framework.py 239.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
43
from paddle import _C_ops
Y
Yu Yang 已提交
44

45
__all__ = [
46 47 48 49
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
50
    'name_scope',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
54
    'mlu_places',
S
sneaxiy 已提交
55
    'cuda_pinned_places',
L
lujun 已提交
56
    'in_dygraph_mode',
57
    'is_compiled_with_cinn',
C
chengduo 已提交
58
    'is_compiled_with_cuda',
59
    'is_compiled_with_rocm',
60
    'is_compiled_with_xpu',
61
    'is_compiled_with_npu',
62
    'Variable',
63
    'require_version',
64
    'device_guard',
G
guofei 已提交
65 66
    'set_flags',
    'get_flags',
67
]
Y
Yu Yang 已提交
68

Q
qiaolongfei 已提交
69 70 71 72
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
73 74
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
75
_dygraph_tracer_ = None
76
_global_expected_place_ = None
77
_current_device = None
78
global_prog_seed = 0
79
_current_pipeline_stage = None
80
_global_flags_ = core.globals()
J
Jiabin Yang 已提交
81
core._disable_eager_mode()
82 83 84


@signature_safe_contextmanager
85
def _test_eager_guard(tracer=None):
J
Jiabin Yang 已提交
86
    core._enable_eager_mode()
87
    _C_ops.switch_to_eager_ops()
88 89 90 91
    if tracer is None:
        core._set_eager_tracer(_dygraph_tracer_)
    else:
        core._set_eager_tracer(tracer)
92
    try:
J
Jiabin Yang 已提交
93
        yield
94
    finally:
J
Jiabin Yang 已提交
95
        core._disable_eager_mode()
96
        _C_ops.switch_to_core_ops()
97 98


99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
206
def in_dygraph_mode():
L
lujun 已提交
207
    """
208

209 210 211 212 213 214 215
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
216 217

    Returns:
218
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
219 220 221 222

    Examples:
        .. code-block:: python

223 224 225 226 227 228 229 230
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
231 232

    """
L
lujun 已提交
233
    return _dygraph_tracer_ is not None
234 235


J
Jiabin Yang 已提交
236 237 238 239
def _in_eager_mode():
    return core._in_eager_mode() and in_dygraph_mode()


240 241 242
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
243
        ), "We don't support %s in imperative mode" % func.__name__
244 245 246 247 248 249 250 251
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
252 253 254 255 256 257 258 259 260
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
261
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
262 263 264 265 266
        return func(*args, **kwargs)

    return __impl__


267 268 269 270 271
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


272 273 274 275 276 277
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
278
# same base class.
279 280 281
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
282 283 284 285 286
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
287 288 289 290

    return __impl__


T
tangwei12 已提交
291 292
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


310 311
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
312
static_only = wrap_decorator(_static_only_)
313
fake_interface_only = wrap_decorator(_fake_interface_only_)
314 315


L
lujun 已提交
316 317
def _dygraph_tracer():
    return _dygraph_tracer_
318

W
Wu Yi 已提交
319

320 321 322 323
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
324
def _current_expected_place():
325 326 327
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
328 329 330 331 332 333 334 335 336 337 338
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
339 340 341 342 343 344 345 346 347 348 349 350
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
351 352 353 354 355 356 357 358 359 360 361 362
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.MLUPlace(0)
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
378
    if _in_eager_mode():
379
        return core.eager._set_expected_place(place)
J
Jiabin Yang 已提交
380
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
381 382


L
Leo Chen 已提交
383 384 385 386
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
387

L
Leo Chen 已提交
388 389 390 391 392 393 394 395 396 397 398 399
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
400
def _cpu_num():
401
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
402 403 404 405 406 407 408 409
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
410
        os.environ['CPU_NUM'] = str(1)
411
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
412 413 414 415 416 417 418 419 420 421
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
422 423


424 425 426 427 428 429 430 431 432
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


433 434 435 436 437 438 439 440 441
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


442 443 444 445 446 447 448 449 450
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
521 522 523 524
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

525
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
526 527 528 529

    Examples:
        .. code-block:: python

530
            import paddle
531
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
532 533 534 535
    """
    return core.is_compiled_with_cuda()


536 537 538 539 540 541 542 543 544 545
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
546
            support_gpu = paddle.device.is_compiled_with_rocm()
547 548 549 550
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
551
def cuda_places(device_ids=None):
L
lujun 已提交
552
    """
553 554 555 556
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
557
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
558 559

    If :code:`device_ids` is None, environment variable of
560
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
561
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
562
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
563
    If :code:`FLAGS_selected_gpus` is not set, all visible
564
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
565 566

    If :code:`device_ids` is not None, it should be the device
567
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
568
    the returned list would be 
C
Chen Weihang 已提交
569
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
570

571
    Parameters:
572
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
573 574

    Returns:
C
Chen Weihang 已提交
575
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
576 577 578 579

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
580 581
            import paddle
            import paddle.static as static
T
tangwei12 已提交
582

583 584
            # required: gpu
            
C
Chen Weihang 已提交
585 586 587
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
588 589

    """
S
sneaxiy 已提交
590 591 592
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
593
        device_ids = _cuda_ids()
S
sneaxiy 已提交
594 595 596 597 598
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


599 600 601 602
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
603 604 605 606 607 608 609 610 611 612 613
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
614 615 616 617 618 619 620
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
621

622 623
            # required: xpu

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
680
def cpu_places(device_count=None):
L
lujun 已提交
681
    """
C
Chen Weihang 已提交
682
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
683

S
add doc  
sneaxiy 已提交
684 685
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
686 687
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
688 689
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
690

691 692
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
693 694

    Returns:
C
Chen Weihang 已提交
695
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
696 697 698 699

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
700 701
            import paddle
            import paddle.static as static
T
tangwei12 已提交
702

C
Chen Weihang 已提交
703 704 705
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
706 707
    """

S
sneaxiy 已提交
708 709 710 711 712 713
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
714
    """
715
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
716 717 718

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
719 720 721 722
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
723

724 725
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
726 727

    Returns:
728
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
729 730 731 732

    Examples:
        .. code-block:: python

733
            import paddle.fluid as fluid
L
lujun 已提交
734 735 736 737 738
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
739 740 741
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
742 743
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
744 745


746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
814
@signature_safe_contextmanager
815 816
def name_scope(prefix=None):
    """
817 818
    :api_attr: Static Graph

819
    Generate hierarchical name prefix for the operators in Static Graph.
820

T
Tao Luo 已提交
821 822 823
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
824
        Don't use it in dygraph, since it will cause memory leak.
825 826

    Args:
T
Tao Luo 已提交
827
        prefix(str, optional): prefix. Default is none.
828 829 830

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
831

832 833 834
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
835
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
836
             b = a + 1
837
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
838
                c = b * 1
839
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
840
                d = c / 1
841 842 843
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
844 845 846
                g = f - 1

          # Op are created in the default main program.  
847
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
863 864
    """
    # TODO(panyx0718): Only [0-9a-z].
865
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
866 867 868
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
869
        assert prefix, "namescope prefix can not be empty."
870 871
        global _name_scope
        _name_scope = _name_scope.child(prefix)
872 873 874 875
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
876 877 878 879 880 881 882 883 884 885 886 887


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
888 889 890
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
891 892 893 894


def grad_var_name(var_name):
    """
895 896
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
897 898 899
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
900

901
def convert_np_dtype_to_dtype_(np_dtype):
902 903
    """
    Convert the data type in numpy to the data type in Paddle
904

905
    Args:
906
        np_dtype(np.dtype): the data type in numpy.
907

908 909
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
910 911

    """
912 913
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
914
        return core.VarDesc.VarType.FP32
915
    elif dtype == np.float64:
916
        return core.VarDesc.VarType.FP64
917
    elif dtype == np.float16:
918
        return core.VarDesc.VarType.FP16
919
    elif dtype == np.int32:
920
        return core.VarDesc.VarType.INT32
921
    elif dtype == np.int16:
922
        return core.VarDesc.VarType.INT16
923
    elif dtype == np.int64:
924
        return core.VarDesc.VarType.INT64
925
    elif dtype == np.bool:
926
        return core.VarDesc.VarType.BOOL
927
    elif dtype == np.uint16:
928 929 930
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
931 932
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
933 934
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
935 936 937 938
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
939
    else:
M
minqiyang 已提交
940
        raise ValueError("Not supported numpy dtype %s" % dtype)
941 942 943


def dtype_is_floating(dtype):
944 945 946
    """
    Check the data type is floating or not.
    Args:
947
        dtype(np.dtype|core.VarDesc.VarType): data type.
948 949 950 951 952
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
953
    if not isinstance(dtype, core.VarDesc.VarType):
954 955
        dtype = convert_np_dtype_to_dtype_(dtype)

956 957 958 959
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
960 961


Y
Yang Yang(Tony) 已提交
962
def _debug_string_(proto, throw_on_error=True):
963 964 965 966 967 968 969 970 971 972 973
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
974
    error_fields = list()
Y
Yang Yang(Tony) 已提交
975
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
976 977
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
978 979 980
    return proto.__str__()


981 982 983 984 985 986 987 988 989 990
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

991 992 993 994 995 996 997 998
    if _in_eager_mode():
        eager_tensor = core.eager.EagerTensor(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [], name, type
            if type else core.VarDesc.VarType.LOD_TENSOR, True
            if persistable else False)
        eager_tensor.retain_grads()
        return eager_tensor
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
1010 1011
            if _in_eager_mode():
                return issubclass(t, core.eager.EagerTensor)
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
1022 1023
            if _in_eager_mode():
                return issubclass(t, EagerParamBase)
1024 1025 1026 1027 1028 1029
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1030
class Variable(object):
1031
    """
J
Jiabin Yang 已提交
1032
    **Notes**:
1033
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1034

1035 1036
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1037 1038 1039
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1040
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1041 1042
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1043

1044
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1045
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1046

T
tianshuo78520a 已提交
1047
    Most of a Variable's member variables can be set to be None. It mean
1048
    it is not available or will be specified later.
1049

1050
    Examples:
1051 1052
        In Static Graph Mode:

1053 1054
        .. code-block:: python

1055
            import paddle.fluid as fluid
1056
            cur_program = fluid.Program()
1057 1058 1059 1060
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1061

J
Jiabin Yang 已提交
1062
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1063 1064 1065 1066 1067 1068 1069 1070 1071

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1072 1073
    """

Y
Yu Yang 已提交
1074 1075
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1076
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1077 1078 1079 1080
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1081
                 capacity=None,
Q
QI JUN 已提交
1082
                 persistable=None,
F
fengjiayi 已提交
1083
                 error_clip=None,
Y
Yu Yang 已提交
1084
                 stop_gradient=False,
F
fengjiayi 已提交
1085
                 is_data=False,
H
Huihuang Zheng 已提交
1086
                 need_check_feed=False,
H
hong 已提交
1087
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1088
                 **kwargs):
Y
Yu Yang 已提交
1089 1090
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1091
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1092

Y
Yu Yang 已提交
1093
        if dtype is not None:
1094
            if not isinstance(dtype, core.VarDesc.VarType):
1095
                dtype = convert_np_dtype_to_dtype_(dtype)
1096

S
Steffy-zxf 已提交
1097 1098 1099 1100
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1101 1102
        self.belong_to_optimizer = belong_to_optimizer

1103 1104 1105 1106 1107
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1108

1109 1110 1111
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1112

1113 1114 1115
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1116 1117
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1118 1119
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1120

1121
        if shape is not None:
1122
            if is_new_var:
1123 1124 1125 1126 1127 1128
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1129 1130
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1131 1132 1133 1134 1135 1136 1137
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1138 1139
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1140 1141 1142 1143 1144 1145 1146 1147 1148
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1149 1150
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1151 1152 1153 1154 1155 1156 1157 1158 1159
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1160 1161
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1162 1163
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1164

1165 1166
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1167

1168 1169 1170 1171 1172 1173 1174
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1175

1176 1177
        self.block.vars[name] = self
        self.op = None
1178
        self.stop_gradient = stop_gradient
1179
        self.is_data = is_data
Y
Yu Yang 已提交
1180

1181 1182 1183
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1184 1185
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1186

1187
        Returns:
J
Jiabin Yang 已提交
1188
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1189 1190 1191 1192

        Examples:
            .. code-block:: python

1193
                import paddle
1194

1195 1196 1197 1198
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1199

1200 1201
                # create a detached Variable
                y = x.detach()
1202
        """
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1218

1219
    @fake_interface_only
1220
    def numpy(self):
1221
        """
J
Jiabin Yang 已提交
1222
        **Notes**:
T
tianshuo78520a 已提交
1223
            **This API is ONLY available in Dygraph mode**
1224

J
Jiabin Yang 已提交
1225
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1226 1227 1228 1229 1230

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1231
            ndarray: dtype is same as current Variable
1232 1233 1234 1235 1236 1237

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1238
                from paddle.fluid.dygraph import Linear
1239 1240 1241 1242
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1243
                    linear = Linear(32, 64)
1244
                    data = to_variable(data)
1245
                    x = linear(data)
1246 1247 1248
                    print(x.numpy())

        """
1249
        pass
1250

1251
    @fake_interface_only
1252
    def backward(self, retain_graph=False):
1253
        """
J
Jiabin Yang 已提交
1254
        **Notes**:
T
tianshuo78520a 已提交
1255
            **This API is ONLY available in Dygraph mode**
1256

1257
        Run backward of current Graph which starts from current Tensor.
1258

J
Jiabin Yang 已提交
1259
        Args:
1260 1261 1262 1263
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1264

J
Jiabin Yang 已提交
1265 1266
        Returns:
            NoneType: None
1267 1268 1269 1270 1271

        Examples:
            .. code-block:: python

                import numpy as np
1272 1273
                import paddle
                paddle.disable_static()
1274 1275

                x = np.ones([2, 2], np.float32)
1276 1277 1278 1279 1280 1281 1282
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1283 1284
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1285
                loss.backward()
1286 1287

        """
1288
        pass
1289

1290
    @fake_interface_only
1291
    def gradient(self):
1292
        """
J
Jiabin Yang 已提交
1293
        **Notes**:
T
tianshuo78520a 已提交
1294
            **This API is ONLY available in Dygraph mode**
1295 1296 1297

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1298
        Returns:
1299
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1300 1301 1302 1303 1304 1305 1306

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1307
                # example1: return ndarray
1308 1309 1310 1311 1312 1313 1314 1315 1316
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1317
                    loss2.backward()
1318 1319
                    print(loss2.gradient())

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1333
        """
1334
        pass
1335

1336
    @fake_interface_only
1337
    def clear_gradient(self):
1338
        """
J
Jiabin Yang 已提交
1339
        **Notes**:
T
tianshuo78520a 已提交
1340
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1341 1342

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1343

J
Jiabin Yang 已提交
1344
        Clear  (set to ``0`` ) the Gradient of Current Variable
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1363
                    loss2.backward()
1364 1365 1366 1367 1368
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1369
        pass
X
Xin Pan 已提交
1370

1371 1372 1373 1374
    @fake_interface_only
    def register_hook(self, hook):
        pass

1375
    def __str__(self):
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1392 1393
                import paddle
                import paddle.static as static
1394

1395 1396 1397
                paddle.enable_static()

                cur_program = static.Program()
1398 1399 1400 1401 1402 1403
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1404 1405
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1406
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1407 1408
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1409 1410
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1411
        else:
1412 1413
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1414

1415
        if self.is_parameter:
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1426
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1427
        dist_context = get_default_distributed_context()
1428 1429
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1430
            var_str += ", {name} = {value}".format(
1431
                name="dist_attr", value=dist_tensor)
1432

1433
        return var_str
Y
Yang Yang(Tony) 已提交
1434

F
update  
fengjiayi 已提交
1435
    def to_string(self, throw_on_error, with_details=False):
1436 1437 1438
        """
        Get debug string.

J
Jiabin Yang 已提交
1439 1440 1441 1442 1443
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1444

1445 1446
        Returns:
            str: The debug string.
1447 1448 1449 1450 1451

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1452
                import paddle
1453

1454
                paddle.enable_static()
1455 1456 1457 1458 1459
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1460
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1461
                print("=============with detail===============")
1462
                print(new_variable.to_string(True, True))
1463
        """
F
update  
fengjiayi 已提交
1464 1465
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1466
        protostr = self.desc.serialize_to_string()
1467
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1468 1469
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1470
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1471
            for attr_name in additional_attr:
1472 1473 1474
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1475
        return res_str
1476 1477 1478

    __repr__ = __str__

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1506
    @property
1507
    def stop_gradient(self):
J
Jiabin Yang 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1523 1524
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1525 1526 1527
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1528 1529
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1530 1531 1532 1533
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1534
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1535 1536
                assert (out1.gradient() == 0).all()
        """
1537
        return self.desc.stop_gradient()
1538

1539 1540
    @stop_gradient.setter
    def stop_gradient(self, s):
1541
        self.desc.set_stop_gradient(s)
1542

1543 1544
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1566
        return self.desc.persistable()
1567

Y
Yu Yang 已提交
1568 1569
    @persistable.setter
    def persistable(self, p):
1570
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1571

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1597 1598
    @property
    def name(self):
J
Jiabin Yang 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1615
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1616

1617 1618 1619 1620 1621 1622
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1623 1624
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1625

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1637 1638
    @name.setter
    def name(self, new_name):
1639
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1640

Y
Yu Yang 已提交
1641 1642
    @property
    def shape(self):
J
Jiabin Yang 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1660
        # convert to tuple, make it as same as numpy API.
1661
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1662 1663

    @property
F
fengjiayi 已提交
1664
    def dtype(self):
J
Jiabin Yang 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1681
        return self.desc.dtype()
Y
Yu Yang 已提交
1682 1683 1684

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1706 1707 1708
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1709
        return self.desc.lod_level()
Y
Yu Yang 已提交
1710

Y
Yu Yang 已提交
1711 1712
    @property
    def type(self):
J
Jiabin Yang 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1729
        return self.desc.type()
Y
Yu Yang 已提交
1730

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1814
    def _set_error_clip(self, error_clip):
1815 1816 1817 1818 1819 1820 1821 1822 1823
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1824 1825
        self.error_clip = error_clip

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1866
            raise ValueError("slice step can not be zero")
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1942
    def _cloneVar(self, copy=False):
1943 1944
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1945 1946
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1947 1948 1949 1950
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1951
        new_var = self._cloneVar()
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1962
        new_var = self._cloneVar()
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1973
                return self._cloneVar(True)
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1992
                return self._cloneVar(True)
1993
            index = int(item)
1994
            if (index > 0 and index >= self.shape[axis]) \
1995 1996 1997 1998 1999 2000 2001
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2002
        return _getitem_impl_(self, item)
2003

2004
    def __setitem__(self, item, value):
2005
        return _setitem_impl_(self, item, value)
2006

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2153 2154 2155 2156
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2157 2158 2159 2160
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2161 2162 2163 2164 2165 2166 2167
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2277

F
fengjiayi 已提交
2278 2279 2280
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2281

2282 2283
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2284 2285 2286 2287
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2288
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2289 2290 2291 2292 2293
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2294 2295 2296 2297
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2307
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2308 2309 2310 2311 2312 2313
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2314 2315 2316 2317 2318 2319 2320 2321
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2322 2323
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2324 2325
        return self.op_proto_map[type]

2326 2327
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2328
        custom_op_names = []
2329 2330 2331
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2332 2333 2334
                custom_op_names.append(proto.type)

        return custom_op_names
2335

2336 2337 2338 2339
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2340
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2341
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2342 2343
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2344 2345
        }

F
fengjiayi 已提交
2346

X
Xin Pan 已提交
2347
class Operator(object):
2348
    """
2349 2350 2351 2352 2353 2354 2355
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2356
        type(str): The type of operator. Default None.
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2377
        Block.append_op or Block._prepend_op instead.
2378 2379 2380 2381

    Examples:
        .. code-block:: python

2382
            import paddle.fluid as fluid
2383
            cur_program = fluid.Program()
2384 2385 2386 2387 2388
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2389
    """
2390
    OP_WITHOUT_KERNEL_SET = {
2391 2392
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2393
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2394 2395
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2396
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2397 2398
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2399
    }
2400

Y
Yu Yang 已提交
2401 2402
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2403
                 desc,
Y
Yu Yang 已提交
2404 2405 2406
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2407
                 attrs=None):
L
lujun 已提交
2408
        if in_dygraph_mode():
2409 2410
            if type is None:
                raise ValueError(
2411
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2412
            self._type = type
M
minqiyang 已提交
2413
            self.attrs = attrs if attrs else {}
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2428
                )] = self.block.program._op_role
2429 2430 2431

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2432 2433
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2434 2435 2436 2437 2438

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2439 2440 2441 2442 2443
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2444 2445 2446
                return
            if type is None:
                raise ValueError(
2447
                    "`type` to initialized an Operator can not be None.")
2448 2449
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2450 2451 2452 2453 2454 2455 2456
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2457 2458 2459 2460 2461 2462 2463

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2481 2482 2483 2484 2485
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2486

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2500
                        if not isinstance(in_args, (list, tuple)):
2501 2502 2503 2504 2505 2506
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2507
                        for index, arg in enumerate(in_args):
2508 2509 2510 2511
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2512
                            elif isinstance(arg, (Variable, core.VarBase)):
2513
                                in_arg_names.append(cpt.to_text(arg.name))
2514
                            else:
2515 2516 2517 2518
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2519 2520
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2545 2546 2547 2548
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2549
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2550
                        if not in_dygraph_mode():
2551 2552 2553 2554
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2573
    def _has_kernel(self, op_type):
2574 2575
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2576
    def to_string(self, throw_on_error):
2577
        """
2578 2579
        Get debug string.

2580
        Args:
2581 2582
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2583

2584 2585
        Returns:
            str: The debug string.
2586 2587

        """
2588
        protostr = self.desc.serialize_to_string()
2589
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2590 2591
        return _debug_string_(proto, throw_on_error)

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2624
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2677
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2678
        dist_context = get_default_distributed_context()
2679 2680
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2681
            attrs_str += ", {name} = {value}".format(
2682
                name="dist_attr", value=dist_op)
2683

2684 2685
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2686 2687
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2688 2689 2690 2691 2692
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2693
    def __str__(self):
2694
        return self._to_readable_code()
2695 2696 2697

    __repr__ = __str__

F
fengjiayi 已提交
2698 2699
    @property
    def type(self):
2700
        return self.desc.type()
F
fengjiayi 已提交
2701 2702

    def input(self, name):
2703
        r"""
2704
        Get the input arguments according to the input parameter name.
2705

2706 2707
        Args:
            name(str): The input parameter name.
2708

2709 2710 2711
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2712
        """
F
fengjiayi 已提交
2713 2714
        return self.desc.input(name)

W
Wu Yi 已提交
2715
    def _rename_input(self, old_name, new_name):
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2726
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2727

W
Wu Yi 已提交
2728
    def _rename_output(self, old_name, new_name):
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2739
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2740

F
fengjiayi 已提交
2741 2742 2743 2744
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2745 2746 2747 2748 2749 2750 2751 2752
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2753
    def output(self, name):
2754
        r"""
2755
        Get output arguments by the output parameter name.
2756

2757 2758
        Args:
            name(str): The output parameter name.
2759

2760 2761 2762
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2763
        """
F
fengjiayi 已提交
2764 2765 2766 2767 2768 2769
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2770 2771 2772 2773 2774 2775 2776 2777
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2778
    def has_attr(self, name):
2779
        """
2780 2781
        Whether this Operator has the attribute with name or not.

2782
        Args:
2783
            name(str): the attribute name.
2784

2785 2786
        Returns:
            bool: True if has this attribute.
2787 2788

        """
F
fengjiayi 已提交
2789 2790 2791
        return self.desc.has_attr(name)

    def attr_type(self, name):
2792
        """
2793
        Get the type of attribute by attribute's name.
2794

2795 2796
        Args:
            name(str): the attribute name.
2797

2798 2799
        Returns:
            core.AttrType: the attribute type.
2800
        """
F
fengjiayi 已提交
2801 2802
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2803
    def _set_attr(self, name, val):
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2814 2815
        self._update_desc_attr(name, val)

2816 2817 2818
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2830 2831
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2832 2833
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2834
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2835 2836 2837 2838
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2839
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2840

F
fengjiayi 已提交
2841 2842 2843 2844 2845
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2846
        """
2847 2848
        Get the attribute by name.

2849
        Args:
2850
            name(str): the attribute name.
2851

2852 2853
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2854 2855
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2856
        return self.desc.attr(name)
Y
Yu Yang 已提交
2857

W
Wu Yi 已提交
2858
    def _block_attr_id(self, name):
2859
        """
G
gongweibao 已提交
2860
        Get the block attribute's id by name.
2861

2862 2863
        Args:
            name(str): the attribute name.
2864

2865 2866
        Returns:
            int: the block index.
2867
        """
W
Wu Yi 已提交
2868
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2869

W
Wu Yi 已提交
2870
    def _block_attr(self, name):
G
gongweibao 已提交
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2881
        id = self._block_attr_id(name)
G
gongweibao 已提交
2882 2883 2884
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2885
    def _blocks_attr(self, name):
G
gongweibao 已提交
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2896
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2897 2898 2899 2900 2901
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2902
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2913
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2914

J
JiayiFeng 已提交
2915
    def all_attrs(self):
F
fengjiayi 已提交
2916
        """
2917 2918 2919
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2920
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2921 2922 2923 2924
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2925 2926
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2927
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2928 2929 2930
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2931
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2932 2933 2934 2935
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2936 2937
        return attr_map

2938 2939 2940
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2941 2942 2943 2944

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2945 2946 2947
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2948 2949 2950 2951 2952 2953 2954 2955

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2956 2957
            return False

2958 2959 2960 2961 2962 2963
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
2989

Y
Yu Yang 已提交
2990
class Block(object):
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3005
        use `Program._create_block()` to create a block.
3006 3007 3008 3009

    Examples:
        .. code-block:: python

3010 3011 3012
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3013 3014 3015 3016 3017 3018 3019 3020 3021
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3022
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3023
        self.desc = program.desc.block(idx)
3024
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3025
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3026
        self.program = program
3027
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3028

3029
    def __str__(self):
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3064
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3076

F
fengjiayi 已提交
3077 3078
    def to_string(self, throw_on_error, with_details=False):
        """
3079 3080
        Get debug string.

F
fengjiayi 已提交
3081 3082
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3083
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3084
            with_details(bool): more details about variables and parameters
3085 3086
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3087

3088 3089
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3090 3091 3092 3093
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
3094
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3095 3096
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3097
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3098
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3099
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3100
            for op in self.ops:
F
fengjiayi 已提交
3101 3102
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3103 3104 3105
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3106 3107
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3108 3109
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3110 3111 3112

    __repr__ = __str__

Y
Yu Yang 已提交
3113 3114
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3115
        return self.desc.parent
Y
Yu Yang 已提交
3116

Y
Yu Yang 已提交
3117 3118 3119 3120
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3121
    def _set_forward_block_idx(self, idx):
3122 3123 3124 3125 3126 3127 3128 3129 3130
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3131
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3132

3133 3134 3135 3136 3137 3138 3139 3140
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3141 3142
    @property
    def idx(self):
Y
Yu Yang 已提交
3143
        return self.desc.id
Y
Yu Yang 已提交
3144

Q
Qiao Longfei 已提交
3145
    def var(self, name):
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3159
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3160 3161 3162
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3163 3164
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3165
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3166
        return v
Q
Qiao Longfei 已提交
3167

X
Xin Pan 已提交
3168
    def _find_var_recursive(self, name):
3169 3170 3171 3172 3173 3174 3175
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3176
            Variable: the Variable with the giving name. Or None if not found.
3177
        """
Y
Yu Yang 已提交
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3202
        return None
Y
Yu Yang 已提交
3203

X
Xin Pan 已提交
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3223

Q
Qiao Longfei 已提交
3224
    def all_parameters(self):
3225
        return list(self.iter_parameters())
3226

3227
    def iter_parameters(self):
M
minqiyang 已提交
3228
        return (item[1] for item in six.iteritems(self.vars)
3229
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3230

Y
Yu Yang 已提交
3231
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3232 3233 3234
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3235 3236 3237
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3238
        return var
Y
Yu Yang 已提交
3239

Q
Qiao Longfei 已提交
3240 3241 3242
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3243
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3244 3245
        """
        Rename variable in vars and ops' inputs and outputs
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3258
        """
M
minqiyang 已提交
3259 3260
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3261

T
typhoonzero 已提交
3262
        if not self.has_var(name):
3263
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3264 3265
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3266
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3267 3268 3269 3270 3271 3272
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3273
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3274 3275 3276 3277
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3278
        orig_var_type = v.type
M
minqiyang 已提交
3279
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3280
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3281
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3282
        if var_type == "Parameter":
L
Leo Chen 已提交
3283 3284
            if in_dygraph_mode():
                var = ParamBase(
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3295 3296
                var = Parameter(
                    self,
3297 3298 3299 3300 3301 3302 3303 3304 3305
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3306
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3307 3308
            var = Variable(
                self,
T
typhoonzero 已提交
3309
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3310 3311 3312 3313
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3314
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3315 3316 3317
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3318
        self._sync_with_cpp()
3319
        return var
T
typhoonzero 已提交
3320

3321 3322 3323
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3324
        self.desc._remove_var(cpt.to_bytes(name))
3325 3326
        del self.vars[name]

Y
Yu Yang 已提交
3327 3328
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3329
        param = None
L
Leo Chen 已提交
3330
        if in_dygraph_mode():
3331 3332 3333 3334
            if _in_eager_mode():
                param = EagerParamBase(*args, **kwargs)
            else:
                param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3335 3336
        else:
            param = Parameter(global_block, *args, **kwargs)
3337

3338
        if 'initializer' in kwargs:
3339 3340 3341 3342 3343

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3344
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3345
                        # are treated as initialization ops that cause error.
3346
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3347 3348 3349 3350 3351
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3352
                            continue
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3364
                # TODO already inited, do nothing, should log a warning
3365 3366 3367
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3368
        return param
Y
Yu Yang 已提交
3369

Y
Yu Yang 已提交
3370
    def append_op(self, *args, **kwargs):
3371 3372 3373 3374 3375 3376
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3377
        if in_dygraph_mode():
3378
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3379
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3380
            type = kwargs.get("type", None)
3381 3382 3383
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3384
                type=type,
M
minqiyang 已提交
3385 3386
                inputs=None,
                outputs=None,
3387
                attrs=attrs)
3388

M
minqiyang 已提交
3389 3390 3391
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3392
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3393 3394

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3395
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3396 3397
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
Z
zyfncg 已提交
3398 3399
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3400
        else:
3401 3402
            from paddle.fluid.dygraph.base import param_guard

3403
            op_desc = self.desc.append_op()
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3417

M
minqiyang 已提交
3418
            self.ops.append(op)
M
minqiyang 已提交
3419

3420 3421
        return op

W
Wu Yi 已提交
3422
    def _insert_op(self, index, *args, **kwargs):
3423 3424 3425 3426 3427 3428 3429 3430 3431
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3432
        self._sync_with_cpp()
F
fangshuixun007 已提交
3433
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3434

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3452 3453 3454 3455 3456 3457 3458 3459 3460
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3461 3462
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3463
        self.desc._remove_op(index, index + 1)
3464 3465
        del self.ops[index]

W
Wu Yi 已提交
3466
    def _slice_ops(self, start, end):
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3477
        return self.ops[start:end]
Y
Yancey1989 已提交
3478

W
Wu Yi 已提交
3479
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3480
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3481 3482
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3483
            op = Operator(
J
Jiabin Yang 已提交
3484
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3485

J
Jiabin Yang 已提交
3486
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3487
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3488 3489
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3490
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3491
        else:
3492 3493 3494 3495 3496 3497 3498 3499
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3500
            self.ops.insert(0, op)
3501

Y
Yu Yang 已提交
3502 3503
        return op

W
Wu Yi 已提交
3504
    def _sync_with_cpp(self):
3505
        """
3506 3507
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3508
        """
Q
Qiao Longfei 已提交
3509 3510 3511
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3529

3530
        # sync variables removed from c++ end
3531
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3532
            if not self.desc.find_var(cpt.to_bytes(var)):
3533 3534
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3535
        # sync operators from cpp
3536 3537 3538 3539
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3556 3557 3558 3559 3560

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3561
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3562 3563 3564 3565 3566 3567 3568

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3582 3583 3584 3585
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3586
    def _copy_param_info_from(self, other):
3587
        """
3588 3589
        Copy the information of parameters from the other block.

3590
        Args:
3591 3592 3593 3594 3595
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3596 3597 3598 3599 3600

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3601 3602
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3603
        for p in other.iter_parameters():
3604 3605 3606
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3607 3608
                # if the Parameter is pruned, v may be None
                continue
3609
            assert isinstance(v, Variable)
3610
            new_p = None
L
Leo Chen 已提交
3611 3612
            if in_dygraph_mode():
                new_p = ParamBase(
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3624 3625
                new_p = Parameter(
                    block=self,
3626 3627 3628
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3629 3630
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3631 3632 3633 3634 3635 3636
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3637 3638
            self.vars[new_p.name] = new_p

3639
    def _clone_variable(self, var, force_persistable=True):
3640 3641
        """
        Clone a variable into current block.
3642

3643 3644
        Args:
            var: the variable to be cloned.
3645 3646 3647
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3648 3649

        Returns:
3650
            Variable: the new  variable cloned from 'var' in current block.
3651 3652
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3653 3654 3655 3656 3657
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3658 3659
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3660
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3661 3662 3663 3664 3665 3666
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3667
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3668 3669
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3670 3671 3672 3673 3674 3675 3676
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3677
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3678 3679
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3680
        return ret_var
3681

Y
Yu Yang 已提交
3682

3683 3684 3685 3686 3687 3688
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3800
    def remove_input_by_id(self, node_id):
3801 3802 3803 3804 3805 3806
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3807
        self.node.remove_input(node_id)
3808

3809
    def remove_input(self, node):
3810 3811 3812 3813
        """
        Remove a node from inputs.

        Args:
3814
            node(IrNode): the node being removed.
3815
        """
3816
        self.node.remove_input(node.node)
3817

3818
    def append_input(self, node):
3819 3820 3821 3822
        """
        Append a node in inputs.

        Args:
3823
            node(IrNode): the node being appended.
3824
        """
3825
        self.node.append_input(node.node)
3826 3827 3828 3829 3830 3831 3832 3833

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3834
    def remove_output_by_id(self, node_id):
3835 3836 3837 3838 3839 3840
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3841
        self.node.remove_output(node_id)
3842

3843
    def remove_output(self, node):
3844 3845 3846 3847
        """
        Remove a node from outputs.

        Args:
3848
            node(IrNode): the node being removed.
3849
        """
3850
        self.node.remove_output(node.node)
3851

3852
    def append_output(self, node):
3853 3854 3855 3856
        """
        Append a node in outputs.

        Args:
3857
            node(IrNode): the node being appended.
3858
        """
3859
        self.node.append_output(node.node)
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3907
            "The node variable description can not be None."
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3918
            "The node variable description can not be None."
3919 3920
        return self.node.var().persistable()

3921 3922 3923 3924 3925 3926 3927 3928
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3929
            "The node variable description can not be None."
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3940
            "The node variable description can not be None."
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3951
            "The node variable description can not be None."
3952 3953
        return self.node.var().shape()

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4001
            "The node operator description can not be None."
4002 4003
        self.node.op()._rename_input(old_input_name, new_input_name)

4004 4005 4006 4007 4008 4009 4010 4011 4012
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4013
            "The node operator description can not be None."
4014 4015
        self.node.op()._rename_output(old_output_name, new_output_name)

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4027
            "The node operator description can not be None."
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4041
            "The node operator description can not be None."
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4052
            "The node operator description can not be None."
4053 4054
        return self.node.op().set_type(new_type)

4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4070
            "The node operator description can not be None."
4071 4072 4073 4074
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
4075
                all(isinstance(v, Block) for v in val):
4076 4077
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4078
                isinstance(val, core.ProgramDesc):
4079 4080 4081 4082
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4083 4084 4085 4086 4087 4088 4089 4090
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4091
            "The node operator description can not be None."
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4102
            "The node operator description can not be None."
4103 4104
        return self.node.op().output_arg_names()

4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4126 4127
class IrGraph(object):
    """
4128
    Python IrGraph. Beneath it is a core.Graph, which is used for
4129
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4130 4131
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4132 4133 4134 4135
    """

    def __init__(self, graph, for_test=False):
        """
4136 4137
        Construct an IrGraph using core.Graph.

4138 4139 4140 4141 4142 4143 4144 4145 4146
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4147 4148 4149 4150
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4151 4152 4153
        Warns:
            The method only clones the graph structure, not its attributes.

4154 4155 4156
        Returns:
            IrGraph: A new and duplicated graph.
        """
4157
        g = self.graph.clone()
4158 4159
        return IrGraph(g, self._for_test)

4160
    def is_test(self):
4161 4162 4163
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4164 4165
        return self._for_test

W
WangZhen 已提交
4166
    def all_nodes(self):
4167 4168 4169
        """
        Return all nodes included in the graph as a set.
        """
4170
        return {IrNode(node) for node in self.graph.nodes()}
4171

4172
    def all_var_nodes(self):
4173 4174 4175
        """
        Return all variable nodes included in the graph as a set.
        """
4176
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4177

4178
    def all_persistable_nodes(self):
4179 4180 4181
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4182 4183 4184 4185 4186
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4187
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4188

4189
    def all_op_nodes(self):
4190 4191 4192
        """
        Return all operator nodes included in the graph as a set.
        """
4193
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4194

4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4212
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4224
            IrVarNode: the created persistable variable node.
4225
        """
4226 4227 4228 4229 4230
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4231
        return IrVarNode(self.graph.create_var_node(var_desc))
4232 4233

    def create_var_node(self, name, var_type, shape, var_dtype):
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4245
            IrVarNode: the created variable node.
4246 4247
        """

4248 4249 4250 4251
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4252
        return IrVarNode(self.graph.create_var_node(var_desc))
4253

4254 4255 4256 4257 4258 4259
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4260
    def create_var_node_from_desc(self, var_desc):
4261 4262 4263 4264 4265 4266 4267 4268
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4269
            IrVarNode: the created variable node.
4270
        """
4271
        return IrVarNode(self.graph.create_var_node(var_desc))
4272 4273

    def create_op_node(self, op_type, attrs, inputs, outputs):
4274 4275 4276 4277 4278 4279 4280
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4281
            outputs(dict): the outputs of the operator node.
4282 4283

        Returns:
4284
            IrOpNode: the created operator node.
4285
        """
4286 4287
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4288
        for attr, value in six.iteritems(attrs):
4289
            self._update_desc_attr(op_desc, attr, value)
4290
        for input_name, var_nodes in six.iteritems(inputs):
4291 4292 4293 4294
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4295
        for output_name, var_nodes in six.iteritems(outputs):
4296 4297 4298 4299
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4300
        return IrOpNode(self.graph.create_op_node(op_desc))
4301 4302

    def create_op_node_from_desc(self, op_desc):
4303 4304 4305 4306 4307 4308 4309
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4310
            IrOpNode: the created operator node.
4311
        """
4312
        return IrOpNode(self.graph.create_op_node(op_desc))
4313 4314

    def update_input_link(self, old_input_node, new_input_node, op_node):
4315 4316 4317 4318
        """
        Update the input's link of a operator node.

        Args:
4319 4320 4321
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4322
        """
4323
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4324
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4325
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4326 4327 4328 4329
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4330
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4331

4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4342
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4343
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4344 4345 4346 4347 4348 4349
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4350
    def link_to(self, node_in, node_out):
4351 4352 4353 4354
        """
        Connect two nodes.

        Args:
4355 4356
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4357
        """
4358 4359 4360 4361
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4362 4363
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4364 4365

    def safe_remove_nodes(self, remove_nodes):
4366 4367 4368 4369 4370 4371 4372
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4373
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4374 4375 4376 4377
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4378 4379
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4380

Z
Zhen Wang 已提交
4381 4382 4383 4384 4385 4386 4387 4388
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4389
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4390 4391 4392 4393
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4394
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4395 4396 4397
                        ]
                    else:
                        var_nodes[each_var_name].append(
4398 4399
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4400 4401
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4402
    def has_circle(self):
4403 4404 4405 4406 4407 4408
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4409 4410 4411
        return core.has_circle(self.graph)

    def graph_num(self):
4412 4413 4414 4415 4416 4417
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4418 4419 4420
        return core.graph_num(self.graph)

    def topology_sort(self):
4421 4422 4423
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4424
        Notes: the `graph` can not contain a circle.
4425 4426

        Returns:
Z
Zhen Wang 已提交
4427
            list(IrNode): nodes in topology order.
4428
        """
4429
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4430
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4431 4432

    def build_adjacency_list(self):
4433 4434 4435 4436
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4437
            dict{IrNode: set(IrNode)}: the adjacency list.
4438
        """
4439 4440 4441 4442 4443
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4444

4445 4446 4447 4448 4449 4450 4451 4452
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4453
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4454 4455 4456 4457 4458
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4459 4460
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4461 4462 4463
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4464 4465 4466 4467 4468
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4469
        remove_ctr_vars = set()
4470
        if remove_ctr_var:
4471
            for node in self.all_var_nodes():
4472 4473 4474
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4475 4476
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4477 4478
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4479 4480 4481 4482 4483 4484
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4485 4486 4487 4488
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4489 4490
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4491 4492 4493 4494 4495 4496 4497
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4498 4499 4500
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4501
        WARN: When the graph includes backward operator nodes, the
4502 4503 4504 4505 4506 4507
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4508
        convert_pass = core.get_pass('graph_to_program_pass')
4509 4510
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4511 4512 4513 4514
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4515 4516 4517 4518 4519 4520 4521 4522
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4523 4524
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4525 4526
        return target_node

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4543
class Program(object):
D
dzhwinter 已提交
4544
    """
4545
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4546
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4547
    it will contain nested block.
4548

J
Jiabin Yang 已提交
4549 4550 4551
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4552

J
Jiabin Yang 已提交
4553
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4554
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4555 4556 4557 4558 4559 4560 4561
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4562
    **Notes**:
4563 4564 4565
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4566 4567

    Returns:
J
Jiabin Yang 已提交
4568
        Program: An empty Program.
D
dzhwinter 已提交
4569 4570

    Examples:
4571 4572
        .. code-block:: python

4573 4574 4575 4576
            import paddle
            import paddle.static as static

            paddle.enable_static()
4577

4578 4579 4580 4581 4582
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4583
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4584 4585 4586

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4587 4588 4589

    """

4590 4591
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4592 4593
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4594 4595
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4596
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4597
        self.__op_role_var = []
T
tangwei12 已提交
4598

4599 4600
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4601
        self._is_distributed = False
4602
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4603
        self._is_chief = False
4604 4605 4606
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4607
        self._endpoints = []
4608 4609 4610
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4611
        self._trainers_endpoints = []
4612
        # the distributed lookup table names
T
tangwei12 已提交
4613
        self._distributed_lookup_table = None
4614 4615 4616

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4617 4618
        self._use_lamb = False

4619 4620 4621
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4622

4623 4624 4625
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4626
        self._program_config = None
4627

H
hutuxian 已提交
4628 4629 4630
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4631 4632 4633
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4634 4635 4636
        # appending gradients times
        self._appending_grad_times = 0

4637 4638 4639 4640
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4641 4642
        # compiled program, i.e. Graph
        self._graph = None
4643 4644
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4645

4646
    def _find_var_class_kwargs(self, new_desc):
4647 4648 4649 4650 4651 4652 4653 4654
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4724
        assert block_num == self.desc.num_blocks()
4725 4726

        # clear old blocks and desc
4727 4728 4729 4730 4731 4732 4733 4734 4735
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4736

4737
        del desc
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4767 4768
                import paddle
                import paddle.static as static
4769

4770 4771 4772
                paddle.enable_static()

                prog = static.default_main_program()
4773 4774 4775 4776 4777
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4778
                prog1 = static.default_main_program()
4779 4780 4781 4782 4783 4784 4785 4786
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4787
    @property
4788
    def _op_role(self):
Y
yuyang18 已提交
4789 4790 4791 4792 4793 4794 4795 4796
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4797
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4798 4799 4800 4801
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4802 4803
        return self._current_role

4804 4805
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4806 4807 4808
        self._current_role = role

    @property
4809
    def _op_role_var(self):
Y
yuyang18 已提交
4810
        """
4811
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4812

4813
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4814 4815 4816

        Notes: This is a very low-level API. Users should not use it directly.
        """
4817
        return self.__op_role_var
Y
yuyang18 已提交
4818

4819
    @signature_safe_contextmanager
4820 4821 4822 4823 4824
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4825 4826 4827 4828
        try:
            yield
        finally:
            self._current_role = tmp_role
4829

S
rename  
sneaxiy 已提交
4830
    @signature_safe_contextmanager
W
Wu Yi 已提交
4831
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4832 4833 4834 4835 4836 4837 4838
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4839
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4840 4841 4842

        Examples:

4843
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4844
            >>> p, g = backward(...)
W
Wu Yi 已提交
4845
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4846 4847
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4848
        tmp_role = self._current_role
4849
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4850

Y
yuyang18 已提交
4851 4852
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4853
        self.__op_role_var = [
4854 4855 4856
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4857 4858 4859 4860 4861
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4862

S
rename  
sneaxiy 已提交
4863
    @signature_safe_contextmanager
X
Xin Pan 已提交
4864
    def _lr_schedule_guard(self, is_with_opt=False):
4865 4866 4867 4868 4869 4870 4871
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4872 4873 4874 4875
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4876 4877 4878

        Examples:

4879
            >>> import paddle.fluid as fluid
4880 4881 4882 4883
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4884 4885

        tmp_role = self._current_role
4886
        tmp_var = self.__op_role_var
4887

4888 4889
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4890 4891
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4892
        # TODO(typhoonzero): how to set target learning rate var
4893
        self.__op_role_var = []
4894 4895 4896 4897 4898
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4899

4900
    def __str__(self):
Y
yuyang18 已提交
4901 4902 4903 4904 4905 4906 4907 4908 4909
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4930 4931
            import paddle
            import paddle.static as static
4932

4933 4934 4935
            paddle.enable_static()

            cur_program = static.Program()
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4947
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4948 4949 4950 4951
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4952
            program_str += '\n'
4953
        return program_str
Y
Yang Yang(Tony) 已提交
4954

F
fengjiayi 已提交
4955 4956 4957
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4958

J
Jiabin Yang 已提交
4959 4960 4961
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4962

J
Jiabin Yang 已提交
4963
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4964

H
haowang101779990 已提交
4965
        Returns:
J
Jiabin Yang 已提交
4966
            str: The debug string describe current Program.
Y
yuyang18 已提交
4967 4968

        Raises:
J
Jiabin Yang 已提交
4969
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4970

4971 4972 4973
        Examples:
            .. code-block:: python

4974 4975 4976 4977
                import paddle
                import paddle.static as static

                paddle.enable_static()
4978

4979 4980 4981
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4982
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4983
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4984
                print("program string without detail: {}".format(prog_string))
4985
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4986
        """
4987 4988 4989 4990 4991 4992 4993 4994 4995
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4996 4997 4998 4999 5000 5001
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5002 5003
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5004 5005
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5006

W
Wu Yi 已提交
5007
    def _get_desc(self):
Y
yuyang18 已提交
5008 5009 5010 5011 5012 5013 5014
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5015 5016
        return self.desc

X
version  
Xin Pan 已提交
5017 5018 5019
    def _version(self):
        return self.desc._version()

5020
    def clone(self, for_test=False):
Y
yuyang18 已提交
5021
        """
5022 5023 5024 5025
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5026

5027
        Create a new Program with forward content of original one when ``for_test=True``.
5028
        Create a new Program as same as the original one when ``for_test=False``.
5029

5030
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5031 5032 5033
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5034

5035 5036
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5037 5038
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5039
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5040

J
Jiabin Yang 已提交
5041
        For Example:
5042
          ::
L
Luo Tao 已提交
5043

5044 5045 5046 5047 5048 5049
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5050
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5051
            loss = paddle.mean(pred)
5052
            # Here we use clone before Momentum
5053 5054
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5055
            optimizer.minimize(loss)
5056

J
Jiabin Yang 已提交
5057
        Args:
5058

5059 5060
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5061

J
Jiabin Yang 已提交
5062
        Returns:
5063
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5064

Y
yuyang18 已提交
5065 5066 5067

        Examples:

5068 5069 5070 5071 5072 5073 5074
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5091
            1. To clone a test program, the sample code is:
5092 5093 5094
                .. code-block:: python

                    import six
5095 5096 5097 5098 5099 5100
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5113 5114
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5115 5116 5117

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5118 5119 5120
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5121
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5122 5123
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5124
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5125 5126
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5127
                            test_program = train_program.clone(for_test=True)
5128
                    print_prog(test_program)
J
Jiabin Yang 已提交
5129 5130 5131 5132

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5133
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5134 5135 5136 5137
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5138 5139 5140
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5141 5142 5143
                            sgd.minimize(avg_loss)


5144
            2. The clone method can be avoid if you create program for training and program for testing individually.
5145 5146 5147
                .. code-block:: python

                    import six
5148 5149 5150 5151 5152 5153
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5165

5166
                    def network():
5167
                        img = static.data(name='image', shape=[None, 784])
5168
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5169 5170
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5171
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5172 5173
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5174 5175
                        return avg_loss

5176 5177 5178 5179 5180
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5181
                            avg_loss = network()
5182
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5183
                            sgd.minimize(avg_loss)
5184
                    # the test startup program is not used.
5185 5186
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5187 5188
                            avg_loss = network()
                    print_prog(test_program_2)
5189

5190
            The two code snippets above will generate and print same programs.
5191
        """
5192

T
tangwei12 已提交
5193
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5194 5195 5196
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5197
        pruned_origin_block_id_map = None
5198
        if for_test:
5199 5200 5201 5202 5203 5204 5205 5206 5207
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5208
        else:
5209
            p = Program()
G
gongweibao 已提交
5210 5211
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5212
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5213 5214 5215
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5216 5217

            p._current_role = self._current_role
5218
            p.__op_role_var = self.__op_role_var
5219
            p._appending_grad_times = self._appending_grad_times
5220 5221
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5222

T
tangwei12 已提交
5223
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5224
            # its desc.
W
Wu Yi 已提交
5225
            p._sync_with_cpp()
5226

W
Wu Yi 已提交
5227
        p._copy_param_info_from(self)
5228
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5229
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5230
        return p
5231

5232
    def _prune(self, targets):
Y
yuyang18 已提交
5233 5234 5235 5236 5237 5238 5239 5240
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5241
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5242 5243 5244 5245
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5246
        """
5247
        return self._prune_with_input([], targets)
5248 5249

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5250
        """
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5261
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5262 5263 5264 5265 5266 5267
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5268
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5269 5270 5271
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5272 5273
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5274 5275
        if not isinstance(targets, list):
            targets = [targets]
5276 5277 5278

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5279 5280 5281
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5282

5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5299 5300 5301 5302
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5303 5304 5305
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5306
                else:
5307 5308 5309
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5310 5311 5312 5313 5314 5315

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5316 5317 5318
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5319

5320 5321 5322 5323 5324 5325 5326 5327 5328
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5329
                        # Skip optimize op except for optimize op in targets,
5330 5331 5332 5333 5334
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5335

5336
                if target_op is not None:
5337 5338 5339
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5340

5341
        res = Program()
5342 5343 5344
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5345 5346 5347
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5348
        res._sync_with_cpp()
5349 5350 5351 5352 5353

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5354 5355
        return res

X
Xin Pan 已提交
5356
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5357
        """
F
fengjiayi 已提交
5358 5359 5360 5361 5362
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5363
        3. change the :code:`is_test`
Y
yuyang18 已提交
5364 5365 5366
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5367
        Args:
X
Xin Pan 已提交
5368 5369
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5370

Y
yuyang18 已提交
5371 5372 5373 5374 5375 5376
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5377
        res = Program()
5378
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5379 5380 5381 5382

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5383
        if prune_read_op:
5384 5385 5386 5387 5388 5389 5390 5391 5392
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5393
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5394 5395

        # change all `is_test` attributes to True
M
minqiyang 已提交
5396
        for i in six.moves.range(res.desc.num_blocks()):
5397
            block = res.desc.block(i)
M
minqiyang 已提交
5398
            for j in six.moves.range(block.op_size()):
5399 5400
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5401
                    op._set_attr('is_test', True)
5402 5403 5404
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5405 5406 5407
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5408
        res._sync_with_cpp()
5409 5410
        return res

5411
    def _remove_training_info(self, clip_extra=True):
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5501 5502
        return res

5503 5504
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5505
        """
5506 5507 5508
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5509

5510 5511
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5512

J
Jiabin Yang 已提交
5513
        Args:
Y
yuyang18 已提交
5514

J
Jiabin Yang 已提交
5515
            binary_str_type (str): the binary prootbuf string.
5516

J
Jiabin Yang 已提交
5517 5518
        Returns:
            Program: A deserialized Program.
5519 5520 5521 5522

        Examples:
            .. code-block:: python

5523 5524 5525 5526
                import paddle
                import paddle.static as static

                paddle.enable_static()
5527

5528 5529 5530 5531
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5532

5533
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5534

5535
                    z = paddle.matmul(x=x, y=y)
5536

5537 5538
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5539

5540
                    print(static.default_main_program())
5541
                    print(prog_restored)
Y
yuyang18 已提交
5542
        """
5543 5544
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5545
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5546
        p._sync_with_cpp()
5547
        return p
Y
Yu Yang 已提交
5548

5549
    @staticmethod
5550
    def _construct_from_desc(desc):
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5566 5567
    @property
    def random_seed(self):
Y
yuyang18 已提交
5568
        """
J
Jiabin Yang 已提交
5569
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5570 5571
        the random seed from random device.

5572 5573
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5574 5575 5576

        Returns:
            int64: Random seed in current Program
5577

5578 5579 5580 5581

        Examples:
            .. code-block:: python

5582 5583 5584
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5585

5586 5587 5588
                paddle.enable_static()

                prog = static.default_main_program()
5589
                random_seed = prog.random_seed
5590
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5591 5592 5593
                print(random_seed)
                ## 0
                ## the default random seed is 0
5594

5595
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5596
                prog.random_seed = 1
5597
                z_var = F.dropout(x_var, 0.7)
5598

5599
                print(prog.random_seed)
5600 5601
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5602
        """
D
dzhwinter 已提交
5603 5604
        return self._seed

Q
qiaolongfei 已提交
5605 5606
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5607
        """
5608 5609
        The number of :ref:`api_guide_Block_en`  in this Program.

5610 5611
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5612 5613 5614

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5615

5616 5617 5618 5619

        Examples:
            .. code-block:: python

5620 5621 5622 5623
                import paddle
                import paddle.static as static

                paddle.enable_static()
5624

5625
                prog = static.default_main_program()
5626 5627
                num_blocks = prog.num_blocks
                print(num_blocks)
5628

5629 5630
                # print result:
                # 1
Y
yuyang18 已提交
5631
        """
Q
qiaolongfei 已提交
5632 5633
        return self.desc.num_blocks()

D
dzhwinter 已提交
5634 5635 5636
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5637 5638 5639
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5640 5641
        self._seed = seed

Y
Yu Yang 已提交
5642
    def __repr__(self):
5643
        return self.__str__()
5644

Y
Yu Yang 已提交
5645
    def global_block(self):
Y
yuyang18 已提交
5646
        """
5647 5648
        .. note::
            This API has no effect in Dygraph mode.
5649 5650 5651

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5652 5653
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5654

5655 5656 5657 5658

        Examples:
            .. code-block:: python

5659 5660 5661 5662
                import paddle
                import paddle.static as static

                paddle.enable_static()
5663

5664
                prog = static.default_main_program()
5665 5666
                gb_block = prog.global_block()
                print(gb_block)
5667

Y
yuyang18 已提交
5668
        """
Y
Yu Yang 已提交
5669 5670
        return self.blocks[0]

Q
Qiao Longfei 已提交
5671
    def block(self, index):
Y
yuyang18 已提交
5672
        """
5673 5674
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5675

5676 5677
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5678 5679
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5680

J
Jiabin Yang 已提交
5681 5682
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5683 5684 5685 5686

        Examples:
            .. code-block:: python

5687 5688 5689 5690
                import paddle
                import paddle.static as static

                paddle.enable_static()
5691

5692
                prog = static.default_main_program()
5693 5694
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5695
        """
Q
Qiao Longfei 已提交
5696 5697
        return self.blocks[index]

Y
Yu Yang 已提交
5698
    def current_block(self):
Y
yuyang18 已提交
5699
        """
5700 5701
        .. note::
            This API has no effect in Dygraph mode.
5702

J
Jiabin Yang 已提交
5703 5704
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5705

J
Jiabin Yang 已提交
5706 5707
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5708

5709 5710 5711
        Examples:
            .. code-block:: python

5712 5713 5714 5715
                import paddle
                import paddle.static as static

                paddle.enable_static()
5716

5717
                prog = static.default_main_program()
5718 5719
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5720
        """
Y
Yu Yang 已提交
5721 5722
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5723
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5724 5725 5726 5727 5728
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5729

Y
yuyang18 已提交
5730 5731 5732 5733 5734
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5735
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5736 5737 5738
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5739 5740 5741 5742
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5743
    def _rollback(self):
Y
yuyang18 已提交
5744 5745 5746 5747 5748
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5749 5750
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5751
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5762 5763 5764
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5765
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5766

W
Wu Yi 已提交
5767
    def _copy_param_info_from(self, other):
5768
        """
5769
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5770

Y
yuyang18 已提交
5771 5772 5773
        Notes: This is a very low level API. Users should not invoke it
        directly.

5774 5775 5776 5777 5778 5779 5780
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5781 5782 5783
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5784

W
Wu Yi 已提交
5785
        self.global_block()._copy_param_info_from(other.global_block())
5786

5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5798 5799 5800
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5801 5802
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5803
        self._parameters_on_pservers = other._parameters_on_pservers
5804
        self._endpoints = other._endpoints
5805
        self._ps_endpoint = other._ps_endpoint
5806 5807
        self._distributed_lookup_table = other._distributed_lookup_table

5808
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5809 5810
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5811

Y
yuyang18 已提交
5812 5813 5814
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5815 5816
        Args:
            other(Program): Other program
5817 5818 5819 5820
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5821 5822 5823 5824 5825

        Returns:
            None
        """
        if not isinstance(other, Program):
5826 5827 5828
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5829

5830 5831 5832 5833 5834
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5835 5836 5837

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5838 5839
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5840
            for var in list(block.vars.values()):
5841 5842 5843 5844 5845 5846 5847
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5848

5849
    def list_vars(self):
Y
yuyang18 已提交
5850
        """
5851
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5852

J
Jiabin Yang 已提交
5853
        Returns:
5854
            iterable Tensors: The Generator will yield every Tensor in this program.
5855 5856 5857 5858

        Examples:
            .. code-block:: python

5859 5860
                import paddle
                import paddle.static as static
5861

5862 5863 5864 5865 5866
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5867 5868
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5869

5870 5871
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5872
        """
5873
        for each_block in self.blocks:
5874
            for each_var in list(each_block.vars.values()):
5875 5876
                yield each_var

5877 5878 5879 5880 5881 5882 5883 5884 5885 5886
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5887 5888 5889 5890
                import paddle
                import paddle.static as static

                paddle.enable_static()
5891

5892 5893
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5894
                hidden = static.nn.fc(x=data, size=10)
5895 5896
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5897 5898 5899 5900 5901 5902 5903

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5904 5905
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
6083

6084
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6085
class Parameter(Variable):
6086
    """
6087
    Parameter is derived from Variable. A parameter is a persistable
6088
    Variable, and will be updated by optimizers after each iteration.
6089
    The training of a neural network is essentially the updating of
6090 6091
    its parameters.

6092
    Relative to a general Variable, a Parameter has several its own
6093 6094
    member variables:

6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6105 6106
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6107 6108
    """

6109 6110 6111 6112 6113 6114
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6115 6116 6117 6118 6119
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6120
        if len(shape) == 0:
6121 6122
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6123 6124 6125

        for each in shape:
            if each < 0:
6126 6127 6128
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6129 6130

        Variable.__init__(
6131 6132 6133 6134 6135 6136 6137
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6138 6139 6140 6141
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6142 6143
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6144
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6145

6146 6147
        self.need_clip = kwargs.get('need_clip', True)

6148 6149
        self.is_distributed = False

6150 6151
        self.is_parameter = True

F
fengjiayi 已提交
6152
    def __str__(self):
6153
        return self._to_readable_code()
F
fengjiayi 已提交
6154

F
update  
fengjiayi 已提交
6155 6156 6157
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6158

F
update  
fengjiayi 已提交
6159 6160 6161 6162 6163 6164 6165 6166
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6167 6168 6169 6170 6171 6172 6173 6174 6175
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6176 6177 6178 6179 6180 6181
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6182
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6183
            for attr_name in additional_attr:
6184 6185
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6186 6187
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6188 6189 6190 6191
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6192

6193 6194
class ParamBase(core.VarBase):
    """
6195 6196 6197
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6198 6199 6200
    The training of a neural network is essentially the updating of
    its ParamBase.

6201
    Relative to a general Tensor, a ParamBase has several its own
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6214 6215
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6246 6247
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6248 6249 6250 6251 6252 6253 6254

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6255 6256
        self.need_clip = kwargs.get('need_clip', True)

6257
        self.is_distributed = kwargs.get('is_distributed', False)
6258
        # self.block = default_main_program().global_block()
6259

6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6273
    def __str__(self):
6274
        """
6275
        Convert a ParamBase object to a readable string.
6276

6277
        Returns(str): A readable string.
6278 6279 6280 6281

        Examples:
            .. code-block:: python

6282
                import paddle
6283 6284 6285 6286 6287 6288 6289
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6290
        """
6291 6292
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6293

6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6305

6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6324 6325 6326 6327
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
    _core_eager_eagertensor = core.eager.EagerTensor
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

        super(EagerParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape)
            if shape else [], name, core.VarDesc.VarType.LOD_TENSOR, True)
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6475 6476
        return new_param

6477 6478 6479
    __repr__ = __str__


Y
Yu Yang 已提交
6480
# program is a global instance.
Y
Yu Yang 已提交
6481 6482
_main_program_ = Program()
_startup_program_ = Program()
6483
_startup_program_._is_start_up_program_ = True
6484

6485

6486
def default_startup_program():
Y
Yu Yang 已提交
6487
    """
Y
yuyang18 已提交
6488 6489
    Get default/global startup program.

6490 6491
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6492

6493 6494
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6495

6496 6497
    Returns:
        Program: current default startup program.
6498

6499
    Returns type: 
6500 6501 6502 6503

    Examples:
        .. code-block:: python

6504
            import paddle
6505

6506
            paddle.enable_static()
6507 6508 6509 6510
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6511
    """
Y
Yu Yang 已提交
6512
    return _startup_program_
6513

6514

6515
def default_main_program():
Y
Yu Yang 已提交
6516
    """
6517
    This API can be used to get ``default main program`` which store the 
6518
    descriptions of Ops and tensors.
T
tangwei12 已提交
6519

6520
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6521
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6522

6523 6524
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6525
    :code:`default_main_program` when the program is not specified.
6526

6527
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6528

Y
Yu Yang 已提交
6529
    Returns:
6530
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6531 6532 6533 6534

    Examples:
        ..  code-block:: python

6535
            import paddle
6536

6537
            paddle.enable_static()
6538
            # Sample Network:
6539 6540 6541
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6542

6543 6544 6545
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6546
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6547
    """
Y
Yu Yang 已提交
6548
    return _main_program_
Y
Yu Yang 已提交
6549 6550 6551 6552 6553


def switch_main_program(program):
    """
    Switch the main program to a new program.
6554

Y
Yu Yang 已提交
6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6569
    Switch the startup program to a new program
Y
Yu Yang 已提交
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6582
@signature_safe_contextmanager
Y
Yu Yang 已提交
6583 6584
def program_guard(main_program, startup_program=None):
    """
6585 6586
    :api_attr: Static Graph

6587 6588 6589
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6590

G
guofei 已提交
6591
    Args:
6592 6593
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6594 6595 6596 6597
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6598
    Examples:
6599
       .. code-block:: python
T
tangwei12 已提交
6600

6601
          import paddle
Y
yuyang18 已提交
6602

6603 6604 6605 6606 6607
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6608
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6609 6610 6611

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6612

Y
Yu Yang 已提交
6613
    Examples:
6614
       .. code-block:: python
Y
yuyang18 已提交
6615

6616
          import paddle
6617

6618 6619 6620 6621 6622
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6623

Y
Yu Yang 已提交
6624
    """
6625
    from .data_feeder import check_type
6626 6627
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6628 6629
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6630
        check_type(startup_program, 'startup_program', Program,
6631
                   'paddle.static.program_guard')
6632 6633
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6634
        startup_program = switch_startup_program(startup_program)
6635 6636 6637 6638 6639 6640
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6641 6642


W
Wu Yi 已提交
6643
def _get_var(name, program=None):
X
xuwei06 已提交
6644
    """
Y
yuyang18 已提交
6645
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6646

X
xuwei06 已提交
6647 6648 6649
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6650
        If None, default_global_program() will be used.
X
xuwei06 已提交
6651 6652 6653 6654 6655 6656 6657

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6658
    assert isinstance(program, Program)
X
xuwei06 已提交
6659 6660

    return program.global_block().var(name)
6661 6662


S
rename  
sneaxiy 已提交
6663
@signature_safe_contextmanager
L
lujun 已提交
6664 6665
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6666
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6667
    _dygraph_tracer_ = tracer
6668
    core._switch_tracer(tracer)
M
minqiyang 已提交
6669

6670 6671 6672
    try:
        yield
    finally:
6673 6674
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6675 6676


S
rename  
sneaxiy 已提交
6677
@signature_safe_contextmanager
L
lujun 已提交
6678
def _dygraph_place_guard(place):
6679 6680 6681
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
6682 6683
    if _in_eager_mode():
        core.eager._set_expected_place(place)
6684 6685
    _set_dygraph_tracer_expected_place(place)

6686 6687 6688
    try:
        yield
    finally:
6689
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
6690 6691 6692
        if _in_eager_mode():
            core.eager._set_expected_place(_global_expected_place_)
        _set_dygraph_tracer_expected_place(_global_expected_place_)
6693 6694


6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6711 6712
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6713 6714 6715 6716 6717 6718 6719 6720 6721
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6722
            import paddle
6723

Z
Zhang Ting 已提交
6724 6725 6726
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6727
            if support_gpu:
Z
Zhang Ting 已提交
6728
                place = paddle.CUDAPlace(0)
6729 6730

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6731 6732 6733
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6734

Z
Zhang Ting 已提交
6735
            with paddle.static.device_guard("cpu"):
6736
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6737 6738
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6739
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6740
                out = paddle.reshape(data1, shape=shape)
6741

Z
Zhang Ting 已提交
6742 6743
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6744 6745 6746
            result = exe.run(fetch_list=[out])
    """

6747 6748 6749 6750 6751
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6752
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6753
        raise ValueError(
6754
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6755
            "when there is no need to specify device. But received %s" % device)
6756 6757
    if index:
        device = ":".join([device, index])
6758
    pre_device = switch_device(device)
6759 6760 6761 6762
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6763 6764 6765 6766 6767


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6768
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6769 6770 6771 6772 6773 6774 6775

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6776 6777
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6778 6779 6780 6781
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6782 6783
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6784 6785 6786 6787 6788 6789 6790 6791
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6792
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6793 6794 6795 6796 6797 6798 6799 6800 6801 6802

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6803
            import paddle
G
guofei 已提交
6804 6805

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6806
            res = paddle.get_flags(flags)
G
guofei 已提交
6807 6808 6809 6810 6811 6812
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6813 6814
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6815 6816 6817 6818 6819 6820 6821
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6822 6823
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6824 6825 6826 6827 6828 6829 6830 6831
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6832 6833 6834 6835 6836 6837 6838


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6839 6840
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
                          core.MLUPlace)):
6841 6842 6843 6844 6845 6846 6847 6848 6849
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6850

6851 6852 6853
    if (place == "device"):
        return core.Place()

6854
    # GPU
6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6870 6871

    # XPU
6872 6873 6874 6875 6876 6877 6878 6879 6880 6881
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

6907
    raise ValueError(
6908
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, MLUPlace and NPUPlace, but received {}.".
6909
        format(place))
6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret