """
F
update  
fengjiayi 已提交
1226 1227
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1228
        protostr = self.desc.serialize_to_string()
1229
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1230 1231 1232 1233
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1234 1235 1236
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1237
        return res_str
1238 1239 1240

    __repr__ = __str__

1241
    @property
1242
    def stop_gradient(self):
J
Jiabin Yang 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1258 1259
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1260 1261 1262
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1263 1264
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1265 1266 1267 1268
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1269
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1270 1271
                assert (out1.gradient() == 0).all()
        """
1272
        return self._stop_gradient
1273

1274 1275
    @stop_gradient.setter
    def stop_gradient(self, s):
1276
        self._stop_gradient = s
1277

1278 1279
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1301
        return self.desc.persistable()
1302

Y
Yu Yang 已提交
1303 1304
    @persistable.setter
    def persistable(self, p):
1305
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1306

Y
Yu Yang 已提交
1307 1308
    @property
    def name(self):
J
Jiabin Yang 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1325
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1326

1327 1328 1329 1330 1331 1332 1333 1334
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
T
tangwei12 已提交
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1347 1348
    @name.setter
    def name(self, new_name):
1349
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1350

Y
Yu Yang 已提交
1351 1352
    @property
    def shape(self):
J
Jiabin Yang 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1370
        # convert to tuple, make it as same as numpy API.
1371
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1372 1373

    @property
F
fengjiayi 已提交
1374
    def dtype(self):
J
Jiabin Yang 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1391
        return self.desc.dtype()
Y
Yu Yang 已提交
1392 1393 1394

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1416 1417 1418
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1419
        return self.desc.lod_level()
Y
Yu Yang 已提交
1420

Y
Yu Yang 已提交
1421 1422
    @property
    def type(self):
J
Jiabin Yang 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1439
        return self.desc.type()
Y
Yu Yang 已提交
1440

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1475
    def _set_error_clip(self, error_clip):
1476 1477 1478 1479 1480 1481 1482 1483 1484
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1485 1486
        self.error_clip = error_clip

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1527
            raise ValueError("slice step can not be zero")
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1603
    def _cloneVar(self, copy=False):
1604 1605
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1606 1607
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1608 1609 1610 1611
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1612
        new_var = self._cloneVar()
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1623
        new_var = self._cloneVar()
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1634
                return self._cloneVar(True)
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1653
                return self._cloneVar(True)
1654
            index = int(item)
1655
            if (index > 0 and index >= self.shape[axis]) \
1656 1657 1658 1659 1660 1661 1662
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1663
        return _getitem_impl_(self, item)
1664

1665
    def __setitem__(self, item, value):
1666
        return _setitem_impl_(self, item, value)
1667

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

Y
Yu Yang 已提交
1850

F
fengjiayi 已提交
1851 1852 1853
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1854

1855 1856
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1857 1858 1859 1860
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1861
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1862 1863 1864 1865 1866
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1867 1868 1869 1870
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1880
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1881 1882 1883 1884 1885 1886
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1887 1888 1889 1890 1891 1892 1893 1894
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1895 1896
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1897 1898
        return self.op_proto_map[type]

1899 1900
    def update_op_proto(self):
        op_protos = get_all_op_protos()
1901
        custom_op_names = []
1902 1903 1904
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
1905 1906 1907
                custom_op_names.append(proto.type)

        return custom_op_names
1908

1909 1910 1911 1912
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1913
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1914
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1915 1916
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1917 1918
        }

F
fengjiayi 已提交
1919

X
Xin Pan 已提交
1920
class Operator(object):
1921
    """
1922 1923 1924 1925 1926 1927 1928
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1929
        type(str): The type of operator. Default None.
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1950
        Block.append_op or Block._prepend_op instead.
1951 1952 1953 1954

    Examples:
        .. code-block:: python

1955
            import paddle.fluid as fluid
1956
            cur_program = fluid.Program()
1957 1958 1959 1960 1961
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1962
    """
1963
    OP_WITHOUT_KERNEL_SET = {
1964 1965
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1966
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
1967 1968
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
1969
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
1970 1971
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
1972
    }
1973

Y
Yu Yang 已提交
1974 1975
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1976
                 desc,
Y
Yu Yang 已提交
1977 1978 1979
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1980
                 attrs=None):
L
lujun 已提交
1981
        if in_dygraph_mode():
1982 1983
            if type is None:
                raise ValueError(
1984
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1985
            self._type = type
M
minqiyang 已提交
1986
            self.attrs = attrs if attrs else {}
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2001
                )] = self.block.program._op_role
2002 2003 2004

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2005 2006
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2007 2008 2009 2010 2011 2012 2013 2014

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
2015
                    "`type` to initialized an Operator can not be None.")
2016 2017
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2018 2019 2020 2021 2022 2023 2024
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2025 2026 2027 2028 2029 2030 2031

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2063
                        if not isinstance(in_args, (list, tuple)):
2064 2065 2066 2067 2068 2069
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2070
                        for index, arg in enumerate(in_args):
2071 2072 2073 2074
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2075
                            elif isinstance(arg, (Variable, core.VarBase)):
2076
                                in_arg_names.append(cpt.to_text(arg.name))
2077
                            else:
2078 2079 2080 2081
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2082 2083
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2108 2109 2110 2111
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2112
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2113
                        if not in_dygraph_mode():
2114 2115 2116 2117
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2136
    def _has_kernel(self, op_type):
2137 2138
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2139
    def to_string(self, throw_on_error):
2140
        """
2141 2142
        Get debug string.

2143
        Args:
2144 2145
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2146

2147 2148
        Returns:
            str: The debug string.
2149 2150

        """
2151
        protostr = self.desc.serialize_to_string()
2152
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2153 2154
        return _debug_string_(proto, throw_on_error)

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2187
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2242 2243
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2244 2245 2246 2247 2248
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2249
    def __str__(self):
2250
        return self._to_readable_code()
2251 2252 2253

    __repr__ = __str__

F
fengjiayi 已提交
2254 2255
    @property
    def type(self):
2256
        return self.desc.type()
F
fengjiayi 已提交
2257 2258

    def input(self, name):
2259
        r"""
2260
        Get the input arguments according to the input parameter name.
2261

2262 2263
        Args:
            name(str): The input parameter name.
2264

2265 2266 2267
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2268
        """
F
fengjiayi 已提交
2269 2270
        return self.desc.input(name)

W
Wu Yi 已提交
2271
    def _rename_input(self, old_name, new_name):
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2282
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2283

W
Wu Yi 已提交
2284
    def _rename_output(self, old_name, new_name):
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2295
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2296

F
fengjiayi 已提交
2297 2298 2299 2300
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2301 2302 2303 2304 2305 2306 2307 2308
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2309
    def output(self, name):
2310
        r"""
2311
        Get output arguments by the output parameter name.
2312

2313 2314
        Args:
            name(str): The output parameter name.
2315

2316 2317 2318
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2319
        """
F
fengjiayi 已提交
2320 2321 2322 2323 2324 2325
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2326 2327 2328 2329 2330 2331 2332 2333
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2334
    def has_attr(self, name):
2335
        """
2336 2337
        Whether this Operator has the attribute with name or not.

2338
        Args:
2339
            name(str): the attribute name.
2340

2341 2342
        Returns:
            bool: True if has this attribute.
2343 2344

        """
F
fengjiayi 已提交
2345 2346 2347
        return self.desc.has_attr(name)

    def attr_type(self, name):
2348
        """
2349
        Get the type of attribute by attribute's name.
2350

2351 2352
        Args:
            name(str): the attribute name.
2353

2354 2355
        Returns:
            core.AttrType: the attribute type.
2356
        """
F
fengjiayi 已提交
2357 2358
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2359
    def _set_attr(self, name, val):
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2370 2371
        self._update_desc_attr(name, val)

2372 2373 2374
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2386 2387
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2388 2389
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2390
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2391 2392 2393 2394
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2395
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2396

F
fengjiayi 已提交
2397 2398 2399 2400 2401
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2402
        """
2403 2404
        Get the attribute by name.

2405
        Args:
2406
            name(str): the attribute name.
2407

2408 2409
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2410 2411
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2412
        return self.desc.attr(name)
Y
Yu Yang 已提交
2413

W
Wu Yi 已提交
2414
    def _block_attr_id(self, name):
2415
        """
G
gongweibao 已提交
2416
        Get the block attribute's id by name.
2417

2418 2419
        Args:
            name(str): the attribute name.
2420

2421 2422
        Returns:
            int: the block index.
2423
        """
W
Wu Yi 已提交
2424
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2425

W
Wu Yi 已提交
2426
    def _block_attr(self, name):
G
gongweibao 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2437
        id = self._block_attr_id(name)
G
gongweibao 已提交
2438 2439 2440
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2441
    def _blocks_attr(self, name):
G
gongweibao 已提交
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2452
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2453 2454 2455 2456 2457
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2458
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2469
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2470

J
JiayiFeng 已提交
2471
    def all_attrs(self):
F
fengjiayi 已提交
2472
        """
2473 2474 2475
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2476
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2477 2478 2479 2480
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2481 2482
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2483
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2484 2485 2486
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2487
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2488 2489 2490 2491
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2492 2493
        return attr_map

2494 2495 2496
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2497 2498 2499 2500

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2501 2502 2503
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2504 2505 2506 2507 2508 2509 2510 2511

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2512 2513
            return False

2514 2515 2516 2517 2518 2519
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2520

Y
Yu Yang 已提交
2521
class Block(object):
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2536
        use `Program._create_block()` to create a block.
2537 2538 2539 2540

    Examples:
        .. code-block:: python

2541 2542 2543
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2544 2545 2546 2547 2548 2549 2550 2551 2552
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2553
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2554
        self.desc = program.desc.block(idx)
2555
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2556
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2557
        self.program = program
2558
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2559

2560
    def __str__(self):
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2595
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2607

F
fengjiayi 已提交
2608 2609
    def to_string(self, throw_on_error, with_details=False):
        """
2610 2611
        Get debug string.

F
fengjiayi 已提交
2612 2613
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2614
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2615
            with_details(bool): more details about variables and parameters
2616 2617
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2618

2619 2620
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2621 2622 2623 2624
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2625
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2626 2627
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2628
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2629
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2630
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2631
            for op in self.ops:
F
fengjiayi 已提交
2632 2633
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2634 2635 2636
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2637 2638
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2639 2640
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2641 2642 2643

    __repr__ = __str__

Y
Yu Yang 已提交
2644 2645
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2646
        return self.desc.parent
Y
Yu Yang 已提交
2647

Y
Yu Yang 已提交
2648 2649 2650 2651
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2652
    def _set_forward_block_idx(self, idx):
2653 2654 2655 2656 2657 2658 2659 2660 2661
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2662
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2663

2664 2665 2666 2667 2668 2669 2670 2671
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2672 2673
    @property
    def idx(self):
Y
Yu Yang 已提交
2674
        return self.desc.id
Y
Yu Yang 已提交
2675

Q
Qiao Longfei 已提交
2676
    def var(self, name):
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2690
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2691 2692 2693
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2694 2695
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2696
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2697
        return v
Q
Qiao Longfei 已提交
2698

X
Xin Pan 已提交
2699
    def _find_var_recursive(self, name):
2700 2701 2702 2703 2704 2705 2706
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2707
            Variable: the Variable with the giving name. Or None if not found.
2708
        """
Y
Yu Yang 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2733
        return None
Y
Yu Yang 已提交
2734

X
Xin Pan 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2754

Q
Qiao Longfei 已提交
2755
    def all_parameters(self):
2756
        return list(self.iter_parameters())
2757

2758
    def iter_parameters(self):
M
minqiyang 已提交
2759
        return (item[1] for item in six.iteritems(self.vars)
2760
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2761

Y
Yu Yang 已提交
2762
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2763 2764 2765
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2766 2767 2768
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2769
        return var
Y
Yu Yang 已提交
2770

Q
Qiao Longfei 已提交
2771 2772 2773
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2774
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2775 2776
        """
        Rename variable in vars and ops' inputs and outputs
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2789
        """
M
minqiyang 已提交
2790 2791
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2792

T
typhoonzero 已提交
2793
        if not self.has_var(name):
2794
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2795 2796
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2797
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2798 2799 2800 2801 2802 2803
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2804
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2805 2806 2807 2808
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2809
        orig_var_type = v.type
M
minqiyang 已提交
2810
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2811
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2812
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2813
        if var_type == "Parameter":
L
Leo Chen 已提交
2814 2815
            if in_dygraph_mode():
                var = ParamBase(
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2826 2827
                var = Parameter(
                    self,
2828 2829 2830 2831 2832 2833 2834 2835 2836
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2837
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2838 2839
            var = Variable(
                self,
T
typhoonzero 已提交
2840
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2841 2842 2843 2844
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2845
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2846 2847 2848
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2849
        self._sync_with_cpp()
2850
        return var
T
typhoonzero 已提交
2851

2852 2853 2854
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
2855
        self.desc._remove_var(cpt.to_bytes(name))
2856 2857
        del self.vars[name]

Y
Yu Yang 已提交
2858 2859
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2860
        param = None
L
Leo Chen 已提交
2861
        if in_dygraph_mode():
2862
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2863 2864
        else:
            param = Parameter(global_block, *args, **kwargs)
2865 2866 2867 2868 2869 2870
            # NOTE: Why only set stop_gradient=False in static mode
            # Because in dygraph mode, the `stop_gradient` and `trainable`
            # are related, and `trainable` default vallue is `True` or
            # it is specified by users, there is no need to set
            # `stop_gradient` for ParamBase here.
            param.stop_gradient = False
2871
        if 'initializer' in kwargs:
2872 2873 2874 2875 2876

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2877
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
2878
                        # are treated as initialization ops that cause error.
2879
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
2880 2881 2882 2883 2884
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
2885
                            continue
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2897
                # TODO already inited, do nothing, should log a warning
2898 2899 2900
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
2901
        return param
Y
Yu Yang 已提交
2902

Y
Yu Yang 已提交
2903
    def append_op(self, *args, **kwargs):
2904 2905 2906 2907 2908 2909
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2910
        if in_dygraph_mode():
2911
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2912
            type = kwargs.get("type", None)
2913 2914 2915
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2916
                type=type,
M
minqiyang 已提交
2917 2918
                inputs=None,
                outputs=None,
2919
                attrs=attrs)
2920

M
minqiyang 已提交
2921 2922 2923
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2924
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2925 2926

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2927
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2928 2929
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2930
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2931
        else:
2932 2933
            from paddle.fluid.dygraph.base import param_guard

2934
            op_desc = self.desc.append_op()
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
2948

M
minqiyang 已提交
2949
            self.ops.append(op)
M
minqiyang 已提交
2950

2951 2952
        return op

W
Wu Yi 已提交
2953
    def _insert_op(self, index, *args, **kwargs):
2954 2955 2956 2957 2958 2959 2960 2961 2962
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2963
        self._sync_with_cpp()
F
fangshuixun007 已提交
2964
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
2965

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
2983 2984 2985 2986 2987 2988 2989 2990 2991
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
2992 2993
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
2994
        self.desc._remove_op(index, index + 1)
2995 2996
        del self.ops[index]

W
Wu Yi 已提交
2997
    def _slice_ops(self, start, end):
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3008
        return self.ops[start:end]
Y
Yancey1989 已提交
3009

W
Wu Yi 已提交
3010
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3011
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3012 3013
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3014
            op = Operator(
J
Jiabin Yang 已提交
3015
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3016

J
Jiabin Yang 已提交
3017
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3018
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3019 3020
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3021
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3022
        else:
3023 3024 3025 3026 3027 3028 3029 3030
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3031
            self.ops.insert(0, op)
3032

Y
Yu Yang 已提交
3033 3034
        return op

W
Wu Yi 已提交
3035
    def _sync_with_cpp(self):
3036
        """
3037 3038
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3039
        """
Q
Qiao Longfei 已提交
3040 3041 3042 3043 3044
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

3045
        # sync variables removed from c++ end
3046
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3047
            if not self.desc.find_var(cpt.to_bytes(var)):
3048 3049
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3050
        # sync operators from cpp
3051 3052 3053 3054
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3071 3072 3073 3074 3075

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3076
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3077 3078 3079 3080 3081 3082 3083

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3097 3098 3099 3100
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3101
    def _copy_param_info_from(self, other):
3102
        """
3103 3104
        Copy the information of parameters from the other block.

3105
        Args:
3106 3107 3108 3109 3110
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3111 3112 3113 3114 3115

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3116 3117
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3118
        for p in other.iter_parameters():
3119 3120 3121
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3122 3123
                # if the Parameter is pruned, v may be None
                continue
3124
            assert isinstance(v, Variable)
3125
            new_p = None
L
Leo Chen 已提交
3126 3127
            if in_dygraph_mode():
                new_p = ParamBase(
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3139 3140
                new_p = Parameter(
                    block=self,
3141 3142 3143
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3144 3145
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3146 3147 3148 3149 3150 3151
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3152 3153
            self.vars[new_p.name] = new_p

3154
    def _clone_variable(self, var, force_persistable=True):
3155 3156
        """
        Clone a variable into current block.
3157

3158 3159
        Args:
            var: the variable to be cloned.
3160 3161 3162
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3163 3164

        Returns:
3165
            Variable: the new  variable cloned from 'var' in current block.
3166 3167
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3168 3169 3170 3171 3172
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3173 3174
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3175
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3176 3177 3178 3179 3180 3181
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3182
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3183 3184
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3185 3186 3187 3188 3189 3190 3191
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3192
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3193 3194
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3195
        return ret_var
3196

Y
Yu Yang 已提交
3197

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3293
    def remove_input_by_id(self, node_id):
3294 3295 3296 3297 3298 3299
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3300
        self.node.remove_input(node_id)
3301

3302
    def remove_input(self, node):
3303 3304 3305 3306
        """
        Remove a node from inputs.

        Args:
3307
            node(IrNode): the node being removed.
3308
        """
3309
        self.node.remove_input(node.node)
3310

3311
    def append_input(self, node):
3312 3313 3314 3315
        """
        Append a node in inputs.

        Args:
3316
            node(IrNode): the node being appended.
3317
        """
3318
        self.node.append_input(node.node)
3319 3320 3321 3322 3323 3324 3325 3326

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3327
    def remove_output_by_id(self, node_id):
3328 3329 3330 3331 3332 3333
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3334
        self.node.remove_output(node_id)
3335

3336
    def remove_output(self, node):
3337 3338 3339 3340
        """
        Remove a node from outputs.

        Args:
3341
            node(IrNode): the node being removed.
3342
        """
3343
        self.node.remove_output(node.node)
3344

3345
    def append_output(self, node):
3346 3347 3348 3349
        """
        Append a node in outputs.

        Args:
3350
            node(IrNode): the node being appended.
3351
        """
3352
        self.node.append_output(node.node)
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3400
            "The node variable description can not be None."
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3411
            "The node variable description can not be None."
3412 3413
        return self.node.var().persistable()

3414 3415 3416 3417 3418 3419 3420 3421
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3422
            "The node variable description can not be None."
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3433
            "The node variable description can not be None."
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3444
            "The node variable description can not be None."
3445 3446
        return self.node.var().shape()

3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3494
            "The node operator description can not be None."
3495 3496
        self.node.op()._rename_input(old_input_name, new_input_name)

3497 3498 3499 3500 3501 3502 3503 3504 3505
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3506
            "The node operator description can not be None."
3507 3508
        self.node.op()._rename_output(old_output_name, new_output_name)

3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3520
            "The node operator description can not be None."
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3534
            "The node operator description can not be None."
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3545
            "The node operator description can not be None."
3546 3547
        return self.node.op().set_type(new_type)

3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3563
            "The node operator description can not be None."
3564 3565 3566 3567
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3568
                all(isinstance(v, Block) for v in val):
3569 3570
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3571
                isinstance(val, core.ProgramDesc):
3572 3573 3574 3575
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3576 3577 3578 3579 3580 3581 3582 3583
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3584
            "The node operator description can not be None."
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3595
            "The node operator description can not be None."
3596 3597
        return self.node.op().output_arg_names()

3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3619 3620
class IrGraph(object):
    """
3621
    Python IrGraph. Beneath it is a core.Graph, which is used for
3622
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3623 3624
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3625 3626 3627 3628
    """

    def __init__(self, graph, for_test=False):
        """
3629 3630
        Construct an IrGraph using core.Graph.

3631 3632 3633 3634 3635 3636 3637 3638 3639
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3640 3641 3642 3643
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3644 3645 3646
        Warns:
            The method only clones the graph structure, not its attributes.

3647 3648 3649
        Returns:
            IrGraph: A new and duplicated graph.
        """
3650
        g = self.graph.clone()
3651 3652
        return IrGraph(g, self._for_test)

3653
    def is_test(self):
3654 3655 3656
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3657 3658
        return self._for_test

W
WangZhen 已提交
3659
    def all_nodes(self):
3660 3661 3662
        """
        Return all nodes included in the graph as a set.
        """
3663
        return {IrNode(node) for node in self.graph.nodes()}
3664

3665
    def all_var_nodes(self):
3666 3667 3668
        """
        Return all variable nodes included in the graph as a set.
        """
3669
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3670

3671
    def all_persistable_nodes(self):
3672 3673 3674
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3675 3676 3677 3678 3679
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3680
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3681

3682
    def all_op_nodes(self):
3683 3684 3685
        """
        Return all operator nodes included in the graph as a set.
        """
3686
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3687

3688
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3700
            IrVarNode: the created persistable variable node.
3701
        """
3702 3703 3704 3705 3706
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3707
        return IrVarNode(self.graph.create_var_node(var_desc))
3708 3709

    def create_var_node(self, name, var_type, shape, var_dtype):
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3721
            IrVarNode: the created variable node.
3722 3723
        """

3724 3725 3726 3727
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3728
        return IrVarNode(self.graph.create_var_node(var_desc))
3729

3730 3731 3732 3733 3734 3735
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3736
    def create_var_node_from_desc(self, var_desc):
3737 3738 3739 3740 3741 3742 3743 3744
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3745
            IrVarNode: the created variable node.
3746
        """
3747
        return IrVarNode(self.graph.create_var_node(var_desc))
3748 3749

    def create_op_node(self, op_type, attrs, inputs, outputs):
3750 3751 3752 3753 3754 3755 3756
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3757
            outputs(dict): the outputs of the operator node.
3758 3759

        Returns:
3760
            IrOpNode: the created operator node.
3761
        """
3762 3763
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3764
        for attr, value in six.iteritems(attrs):
3765
            self._update_desc_attr(op_desc, attr, value)
3766
        for input_name, var_nodes in six.iteritems(inputs):
3767 3768 3769 3770
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3771
        for output_name, var_nodes in six.iteritems(outputs):
3772 3773 3774 3775
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3776
        return IrOpNode(self.graph.create_op_node(op_desc))
3777 3778

    def create_op_node_from_desc(self, op_desc):
3779 3780 3781 3782 3783 3784 3785
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3786
            IrOpNode: the created operator node.
3787
        """
3788
        return IrOpNode(self.graph.create_op_node(op_desc))
3789 3790

    def update_input_link(self, old_input_node, new_input_node, op_node):
3791 3792 3793 3794
        """
        Update the input's link of a operator node.

        Args:
3795 3796 3797
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3798
        """
3799
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
3800
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3801
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3802 3803 3804 3805
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3806
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3807

3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
3818
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3819
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3820 3821 3822 3823 3824 3825
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3826
    def link_to(self, node_in, node_out):
3827 3828 3829 3830
        """
        Connect two nodes.

        Args:
3831 3832
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3833
        """
3834
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3835
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3836 3837
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3838 3839

    def safe_remove_nodes(self, remove_nodes):
3840 3841 3842 3843 3844 3845 3846
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3847
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3848 3849 3850 3851
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3852 3853
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3854

Z
Zhen Wang 已提交
3855 3856 3857 3858 3859 3860 3861 3862
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3863
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3864 3865 3866 3867
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3868
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3869 3870 3871
                        ]
                    else:
                        var_nodes[each_var_name].append(
3872 3873
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3874 3875
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3876
    def has_circle(self):
3877 3878 3879 3880 3881 3882
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3883 3884 3885
        return core.has_circle(self.graph)

    def graph_num(self):
3886 3887 3888 3889 3890 3891
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3892 3893 3894
        return core.graph_num(self.graph)

    def topology_sort(self):
3895 3896 3897
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3898
        Notes: the `graph` can not contain a circle.
3899 3900

        Returns:
Z
Zhen Wang 已提交
3901
            list(IrNode): nodes in topology order.
3902
        """
3903
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3904
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3905 3906

    def build_adjacency_list(self):
3907 3908 3909 3910
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3911
            dict{IrNode: set(IrNode)}: the adjacency list.
3912
        """
3913 3914 3915 3916 3917
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3918

3919 3920 3921 3922 3923 3924 3925 3926
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3927
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3928 3929 3930 3931 3932
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3933 3934
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
3935 3936 3937
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
3938 3939 3940 3941 3942
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3943
        remove_ctr_vars = set()
3944
        if remove_ctr_var:
3945
            for node in self.all_var_nodes():
3946 3947 3948
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3949 3950
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3951 3952
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3953 3954 3955 3956 3957 3958
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3959 3960 3961 3962
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3963 3964
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3965 3966 3967 3968 3969 3970 3971
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3972 3973 3974
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3975
        WARN: When the graph includes backward operator nodes, the
3976 3977 3978 3979 3980 3981
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3982
        convert_pass = core.get_pass('graph_to_program_pass')
3983 3984
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3985 3986 3987 3988
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4016
class Program(object):
D
dzhwinter 已提交
4017
    """
4018
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4019
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4020
    it will contain nested block.
4021

J
Jiabin Yang 已提交
4022 4023 4024
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4025

J
Jiabin Yang 已提交
4026
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4027
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4028 4029 4030 4031 4032 4033 4034
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4035
    **Notes**:
4036 4037 4038
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4039 4040

    Returns:
J
Jiabin Yang 已提交
4041
        Program: An empty Program.
D
dzhwinter 已提交
4042 4043

    Examples:
4044 4045
        .. code-block:: python

4046 4047 4048 4049
            import paddle
            import paddle.static as static

            paddle.enable_static()
4050

4051 4052 4053 4054 4055
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4056
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4057 4058 4059

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4060 4061 4062

    """

4063 4064
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4065 4066
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4067 4068
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4069
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4070
        self.__op_role_var = []
T
tangwei12 已提交
4071

4072 4073
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4074
        self._is_distributed = False
4075
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4076
        self._is_chief = False
4077 4078 4079
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4080
        self._endpoints = []
4081 4082 4083
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4084
        self._trainers_endpoints = []
4085
        # the distributed lookup table names
T
tangwei12 已提交
4086
        self._distributed_lookup_table = None
4087 4088 4089

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4090 4091
        self._use_lamb = False

4092 4093 4094
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4095

4096 4097 4098
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4099
        self._program_config = None
4100

H
hutuxian 已提交
4101 4102 4103
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4104 4105 4106
        # appending gradients times
        self._appending_grad_times = 0

4107 4108 4109 4110
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4111 4112 4113
        # compiled program, i.e. Graph
        self._graph = None

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4124 4125
                import paddle
                import paddle.static as static
4126

4127 4128 4129
                paddle.enable_static()

                prog = static.default_main_program()
4130 4131 4132 4133 4134
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4135
                prog1 = static.default_main_program()
4136 4137 4138 4139 4140 4141 4142 4143
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4144
    @property
4145
    def _op_role(self):
Y
yuyang18 已提交
4146 4147 4148 4149 4150 4151 4152 4153
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4154
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4155 4156 4157 4158
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4159 4160
        return self._current_role

4161 4162
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4163 4164 4165
        self._current_role = role

    @property
4166
    def _op_role_var(self):
Y
yuyang18 已提交
4167
        """
4168
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4169

4170
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4171 4172 4173

        Notes: This is a very low-level API. Users should not use it directly.
        """
4174
        return self.__op_role_var
Y
yuyang18 已提交
4175

4176
    @signature_safe_contextmanager
4177 4178 4179 4180 4181
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4182 4183 4184 4185
        try:
            yield
        finally:
            self._current_role = tmp_role
4186

S
rename  
sneaxiy 已提交
4187
    @signature_safe_contextmanager
W
Wu Yi 已提交
4188
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4189 4190 4191 4192 4193 4194 4195
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4196
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4197 4198 4199

        Examples:

4200
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4201
            >>> p, g = backward(...)
W
Wu Yi 已提交
4202
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4203 4204
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4205
        tmp_role = self._current_role
4206
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4207

Y
yuyang18 已提交
4208 4209
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4210
        self.__op_role_var = [
4211 4212 4213
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4214 4215 4216 4217 4218
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4219

S
rename  
sneaxiy 已提交
4220
    @signature_safe_contextmanager
X
Xin Pan 已提交
4221
    def _lr_schedule_guard(self, is_with_opt=False):
4222 4223 4224 4225 4226 4227 4228
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4229 4230 4231 4232
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4233 4234 4235

        Examples:

4236
            >>> import paddle.fluid as fluid
4237 4238 4239 4240
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4241 4242

        tmp_role = self._current_role
4243
        tmp_var = self.__op_role_var
4244

4245 4246
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4247 4248
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4249
        # TODO(typhoonzero): how to set target learning rate var
4250
        self.__op_role_var = []
4251 4252 4253 4254 4255
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4256

4257
    def __str__(self):
Y
yuyang18 已提交
4258 4259 4260 4261 4262 4263 4264 4265 4266
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4287 4288
            import paddle
            import paddle.static as static
4289

4290 4291 4292
            paddle.enable_static()

            cur_program = static.Program()
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4304
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4305 4306 4307 4308
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4309
            program_str += '\n'
4310
        return program_str
Y
Yang Yang(Tony) 已提交
4311

F
fengjiayi 已提交
4312 4313 4314
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4315

J
Jiabin Yang 已提交
4316 4317 4318
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4319

J
Jiabin Yang 已提交
4320
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4321

H
haowang101779990 已提交
4322
        Returns:
J
Jiabin Yang 已提交
4323
            str: The debug string describe current Program.
Y
yuyang18 已提交
4324 4325

        Raises:
J
Jiabin Yang 已提交
4326
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4327

4328 4329 4330
        Examples:
            .. code-block:: python

4331 4332 4333 4334
                import paddle
                import paddle.static as static

                paddle.enable_static()
4335

4336 4337 4338
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4339
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4340
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4341
                print("program string without detail: {}".format(prog_string))
4342
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4343
        """
4344 4345 4346 4347 4348 4349 4350 4351 4352
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4353 4354 4355 4356 4357 4358
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4359 4360
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4361 4362
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4363

W
Wu Yi 已提交
4364
    def _get_desc(self):
Y
yuyang18 已提交
4365 4366 4367 4368 4369 4370 4371
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4372 4373
        return self.desc

X
version  
Xin Pan 已提交
4374 4375 4376
    def _version(self):
        return self.desc._version()

4377
    def clone(self, for_test=False):
Y
yuyang18 已提交
4378
        """
4379 4380 4381 4382
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4383

4384
        Create a new Program with forward content of original one when ``for_test=True``.
4385
        Create a new Program as same as the original one when ``for_test=False``.
4386

4387
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4388 4389 4390
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4391

4392 4393
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4394 4395
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4396
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4397

J
Jiabin Yang 已提交
4398
        For Example:
4399
          ::
L
Luo Tao 已提交
4400

4401 4402 4403 4404 4405 4406
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4407
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4408
            loss = paddle.mean(pred)
4409
            # Here we use clone before Momentum
4410 4411
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4412
            optimizer.minimize(loss)
4413

J
Jiabin Yang 已提交
4414
        Args:
4415

4416 4417
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4418

J
Jiabin Yang 已提交
4419
        Returns:
4420
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4421

Y
yuyang18 已提交
4422 4423 4424

        Examples:

4425 4426 4427 4428 4429 4430 4431
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4448
            1. To clone a test program, the sample code is:
4449 4450 4451
                .. code-block:: python

                    import six
4452 4453 4454 4455 4456 4457
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4470 4471
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4472 4473 4474

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4475 4476 4477
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4478
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4479 4480
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4481
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4482 4483
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4484
                            test_program = train_program.clone(for_test=True)
4485
                    print_prog(test_program)
J
Jiabin Yang 已提交
4486 4487 4488 4489

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4490
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4491 4492 4493 4494
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4495 4496 4497
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4498 4499 4500
                            sgd.minimize(avg_loss)


4501
            2. The clone method can be avoid if you create program for training and program for testing individually.
4502 4503 4504
                .. code-block:: python

                    import six
4505 4506 4507 4508 4509 4510
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4522

4523
                    def network():
4524
                        img = static.data(name='image', shape=[None, 784])
4525
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4526 4527
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4528
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4529 4530
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4531 4532
                        return avg_loss

4533 4534 4535 4536 4537
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4538
                            avg_loss = network()
4539
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4540
                            sgd.minimize(avg_loss)
4541
                    # the test startup program is not used.
4542 4543
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4544 4545
                            avg_loss = network()
                    print_prog(test_program_2)
4546

4547
            The two code snippets above will generate and print same programs.
4548
        """
4549

T
tangwei12 已提交
4550
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4551 4552 4553
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4554
        pruned_origin_block_id_map = None
4555
        if for_test:
4556 4557 4558 4559 4560 4561 4562 4563 4564
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4565
        else:
4566
            p = Program()
G
gongweibao 已提交
4567 4568
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4569
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4570 4571 4572
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4573 4574

            p._current_role = self._current_role
4575
            p.__op_role_var = self.__op_role_var
4576
            p._appending_grad_times = self._appending_grad_times
4577 4578
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4579

T
tangwei12 已提交
4580
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
4581
            # its desc.
W
Wu Yi 已提交
4582
            p._sync_with_cpp()
4583

W
Wu Yi 已提交
4584
        p._copy_param_info_from(self)
4585
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4586
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4587
        return p
4588

4589
    def _prune(self, targets):
Y
yuyang18 已提交
4590 4591 4592 4593 4594 4595 4596 4597
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4598
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4599 4600 4601 4602
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4603
        """
4604
        return self._prune_with_input([], targets)
4605 4606

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4607
        """
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4618
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4619 4620 4621 4622 4623 4624
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
4625
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4626 4627 4628
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4629 4630
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4631 4632
        if not isinstance(targets, list):
            targets = [targets]
4633 4634 4635

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4636 4637 4638
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4639

4640 4641 4642 4643
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4644 4645 4646
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4647
                else:
4648 4649 4650
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4651 4652 4653 4654 4655 4656 4657 4658

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4659 4660 4661 4662 4663 4664 4665 4666 4667
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
4668
                        # Skip optimize op except for optimize op in targets,
4669 4670 4671 4672 4673 4674
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4675 4676 4677 4678 4679 4680 4681 4682
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4683

4684
        res = Program()
4685 4686 4687
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4688 4689 4690
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4691
        res._sync_with_cpp()
4692 4693 4694 4695 4696

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4697 4698
        return res

X
Xin Pan 已提交
4699
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4700
        """
F
fengjiayi 已提交
4701 4702 4703 4704 4705
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4706
        3. change the :code:`is_test`
Y
yuyang18 已提交
4707 4708 4709
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4710
        Args:
X
Xin Pan 已提交
4711 4712
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4713

Y
yuyang18 已提交
4714 4715 4716 4717 4718 4719
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4720
        res = Program()
4721
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4722 4723 4724 4725

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4726
        if prune_read_op:
4727 4728 4729 4730 4731 4732 4733 4734 4735
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4736
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4737 4738

        # change all `is_test` attributes to True
M
minqiyang 已提交
4739
        for i in six.moves.range(res.desc.num_blocks()):
4740
            block = res.desc.block(i)
M
minqiyang 已提交
4741
            for j in six.moves.range(block.op_size()):
4742 4743
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4744
                    op._set_attr('is_test', True)
4745 4746 4747
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
4748 4749 4750
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4751
        res._sync_with_cpp()
4752 4753
        return res

4754 4755
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4756
        """
4757 4758 4759
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4760

4761 4762
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4763

J
Jiabin Yang 已提交
4764
        Args:
Y
yuyang18 已提交
4765

J
Jiabin Yang 已提交
4766
            binary_str_type (str): the binary prootbuf string.
4767

J
Jiabin Yang 已提交
4768 4769
        Returns:
            Program: A deserialized Program.
4770 4771 4772 4773

        Examples:
            .. code-block:: python

4774 4775 4776 4777
                import paddle
                import paddle.static as static

                paddle.enable_static()
4778

4779 4780 4781 4782
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4783

4784
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4785

4786
                    z = paddle.matmul(x=x, y=y)
4787

4788 4789
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4790

4791
                    print(static.default_main_program())
4792
                    print(prog_restored)
Y
yuyang18 已提交
4793
        """
4794 4795
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4796
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4797
        p._sync_with_cpp()
4798
        return p
Y
Yu Yang 已提交
4799

4800
    @staticmethod
4801
    def _construct_from_desc(desc):
4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4817 4818
    @property
    def random_seed(self):
Y
yuyang18 已提交
4819
        """
J
Jiabin Yang 已提交
4820
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4821 4822
        the random seed from random device.

4823 4824
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4825 4826 4827

        Returns:
            int64: Random seed in current Program
4828

4829 4830 4831 4832

        Examples:
            .. code-block:: python

4833 4834 4835
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
4836

4837 4838 4839
                paddle.enable_static()

                prog = static.default_main_program()
4840
                random_seed = prog.random_seed
4841
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
4842 4843 4844
                print(random_seed)
                ## 0
                ## the default random seed is 0
4845

4846
                # Here we need to set random seed before we use paddle.nn.functional.dropout
4847
                prog.random_seed = 1
4848
                z_var = F.dropout(x_var, 0.7)
4849

4850
                print(prog.random_seed)
4851 4852
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4853
        """
D
dzhwinter 已提交
4854 4855
        return self._seed

Q
qiaolongfei 已提交
4856 4857
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4858
        """
4859 4860
        The number of :ref:`api_guide_Block_en`  in this Program.

4861 4862
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
4863 4864 4865

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4866

4867 4868 4869 4870

        Examples:
            .. code-block:: python

4871 4872 4873 4874
                import paddle
                import paddle.static as static

                paddle.enable_static()
4875

4876
                prog = static.default_main_program()
4877 4878
                num_blocks = prog.num_blocks
                print(num_blocks)
4879

4880 4881
                # print result:
                # 1
Y
yuyang18 已提交
4882
        """
Q
qiaolongfei 已提交
4883 4884
        return self.desc.num_blocks()

D
dzhwinter 已提交
4885 4886 4887
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4888 4889 4890
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4891 4892
        self._seed = seed

Y
Yu Yang 已提交
4893
    def __repr__(self):
4894
        return self.__str__()
4895

Y
Yu Yang 已提交
4896
    def global_block(self):
Y
yuyang18 已提交
4897
        """
4898 4899
        .. note::
            This API has no effect in Dygraph mode.
4900 4901 4902

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4903 4904
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4905

4906 4907 4908 4909

        Examples:
            .. code-block:: python

4910 4911 4912 4913
                import paddle
                import paddle.static as static

                paddle.enable_static()
4914

4915
                prog = static.default_main_program()
4916 4917
                gb_block = prog.global_block()
                print(gb_block)
4918

Y
yuyang18 已提交
4919
        """
Y
Yu Yang 已提交
4920 4921
        return self.blocks[0]

Q
Qiao Longfei 已提交
4922
    def block(self, index):
Y
yuyang18 已提交
4923
        """
4924 4925
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4926

4927 4928
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4929 4930
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4931

J
Jiabin Yang 已提交
4932 4933
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4934 4935 4936 4937

        Examples:
            .. code-block:: python

4938 4939 4940 4941
                import paddle
                import paddle.static as static

                paddle.enable_static()
4942

4943
                prog = static.default_main_program()
4944 4945
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4946
        """
Q
Qiao Longfei 已提交
4947 4948
        return self.blocks[index]

Y
Yu Yang 已提交
4949
    def current_block(self):
Y
yuyang18 已提交
4950
        """
4951 4952
        .. note::
            This API has no effect in Dygraph mode.
4953

J
Jiabin Yang 已提交
4954 4955
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4956

J
Jiabin Yang 已提交
4957 4958
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4959

4960 4961 4962
        Examples:
            .. code-block:: python

4963 4964 4965 4966
                import paddle
                import paddle.static as static

                paddle.enable_static()
4967

4968
                prog = static.default_main_program()
4969 4970
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4971
        """
Y
Yu Yang 已提交
4972 4973
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4974
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4975 4976 4977 4978 4979
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4980

Y
yuyang18 已提交
4981 4982 4983 4984 4985
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4986
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4987 4988 4989
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4990 4991 4992 4993
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4994
    def _rollback(self):
Y
yuyang18 已提交
4995 4996 4997 4998 4999
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5000 5001
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5002
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5013 5014 5015
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5016
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5017

W
Wu Yi 已提交
5018
    def _copy_param_info_from(self, other):
5019
        """
5020
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5021

Y
yuyang18 已提交
5022 5023 5024
        Notes: This is a very low level API. Users should not invoke it
        directly.

5025 5026 5027 5028 5029 5030 5031
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5032 5033 5034
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5035

W
Wu Yi 已提交
5036
        self.global_block()._copy_param_info_from(other.global_block())
5037

5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5049 5050 5051
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5052 5053
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5054
        self._parameters_on_pservers = other._parameters_on_pservers
5055
        self._endpoints = other._endpoints
5056
        self._ps_endpoint = other._ps_endpoint
5057 5058
        self._distributed_lookup_table = other._distributed_lookup_table

5059
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5060 5061
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5062

Y
yuyang18 已提交
5063 5064 5065
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5066 5067
        Args:
            other(Program): Other program
5068 5069 5070 5071
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5072 5073 5074 5075 5076

        Returns:
            None
        """
        if not isinstance(other, Program):
5077 5078 5079
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5080

5081 5082 5083 5084 5085
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5086 5087 5088

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5089 5090
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5091
            for var in list(block.vars.values()):
5092 5093 5094 5095 5096 5097 5098
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5099

5100
    def list_vars(self):
Y
yuyang18 已提交
5101
        """
5102
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5103

J
Jiabin Yang 已提交
5104
        Returns:
5105
            iterable Tensors: The Generator will yield every Tensor in this program.
5106 5107 5108 5109

        Examples:
            .. code-block:: python

5110 5111
                import paddle
                import paddle.static as static
5112

5113 5114 5115 5116 5117
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5118 5119
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5120

5121 5122
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5123
        """
5124
        for each_block in self.blocks:
5125
            for each_var in list(each_block.vars.values()):
5126 5127
                yield each_var

5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5138 5139 5140 5141
                import paddle
                import paddle.static as static

                paddle.enable_static()
5142

5143 5144
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5145
                hidden = static.nn.fc(x=data, size=10)
5146 5147
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5148 5149 5150 5151 5152 5153 5154

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5155 5156
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5334

5335
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5336
class Parameter(Variable):
5337
    """
5338
    Parameter is derived from Variable. A parameter is a persistable
5339
    Variable, and will be updated by optimizers after each iteration.
5340
    The training of a neural network is essentially the updating of
5341 5342
    its parameters.

5343
    Relative to a general Variable, a Parameter has several its own
5344 5345
    member variables:

5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5356 5357
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5358 5359
    """

5360 5361 5362 5363 5364 5365
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5366 5367 5368 5369 5370
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5371
        if len(shape) == 0:
5372 5373
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5374 5375 5376

        for each in shape:
            if each < 0:
5377 5378 5379
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5380 5381

        Variable.__init__(
5382 5383 5384 5385 5386 5387 5388
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5389 5390 5391 5392
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5393 5394
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5395
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5396

5397 5398
        self.need_clip = kwargs.get('need_clip', True)

5399 5400
        self.is_distributed = False

F
fengjiayi 已提交
5401
    def __str__(self):
5402
        return self._to_readable_code()
F
fengjiayi 已提交
5403

F
update  
fengjiayi 已提交
5404 5405 5406
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5407

F
update  
fengjiayi 已提交
5408 5409 5410 5411 5412 5413 5414 5415
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5416 5417 5418 5419 5420 5421 5422 5423 5424
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5425 5426 5427 5428 5429 5430
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5431
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5432
            for attr_name in additional_attr:
5433 5434
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5435 5436
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5437 5438 5439 5440
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5441

5442 5443
class ParamBase(core.VarBase):
    """
5444 5445 5446
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5447 5448 5449
    The training of a neural network is essentially the updating of
    its ParamBase.

5450
    Relative to a general Tensor, a ParamBase has several its own
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5463 5464
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5495 5496
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5497 5498 5499 5500 5501 5502 5503

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5504 5505
        self.need_clip = kwargs.get('need_clip', True)

5506
        self.is_distributed = False
5507
        # self.block = default_main_program().global_block()
5508

5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5522
    def __str__(self):
5523
        """
5524
        Convert a ParamBase object to a readable string.
5525

5526
        Returns(str): A readable string.
5527 5528 5529 5530

        Examples:
            .. code-block:: python

5531
                import paddle
5532 5533 5534 5535 5536 5537 5538
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5539
        """
5540 5541
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5542

5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
5554

5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5573 5574 5575 5576 5577 5578 5579
    def _copy_to(self, device, blocking):
        print("in ParamBase copy_to func")
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
        return new_param

5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591
    def __reduce__(self):
        value = self.numpy()
        state = (self.name, self.persistable, self.stop_gradient)
        return ParamBase, (self.shape, self.dtype), (self.__dict__, value,
                                                     state)

    def __setstate__(self, state):
        self.__dict__.update(state[0])
        t = self.value().get_tensor()
        t.set(state[1], _current_expected_place())
        self.name, self.persistable, self.stop_gradient = state[2]

5592 5593 5594
    __repr__ = __str__


Y
Yu Yang 已提交
5595
# program is a global instance.
Y
Yu Yang 已提交
5596 5597
_main_program_ = Program()
_startup_program_ = Program()
5598

5599

5600
def default_startup_program():
Y
Yu Yang 已提交
5601
    """
Y
yuyang18 已提交
5602 5603
    Get default/global startup program.

5604 5605
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
5606

5607 5608
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5609

5610 5611
    Returns:
        Program: current default startup program.
5612

5613
    Returns type: 
5614 5615 5616 5617

    Examples:
        .. code-block:: python

5618
            import paddle
5619

5620
            paddle.enable_static()
5621 5622 5623 5624
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5625
    """
Y
Yu Yang 已提交
5626
    return _startup_program_
5627

5628

5629
def default_main_program():
Y
Yu Yang 已提交
5630
    """
5631
    This API can be used to get ``default main program`` which store the 
5632
    descriptions of Ops and tensors.
T
tangwei12 已提交
5633

5634
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5635
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5636

5637 5638
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5639
    :code:`default_main_program` when the program is not specified.
5640

5641
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
5642

Y
Yu Yang 已提交
5643
    Returns:
5644
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5645 5646 5647 5648

    Examples:
        ..  code-block:: python

5649
            import paddle
5650

5651
            paddle.enable_static()
5652
            # Sample Network:
5653 5654 5655
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5656

5657 5658 5659
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5660
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5661
    """
Y
Yu Yang 已提交
5662
    return _main_program_
Y
Yu Yang 已提交
5663 5664 5665 5666 5667


def switch_main_program(program):
    """
    Switch the main program to a new program.
5668

Y
Yu Yang 已提交
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5683
    Switch the startup program to a new program
Y
Yu Yang 已提交
5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5696
@signature_safe_contextmanager
Y
Yu Yang 已提交
5697 5698
def program_guard(main_program, startup_program=None):
    """
5699 5700
    :api_attr: Static Graph

5701 5702 5703
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5704

G
guofei 已提交
5705
    Args:
5706 5707
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5708 5709 5710 5711
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5712
    Examples:
5713
       .. code-block:: python
T
tangwei12 已提交
5714

5715
          import paddle
Y
yuyang18 已提交
5716

5717 5718 5719 5720 5721
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5722
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5723 5724 5725

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5726

Y
Yu Yang 已提交
5727
    Examples:
5728
       .. code-block:: python
Y
yuyang18 已提交
5729

5730
          import paddle
5731

5732 5733 5734 5735 5736
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
5737

Y
Yu Yang 已提交
5738
    """
5739
    from .data_feeder import check_type
5740 5741
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5742 5743
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5744
        check_type(startup_program, 'startup_program', Program,
5745
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5746
        startup_program = switch_startup_program(startup_program)
5747 5748 5749 5750 5751 5752
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5753 5754


W
Wu Yi 已提交
5755
def _get_var(name, program=None):
X
xuwei06 已提交
5756
    """
Y
yuyang18 已提交
5757
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5758

X
xuwei06 已提交
5759 5760 5761
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5762
        If None, default_global_program() will be used.
X
xuwei06 已提交
5763 5764 5765 5766 5767 5768 5769

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5770
    assert isinstance(program, Program)
X
xuwei06 已提交
5771 5772

    return program.global_block().var(name)
5773 5774


S
rename  
sneaxiy 已提交
5775
@signature_safe_contextmanager
L
lujun 已提交
5776 5777
def _dygraph_guard(tracer):
    global _dygraph_tracer_
5778
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
5779
    _dygraph_tracer_ = tracer
5780
    core._switch_tracer(tracer)
M
minqiyang 已提交
5781

5782 5783 5784
    try:
        yield
    finally:
5785 5786
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
5787 5788


S
rename  
sneaxiy 已提交
5789
@signature_safe_contextmanager
L
lujun 已提交
5790
def _dygraph_place_guard(place):
5791 5792 5793
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5794

5795 5796
    _set_dygraph_tracer_expected_place(place)

5797 5798 5799
    try:
        yield
    finally:
5800
        _global_expected_place_ = tmp_place
5801
        _set_dygraph_tracer_expected_place(tmp_place)
5802 5803


5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
5820 5821
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
5822 5823 5824 5825 5826 5827 5828 5829 5830
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
5831
            import paddle
5832

Z
Zhang Ting 已提交
5833 5834 5835
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
5836
            if support_gpu:
Z
Zhang Ting 已提交
5837
                place = paddle.CUDAPlace(0)
5838 5839

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
5840 5841 5842
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
5843

Z
Zhang Ting 已提交
5844
            with paddle.static.device_guard("cpu"):
5845
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
5846 5847
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
5848
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
5849
                out = paddle.reshape(data1, shape=shape)
5850

Z
Zhang Ting 已提交
5851 5852
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
5853 5854 5855
            result = exe.run(fetch_list=[out])
    """

5856 5857 5858 5859 5860
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5861
    if device not in ['cpu', 'gpu', 'npu', '', None]:
5862
        raise ValueError(
5863
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
5864
            "when there is no need to specify device. But received %s" % device)
5865 5866
    if index:
        device = ":".join([device, index])
5867
    pre_device = switch_device(device)
5868 5869 5870 5871
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
5890 5891
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
5920 5921
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
5922 5923 5924 5925 5926 5927 5928
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
5929 5930
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
5931 5932 5933 5934 5935 5936 5937 5938
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
5939 5940 5941 5942 5943 5944 5945


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
5946
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
5947 5948 5949 5950 5951 5952 5953 5954 5955
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
5956

5957 5958 5959
    if (place == "device"):
        return core.Place()

5960
    # GPU
5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
5976 5977

    # XPU
5978 5979 5980 5981 5982 5983 5984 5985 5986 5987
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6001
    raise ValueError(
6002 6003
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret