Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
8623e48b
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
8623e48b
编写于
10月 26, 2017
作者:
A
Abhinav Arora
提交者:
GitHub
10月 26, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add python API for backward regularization ops (#5135)
* Add regularizer code * Fix code
上级
be00b0c4
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
147 addition
and
0 deletion
+147
-0
python/paddle/v2/framework/framework.py
python/paddle/v2/framework/framework.py
+2
-0
python/paddle/v2/framework/optimizer.py
python/paddle/v2/framework/optimizer.py
+3
-0
python/paddle/v2/framework/regularizer.py
python/paddle/v2/framework/regularizer.py
+99
-0
python/paddle/v2/framework/tests/test_regularizer.py
python/paddle/v2/framework/tests/test_regularizer.py
+43
-0
未找到文件。
python/paddle/v2/framework/framework.py
浏览文件 @
8623e48b
...
...
@@ -505,6 +505,8 @@ class Parameter(Variable):
self
.
optimize_attr
=
kwargs
.
get
(
'optimize_attr'
,
{
'learning_rate'
:
1.0
})
self
.
regularizer
=
kwargs
.
get
(
'regularizer'
,
None
)
# program is a global instance.
g_program
=
Program
()
...
...
python/paddle/v2/framework/optimizer.py
浏览文件 @
8623e48b
...
...
@@ -2,6 +2,7 @@ from collections import defaultdict
import
paddle.v2.framework.framework
as
framework
from
paddle.v2.framework.backward
import
append_backward_ops
from
paddle.v2.framework.regularizer
import
append_regularization_ops
__all__
=
[
'SGDOptimizer'
,
'MomentumOptimizer'
,
'AdagradOptimizer'
,
'AdamOptimizer'
,
...
...
@@ -161,6 +162,8 @@ class Optimizer(object):
"""
params_grads
=
append_backward_ops
(
loss
,
parameter_list
,
no_grad_set
or
set
())
# Add regularization if any
params_grads
=
append_regularization_ops
(
params_grads
)
optimize_ops
=
self
.
create_optimization_pass
(
params_grads
,
loss
)
return
optimize_ops
...
...
python/paddle/v2/framework/regularizer.py
0 → 100644
浏览文件 @
8623e48b
import
paddle.v2.framework.framework
as
framework
__all__
=
[
'append_regularization_ops'
,
'L2DecayRegularizer'
]
def
append_regularization_ops
(
parameters_and_grads
):
"""Create and add backward regularization Operators
Creates and adds backward regularization operators in the BlockDesc.
This will add gradients of the regularizer function to the gradients
of the parameters and return these modified gradients. This is the
same as implementing weight decay in optimizers for regularization.
Args:
parameters_and_grads: A list of (parameters, gradients) pairs
that need to be regularized.
Returns:
list of (parameters, gradients) pair with the regularized gradient
Raises:
Exception: Unknown regularization type
"""
params_and_grads
=
[]
for
param
,
grad
in
parameters_and_grads
:
# If no gradient or no regularization specified,
# then we don't need to do anything
if
grad
is
None
or
param
.
regularizer
is
None
:
params_and_grads
.
append
((
param
,
grad
))
continue
# Add variable for regularization term in grad block
regularization_term
=
param
.
regularizer
(
param
,
grad
.
block
)
assert
grad
.
shape
==
regularization_term
.
shape
grad
.
block
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
"X"
:
grad
,
"Y"
:
regularization_term
},
outputs
=
{
"Out"
:
grad
})
params_and_grads
.
append
((
param
,
grad
))
return
params_and_grads
class
WeightDecayRegularizer
(
object
):
"""Base class for weight decay regularizers
Defines the common interface of weight-decay regularizers.
Weight-decay regularizers are added only during the backward
pass for faster regularization. They add operations to the network
that correspond to gradient of the regularization function.
Users should not use this class directly, but need to use one
of its implementations
"""
def
__init__
(
self
):
pass
def
__call__
(
self
,
param
,
block
):
"""Add corresponding weight decay operations to the network
"""
raise
NotImplementedError
()
class
L2DecayRegularizer
(
WeightDecayRegularizer
):
"""Implements the L2 Weight Decay Regularization
"""
def
__init__
(
self
,
regularization_coeff
=
0.0
):
assert
regularization_coeff
is
not
None
super
(
L2DecayRegularizer
,
self
).
__init__
()
self
.
_regularization_coeff
=
regularization_coeff
def
__call__
(
self
,
param
,
block
):
"""Add L2 weight decay ops to network
Adds L2 weight decay ops.
L2WeightDecay = reg_coeff * parameter
Args:
param: parameter variable for which regularization is applied
block: block in which variable is to be created
Returns:
new variable for weight decay
"""
assert
isinstance
(
param
,
framework
.
Parameter
)
assert
isinstance
(
block
,
framework
.
Block
)
decay
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
param
.
shape
,
lod_level
=
param
.
lod_level
)
# Append Op to calculate decay
block
.
append_op
(
type
=
'scale'
,
inputs
=
{
"X"
:
param
},
outputs
=
{
"Out"
:
decay
},
attrs
=
{
"scale"
:
self
.
_regularization_coeff
})
return
decay
python/paddle/v2/framework/tests/test_regularizer.py
0 → 100644
浏览文件 @
8623e48b
import
unittest
import
paddle.v2.framework.framework
as
framework
import
paddle.v2.framework.optimizer
as
optimizer
import
paddle.v2.framework.regularizer
as
regularizer
from
paddle.v2.framework.backward
import
append_backward_ops
class
TestL2DecayRegularizer
(
unittest
.
TestCase
):
def
test_l2decay_regularizer
(
self
):
program
=
framework
.
Program
()
block
=
program
.
global_block
()
mul_x
=
block
.
create_parameter
(
dtype
=
"float32"
,
shape
=
[
5
,
10
],
lod_level
=
0
,
name
=
"mul.x"
,
regularizer
=
regularizer
.
L2DecayRegularizer
(
0.5
))
self
.
assertTrue
(
mul_x
.
regularizer
is
not
None
)
self
.
assertTrue
(
isinstance
(
mul_x
.
regularizer
,
regularizer
.
L2DecayRegularizer
))
mul_y
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
[
10
,
8
],
lod_level
=
0
,
name
=
"mul.y"
)
mul_out
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
[
5
,
8
],
lod_level
=
0
,
name
=
"mul.out"
)
block
.
append_op
(
type
=
"mul"
,
inputs
=
{
"X"
:
mul_x
,
"Y"
:
mul_y
},
outputs
=
{
"Out"
:
mul_out
},
attrs
=
{
"x_num_col_dims"
:
1
})
params_grads
=
append_backward_ops
(
mul_out
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
count_ops
=
len
(
block
.
ops
)
params_grads
=
optimizer
.
append_regularization_ops
(
params_grads
)
self
.
assertEqual
(
len
(
params_grads
),
1
)
self
.
assertEqual
(
len
(
block
.
ops
),
count_ops
+
2
)
self
.
assertEqual
(
block
.
ops
[
-
1
].
type
,
'elementwise_add'
)
self
.
assertEqual
(
block
.
ops
[
-
2
].
type
,
'scale'
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录