framework.py 229.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
43
from paddle import _C_ops
Y
Yu Yang 已提交
44

45
__all__ = [
46 47 48 49
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
50
    'name_scope',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
L
lujun 已提交
55
    'in_dygraph_mode',
56
    'is_compiled_with_cinn',
C
chengduo 已提交
57
    'is_compiled_with_cuda',
58
    'is_compiled_with_rocm',
59
    'is_compiled_with_xpu',
60
    'is_compiled_with_npu',
61
    'Variable',
62
    'require_version',
63
    'device_guard',
G
guofei 已提交
64 65
    'set_flags',
    'get_flags',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
74
_dygraph_tracer_ = None
75
_global_expected_place_ = None
76
_current_device = None
77
global_prog_seed = 0
78
_current_pipeline_stage = None
79
_global_flags_ = core.globals()
J
Jiabin Yang 已提交
80
core._disable_eager_mode()
81 82 83


@signature_safe_contextmanager
J
Jiabin Yang 已提交
84 85
def _test_eager_guard():
    core._enable_eager_mode()
86
    _C_ops.switch_to_eager_ops()
87
    try:
J
Jiabin Yang 已提交
88
        yield
89
    finally:
J
Jiabin Yang 已提交
90
        core._disable_eager_mode()
91
        _C_ops.switch_to_core_ops()
92 93


94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
201
def in_dygraph_mode():
L
lujun 已提交
202
    """
203

204 205 206 207 208 209 210
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
211 212

    Returns:
213
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
214 215 216 217

    Examples:
        .. code-block:: python

218 219 220 221 222 223 224 225
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
226 227

    """
L
lujun 已提交
228
    return _dygraph_tracer_ is not None
229 230


J
Jiabin Yang 已提交
231 232 233 234
def _in_eager_mode():
    return core._in_eager_mode() and in_dygraph_mode()


235 236 237
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
238
        ), "We don't support %s in imperative mode" % func.__name__
239 240 241 242 243 244 245 246
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
247 248 249 250 251 252 253 254 255
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
256
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
257 258 259 260 261
        return func(*args, **kwargs)

    return __impl__


262 263 264 265 266
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


267 268 269 270 271 272
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
273
# same base class.
274 275 276
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
277 278 279 280 281
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
282 283 284 285

    return __impl__


T
tangwei12 已提交
286 287
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


305 306
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
307
static_only = wrap_decorator(_static_only_)
308
fake_interface_only = wrap_decorator(_fake_interface_only_)
309 310


L
lujun 已提交
311 312
def _dygraph_tracer():
    return _dygraph_tracer_
313

W
Wu Yi 已提交
314

315 316 317 318
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
319
def _current_expected_place():
320 321 322
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
323 324 325 326 327 328 329 330 331 332 333
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
334 335 336 337 338 339 340 341 342 343 344 345
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
361
    if _in_eager_mode():
362
        return core.eager._set_expected_place(place)
J
Jiabin Yang 已提交
363
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
364 365


L
Leo Chen 已提交
366 367 368 369
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
370

L
Leo Chen 已提交
371 372 373 374 375 376 377 378 379 380 381 382
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
383
def _cpu_num():
384
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
385 386 387 388 389 390 391 392
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
393
        os.environ['CPU_NUM'] = str(1)
394
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
395 396 397 398 399 400 401 402 403 404
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
405 406


407 408 409 410 411 412 413 414 415
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


416 417 418 419 420 421 422 423 424
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
495 496 497 498
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

499
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
500 501 502 503

    Examples:
        .. code-block:: python

504
            import paddle
505
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
506 507 508 509
    """
    return core.is_compiled_with_cuda()


510 511 512 513 514 515 516 517 518 519
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
520
            support_gpu = paddle.device.is_compiled_with_rocm()
521 522 523 524
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
525
def cuda_places(device_ids=None):
L
lujun 已提交
526
    """
527 528 529 530
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
531
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
532 533

    If :code:`device_ids` is None, environment variable of
534
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
535
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
536
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
537
    If :code:`FLAGS_selected_gpus` is not set, all visible
538
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
539 540

    If :code:`device_ids` is not None, it should be the device
541
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
542
    the returned list would be 
C
Chen Weihang 已提交
543
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
544

545
    Parameters:
546
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
547 548

    Returns:
C
Chen Weihang 已提交
549
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
550 551 552 553

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
554 555
            import paddle
            import paddle.static as static
T
tangwei12 已提交
556

557 558
            # required: gpu
            
C
Chen Weihang 已提交
559 560 561
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
562 563

    """
S
sneaxiy 已提交
564 565 566
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
567
        device_ids = _cuda_ids()
S
sneaxiy 已提交
568 569 570 571 572
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


573 574 575 576
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
577 578 579 580 581 582 583 584 585 586 587
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
588 589 590 591 592 593 594
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
595

596 597
            # required: xpu

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
654
def cpu_places(device_count=None):
L
lujun 已提交
655
    """
C
Chen Weihang 已提交
656
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
657

S
add doc  
sneaxiy 已提交
658 659
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
660 661
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
662 663
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
664

665 666
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
667 668

    Returns:
C
Chen Weihang 已提交
669
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
670 671 672 673

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
674 675
            import paddle
            import paddle.static as static
T
tangwei12 已提交
676

C
Chen Weihang 已提交
677 678 679
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
680 681
    """

S
sneaxiy 已提交
682 683 684 685 686 687
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
688
    """
689
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
690 691 692

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
693 694 695 696
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
697

698 699
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
700 701

    Returns:
702
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
703 704 705 706

    Examples:
        .. code-block:: python

707
            import paddle.fluid as fluid
L
lujun 已提交
708 709 710 711 712
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
713 714 715
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
716 717
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
718 719


720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
746
@signature_safe_contextmanager
747 748
def name_scope(prefix=None):
    """
749 750
    :api_attr: Static Graph

751
    Generate hierarchical name prefix for the operators in Static Graph.
752

T
Tao Luo 已提交
753 754 755
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
756
        Don't use it in dygraph, since it will cause memory leak.
757 758

    Args:
T
Tao Luo 已提交
759
        prefix(str, optional): prefix. Default is none.
760 761 762

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
763

764 765 766
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
767
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
768
             b = a + 1
769
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
770
                c = b * 1
771
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
772
                d = c / 1
773 774 775
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
776 777 778
                g = f - 1

          # Op are created in the default main program.  
779
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
795 796
    """
    # TODO(panyx0718): Only [0-9a-z].
797
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
798 799 800
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
801
        assert prefix, "namescope prefix can not be empty."
802 803
        global _name_scope
        _name_scope = _name_scope.child(prefix)
804 805 806 807
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
808 809 810 811 812 813 814 815 816 817 818 819


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
820 821 822
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
823 824 825 826


def grad_var_name(var_name):
    """
827 828
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
829 830 831
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
832

833
def convert_np_dtype_to_dtype_(np_dtype):
834 835
    """
    Convert the data type in numpy to the data type in Paddle
836

837
    Args:
838
        np_dtype(np.dtype): the data type in numpy.
839

840 841
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
842 843

    """
844 845
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
846
        return core.VarDesc.VarType.FP32
847
    elif dtype == np.float64:
848
        return core.VarDesc.VarType.FP64
849
    elif dtype == np.float16:
850
        return core.VarDesc.VarType.FP16
851
    elif dtype == np.int32:
852
        return core.VarDesc.VarType.INT32
853
    elif dtype == np.int16:
854
        return core.VarDesc.VarType.INT16
855
    elif dtype == np.int64:
856
        return core.VarDesc.VarType.INT64
857
    elif dtype == np.bool:
858
        return core.VarDesc.VarType.BOOL
859
    elif dtype == np.uint16:
860 861 862
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
863 864
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
865 866
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
867 868 869 870
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
871
    else:
M
minqiyang 已提交
872
        raise ValueError("Not supported numpy dtype %s" % dtype)
873 874 875


def dtype_is_floating(dtype):
876 877 878
    """
    Check the data type is floating or not.
    Args:
879
        dtype(np.dtype|core.VarDesc.VarType): data type.
880 881 882 883 884
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
885
    if not isinstance(dtype, core.VarDesc.VarType):
886 887
        dtype = convert_np_dtype_to_dtype_(dtype)

888 889 890 891
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
892 893


Y
Yang Yang(Tony) 已提交
894
def _debug_string_(proto, throw_on_error=True):
895 896 897 898 899 900 901 902 903 904 905
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
906
    error_fields = list()
Y
Yang Yang(Tony) 已提交
907
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
908 909
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
910 911 912
    return proto.__str__()


913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
950
class Variable(object):
951
    """
J
Jiabin Yang 已提交
952
    **Notes**:
953
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
954

955 956
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
957 958 959
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
960
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
961 962
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
963

964
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
965
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
966

T
tianshuo78520a 已提交
967
    Most of a Variable's member variables can be set to be None. It mean
968
    it is not available or will be specified later.
969

970
    Examples:
971 972
        In Static Graph Mode:

973 974
        .. code-block:: python

975
            import paddle.fluid as fluid
976
            cur_program = fluid.Program()
977 978 979 980
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
981

J
Jiabin Yang 已提交
982
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
983 984 985 986 987 988 989 990 991

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

992 993
    """

Y
Yu Yang 已提交
994 995
    def __init__(self,
                 block,
Y
Yu Yang 已提交
996
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
997 998 999 1000
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1001
                 capacity=None,
Q
QI JUN 已提交
1002
                 persistable=None,
F
fengjiayi 已提交
1003
                 error_clip=None,
Y
Yu Yang 已提交
1004
                 stop_gradient=False,
F
fengjiayi 已提交
1005
                 is_data=False,
H
Huihuang Zheng 已提交
1006
                 need_check_feed=False,
H
hong 已提交
1007
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1008
                 **kwargs):
Y
Yu Yang 已提交
1009 1010
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1011
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1012

Y
Yu Yang 已提交
1013
        if dtype is not None:
1014
            if not isinstance(dtype, core.VarDesc.VarType):
1015
                dtype = convert_np_dtype_to_dtype_(dtype)
1016

S
Steffy-zxf 已提交
1017 1018 1019 1020
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1021 1022
        self.belong_to_optimizer = belong_to_optimizer

1023 1024 1025 1026 1027
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1028

1029 1030 1031
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1032

1033 1034 1035
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1036 1037
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1038 1039
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1040

1041
        if shape is not None:
1042
            if is_new_var:
1043 1044 1045 1046 1047 1048
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1049 1050
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1051 1052 1053 1054 1055 1056 1057
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1058 1059
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1060 1061 1062 1063 1064 1065 1066 1067 1068
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1069 1070
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1071 1072 1073 1074 1075 1076 1077 1078 1079
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1080 1081
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1082 1083
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1084

1085 1086
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1087

1088 1089 1090 1091 1092 1093 1094
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1095

1096 1097
        self.block.vars[name] = self
        self.op = None
1098
        self.stop_gradient = stop_gradient
1099
        self.is_data = is_data
Y
Yu Yang 已提交
1100

1101 1102 1103
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1104 1105
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1106

1107
        Returns:
J
Jiabin Yang 已提交
1108
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1109 1110 1111 1112

        Examples:
            .. code-block:: python

1113
                import paddle
1114

1115 1116 1117 1118
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1119

1120 1121
                # create a detached Variable
                y = x.detach()
1122
        """
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1138

1139
    @fake_interface_only
1140
    def numpy(self):
1141
        """
J
Jiabin Yang 已提交
1142
        **Notes**:
T
tianshuo78520a 已提交
1143
            **This API is ONLY available in Dygraph mode**
1144

J
Jiabin Yang 已提交
1145
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1146 1147 1148 1149 1150

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1151
            ndarray: dtype is same as current Variable
1152 1153 1154 1155 1156 1157

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1158
                from paddle.fluid.dygraph import Linear
1159 1160 1161 1162
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1163
                    linear = Linear(32, 64)
1164
                    data = to_variable(data)
1165
                    x = linear(data)
1166 1167 1168
                    print(x.numpy())

        """
1169
        pass
1170

1171
    @fake_interface_only
1172
    def backward(self, retain_graph=False):
1173
        """
J
Jiabin Yang 已提交
1174
        **Notes**:
T
tianshuo78520a 已提交
1175
            **This API is ONLY available in Dygraph mode**
1176

1177
        Run backward of current Graph which starts from current Tensor.
1178

J
Jiabin Yang 已提交
1179
        Args:
1180 1181 1182 1183
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1184

J
Jiabin Yang 已提交
1185 1186
        Returns:
            NoneType: None
1187 1188 1189 1190 1191

        Examples:
            .. code-block:: python

                import numpy as np
1192 1193
                import paddle
                paddle.disable_static()
1194 1195

                x = np.ones([2, 2], np.float32)
1196 1197 1198 1199 1200 1201 1202
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1203 1204
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1205
                loss.backward()
1206 1207

        """
1208
        pass
1209

1210
    @fake_interface_only
1211
    def gradient(self):
1212
        """
J
Jiabin Yang 已提交
1213
        **Notes**:
T
tianshuo78520a 已提交
1214
            **This API is ONLY available in Dygraph mode**
1215 1216 1217

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1218
        Returns:
1219
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1220 1221 1222 1223 1224 1225 1226

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1227
                # example1: return ndarray
1228 1229 1230 1231 1232 1233 1234 1235 1236
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1237
                    loss2.backward()
1238 1239
                    print(loss2.gradient())

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1253
        """
1254
        pass
1255

1256
    @fake_interface_only
1257
    def clear_gradient(self):
1258
        """
J
Jiabin Yang 已提交
1259
        **Notes**:
T
tianshuo78520a 已提交
1260
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1261 1262

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1263

J
Jiabin Yang 已提交
1264
        Clear  (set to ``0`` ) the Gradient of Current Variable
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1283
                    loss2.backward()
1284 1285 1286 1287 1288
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1289
        pass
X
Xin Pan 已提交
1290

1291 1292 1293 1294
    @fake_interface_only
    def register_hook(self, hook):
        pass

1295
    def __str__(self):
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1312 1313
                import paddle
                import paddle.static as static
1314

1315 1316 1317
                paddle.enable_static()

                cur_program = static.Program()
1318 1319 1320 1321 1322 1323
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1324 1325
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1326
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1327 1328
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1329 1330
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1331
        else:
1332 1333
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1334

1335
        if self.is_parameter:
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1346
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1347
        dist_context = get_default_distributed_context()
1348 1349
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1350
            var_str += ", {name} = {value}".format(
1351
                name="dist_attr", value=dist_tensor)
1352

1353
        return var_str
Y
Yang Yang(Tony) 已提交
1354

F
update  
fengjiayi 已提交
1355
    def to_string(self, throw_on_error, with_details=False):
1356 1357 1358
        """
        Get debug string.

J
Jiabin Yang 已提交
1359 1360 1361 1362 1363
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1364

1365 1366
        Returns:
            str: The debug string.
1367 1368 1369 1370 1371

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1372
                import paddle
1373

1374
                paddle.enable_static()
1375 1376 1377 1378 1379
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1380
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1381
                print("=============with detail===============")
1382
                print(new_variable.to_string(True, True))
1383
        """
F
update  
fengjiayi 已提交
1384 1385
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1386
        protostr = self.desc.serialize_to_string()
1387
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1388 1389
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1390
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1391
            for attr_name in additional_attr:
1392 1393 1394
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1395
        return res_str
1396 1397 1398

    __repr__ = __str__

1399
    @property
1400
    def stop_gradient(self):
J
Jiabin Yang 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1416 1417
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1418 1419 1420
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1421 1422
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1423 1424 1425 1426
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1427
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1428 1429
                assert (out1.gradient() == 0).all()
        """
1430
        return self.desc.stop_gradient()
1431

1432 1433
    @stop_gradient.setter
    def stop_gradient(self, s):
1434
        self.desc.set_stop_gradient(s)
1435

1436 1437
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1459
        return self.desc.persistable()
1460

Y
Yu Yang 已提交
1461 1462
    @persistable.setter
    def persistable(self, p):
1463
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1490 1491
    @property
    def name(self):
J
Jiabin Yang 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1508
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1509

1510 1511 1512 1513 1514 1515
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1516 1517
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1518

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1530 1531
    @name.setter
    def name(self, new_name):
1532
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1533

Y
Yu Yang 已提交
1534 1535
    @property
    def shape(self):
J
Jiabin Yang 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1553
        # convert to tuple, make it as same as numpy API.
1554
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1555 1556

    @property
F
fengjiayi 已提交
1557
    def dtype(self):
J
Jiabin Yang 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1574
        return self.desc.dtype()
Y
Yu Yang 已提交
1575 1576 1577

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1599 1600 1601
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1602
        return self.desc.lod_level()
Y
Yu Yang 已提交
1603

Y
Yu Yang 已提交
1604 1605
    @property
    def type(self):
J
Jiabin Yang 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1622
        return self.desc.type()
Y
Yu Yang 已提交
1623

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1707
    def _set_error_clip(self, error_clip):
1708 1709 1710 1711 1712 1713 1714 1715 1716
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1717 1718
        self.error_clip = error_clip

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1759
            raise ValueError("slice step can not be zero")
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1835
    def _cloneVar(self, copy=False):
1836 1837
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1838 1839
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1840 1841 1842 1843
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1844
        new_var = self._cloneVar()
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1855
        new_var = self._cloneVar()
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1866
                return self._cloneVar(True)
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1885
                return self._cloneVar(True)
1886
            index = int(item)
1887
            if (index > 0 and index >= self.shape[axis]) \
1888 1889 1890 1891 1892 1893 1894
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1895
        return _getitem_impl_(self, item)
1896

1897
    def __setitem__(self, item, value):
1898
        return _setitem_impl_(self, item, value)
1899

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2046 2047 2048 2049
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2050 2051 2052 2053 2054 2055 2056
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2166

F
fengjiayi 已提交
2167 2168 2169
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2170

2171 2172
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2173 2174 2175 2176
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2177
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2178 2179 2180 2181 2182
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2183 2184 2185 2186
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2196
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2197 2198 2199 2200 2201 2202
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2203 2204 2205 2206 2207 2208 2209 2210
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2211 2212
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2213 2214
        return self.op_proto_map[type]

2215 2216
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2217
        custom_op_names = []
2218 2219 2220
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2221 2222 2223
                custom_op_names.append(proto.type)

        return custom_op_names
2224

2225 2226 2227 2228
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2229
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2230
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2231 2232
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2233 2234
        }

F
fengjiayi 已提交
2235

X
Xin Pan 已提交
2236
class Operator(object):
2237
    """
2238 2239 2240 2241 2242 2243 2244
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2245
        type(str): The type of operator. Default None.
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2266
        Block.append_op or Block._prepend_op instead.
2267 2268 2269 2270

    Examples:
        .. code-block:: python

2271
            import paddle.fluid as fluid
2272
            cur_program = fluid.Program()
2273 2274 2275 2276 2277
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2278
    """
2279
    OP_WITHOUT_KERNEL_SET = {
2280 2281
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2282
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2283 2284
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2285
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2286 2287
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2288
    }
2289

Y
Yu Yang 已提交
2290 2291
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2292
                 desc,
Y
Yu Yang 已提交
2293 2294 2295
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2296
                 attrs=None):
L
lujun 已提交
2297
        if in_dygraph_mode():
2298 2299
            if type is None:
                raise ValueError(
2300
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2301
            self._type = type
M
minqiyang 已提交
2302
            self.attrs = attrs if attrs else {}
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2317
                )] = self.block.program._op_role
2318 2319 2320

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2321 2322
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2323 2324 2325 2326 2327

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2328 2329 2330 2331 2332
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2333 2334 2335
                return
            if type is None:
                raise ValueError(
2336
                    "`type` to initialized an Operator can not be None.")
2337 2338
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2339 2340 2341 2342 2343 2344 2345
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2346 2347 2348 2349 2350 2351 2352

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2370 2371 2372 2373 2374
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2375

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2389
                        if not isinstance(in_args, (list, tuple)):
2390 2391 2392 2393 2394 2395
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2396
                        for index, arg in enumerate(in_args):
2397 2398 2399 2400
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2401
                            elif isinstance(arg, (Variable, core.VarBase)):
2402
                                in_arg_names.append(cpt.to_text(arg.name))
2403
                            else:
2404 2405 2406 2407
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2408 2409
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2434 2435 2436 2437
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2438
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2439
                        if not in_dygraph_mode():
2440 2441 2442 2443
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2462
    def _has_kernel(self, op_type):
2463 2464
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2465
    def to_string(self, throw_on_error):
2466
        """
2467 2468
        Get debug string.

2469
        Args:
2470 2471
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2472

2473 2474
        Returns:
            str: The debug string.
2475 2476

        """
2477
        protostr = self.desc.serialize_to_string()
2478
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2479 2480
        return _debug_string_(proto, throw_on_error)

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2513
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2566
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2567
        dist_context = get_default_distributed_context()
2568 2569
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2570
            attrs_str += ", {name} = {value}".format(
2571
                name="dist_attr", value=dist_op)
2572

2573 2574
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2575 2576
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2577 2578 2579 2580 2581
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2582
    def __str__(self):
2583
        return self._to_readable_code()
2584 2585 2586

    __repr__ = __str__

F
fengjiayi 已提交
2587 2588
    @property
    def type(self):
2589
        return self.desc.type()
F
fengjiayi 已提交
2590 2591

    def input(self, name):
2592
        r"""
2593
        Get the input arguments according to the input parameter name.
2594

2595 2596
        Args:
            name(str): The input parameter name.
2597

2598 2599 2600
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2601
        """
F
fengjiayi 已提交
2602 2603
        return self.desc.input(name)

W
Wu Yi 已提交
2604
    def _rename_input(self, old_name, new_name):
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2615
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2616

W
Wu Yi 已提交
2617
    def _rename_output(self, old_name, new_name):
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2628
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2629

F
fengjiayi 已提交
2630 2631 2632 2633
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2634 2635 2636 2637 2638 2639 2640 2641
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2642
    def output(self, name):
2643
        r"""
2644
        Get output arguments by the output parameter name.
2645

2646 2647
        Args:
            name(str): The output parameter name.
2648

2649 2650 2651
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2652
        """
F
fengjiayi 已提交
2653 2654 2655 2656 2657 2658
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2659 2660 2661 2662 2663 2664 2665 2666
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2667
    def has_attr(self, name):
2668
        """
2669 2670
        Whether this Operator has the attribute with name or not.

2671
        Args:
2672
            name(str): the attribute name.
2673

2674 2675
        Returns:
            bool: True if has this attribute.
2676 2677

        """
F
fengjiayi 已提交
2678 2679 2680
        return self.desc.has_attr(name)

    def attr_type(self, name):
2681
        """
2682
        Get the type of attribute by attribute's name.
2683

2684 2685
        Args:
            name(str): the attribute name.
2686

2687 2688
        Returns:
            core.AttrType: the attribute type.
2689
        """
F
fengjiayi 已提交
2690 2691
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2692
    def _set_attr(self, name, val):
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2703 2704
        self._update_desc_attr(name, val)

2705 2706 2707
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2719 2720
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2721 2722
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2723
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2724 2725 2726 2727
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2728
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2729

F
fengjiayi 已提交
2730 2731 2732 2733 2734
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2735
        """
2736 2737
        Get the attribute by name.

2738
        Args:
2739
            name(str): the attribute name.
2740

2741 2742
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2743 2744
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2745
        return self.desc.attr(name)
Y
Yu Yang 已提交
2746

W
Wu Yi 已提交
2747
    def _block_attr_id(self, name):
2748
        """
G
gongweibao 已提交
2749
        Get the block attribute's id by name.
2750

2751 2752
        Args:
            name(str): the attribute name.
2753

2754 2755
        Returns:
            int: the block index.
2756
        """
W
Wu Yi 已提交
2757
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2758

W
Wu Yi 已提交
2759
    def _block_attr(self, name):
G
gongweibao 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2770
        id = self._block_attr_id(name)
G
gongweibao 已提交
2771 2772 2773
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2774
    def _blocks_attr(self, name):
G
gongweibao 已提交
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2785
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2786 2787 2788 2789 2790
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2791
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2802
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2803

J
JiayiFeng 已提交
2804
    def all_attrs(self):
F
fengjiayi 已提交
2805
        """
2806 2807 2808
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2809
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2810 2811 2812 2813
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2814 2815
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2816
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2817 2818 2819
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2820
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2821 2822 2823 2824
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2825 2826
        return attr_map

2827 2828 2829
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2830 2831 2832 2833

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2834 2835 2836
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2837 2838 2839 2840 2841 2842 2843 2844

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2845 2846
            return False

2847 2848 2849 2850 2851 2852
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
2878

Y
Yu Yang 已提交
2879
class Block(object):
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2894
        use `Program._create_block()` to create a block.
2895 2896 2897 2898

    Examples:
        .. code-block:: python

2899 2900 2901
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2902 2903 2904 2905 2906 2907 2908 2909 2910
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2911
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2912
        self.desc = program.desc.block(idx)
2913
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2914
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2915
        self.program = program
2916
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2917

2918
    def __str__(self):
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2953
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2965

F
fengjiayi 已提交
2966 2967
    def to_string(self, throw_on_error, with_details=False):
        """
2968 2969
        Get debug string.

F
fengjiayi 已提交
2970 2971
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2972
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2973
            with_details(bool): more details about variables and parameters
2974 2975
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2976

2977 2978
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2979 2980 2981 2982
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2983
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2984 2985
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2986
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2987
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2988
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2989
            for op in self.ops:
F
fengjiayi 已提交
2990 2991
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2992 2993 2994
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2995 2996
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2997 2998
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2999 3000 3001

    __repr__ = __str__

Y
Yu Yang 已提交
3002 3003
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3004
        return self.desc.parent
Y
Yu Yang 已提交
3005

Y
Yu Yang 已提交
3006 3007 3008 3009
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3010
    def _set_forward_block_idx(self, idx):
3011 3012 3013 3014 3015 3016 3017 3018 3019
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3020
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3021

3022 3023 3024 3025 3026 3027 3028 3029
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3030 3031
    @property
    def idx(self):
Y
Yu Yang 已提交
3032
        return self.desc.id
Y
Yu Yang 已提交
3033

Q
Qiao Longfei 已提交
3034
    def var(self, name):
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3048
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3049 3050 3051
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3052 3053
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3054
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3055
        return v
Q
Qiao Longfei 已提交
3056

X
Xin Pan 已提交
3057
    def _find_var_recursive(self, name):
3058 3059 3060 3061 3062 3063 3064
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3065
            Variable: the Variable with the giving name. Or None if not found.
3066
        """
Y
Yu Yang 已提交
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3091
        return None
Y
Yu Yang 已提交
3092

X
Xin Pan 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3112

Q
Qiao Longfei 已提交
3113
    def all_parameters(self):
3114
        return list(self.iter_parameters())
3115

3116
    def iter_parameters(self):
M
minqiyang 已提交
3117
        return (item[1] for item in six.iteritems(self.vars)
3118
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3119

Y
Yu Yang 已提交
3120
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3121 3122 3123
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3124 3125 3126
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3127
        return var
Y
Yu Yang 已提交
3128

Q
Qiao Longfei 已提交
3129 3130 3131
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3132
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3133 3134
        """
        Rename variable in vars and ops' inputs and outputs
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3147
        """
M
minqiyang 已提交
3148 3149
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3150

T
typhoonzero 已提交
3151
        if not self.has_var(name):
3152
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3153 3154
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3155
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3156 3157 3158 3159 3160 3161
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3162
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3163 3164 3165 3166
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3167
        orig_var_type = v.type
M
minqiyang 已提交
3168
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3169
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3170
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3171
        if var_type == "Parameter":
L
Leo Chen 已提交
3172 3173
            if in_dygraph_mode():
                var = ParamBase(
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3184 3185
                var = Parameter(
                    self,
3186 3187 3188 3189 3190 3191 3192 3193 3194
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3195
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3196 3197
            var = Variable(
                self,
T
typhoonzero 已提交
3198
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3199 3200 3201 3202
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3203
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3204 3205 3206
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3207
        self._sync_with_cpp()
3208
        return var
T
typhoonzero 已提交
3209

3210 3211 3212
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3213
        self.desc._remove_var(cpt.to_bytes(name))
3214 3215
        del self.vars[name]

Y
Yu Yang 已提交
3216 3217
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3218
        param = None
L
Leo Chen 已提交
3219
        if in_dygraph_mode():
3220
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3221 3222
        else:
            param = Parameter(global_block, *args, **kwargs)
3223

3224
        if 'initializer' in kwargs:
3225 3226 3227 3228 3229

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3230
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3231
                        # are treated as initialization ops that cause error.
3232
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3233 3234 3235 3236 3237
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3238
                            continue
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3250
                # TODO already inited, do nothing, should log a warning
3251 3252 3253
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3254
        return param
Y
Yu Yang 已提交
3255

Y
Yu Yang 已提交
3256
    def append_op(self, *args, **kwargs):
3257 3258 3259 3260 3261 3262
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3263
        if in_dygraph_mode():
3264
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
3265
            type = kwargs.get("type", None)
3266 3267 3268
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3269
                type=type,
M
minqiyang 已提交
3270 3271
                inputs=None,
                outputs=None,
3272
                attrs=attrs)
3273

M
minqiyang 已提交
3274 3275 3276
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3277
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3278 3279

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3280
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3281 3282
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3283
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3284
        else:
3285 3286
            from paddle.fluid.dygraph.base import param_guard

3287
            op_desc = self.desc.append_op()
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3301

M
minqiyang 已提交
3302
            self.ops.append(op)
M
minqiyang 已提交
3303

3304 3305
        return op

W
Wu Yi 已提交
3306
    def _insert_op(self, index, *args, **kwargs):
3307 3308 3309 3310 3311 3312 3313 3314 3315
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3316
        self._sync_with_cpp()
F
fangshuixun007 已提交
3317
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3318

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3336 3337 3338 3339 3340 3341 3342 3343 3344
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3345 3346
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3347
        self.desc._remove_op(index, index + 1)
3348 3349
        del self.ops[index]

W
Wu Yi 已提交
3350
    def _slice_ops(self, start, end):
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3361
        return self.ops[start:end]
Y
Yancey1989 已提交
3362

W
Wu Yi 已提交
3363
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3364
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3365 3366
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3367
            op = Operator(
J
Jiabin Yang 已提交
3368
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3369

J
Jiabin Yang 已提交
3370
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3371
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3372 3373
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3374
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3375
        else:
3376 3377 3378 3379 3380 3381 3382 3383
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3384
            self.ops.insert(0, op)
3385

Y
Yu Yang 已提交
3386 3387
        return op

W
Wu Yi 已提交
3388
    def _sync_with_cpp(self):
3389
        """
3390 3391
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3392
        """
Q
Qiao Longfei 已提交
3393 3394 3395
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3413

3414
        # sync variables removed from c++ end
3415
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3416
            if not self.desc.find_var(cpt.to_bytes(var)):
3417 3418
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3419
        # sync operators from cpp
3420 3421 3422 3423
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3440 3441 3442 3443 3444

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3445
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3446 3447 3448 3449 3450 3451 3452

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3466 3467 3468 3469
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3470
    def _copy_param_info_from(self, other):
3471
        """
3472 3473
        Copy the information of parameters from the other block.

3474
        Args:
3475 3476 3477 3478 3479
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3480 3481 3482 3483 3484

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3485 3486
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3487
        for p in other.iter_parameters():
3488 3489 3490
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3491 3492
                # if the Parameter is pruned, v may be None
                continue
3493
            assert isinstance(v, Variable)
3494
            new_p = None
L
Leo Chen 已提交
3495 3496
            if in_dygraph_mode():
                new_p = ParamBase(
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3508 3509
                new_p = Parameter(
                    block=self,
3510 3511 3512
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3513 3514
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3515 3516 3517 3518 3519 3520
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3521 3522
            self.vars[new_p.name] = new_p

3523
    def _clone_variable(self, var, force_persistable=True):
3524 3525
        """
        Clone a variable into current block.
3526

3527 3528
        Args:
            var: the variable to be cloned.
3529 3530 3531
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3532 3533

        Returns:
3534
            Variable: the new  variable cloned from 'var' in current block.
3535 3536
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3537 3538 3539 3540 3541
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3542 3543
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3544
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3545 3546 3547 3548 3549 3550
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3551
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3552 3553
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3554 3555 3556 3557 3558 3559 3560
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3561
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3562 3563
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3564
        return ret_var
3565

Y
Yu Yang 已提交
3566

3567 3568 3569 3570 3571 3572
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3684
    def remove_input_by_id(self, node_id):
3685 3686 3687 3688 3689 3690
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3691
        self.node.remove_input(node_id)
3692

3693
    def remove_input(self, node):
3694 3695 3696 3697
        """
        Remove a node from inputs.

        Args:
3698
            node(IrNode): the node being removed.
3699
        """
3700
        self.node.remove_input(node.node)
3701

3702
    def append_input(self, node):
3703 3704 3705 3706
        """
        Append a node in inputs.

        Args:
3707
            node(IrNode): the node being appended.
3708
        """
3709
        self.node.append_input(node.node)
3710 3711 3712 3713 3714 3715 3716 3717

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3718
    def remove_output_by_id(self, node_id):
3719 3720 3721 3722 3723 3724
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3725
        self.node.remove_output(node_id)
3726

3727
    def remove_output(self, node):
3728 3729 3730 3731
        """
        Remove a node from outputs.

        Args:
3732
            node(IrNode): the node being removed.
3733
        """
3734
        self.node.remove_output(node.node)
3735

3736
    def append_output(self, node):
3737 3738 3739 3740
        """
        Append a node in outputs.

        Args:
3741
            node(IrNode): the node being appended.
3742
        """
3743
        self.node.append_output(node.node)
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3791
            "The node variable description can not be None."
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3802
            "The node variable description can not be None."
3803 3804
        return self.node.var().persistable()

3805 3806 3807 3808 3809 3810 3811 3812
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3813
            "The node variable description can not be None."
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3824
            "The node variable description can not be None."
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3835
            "The node variable description can not be None."
3836 3837
        return self.node.var().shape()

3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3885
            "The node operator description can not be None."
3886 3887
        self.node.op()._rename_input(old_input_name, new_input_name)

3888 3889 3890 3891 3892 3893 3894 3895 3896
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3897
            "The node operator description can not be None."
3898 3899
        self.node.op()._rename_output(old_output_name, new_output_name)

3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3911
            "The node operator description can not be None."
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3925
            "The node operator description can not be None."
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3936
            "The node operator description can not be None."
3937 3938
        return self.node.op().set_type(new_type)

3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3954
            "The node operator description can not be None."
3955 3956 3957 3958
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3959
                all(isinstance(v, Block) for v in val):
3960 3961
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3962
                isinstance(val, core.ProgramDesc):
3963 3964 3965 3966
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3967 3968 3969 3970 3971 3972 3973 3974
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3975
            "The node operator description can not be None."
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3986
            "The node operator description can not be None."
3987 3988
        return self.node.op().output_arg_names()

3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4010 4011
class IrGraph(object):
    """
4012
    Python IrGraph. Beneath it is a core.Graph, which is used for
4013
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4014 4015
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4016 4017 4018 4019
    """

    def __init__(self, graph, for_test=False):
        """
4020 4021
        Construct an IrGraph using core.Graph.

4022 4023 4024 4025 4026 4027 4028 4029 4030
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4031 4032 4033 4034
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4035 4036 4037
        Warns:
            The method only clones the graph structure, not its attributes.

4038 4039 4040
        Returns:
            IrGraph: A new and duplicated graph.
        """
4041
        g = self.graph.clone()
4042 4043
        return IrGraph(g, self._for_test)

4044
    def is_test(self):
4045 4046 4047
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4048 4049
        return self._for_test

W
WangZhen 已提交
4050
    def all_nodes(self):
4051 4052 4053
        """
        Return all nodes included in the graph as a set.
        """
4054
        return {IrNode(node) for node in self.graph.nodes()}
4055

4056
    def all_var_nodes(self):
4057 4058 4059
        """
        Return all variable nodes included in the graph as a set.
        """
4060
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4061

4062
    def all_persistable_nodes(self):
4063 4064 4065
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4066 4067 4068 4069 4070
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4071
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4072

4073
    def all_op_nodes(self):
4074 4075 4076
        """
        Return all operator nodes included in the graph as a set.
        """
4077
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4078

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4096
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4108
            IrVarNode: the created persistable variable node.
4109
        """
4110 4111 4112 4113 4114
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4115
        return IrVarNode(self.graph.create_var_node(var_desc))
4116 4117

    def create_var_node(self, name, var_type, shape, var_dtype):
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4129
            IrVarNode: the created variable node.
4130 4131
        """

4132 4133 4134 4135
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4136
        return IrVarNode(self.graph.create_var_node(var_desc))
4137

4138 4139 4140 4141 4142 4143
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4144
    def create_var_node_from_desc(self, var_desc):
4145 4146 4147 4148 4149 4150 4151 4152
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4153
            IrVarNode: the created variable node.
4154
        """
4155
        return IrVarNode(self.graph.create_var_node(var_desc))
4156 4157

    def create_op_node(self, op_type, attrs, inputs, outputs):
4158 4159 4160 4161 4162 4163 4164
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4165
            outputs(dict): the outputs of the operator node.
4166 4167

        Returns:
4168
            IrOpNode: the created operator node.
4169
        """
4170 4171
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4172
        for attr, value in six.iteritems(attrs):
4173
            self._update_desc_attr(op_desc, attr, value)
4174
        for input_name, var_nodes in six.iteritems(inputs):
4175 4176 4177 4178
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4179
        for output_name, var_nodes in six.iteritems(outputs):
4180 4181 4182 4183
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4184
        return IrOpNode(self.graph.create_op_node(op_desc))
4185 4186

    def create_op_node_from_desc(self, op_desc):
4187 4188 4189 4190 4191 4192 4193
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4194
            IrOpNode: the created operator node.
4195
        """
4196
        return IrOpNode(self.graph.create_op_node(op_desc))
4197 4198

    def update_input_link(self, old_input_node, new_input_node, op_node):
4199 4200 4201 4202
        """
        Update the input's link of a operator node.

        Args:
4203 4204 4205
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4206
        """
4207
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4208
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4209
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4210 4211 4212 4213
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4214
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4215

4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4226
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4227
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4228 4229 4230 4231 4232 4233
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4234
    def link_to(self, node_in, node_out):
4235 4236 4237 4238
        """
        Connect two nodes.

        Args:
4239 4240
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4241
        """
4242 4243 4244 4245
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4246 4247
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4248 4249

    def safe_remove_nodes(self, remove_nodes):
4250 4251 4252 4253 4254 4255 4256
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4257
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4258 4259 4260 4261
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4262 4263
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4264

Z
Zhen Wang 已提交
4265 4266 4267 4268 4269 4270 4271 4272
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4273
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4274 4275 4276 4277
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4278
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4279 4280 4281
                        ]
                    else:
                        var_nodes[each_var_name].append(
4282 4283
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4284 4285
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4286
    def has_circle(self):
4287 4288 4289 4290 4291 4292
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4293 4294 4295
        return core.has_circle(self.graph)

    def graph_num(self):
4296 4297 4298 4299 4300 4301
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4302 4303 4304
        return core.graph_num(self.graph)

    def topology_sort(self):
4305 4306 4307
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4308
        Notes: the `graph` can not contain a circle.
4309 4310

        Returns:
Z
Zhen Wang 已提交
4311
            list(IrNode): nodes in topology order.
4312
        """
4313
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4314
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4315 4316

    def build_adjacency_list(self):
4317 4318 4319 4320
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4321
            dict{IrNode: set(IrNode)}: the adjacency list.
4322
        """
4323 4324 4325 4326 4327
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4328

4329 4330 4331 4332 4333 4334 4335 4336
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4337
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4338 4339 4340 4341 4342
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4343 4344
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4345 4346 4347
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4348 4349 4350 4351 4352
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4353
        remove_ctr_vars = set()
4354
        if remove_ctr_var:
4355
            for node in self.all_var_nodes():
4356 4357 4358
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4359 4360
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4361 4362
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4363 4364 4365 4366 4367 4368
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4369 4370 4371 4372
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4373 4374
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4375 4376 4377 4378 4379 4380 4381
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4382 4383 4384
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4385
        WARN: When the graph includes backward operator nodes, the
4386 4387 4388 4389 4390 4391
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4392
        convert_pass = core.get_pass('graph_to_program_pass')
4393 4394
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4395 4396 4397 4398
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4399 4400 4401 4402 4403 4404 4405 4406
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4407 4408
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4409 4410
        return target_node

4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4427
class Program(object):
D
dzhwinter 已提交
4428
    """
4429
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4430
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4431
    it will contain nested block.
4432

J
Jiabin Yang 已提交
4433 4434 4435
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4436

J
Jiabin Yang 已提交
4437
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4438
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4439 4440 4441 4442 4443 4444 4445
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4446
    **Notes**:
4447 4448 4449
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4450 4451

    Returns:
J
Jiabin Yang 已提交
4452
        Program: An empty Program.
D
dzhwinter 已提交
4453 4454

    Examples:
4455 4456
        .. code-block:: python

4457 4458 4459 4460
            import paddle
            import paddle.static as static

            paddle.enable_static()
4461

4462 4463 4464 4465 4466
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4467
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4468 4469 4470

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4471 4472 4473

    """

4474 4475
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4476 4477
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4478 4479
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4480
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4481
        self.__op_role_var = []
T
tangwei12 已提交
4482

4483 4484
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4485
        self._is_distributed = False
4486
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4487
        self._is_chief = False
4488 4489 4490
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4491
        self._endpoints = []
4492 4493 4494
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4495
        self._trainers_endpoints = []
4496
        # the distributed lookup table names
T
tangwei12 已提交
4497
        self._distributed_lookup_table = None
4498 4499 4500

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4501 4502
        self._use_lamb = False

4503 4504 4505
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4506

4507 4508 4509
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4510
        self._program_config = None
4511

H
hutuxian 已提交
4512 4513 4514
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4515 4516 4517
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4518 4519 4520
        # appending gradients times
        self._appending_grad_times = 0

4521 4522 4523 4524
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4525 4526
        # compiled program, i.e. Graph
        self._graph = None
4527 4528
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4529

4530
    def _find_var_class_kwargs(self, new_desc):
4531 4532 4533 4534 4535 4536 4537 4538
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4608
        assert block_num == self.desc.num_blocks()
4609 4610

        # clear old blocks and desc
4611 4612 4613 4614 4615 4616 4617 4618 4619
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4620

4621
        del desc
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4651 4652
                import paddle
                import paddle.static as static
4653

4654 4655 4656
                paddle.enable_static()

                prog = static.default_main_program()
4657 4658 4659 4660 4661
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4662
                prog1 = static.default_main_program()
4663 4664 4665 4666 4667 4668 4669 4670
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4671
    @property
4672
    def _op_role(self):
Y
yuyang18 已提交
4673 4674 4675 4676 4677 4678 4679 4680
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4681
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4682 4683 4684 4685
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4686 4687
        return self._current_role

4688 4689
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4690 4691 4692
        self._current_role = role

    @property
4693
    def _op_role_var(self):
Y
yuyang18 已提交
4694
        """
4695
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4696

4697
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4698 4699 4700

        Notes: This is a very low-level API. Users should not use it directly.
        """
4701
        return self.__op_role_var
Y
yuyang18 已提交
4702

4703
    @signature_safe_contextmanager
4704 4705 4706 4707 4708
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4709 4710 4711 4712
        try:
            yield
        finally:
            self._current_role = tmp_role
4713

S
rename  
sneaxiy 已提交
4714
    @signature_safe_contextmanager
W
Wu Yi 已提交
4715
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4716 4717 4718 4719 4720 4721 4722
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4723
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4724 4725 4726

        Examples:

4727
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4728
            >>> p, g = backward(...)
W
Wu Yi 已提交
4729
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4730 4731
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4732
        tmp_role = self._current_role
4733
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4734

Y
yuyang18 已提交
4735 4736
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4737
        self.__op_role_var = [
4738 4739 4740
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4741 4742 4743 4744 4745
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4746

S
rename  
sneaxiy 已提交
4747
    @signature_safe_contextmanager
X
Xin Pan 已提交
4748
    def _lr_schedule_guard(self, is_with_opt=False):
4749 4750 4751 4752 4753 4754 4755
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4756 4757 4758 4759
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4760 4761 4762

        Examples:

4763
            >>> import paddle.fluid as fluid
4764 4765 4766 4767
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4768 4769

        tmp_role = self._current_role
4770
        tmp_var = self.__op_role_var
4771

4772 4773
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4774 4775
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4776
        # TODO(typhoonzero): how to set target learning rate var
4777
        self.__op_role_var = []
4778 4779 4780 4781 4782
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4783

4784
    def __str__(self):
Y
yuyang18 已提交
4785 4786 4787 4788 4789 4790 4791 4792 4793
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4814 4815
            import paddle
            import paddle.static as static
4816

4817 4818 4819
            paddle.enable_static()

            cur_program = static.Program()
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4831
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4832 4833 4834 4835
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4836
            program_str += '\n'
4837
        return program_str
Y
Yang Yang(Tony) 已提交
4838

F
fengjiayi 已提交
4839 4840 4841
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4842

J
Jiabin Yang 已提交
4843 4844 4845
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4846

J
Jiabin Yang 已提交
4847
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4848

H
haowang101779990 已提交
4849
        Returns:
J
Jiabin Yang 已提交
4850
            str: The debug string describe current Program.
Y
yuyang18 已提交
4851 4852

        Raises:
J
Jiabin Yang 已提交
4853
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4854

4855 4856 4857
        Examples:
            .. code-block:: python

4858 4859 4860 4861
                import paddle
                import paddle.static as static

                paddle.enable_static()
4862

4863 4864 4865
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4866
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4867
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4868
                print("program string without detail: {}".format(prog_string))
4869
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4870
        """
4871 4872 4873 4874 4875 4876 4877 4878 4879
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4880 4881 4882 4883 4884 4885
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4886 4887
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4888 4889
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4890

W
Wu Yi 已提交
4891
    def _get_desc(self):
Y
yuyang18 已提交
4892 4893 4894 4895 4896 4897 4898
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4899 4900
        return self.desc

X
version  
Xin Pan 已提交
4901 4902 4903
    def _version(self):
        return self.desc._version()

4904
    def clone(self, for_test=False):
Y
yuyang18 已提交
4905
        """
4906 4907 4908 4909
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4910

4911
        Create a new Program with forward content of original one when ``for_test=True``.
4912
        Create a new Program as same as the original one when ``for_test=False``.
4913

4914
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4915 4916 4917
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4918

4919 4920
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4921 4922
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4923
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4924

J
Jiabin Yang 已提交
4925
        For Example:
4926
          ::
L
Luo Tao 已提交
4927

4928 4929 4930 4931 4932 4933
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4934
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4935
            loss = paddle.mean(pred)
4936
            # Here we use clone before Momentum
4937 4938
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4939
            optimizer.minimize(loss)
4940

J
Jiabin Yang 已提交
4941
        Args:
4942

4943 4944
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4945

J
Jiabin Yang 已提交
4946
        Returns:
4947
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4948

Y
yuyang18 已提交
4949 4950 4951

        Examples:

4952 4953 4954 4955 4956 4957 4958
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4975
            1. To clone a test program, the sample code is:
4976 4977 4978
                .. code-block:: python

                    import six
4979 4980 4981 4982 4983 4984
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4997 4998
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4999 5000 5001

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5002 5003 5004
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5005
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5006 5007
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5008
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5009 5010
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5011
                            test_program = train_program.clone(for_test=True)
5012
                    print_prog(test_program)
J
Jiabin Yang 已提交
5013 5014 5015 5016

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5017
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5018 5019 5020 5021
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5022 5023 5024
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5025 5026 5027
                            sgd.minimize(avg_loss)


5028
            2. The clone method can be avoid if you create program for training and program for testing individually.
5029 5030 5031
                .. code-block:: python

                    import six
5032 5033 5034 5035 5036 5037
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5049

5050
                    def network():
5051
                        img = static.data(name='image', shape=[None, 784])
5052
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5053 5054
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5055
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5056 5057
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5058 5059
                        return avg_loss

5060 5061 5062 5063 5064
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5065
                            avg_loss = network()
5066
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5067
                            sgd.minimize(avg_loss)
5068
                    # the test startup program is not used.
5069 5070
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5071 5072
                            avg_loss = network()
                    print_prog(test_program_2)
5073

5074
            The two code snippets above will generate and print same programs.
5075
        """
5076

T
tangwei12 已提交
5077
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5078 5079 5080
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5081
        pruned_origin_block_id_map = None
5082
        if for_test:
5083 5084 5085 5086 5087 5088 5089 5090 5091
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5092
        else:
5093
            p = Program()
G
gongweibao 已提交
5094 5095
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5096
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5097 5098 5099
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5100 5101

            p._current_role = self._current_role
5102
            p.__op_role_var = self.__op_role_var
5103
            p._appending_grad_times = self._appending_grad_times
5104 5105
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5106

T
tangwei12 已提交
5107
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5108
            # its desc.
W
Wu Yi 已提交
5109
            p._sync_with_cpp()
5110

W
Wu Yi 已提交
5111
        p._copy_param_info_from(self)
5112
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5113
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5114
        return p
5115

5116
    def _prune(self, targets):
Y
yuyang18 已提交
5117 5118 5119 5120 5121 5122 5123 5124
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5125
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5126 5127 5128 5129
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5130
        """
5131
        return self._prune_with_input([], targets)
5132 5133

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5134
        """
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5145
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5146 5147 5148 5149 5150 5151
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5152
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5153 5154 5155
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5156 5157
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5158 5159
        if not isinstance(targets, list):
            targets = [targets]
5160 5161 5162

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5163 5164 5165
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5166

5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5183 5184 5185 5186
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5187 5188 5189
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5190
                else:
5191 5192 5193
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5194 5195 5196 5197 5198 5199

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5200 5201 5202
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5203

5204 5205 5206 5207 5208 5209 5210 5211 5212
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5213
                        # Skip optimize op except for optimize op in targets,
5214 5215 5216 5217 5218
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5219

5220
                if target_op is not None:
5221 5222 5223
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5224

5225
        res = Program()
5226 5227 5228
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5229 5230 5231
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5232
        res._sync_with_cpp()
5233 5234 5235 5236 5237

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5238 5239
        return res

X
Xin Pan 已提交
5240
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5241
        """
F
fengjiayi 已提交
5242 5243 5244 5245 5246
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5247
        3. change the :code:`is_test`
Y
yuyang18 已提交
5248 5249 5250
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5251
        Args:
X
Xin Pan 已提交
5252 5253
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5254

Y
yuyang18 已提交
5255 5256 5257 5258 5259 5260
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5261
        res = Program()
5262
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5263 5264 5265 5266

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5267
        if prune_read_op:
5268 5269 5270 5271 5272 5273 5274 5275 5276
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5277
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5278 5279

        # change all `is_test` attributes to True
M
minqiyang 已提交
5280
        for i in six.moves.range(res.desc.num_blocks()):
5281
            block = res.desc.block(i)
M
minqiyang 已提交
5282
            for j in six.moves.range(block.op_size()):
5283 5284
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5285
                    op._set_attr('is_test', True)
5286 5287 5288
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5289 5290 5291
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5292
        res._sync_with_cpp()
5293 5294
        return res

5295
    def _remove_training_info(self, clip_extra=True):
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5385 5386
        return res

5387 5388
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5389
        """
5390 5391 5392
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5393

5394 5395
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5396

J
Jiabin Yang 已提交
5397
        Args:
Y
yuyang18 已提交
5398

J
Jiabin Yang 已提交
5399
            binary_str_type (str): the binary prootbuf string.
5400

J
Jiabin Yang 已提交
5401 5402
        Returns:
            Program: A deserialized Program.
5403 5404 5405 5406

        Examples:
            .. code-block:: python

5407 5408 5409 5410
                import paddle
                import paddle.static as static

                paddle.enable_static()
5411

5412 5413 5414 5415
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5416

5417
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5418

5419
                    z = paddle.matmul(x=x, y=y)
5420

5421 5422
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5423

5424
                    print(static.default_main_program())
5425
                    print(prog_restored)
Y
yuyang18 已提交
5426
        """
5427 5428
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5429
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5430
        p._sync_with_cpp()
5431
        return p
Y
Yu Yang 已提交
5432

5433
    @staticmethod
5434
    def _construct_from_desc(desc):
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5450 5451
    @property
    def random_seed(self):
Y
yuyang18 已提交
5452
        """
J
Jiabin Yang 已提交
5453
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5454 5455
        the random seed from random device.

5456 5457
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5458 5459 5460

        Returns:
            int64: Random seed in current Program
5461

5462 5463 5464 5465

        Examples:
            .. code-block:: python

5466 5467 5468
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5469

5470 5471 5472
                paddle.enable_static()

                prog = static.default_main_program()
5473
                random_seed = prog.random_seed
5474
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5475 5476 5477
                print(random_seed)
                ## 0
                ## the default random seed is 0
5478

5479
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5480
                prog.random_seed = 1
5481
                z_var = F.dropout(x_var, 0.7)
5482

5483
                print(prog.random_seed)
5484 5485
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5486
        """
D
dzhwinter 已提交
5487 5488
        return self._seed

Q
qiaolongfei 已提交
5489 5490
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5491
        """
5492 5493
        The number of :ref:`api_guide_Block_en`  in this Program.

5494 5495
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5496 5497 5498

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5499

5500 5501 5502 5503

        Examples:
            .. code-block:: python

5504 5505 5506 5507
                import paddle
                import paddle.static as static

                paddle.enable_static()
5508

5509
                prog = static.default_main_program()
5510 5511
                num_blocks = prog.num_blocks
                print(num_blocks)
5512

5513 5514
                # print result:
                # 1
Y
yuyang18 已提交
5515
        """
Q
qiaolongfei 已提交
5516 5517
        return self.desc.num_blocks()

D
dzhwinter 已提交
5518 5519 5520
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5521 5522 5523
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5524 5525
        self._seed = seed

Y
Yu Yang 已提交
5526
    def __repr__(self):
5527
        return self.__str__()
5528

Y
Yu Yang 已提交
5529
    def global_block(self):
Y
yuyang18 已提交
5530
        """
5531 5532
        .. note::
            This API has no effect in Dygraph mode.
5533 5534 5535

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5536 5537
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5538

5539 5540 5541 5542

        Examples:
            .. code-block:: python

5543 5544 5545 5546
                import paddle
                import paddle.static as static

                paddle.enable_static()
5547

5548
                prog = static.default_main_program()
5549 5550
                gb_block = prog.global_block()
                print(gb_block)
5551

Y
yuyang18 已提交
5552
        """
Y
Yu Yang 已提交
5553 5554
        return self.blocks[0]

Q
Qiao Longfei 已提交
5555
    def block(self, index):
Y
yuyang18 已提交
5556
        """
5557 5558
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5559

5560 5561
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5562 5563
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5564

J
Jiabin Yang 已提交
5565 5566
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5567 5568 5569 5570

        Examples:
            .. code-block:: python

5571 5572 5573 5574
                import paddle
                import paddle.static as static

                paddle.enable_static()
5575

5576
                prog = static.default_main_program()
5577 5578
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5579
        """
Q
Qiao Longfei 已提交
5580 5581
        return self.blocks[index]

Y
Yu Yang 已提交
5582
    def current_block(self):
Y
yuyang18 已提交
5583
        """
5584 5585
        .. note::
            This API has no effect in Dygraph mode.
5586

J
Jiabin Yang 已提交
5587 5588
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5589

J
Jiabin Yang 已提交
5590 5591
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5592

5593 5594 5595
        Examples:
            .. code-block:: python

5596 5597 5598 5599
                import paddle
                import paddle.static as static

                paddle.enable_static()
5600

5601
                prog = static.default_main_program()
5602 5603
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5604
        """
Y
Yu Yang 已提交
5605 5606
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5607
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5608 5609 5610 5611 5612
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5613

Y
yuyang18 已提交
5614 5615 5616 5617 5618
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5619
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5620 5621 5622
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5623 5624 5625 5626
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5627
    def _rollback(self):
Y
yuyang18 已提交
5628 5629 5630 5631 5632
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5633 5634
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5635
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5646 5647 5648
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5649
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5650

W
Wu Yi 已提交
5651
    def _copy_param_info_from(self, other):
5652
        """
5653
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5654

Y
yuyang18 已提交
5655 5656 5657
        Notes: This is a very low level API. Users should not invoke it
        directly.

5658 5659 5660 5661 5662 5663 5664
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5665 5666 5667
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5668

W
Wu Yi 已提交
5669
        self.global_block()._copy_param_info_from(other.global_block())
5670

5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5682 5683 5684
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5685 5686
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5687
        self._parameters_on_pservers = other._parameters_on_pservers
5688
        self._endpoints = other._endpoints
5689
        self._ps_endpoint = other._ps_endpoint
5690 5691
        self._distributed_lookup_table = other._distributed_lookup_table

5692
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5693 5694
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5695

Y
yuyang18 已提交
5696 5697 5698
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5699 5700
        Args:
            other(Program): Other program
5701 5702 5703 5704
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5705 5706 5707 5708 5709

        Returns:
            None
        """
        if not isinstance(other, Program):
5710 5711 5712
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5713

5714 5715 5716 5717 5718
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5719 5720 5721

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5722 5723
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5724
            for var in list(block.vars.values()):
5725 5726 5727 5728 5729 5730 5731
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5732

5733
    def list_vars(self):
Y
yuyang18 已提交
5734
        """
5735
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5736

J
Jiabin Yang 已提交
5737
        Returns:
5738
            iterable Tensors: The Generator will yield every Tensor in this program.
5739 5740 5741 5742

        Examples:
            .. code-block:: python

5743 5744
                import paddle
                import paddle.static as static
5745

5746 5747 5748 5749 5750
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5751 5752
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5753

5754 5755
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5756
        """
5757
        for each_block in self.blocks:
5758
            for each_var in list(each_block.vars.values()):
5759 5760
                yield each_var

5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5771 5772 5773 5774
                import paddle
                import paddle.static as static

                paddle.enable_static()
5775

5776 5777
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5778
                hidden = static.nn.fc(x=data, size=10)
5779 5780
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5781 5782 5783 5784 5785 5786 5787

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5788 5789
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5967

5968
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5969
class Parameter(Variable):
5970
    """
5971
    Parameter is derived from Variable. A parameter is a persistable
5972
    Variable, and will be updated by optimizers after each iteration.
5973
    The training of a neural network is essentially the updating of
5974 5975
    its parameters.

5976
    Relative to a general Variable, a Parameter has several its own
5977 5978
    member variables:

5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5989 5990
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5991 5992
    """

5993 5994 5995 5996 5997 5998
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5999 6000 6001 6002 6003
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6004
        if len(shape) == 0:
6005 6006
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6007 6008 6009

        for each in shape:
            if each < 0:
6010 6011 6012
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6013 6014

        Variable.__init__(
6015 6016 6017 6018 6019 6020 6021
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6022 6023 6024 6025
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6026 6027
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6028
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6029

6030 6031
        self.need_clip = kwargs.get('need_clip', True)

6032 6033
        self.is_distributed = False

6034 6035
        self.is_parameter = True

F
fengjiayi 已提交
6036
    def __str__(self):
6037
        return self._to_readable_code()
F
fengjiayi 已提交
6038

F
update  
fengjiayi 已提交
6039 6040 6041
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6042

F
update  
fengjiayi 已提交
6043 6044 6045 6046 6047 6048 6049 6050
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6051 6052 6053 6054 6055 6056 6057 6058 6059
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6060 6061 6062 6063 6064 6065
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6066
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6067
            for attr_name in additional_attr:
6068 6069
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6070 6071
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6072 6073 6074 6075
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6076

6077 6078
class ParamBase(core.VarBase):
    """
6079 6080 6081
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6082 6083 6084
    The training of a neural network is essentially the updating of
    its ParamBase.

6085
    Relative to a general Tensor, a ParamBase has several its own
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6098 6099
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6130 6131
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6132 6133 6134 6135 6136 6137 6138

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6139 6140
        self.need_clip = kwargs.get('need_clip', True)

6141
        self.is_distributed = kwargs.get('is_distributed', False)
6142
        # self.block = default_main_program().global_block()
6143

6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6157
    def __str__(self):
6158
        """
6159
        Convert a ParamBase object to a readable string.
6160

6161
        Returns(str): A readable string.
6162 6163 6164 6165

        Examples:
            .. code-block:: python

6166
                import paddle
6167 6168 6169 6170 6171 6172 6173
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6174
        """
6175 6176
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6177

6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6189

6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6208 6209 6210 6211 6212 6213
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
        return new_param

6214 6215 6216
    __repr__ = __str__


Y
Yu Yang 已提交
6217
# program is a global instance.
Y
Yu Yang 已提交
6218 6219
_main_program_ = Program()
_startup_program_ = Program()
6220
_startup_program_._is_start_up_program_ = True
6221

6222

6223
def default_startup_program():
Y
Yu Yang 已提交
6224
    """
Y
yuyang18 已提交
6225 6226
    Get default/global startup program.

6227 6228
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6229

6230 6231
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6232

6233 6234
    Returns:
        Program: current default startup program.
6235

6236
    Returns type: 
6237 6238 6239 6240

    Examples:
        .. code-block:: python

6241
            import paddle
6242

6243
            paddle.enable_static()
6244 6245 6246 6247
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6248
    """
Y
Yu Yang 已提交
6249
    return _startup_program_
6250

6251

6252
def default_main_program():
Y
Yu Yang 已提交
6253
    """
6254
    This API can be used to get ``default main program`` which store the 
6255
    descriptions of Ops and tensors.
T
tangwei12 已提交
6256

6257
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6258
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6259

6260 6261
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6262
    :code:`default_main_program` when the program is not specified.
6263

6264
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6265

Y
Yu Yang 已提交
6266
    Returns:
6267
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6268 6269 6270 6271

    Examples:
        ..  code-block:: python

6272
            import paddle
6273

6274
            paddle.enable_static()
6275
            # Sample Network:
6276 6277 6278
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6279

6280 6281 6282
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6283
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6284
    """
Y
Yu Yang 已提交
6285
    return _main_program_
Y
Yu Yang 已提交
6286 6287 6288 6289 6290


def switch_main_program(program):
    """
    Switch the main program to a new program.
6291

Y
Yu Yang 已提交
6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6306
    Switch the startup program to a new program
Y
Yu Yang 已提交
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6319
@signature_safe_contextmanager
Y
Yu Yang 已提交
6320 6321
def program_guard(main_program, startup_program=None):
    """
6322 6323
    :api_attr: Static Graph

6324 6325 6326
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6327

G
guofei 已提交
6328
    Args:
6329 6330
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6331 6332 6333 6334
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6335
    Examples:
6336
       .. code-block:: python
T
tangwei12 已提交
6337

6338
          import paddle
Y
yuyang18 已提交
6339

6340 6341 6342 6343 6344
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6345
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6346 6347 6348

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6349

Y
Yu Yang 已提交
6350
    Examples:
6351
       .. code-block:: python
Y
yuyang18 已提交
6352

6353
          import paddle
6354

6355 6356 6357 6358 6359
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6360

Y
Yu Yang 已提交
6361
    """
6362
    from .data_feeder import check_type
6363 6364
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6365 6366
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6367
        check_type(startup_program, 'startup_program', Program,
6368
                   'paddle.static.program_guard')
6369 6370
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6371
        startup_program = switch_startup_program(startup_program)
6372 6373 6374 6375 6376 6377
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6378 6379


W
Wu Yi 已提交
6380
def _get_var(name, program=None):
X
xuwei06 已提交
6381
    """
Y
yuyang18 已提交
6382
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6383

X
xuwei06 已提交
6384 6385 6386
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6387
        If None, default_global_program() will be used.
X
xuwei06 已提交
6388 6389 6390 6391 6392 6393 6394

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6395
    assert isinstance(program, Program)
X
xuwei06 已提交
6396 6397

    return program.global_block().var(name)
6398 6399


S
rename  
sneaxiy 已提交
6400
@signature_safe_contextmanager
L
lujun 已提交
6401 6402
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6403
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6404
    _dygraph_tracer_ = tracer
6405
    core._switch_tracer(tracer)
M
minqiyang 已提交
6406

6407 6408 6409
    try:
        yield
    finally:
6410 6411
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6412 6413


S
rename  
sneaxiy 已提交
6414
@signature_safe_contextmanager
L
lujun 已提交
6415
def _dygraph_place_guard(place):
6416 6417 6418
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
6419 6420
    if _in_eager_mode():
        core.eager._set_expected_place(place)
6421 6422
    _set_dygraph_tracer_expected_place(place)

6423 6424 6425
    try:
        yield
    finally:
6426
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
6427 6428 6429
        if _in_eager_mode():
            core.eager._set_expected_place(_global_expected_place_)
        _set_dygraph_tracer_expected_place(_global_expected_place_)
6430 6431


6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6448 6449
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6450 6451 6452 6453 6454 6455 6456 6457 6458
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6459
            import paddle
6460

Z
Zhang Ting 已提交
6461 6462 6463
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6464
            if support_gpu:
Z
Zhang Ting 已提交
6465
                place = paddle.CUDAPlace(0)
6466 6467

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6468 6469 6470
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6471

Z
Zhang Ting 已提交
6472
            with paddle.static.device_guard("cpu"):
6473
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6474 6475
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6476
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6477
                out = paddle.reshape(data1, shape=shape)
6478

Z
Zhang Ting 已提交
6479 6480
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6481 6482 6483
            result = exe.run(fetch_list=[out])
    """

6484 6485 6486 6487 6488
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6489
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6490
        raise ValueError(
6491
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6492
            "when there is no need to specify device. But received %s" % device)
6493 6494
    if index:
        device = ":".join([device, index])
6495
    pre_device = switch_device(device)
6496 6497 6498 6499
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6500 6501 6502 6503 6504


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6505
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6506 6507 6508 6509 6510 6511 6512

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6513 6514
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6515 6516 6517 6518
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6519 6520
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6521 6522 6523 6524 6525 6526 6527 6528
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6529
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6530 6531 6532 6533 6534 6535 6536 6537 6538 6539

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6540
            import paddle
G
guofei 已提交
6541 6542

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6543
            res = paddle.get_flags(flags)
G
guofei 已提交
6544 6545 6546 6547 6548 6549
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6550 6551
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6552 6553 6554 6555 6556 6557 6558
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6559 6560
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6561 6562 6563 6564 6565 6566 6567 6568
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6569 6570 6571 6572 6573 6574 6575


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6576
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
6577 6578 6579 6580 6581 6582 6583 6584 6585
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6586

6587 6588 6589
    if (place == "device"):
        return core.Place()

6590
    # GPU
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6606 6607

    # XPU
6608 6609 6610 6611 6612 6613 6614 6615 6616 6617
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6631
    raise ValueError(
6632 6633
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret