Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
584c9cfc
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
584c9cfc
编写于
12月 07, 2017
作者:
Y
Yu Yang
提交者:
GitHub
12月 07, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add comments of unique_name, Variable, Operator (#6342)
上级
b0f83eda
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
216 addition
and
15 deletion
+216
-15
python/paddle/v2/fluid/framework.py
python/paddle/v2/fluid/framework.py
+216
-15
未找到文件。
python/paddle/v2/fluid/framework.py
浏览文件 @
584c9cfc
...
...
@@ -3,6 +3,7 @@ import collections
import
numpy
as
np
from
.
import
core
import
proto.framework_pb2
as
framework_pb2
import
google.protobuf.message
import
contextlib
__all__
=
[
...
...
@@ -13,11 +14,28 @@ __all__ = [
def
unique_name
(
prefix
):
"""
Generate unique names with prefix
Args:
prefix(str): The prefix of return string
Returns(str): A unique string with the prefix
"""
uid
=
core
.
unique_integer
(
prefix
)
# unique during whole process.
return
"_"
.
join
([
prefix
,
str
(
uid
)])
def
convert_np_dtype_to_dtype_
(
np_dtype
):
"""
Convert the data type in numpy to the data type in Paddle
Args:
np_dtype(np.dtype): the data type in numpy
Returns(core.DataType): the data type in Paddle
"""
dtype
=
np
.
dtype
(
np_dtype
)
if
dtype
==
np
.
float32
:
return
core
.
DataType
.
FP32
...
...
@@ -38,17 +56,33 @@ def convert_np_dtype_to_dtype_(np_dtype):
def
dtype_is_floating
(
dtype
):
"""
Check the data type is floating or not.
Args:
dtype(np.dtype|core.DataType): data type.
Could be numpy format or Paddle format
Returns(bool): True if data type is a float value
"""
if
not
isinstance
(
dtype
,
core
.
DataType
):
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
if
(
dtype
==
core
.
DataType
.
FP16
or
dtype
==
core
.
DataType
.
FP32
or
dtype
==
core
.
DataType
.
FP64
):
return
True
else
:
return
False
return
dtype
in
[
core
.
DataType
.
FP16
,
core
.
DataType
.
FP32
,
core
.
DataType
.
FP64
]
def
_debug_string_
(
proto
,
throw_on_error
=
True
):
"""
Get the debug string of a protobuf message. The message could be not
initialized.
Args:
proto(google.protobuf.message.Message): The protobuf message
throw_on_error(bool): True if raise an error when the protobuf message
is not initialized.
Returns(str): The debug string of the protobuf message
"""
error_fields
=
list
()
if
not
proto
.
IsInitialized
(
error_fields
)
and
throw_on_error
:
raise
ValueError
(
"{0} are not initialized
\n
The message is {1}"
.
format
(
...
...
@@ -57,6 +91,38 @@ def _debug_string_(proto, throw_on_error=True):
class
Variable
(
object
):
"""
Python variable. Every input and output of an operator is a variable. Every
variable belongs to a block. The variable has a name and two variables in
different blocks could have the same name.
There are many kinds of variables. Please reference the framework.proto for
details.
Notes: The constructor of Variable should not be invoked directly. Please
use `Block.create_var` to create a variable.
>>> cur_program = Program()
>>> cur_block = cur_program.current_block()
>>> new_variable = cur_block.create_var(
>>> name="X", shape=[-1, 23, 48], dtype='float32')
Args:
block(Block): The associated block. It will be passed by
`Block.create_var` automatically.
type(core.VarDesc.VarType): Variable type. Please reference the
framework.proto for details.
shape(tuple|list|None): The shape of variable. -1 means the batch size.
Some kinds of variable do not contain shape, just set it to None.
dtype(np.dtype|core.DataType|str): The data type of variable.
lod_level(int): The level of lod tensor. 0 means there is not a time
series data.
persistable(bool): True if the variable should be saved as check point.
Defaults to False.
stop_gradient(bool): True if the variable will stop to calculate
gradients when backward. Defaults to False.
"""
def
__init__
(
self
,
block
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
...
...
@@ -140,6 +206,16 @@ class Variable(object):
return
self
.
to_string
(
True
)
def
to_string
(
self
,
throw_on_error
):
"""
Get debug string.
Args:
throw_on_error(bool): True if raise an exception when self is not
intialized.
Returns(str): The debug string.
"""
protostr
=
self
.
desc
.
serialize_to_string
()
proto
=
framework_pb2
.
VarDesc
.
FromString
(
str
(
protostr
))
return
_debug_string_
(
proto
,
throw_on_error
)
...
...
@@ -185,7 +261,9 @@ class Variable(object):
def
get_all_op_protos
():
"""
Get all registered op proto from PaddlePaddle C++ end.
:return: A list of registered OpProto.
Returns(list): list of OpProto
"""
protostrs
=
core
.
get_all_op_protos
()
ret_values
=
[]
...
...
@@ -196,6 +274,10 @@ def get_all_op_protos():
class
OpProtoHolder
(
object
):
"""
A global variable to hold all OpProtos from C++ as a map
"""
@
classmethod
def
instance
(
cls
):
if
not
hasattr
(
cls
,
'_instance'
):
...
...
@@ -212,12 +294,26 @@ class OpProtoHolder(object):
self
.
op_proto_map
[
proto
.
type
]
=
proto
def
get_op_proto
(
self
,
type
):
"""
Get OpProto by a type string.
Args:
type(str): The type that operator registered in C++ side.
Returns(framework_pb2.OpProto): The OpProto
"""
if
type
not
in
self
.
op_proto_map
:
raise
ValueError
(
"Operator
\"
%s
\"
has not been registered."
%
type
)
return
self
.
op_proto_map
[
type
]
class
Operator
(
object
):
"""
Python Operator class. The operator represents the build in instructs in a
Block. Users can use the build in instructs to describe their neural
network.
"""
def
__init__
(
self
,
block
,
desc
,
...
...
@@ -225,6 +321,30 @@ class Operator(object):
inputs
=
None
,
outputs
=
None
,
attrs
=
None
):
"""
Constructor.
Notes: The constructor of operator should not be invoked directly. Use
Block.append_op or Block.prepend_op instead.
>>> cur_program = Program()
>>> cur_block = cur_program.current_block()
>>> # var1 += var2 + var3
>>> cur_block.append_op(type="sum",
>>> inputs={"X": [var1, var2, var3]},
>>> outputs={"Out": [var1]})
Args:
block(Block): The block has the current operator
desc(core.OpDesc): The protobuf description
type(str): The type of operator.
inputs(dict): The input dictionary. Key is the input parameter name.
Value is a list of variables.
outputs(dict): The output dictionary. Has same format with inputs
attrs(dict): The attributes dictionary. Key is attribute name. Value
is the attribute value. The attribute type should be as same as
the type registered in C++
"""
self
.
block
=
block
self
.
desc
=
desc
if
len
(
self
.
desc
.
type
())
!=
0
:
...
...
@@ -311,6 +431,15 @@ class Operator(object):
self
.
desc
.
infer_shape
(
self
.
block
.
desc
)
def
to_string
(
self
,
throw_on_error
):
"""
To debug string.
Args:
throw_on_error(bool): raise exception when self is not initialized
when throw_on_error is True
Returns(str): The debug string.
"""
protostr
=
self
.
desc
.
serialize_to_string
()
proto
=
framework_pb2
.
OpDesc
.
FromString
(
str
(
protostr
))
return
_debug_string_
(
proto
,
throw_on_error
)
...
...
@@ -325,21 +454,55 @@ class Operator(object):
return
self
.
desc
.
type
()
def
input
(
self
,
name
):
"""
Get input arguments by the input parameter name
Args:
name(str): The input parameter name
Returns(list): return the list of argument names associated with the
specific parameter name.
"""
return
self
.
desc
.
input
(
name
)
@
property
def
input_names
(
self
):
"""
Get all input parameter names
Returns(list): return a list of input parameter names
"""
return
self
.
desc
.
input_names
()
def
output
(
self
,
name
):
"""
Get output arguments by the output parameter name
Args:
name(str): The output parameter name
Returns(list): return the list of argument names associated with the
specific parameter name.
"""
return
self
.
desc
.
output
(
name
)
@
property
def
output_names
(
self
):
"""
Get all output parameter names
Returns(list): return a list of output parameter names
"""
return
self
.
desc
.
output_names
()
@
property
def
idx
(
self
):
"""
Return the array index of current operator.
Returns(int): The array index in block.ops array
Raises:
ValueError: when the operator is not found.
"""
for
i
,
op
in
enumerate
(
self
.
block
.
ops
):
if
op
==
self
:
return
i
...
...
@@ -347,19 +510,57 @@ class Operator(object):
"Can't find op itself in it's block. It could be a bug of Paddle."
)
def
has_attr
(
self
,
name
):
"""
operator has the attribute with name or not.
Args:
name(str): the attribute name
Returns(bool): True if has this attribute.
"""
return
self
.
desc
.
has_attr
(
name
)
def
attr_type
(
self
,
name
):
"""
Get the type of attribute by attribute name
Args:
name(str): the attribute name
Returns(core.AttrType): the attribute type
"""
return
self
.
desc
.
attr_type
(
name
)
@
property
def
attr_names
(
self
):
"""
Get all attribute names
Returns(list): The list of attribute name
"""
return
self
.
desc
.
attr_names
()
def
attr
(
self
,
name
):
"""
Get attribute by name
Args:
name(str): the attribute name
Returns(bool|int|str|float|list): The attribute value. The return value
can be any valid attribute type.
"""
return
self
.
desc
.
attr
(
name
)
def
block_attr
(
self
,
name
):
"""
Get the block attribute by name
Args:
name(str): the attribute name
Returns(int): the block index
"""
return
self
.
desc
.
block_attr
(
name
)
...
...
@@ -479,7 +680,7 @@ class Block(object):
"""
Copy the information of parameters from other block
Args:
other(Block): other block
other(Block): other block
Returns:
None
...
...
@@ -623,7 +824,7 @@ class Program(object):
def
copy_param_info_from
(
self
,
other
):
"""
Copy the information of parameters from other program.
Copy the information of parameters from other program.
Args:
other(Program): Other program
...
...
@@ -675,7 +876,7 @@ def default_startup_program():
"""
Get default startup program. In startup program, Paddle will initialize
parameters, initialize nccl handle, etc.
Returns:
Program: startup program
"""
...
...
@@ -685,7 +886,7 @@ def default_startup_program():
def
default_main_program
():
"""
Get default main program. The main program is used for training or testing.
Returns:
Program: main program
"""
...
...
@@ -695,7 +896,7 @@ def default_main_program():
def
switch_main_program
(
program
):
"""
Switch the main program to a new program.
Args:
program(Program): The new main program
...
...
@@ -710,7 +911,7 @@ def switch_main_program(program):
def
switch_startup_program
(
program
):
"""
Switch the startup program to a new program
Switch the startup program to a new program
Args:
program(Program): The new startup program
...
...
@@ -727,15 +928,15 @@ def switch_startup_program(program):
def
program_guard
(
main_program
,
startup_program
=
None
):
"""
Switch program with `with` statement
Examples:
>>> with program_guard(Program()):
>>> data = fluid.layers.data(...)
>>> hidden = fluid.layers.fc(...)
Args:
main_program(Program): New main program inside `with` statement
startup_program(Program): New startup program inside `with` statement.
startup_program(Program): New startup program inside `with` statement.
None means do not change startup program.
Returns:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录